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Abstract
We provide answers to a question brought up by Erdős
about the construction of Wetzel families in the absence
of the continuum hypothesis: AWetzel family is a family
 of entire functions on the complex plane which point-
wise assumes fewer than | | values. To be more precise,
we show that the existence of a Wetzel family is consis-
tent with all possible values 𝜅 of the continuum and, if
𝜅 is regular, also with Martin’s Axiom. In the particu-
lar case of 𝜅 = ℵ2 this answers the main open question
asked by Kumar and Shelah [Fund. Math. 239 (2017) no.
3, 279–288]. In the buildup to this result, we are also
solving an open question of Zapletal on strongly almost
disjoint functions from Zapletal [Israel J. Math. 97 (1997)
no. 1, 101–111]. We also study a strongly related notion of
sets exhibiting a universality property via mappings by
entire functions and show that these consistently exist
while the continuum equals ℵ2.
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1 INTRODUCTION

This paper is an investigation related to Wetzel’s problem which comes from analysis and yet has
surprising set-theoretical aspects. While the subjects of analysis and set theory might nowadays
be conceived as somewhat distant to each other, there are some examples of topics belonging
to them both. Among the most prominent one is the problem of sets of uniqueness, cf. [21],
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which led Cantor to investigate sets of real numbers and subsequently to the founding of set
theory.
One of the greatest contributions of Cantor was the discovery of ordinals and cardinals and the

distinction between countable and uncountable sets of reals. This led him to the formulation of
the continuum hypothesis, 𝖢𝖧, which states that the cardinality of the set of all real numbers is
the smallest one conceivable in light of this, the smallest uncountable cardinalℵ1, cf. [9]. In 1904,
Ernst Zermelo axiomatised set theory in a way conforming to mathematician’s practise hitherto,
cf. [34]. Subsequently, A. Fraenkel added the replacement scheme, cf. [15], thus yielding the sys-
tem 𝖹𝖥𝖢. Somewhat later, Kurt Gödel showed that the continuum hypothesis cannot be refuted
within this system (provided that there is anything which cannot be derived within it), cf. [17].
Gödel conjectured, cf. [18, section 4], that it cannot be proved in it either but only several decades
later, Paul Cohen, at the origin an analyst just like Cantor, developed the method of forcing and
could prove that this is indeed the case, cf. [12].
Nowadays it is common to subdivide analysis into real and complex analysis. The latter’s the-

orems about its objects of study, holomorphic functions, revealed deep connections between
analysis and geometry and found applications in various areas, among them number theory. One
striking feature of the family of functions which are holomorphic on some domain of complex
numbers opposite the family of those which are merely smooth on an interval of real numbers
is the intertwinement of the local and global behaviour of holomorphic functions. Whereas two
distinct functions may be both identical and infinitely often differentiable on an interval of real
numbers, the situation in the complex domain is quite different, due to the famous ‘identity the-
orem’. According to it, for any two distinct functions holomorphic on some complex domain, the
set of points where they agree is discrete (see Proposition 2.1).
As the complex plane is separable, no uncountable set of complex numbers is discrete. There-

fore, any two distinct holomorphic functions can only agree on a countable set of points.
Subsequently further theorems underscored the difference between the realms of entire func-
tions on the one hand and smooth functions on the real number line on the other. In the middle
of the nineteenth century, it emerged fromwork of Liouville, cf. [19, Chapter 11], that all bounded
entire functions are constant. Later, Nevanlinna developed the theory named after him, cf. [10],
one upshot of which is that for any two distinct entire functions 𝑓 and g , there can be at most four
complex values 𝑎 for which the pre-images of {𝑎} are equal. Another interesting property that
is purely of combinatorial nature and can be stated irrespective of the topological and algebraic
structure of ℂ, is Picard’s Little Theorem, namely the fact that any non-constant entire function
can avoid at most one single value (see e.g. [27, Theorem 16.22]).
The emerging picture of complex analysis in general and of entire functions in particular

was one of strong general principles governing their behaviour. Against this backdrop, while
writing his dissertation during the sixties of the last century, John E. Wetzel asked (cum grano
salis) whether any family  of entire functions such that for each complex number 𝑧 the set
{𝑓(𝑧) ∶ 𝑓 ∈  } is countable, must be countable itself. Dixon showed that, assuming the failure
of the continuum hypothesis, this is indeed the case, in fact, this is a corollary of the aforemen-
tioned identity theorem, cf. [16]. Shortly thereafter, Erdős proved that not only does the negation
of the continuum hypothesis imply this statement, it is equivalent to it, [13]. In fact this result
is one among many statements in various areas of mathematics proved to be equivalent to the
continuum hypothesis, cf. [6, 31]. Towards the end of his paper, Erdős asked whether the ana-
logue statement resulting from replacing ‘countable’ by ‘fewer than continuum many’ can be
provedwithout assuming the continuumhypothesis. Following a suggestion byMartinGoldstern,
we subsequently refer to a family of entire functions whose members everywhere assume fewer
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values than the family has members altogether as aWetzel family (see Definition 3.1). In this ter-
minology, Erdős asked whether the existence of a Wetzel family is provable from 𝖹𝖥𝖢. One might
also ask whether the continuum hypothesis is equivalent to the existence of a Wetzel family.
Not long after the development of forcing by Cohen, Solovay and Tennenbaum instigated the

theory of iterated forcing and Tony Martin stated what became known as Martin’s Axiom, or𝖬𝖠
for short, a weakening of the continuum hypothesis. It does not prescribe a particular value for
the cardinality of the continuum but it does, for instance, imply that its cardinality is regular.
In many cases, when something can be proved for countable sets within 𝖹𝖥𝖢, Martin’s Axiom
allows us to generalise this to sets with fewer than 2ℵ0 elements. Meanwhile Erdős’ question
remained unanswered.
The threads regardingWetzel’s problemwere only picked up again in 2017 by Ashutosh Kumar

and Saharon Shelah who answered both questions above in the negative, albeit in a slightly non-
satisfactory way, see [22]. They showed that there is no Wetzel family in the side-by-side Cohen
model and provided a model with a Wetzel family (and hence a continuum, cf. Lemma 3.2) of
cardinality ℵ𝜔1 . The singularity of ℵ𝜔1 is quite crucial in their argument and the result could not
be generalised to other cardinals.Moreover, theirmodel necessarily fails to satisfyMartin’sAxiom.
It seems that after [22], interest inWetzel’s problemhas grown.We are aware of twomore papers

dealing with it since then, a formalisation of Erdős’ proof, [26], and a proof that the continuum
hypothesis implies the existence of sparse analytic systems, [11].† But no one yet addressed the
open questionwhichKumar and Shelah ask at the end of [22], of whether the existence of aWetzel
family is consistent with a continuum of cardinality ℵ2. Erdős’ proof relied on the fact that any
countable dense set of complex numbers is universal for countable sets via entire functions, that
is to say that any countable set may be mapped into it via a non-constant entire function (see
Definition 3.4 and Proposition 3.5). In fact one finds a few papers from the sixties and seventies
of the last century studying similar yet slightly stronger mapping properties, cf. [2, 3, 24, 25, 28].
Kumar and Shelah observed that aWetzel familywould exist in amodel of 2ℵ0 = ℵ2 inwhich there
is a set of cardinalityℵ1 universal in the sense above for sets of cardinalityℵ1 of complex numbers.
The main result of our paper is Theorem 5.14, that shows that starting from a model of the

generalised continuum hypothesis and any cardinal 𝜅 of uncountable cofinality, there is a cardi-
nal and cofinality preserving forcing extension with a Wetzel family of size 𝜅. In particular, this
completely solves Kumar and Shelah’s open problem by showing that Wetzel families put no fur-
ther restriction on the size of the continuum. Moreover, for regular 𝜅, we can also force Martin’s
axiom.We also study the notion of universality from above and show that while𝖬𝖠 precludes the
existence of sufficiently universal sets, they can consistently exist while 2ℵ0 = ℵ2.
While some basic knowledge of set theory is needed to understand the main results, a large

part of the arguments (with an exception of those in Sections 4 and 7) is more analytic than
set theoretic.
The paper is organised as follows. In the following first section, we review some of the prelim-

inaries in complex analysis and forcing that are used in the paper. In the next section, Section 3,
we introduce Wetzel families and universal sets and prove some 𝖹𝖥𝖢 results about them. Among
other things, we show thatWetzel families must have cardinality 2ℵ0 , we provide a proof of Erdős’
result on countable dense sets and we show that universal sets imply the existence of Wetzel fam-
ilies. In Section 4, we show how to force a certain family of strongly almost disjoint functions that
serves as a basic (and somewhat necessary) ingredient in the proof of the main result. In fact,

†We have been informed that the authors of [11] have been unaware of [22], and were motivated rather by Erdös’
original paper.
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4 of 27 SCHILHAN and WEINERT

it turns out that this solves [33, Question 22]. We also obtain some interesting additional results
related to 𝖬𝖠 that shine some light on one of our open questions. This section can be read com-
pletely independently from the rest the paper. Section 5 is the longest and contains the proof the
main result, Theorem 5.14. In Section 6, we show that universal sets do not exist under𝖬𝖠 + ¬𝖢𝖧.
As a corollary, we obtain that the converse of Proposition 3.7, namely the statement that Wetzel
families imply the existence of a universal set, does not hold. In the next section, we then show
that a universal set, as suggested by Kumar and Shelah, can consistently exist with continuum
ℵ2. This uses a proper forcing, based on some of the previous arguments, with pairs of models as
side-conditions. We finish the paper with a list of open problems.

2 PRELIMINARIES

2.1 Complex analysis

Throughout the paper, ℂ denotes the set of complex numbers. A function 𝑓∶ ℂ → ℂ is entire if it
is holomorphic on the domain ℂ, in other words, its complex derivative 𝑓′ exists in every point
𝑧 ∈ ℂ. The set of entire functions will be denoted(ℂ).

Proposition 2.1 (see [27, Theorem 10.18]).Let𝑓, g ∈ (ℂ)andassume that the set {𝑧 ∈ ℂ ∶ 𝑓(𝑧) =
g(𝑧)} has an accumulation point. Then, 𝑓 = g .

For 𝑧 ∈ ℂ and 𝛿 a positive real number, we let

𝐵𝛿(𝑧) = {𝑧
′ ∈ ℂ ∶ |𝑧 − 𝑧′| < 𝛿}

be the ball of radius 𝛿 around 𝑧. We also define the semi-norms

‖𝑓‖𝛿 = sup
𝑧∈𝐵𝛿(0)

|𝑓(𝑧)|.
Recall that a sequence of functions 𝑓 = ⟨𝑓𝑛 ∶ 𝑛 ∈ 𝜔⟩ on ℂ is said to converge uniformly on com-
pact sets, if for every 𝛿 > 0, 𝑓 converges uniformly on 𝐵𝛿(0), that is, for every 𝜀 > 0, there is𝑁 ∈ 𝜔

so that for all 𝑛0, 𝑛1 > 𝑁,

‖𝑓𝑛0 − 𝑓𝑛1‖𝛿 < 𝜀.
Among the most useful facts about entire functions that we will use is the following.

Proposition 2.2 (see [27, Theorem 10.28]). Let ⟨𝑓𝑛 ∶ 𝑛 ∈ 𝜔⟩ be a sequence of entire functions that
converges uniformly on every compact set. Then, the pointwise limit 𝑓 of ⟨𝑓𝑛 ∶ 𝑛 ∈ 𝜔⟩ is entire.
Moreover, the sequence of derivatives ⟨𝑓′𝑛 ∶ 𝑛 ∈ 𝜔⟩ converges uniformly on every compact set to 𝑓′.

2.2 Forcing

Here, we review a few standard facts about forcing that we will find useful. We use standard
forcing notation as used in the reference books [20] or [23].

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12918 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WETZEL FAMILIES AND THE CONTINUUM 5 of 27

Lemma 2.3 [23, Lemma V.3.9, V.3.10]. Let ℙ ∗ ℚ̇ be a two-step iteration. Then, ℙ ∗ ℚ̇ is ccc if and
only if ℙ is ccc and⊩ℙ ℚ̇ is ccc.

Note of course, that if ℚ̇ is in fact of the form ℚ̌ for some ground model forcing ℚ, then also
ℙ ∗ ℚ̇ is ccc if and only if ℙ × ℚ is.

Definition 2.4. Let ℙ,ℚ be forcing notions. Then, ℙ is a sub-forcing of ℚ if ℙ ⊆ ℚ and the
extension as well as the incompatibility relations agree.

Definition 2.5. Let𝑀 ⊆ 𝑉 be a transitive model of 𝖹𝖥− (possibly a proper class).† Let ℙ ∈ 𝑀 be
a sub-forcing ofℚ. Then, we write ℙ ⋖𝑀 ℚ to say that every pre-dense set 𝐸 ∈ 𝑀 of ℙ is pre-dense
in ℚ. We write ℙ ⋖ ℚ for ℙ ⋖𝑉 ℚ and say that ℙ is a complete sub-forcing of ℚ.

Lemma 2.6 [32, Theorem 6.3]. The iterative direct limit of ccc forcings is ccc. To be more precise,
suppose ⟨ℙ𝛿 ∶ 𝛿 ⩽ 𝛼⟩ is a sequence of posets, 𝛼 limit, so that
(1) for all 𝛾 ⩽ 𝛿 ⩽ 𝛼, ℙ𝛾 ⋖ ℙ𝛿 ,
(2) for every limit 𝛿 ⩽ 𝛼,

⋃
𝛾<𝛿 ℙ𝛾 is dense in ℙ𝛿 ,

(3) and for all 𝛿 < 𝛼, ℙ𝛿 is ccc.

Then also ℙ𝛼 is ccc.

Lemma 2.7. Letℙ be a complete sub-forcing ofℚ, 𝔸̇ aℙ-name and 𝔹̇ aℚ-name for a forcing notion.
Then,

⊩ℚ 𝔸̇ ⋖𝑉ℙ 𝔹̇ if and only if ℙ ∗ 𝔸̇ ⋖ ℚ ∗ 𝔹̇.

Proof. It suffices to notice that a pre-dense subset ofℙ ∗ 𝔸̇ (and, respectively, ofℚ ∗ 𝔹̇) is precisely
the same as a ℙ-name (or ℚ-name) for a pre-dense subset of 𝔸̇ (respectively, 𝔹̇). For the direction
from left to right, see also, for example, [7, Lemma 13]. □

3 WETZEL FAMILIES AND UNIVERSAL SETS

Definition 3.1. A family  ⊆ (ℂ) of entire functions is called aWetzel family if for every 𝑧 ∈ ℂ,|{𝑓(𝑧) ∶ 𝑓 ∈  }| < | |.
Lemma 3.2. If  is a Wetzel family, then | | = 2ℵ0 and for every 𝜆 < 2ℵ0 and all but less than
2ℵ0 -many 𝑧 ∈ ℂ, |{𝑓(𝑧) ∶ 𝑓 ∈  }| ⩾ 𝜆.
Proof. Suppose towards a contradiction that | | < 2ℵ0 . For any distinct 𝑓, g ∈ (ℂ), 𝑋𝑓,g =
{𝑧 ∈ ℂ ∶ 𝑓(𝑧) = g(𝑧)} does not have an accumulation point by Proposition 2.1 and thus must be
countable. Thus, if 𝑋 =

⋃
𝑓≠g∈ 𝑋𝑓,g , then

|𝑋| ⩽ | ×  × 𝜔| < 2ℵ0.
† 𝖹𝖥− is 𝖹𝖥 without the Powerset Axiom.
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6 of 27 SCHILHAN and WEINERT

In particular, there is some 𝑧 ∈ ℂ ⧵ 𝑋. But then for any distinct 𝑓, g ∈  , 𝑓(𝑧) ≠ g(𝑧) and so|{𝑓(𝑧) ∶ 𝑓 ∈  }| = | |, contradicting that  is Wetzel.
Now let 𝜆 < 2ℵ0 and  ⊆  have size 𝜆. Then, if𝑋′ =

⋃
𝑓≠g∈ 𝑋𝑓,g , as before |𝑋′| < 2ℵ0 and for

all 𝑧 ∈ ℂ ⧵ 𝑋′, |{𝑓(𝑧) ∶ 𝑓 ∈  }| ⩾ |{𝑓(𝑧) ∶ 𝑓 ∈ }| ⩾ 𝜆. □

This lemma in fact shows that aWetzel family induces a quite non-trivial combinatorial object,
especially when 2ℵ0 > ℵ2. Namely, consider an enumeration ⟨𝑧𝛼 ∶ 𝛼 < 𝜅⟩ of ℂ. For each 𝛼 < 𝜅,
there is a bijection 𝑒𝛼 ∶ {𝑓(𝑧𝛼) ∶ 𝑓 ∈  } → 𝜇𝛼 for some cardinal 𝜇𝛼 < 2ℵ0 . In this way, we can
think of each 𝑓 ∈  as the function 𝜎𝑓 ∈

∏
𝛼<𝜅 𝜇𝛼, where 𝜎𝑓(𝛼) = 𝑒𝛼(𝑓(𝑧𝛼)). At the same time,

the elements of  and thus of {𝜎𝑓 ∶ 𝑓 ∈  } have pairwise countable intersections.
Under 𝖢𝖧, this type of almost disjoint family of functions can be obtained quite easily. For

instance, for any 𝛼 < 𝜔1, simply let 𝜎𝛼 be constantly 0 below 𝛼 and constantly equal to 𝛼 above 𝛼.
Also this is not particularly hard when 2ℵ0 = ℵ2. Whenever we have constructed ⟨𝜎𝛽 ∶ 𝛽 < 𝛼⟩

for some 𝛼 < 𝜔2, we can find a single function 𝜎∶ 𝛼 → 𝜔1 that has countable intersection with
all 𝜎𝛽 using a standard diagonalisation argument. Then, we simply let 𝜎𝛼 equal 𝜎 below 𝛼 and
constantly equal to 𝛼 above 𝛼.
For larger continuum, the existence of such families becomesmuch less clear, as a consequence

of the larger gap between the countable size of the pairwise intersections and the size of the family
and their elements. In fact, in Section 5, we will show how to force these types of families, based
on a technique by Baumgartner. This will be a key starting point for the construction of a Wetzel
family by forcing.
As a small observation of independent interest, let us mention the following:

Lemma 3.3. AWetzel family cannot consist only of polynomials.

Proof. Suppose  is such a family. Since | | = 2ℵ0 and 2ℵ0 has uncountable cofinality, we can
assume that all polynomials in  have the same degree 𝑛. Then, pick any 𝑛 + 1-many points
𝑎0, … , 𝑎𝑛 ∈ ℂ. The set {𝑓 ↾ {𝑎0, … , 𝑎𝑛} ∶ 𝑓 ∈  } has size less than 2ℵ0 , because  is Wetzel. But
each𝑓 ∈  is uniquely determined by𝑓 ↾ {𝑎0, … , 𝑎𝑛} and so has small size aswell, contradicting
Lemma 3.2. □

Definition 3.4. We call a set 𝑌 ⊆ ℂ, where |𝑌| < 2ℵ0 , universal (for entire functions) if for any
𝑋 ⊆ ℂ with |𝑋| < 2ℵ0 , there is a non-constant 𝑓 ∈ (ℂ), such that 𝑓(𝑋) ⊆ 𝑌.

Proposition 3.5 (Erdős, [13]). Assuming 𝖢𝖧, any countable dense set is universal.

Let us write the argument for sake of completeness. In a way, the forcing notions we will use
later mimic this construction.

Proof. Let 𝑌 ⊆ ℂ be countable dense and 𝑋 ⊆ ℂ be arbitrary countable and enumerated as⟨𝑧𝑛 ∶ 𝑛 ∈ 𝜔⟩. We recursively construct a sequence ⟨𝑓𝑛 ∶ 𝑛 ∈ 𝜔⟩ of entire functions that converges
uniformly on compact sets. Start by simply letting 𝑓0 be constantly 0. Next, if 𝑓𝑛 has been defined,
consider

g𝑛,𝜉(𝑧) = 𝜉
∏
𝑚<𝑛

(𝑧 − 𝑧𝑚).
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WETZEL FAMILIES AND THE CONTINUUM 7 of 27

Note that the set of zeros of g𝑛,𝜉 is exactly {𝑧𝑚 ∶ 𝑚 < 𝑛}, when |𝜉| > 0. Then, there is 𝛿 > 0, so
that

‖g𝑛,𝜉‖𝑛 < 1

2𝑛
,

for every 𝜉 ∈ 𝐵𝛿(0). Since 𝑌 is dense, there is some 𝜉 ∈ 𝐵𝛿(0) so that

𝑓𝑛(𝑧𝑛) + g𝑛,𝜉(𝑧𝑛) ∈ 𝑌 ⧵ 𝑓𝑛[{𝑧𝑚 ∶ 𝑚 < 𝑛}].

Then, let𝑓𝑛+1 = 𝑓𝑛 + g𝑛,𝜉 . Finally, let𝑓 be the limit of ⟨𝑓𝑛 ∶ 𝑛 ∈ 𝜔⟩. By Proposition 2.2,𝑓 is entire.
Clearly 𝑓(𝑋) ⊆ 𝑌 since 𝑓𝑚(𝑧𝑛) remains constant for 𝑚 > 𝑛 and equals 𝑓𝑛+1(𝑧𝑛) ∈ 𝑌. Moreover,
𝑓 is injective on 𝑋, so definitely non-constant. □

Proposition 3.6. Let 𝑌 be a universal set. Then, |𝑌|+ = 2ℵ0 and in particular the continuum is a
successor cardinal.

Proof. Suppose that there is𝑋 ⊆ ℂ uncountable with |𝑌| < |𝑋| < 2ℵ0 . If 𝑓 ∈ (ℂ) and 𝑓′′𝑋 ⊆ 𝑌,
by the pigeonhole principle, there is 𝑦 ∈ 𝑌 such that {𝑧 ∈ 𝑋 ∶ 𝑓(𝑧) = 𝑦} is uncountable. But then
this set has an accumulation point and by Proposition 2.1, 𝑓 is constant. □

Proposition 3.7. If there is a universal set, there is also a Wetzel family.

Proof. Let 𝑌 be universal and let ⟨𝑧𝛼 ∶ 𝛼 < 𝜅⟩ enumerate ℂ. For each 𝛼 < 𝜅, let 𝑓𝛼 ∈ (ℂ) be
non-constant such that 𝑓𝛼({𝑧𝛽 ∶ 𝛽 < 𝛼}) ⊆ 𝑌. We claim that  = {𝑓𝛼 ∶ 𝛼 < 𝜅} is a Wetzel family.
First of all, we note that | | = 𝜅. By Proposition 3.6, 𝜅 is a successor and in particular regular.

Thus, if | | < 𝜅, there is an unbounded subset 𝑆 ⊆ 𝜅 so that 𝑓𝛼 = 𝑓𝛽 , for all 𝛼, 𝛽 ∈ 𝑆. But then for
any such𝛼 ∈ 𝑆,𝑓𝛼(ℂ) ⊆ 𝑌. Thiswould imply that𝑓𝛼 is constant, as in the proof of Proposition 3.6.
Now let 𝑧𝛼 ∈ ℂ be arbitrary. Then, {𝑓(𝑧𝛼) ∶ 𝑓 ∈  } ⊆ {𝑓𝛽(𝑧𝛼) ∶ 𝛽 ⩽ 𝛼} ∪ 𝑌 and the right-hand

side has size less than 𝜅. □

Corollary 3.8 (Erdős, [13]). There is a Wetzel family under 𝖢𝖧.

4 STRONGLY ALMOST DISJOINT FUNCTIONS AND
BAUMGARTNER’S THINNING-OUT FORCING

This section can be skipped entirely if one wants to pass directly to the proof of the main result.
The main purpose is to prove Proposition 4.1 below which is used in the setup of our main forcing
construction. It is an adaptation of Baumgartner’s ‘thining-out’ technique to obtain certain types
of almost disjoint families (see [5]). To be more precise, we show how to obtain the type of family
of functions necessitated by a Wetzel family, as shown in Section 3, where pairwise intersections
are finite. Interestingly, a different type of strongly almost disjoint family was also used in [22] to
obtain a Wetzel family with continuum ℵ𝜔1 . It is unclear to us how this relates to our argument.

Proposition 4.1 (GCH). Let 𝜅 be an infinite cardinal of uncountable cofinality and for every 𝛼 <
𝜅, let 𝜇𝛼 = max(|𝛼|, ℵ0). Then, there is a cardinal and cofinality preserving forcing extension of 𝑉
where 2ℵ0 = 𝜅 and there is ⟨𝜎𝛼 ∶ 𝛼 < 𝜅⟩, such that for all 𝛼 < 𝛽 < 𝜅,
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8 of 27 SCHILHAN and WEINERT

(1) 𝜎𝛼 ∈
∏
𝜉<𝜅 𝜇𝜉 ,

(2) |𝜎𝛼 ∩ 𝜎𝛽| < 𝜔.
If 𝜅 is regular, we additionally have that |𝐻(𝜅)| = 𝜅.
Proof. Let 𝑆 =

⋃
𝜉∈[𝜔,𝜅){𝜉} × 𝜇𝜉 ⊆ [𝜔, 𝜅) × 𝜅 and let𝐾 be the set of regular cardinals⩽ 𝜅. For every

𝜆 ∈ 𝐾, consider the forcing ℙ𝜆 consisting of partial functions 𝑝∶ 𝜅 → [𝑆]<𝜆, such that

(1) | dom𝑝| < 𝜆;
(2) for all 𝛼, 𝛽 ∈ dom𝑝, proj 𝑝(𝛼) = proj 𝑝(𝛽), that is, 𝑝(𝛼) and 𝑝(𝛽) have the same projection to

the first coordinate;
(3) and for all 𝛼 ∈ dom𝑝 and 𝜉 ∈ proj 𝑝(𝛼) ∩ 𝜆, |𝑝(𝛼) ∩ ({𝜉} × 𝜇𝜉)| = 𝜇𝜉 .
We will simply write proj 𝑝 to denote proj 𝑝(𝛼), for any 𝛼 ∈ dom𝑝, and if dom𝑝 = ∅, we let
proj 𝑝 = ∅.
For any 𝑝, 𝑞 ∈ ℙ𝜆, 𝑞 ⩽ 𝑝 if and only if dom𝑝 ⊆ dom𝑞 and for any distinct 𝛼, 𝛽 ∈ dom𝑝,

(1) 𝑝(𝛼) ⊆ 𝑞(𝛼), and
(2) 𝑞(𝛼) ∩ 𝑞(𝛽) ∩ ([𝜆−, 𝜅) × 𝜅) = 𝑝(𝛼) ∩ 𝑝(𝛽) ∩ ([𝜆−, 𝜅) × 𝜅),

where 𝜆− is the predecessor of 𝜆, if 𝜆 is a successor cardinal, or 𝜆− = 𝜆, if 𝜆 is a limit cardinal.
Whenever 𝐺 is ℙ𝜆-generic, let 𝑆𝛼 =

⋃
𝑝∈𝐺 𝑝(𝛼) for every 𝛼 < 𝜅. Then, it is not hard to check

that every vertical section of 𝑆𝛼 is non-empty (see more below) and for any 𝛼 < 𝛽,

|𝑆𝛼 ∩ 𝑆𝛽 ∩ ([𝜆−, 𝜅) × 𝜅)| < 𝜆.
In particular, when 𝜆 is a successor cardinal,

|𝑆𝛼 ∩ 𝑆𝛽| < 𝜆.
In fact, for any 𝜉 ∈ [𝜔, 𝜆−), the section with index 𝜉 of 𝑆𝛼 equals 𝜇𝜉 . The reason why we include
these sections is purely notational.
It is clear that ℙ𝜆 is < 𝜆-closed. Ideally we would like to force with ℙ𝜔, since if we then choose

𝜎𝛼, such that (𝜔 + 𝜉, 𝜎𝛼(𝜉)) ∈ 𝑆𝛼, for every 𝜉 < 𝜅, (1) and (2) of the proposition are satisfied. But
ℙ𝜔 is far from being ccc. To circumvent this, we use Baumgartner’s thinning out trick.
Let ℙ ⊆

∏
𝜆∈𝐾 ℙ𝜆 consist of all 𝑝̄ = ⟨𝑝𝜆 ∶ 𝜆 ∈ 𝐾⟩ such that for 𝜆′ < 𝜆, dom𝑝𝜆′ ⊆ dom𝑝𝜆 and

for any 𝛼 ∈ dom𝑝𝜆′ , 𝑝𝜆′(𝛼) ⊆ 𝑝𝜆(𝛼). When 𝐺 is ℙ-generic, we obtain the sets 𝑆𝜆𝛼 =
⋃
𝑝̄∈𝐺 𝑝𝜆(𝛼)

for every 𝜆 ∈ 𝐾 and it is very easy to see again that

|𝑆𝜆𝛼 ∩ 𝑆𝜆𝛽 ∩ ([𝜆−, 𝜅) × 𝜅)| < 𝜆,
for 𝛼 < 𝛽 < 𝜅. Let us check that all vertical sections of 𝑆𝜆𝛼 are non-empty. To this end, let 𝑝̄ ∈ ℙ be
arbitrary.

Claim 4.2. There is 𝑞̄ ⩽ 𝑝̄ so that 𝛼 ∈ dom𝑞𝜆.

Proof. If for all 𝜈 ∈ 𝐾, 𝛼 ∉ dom𝑝𝜈, we let dom𝑞𝜈 = dom𝑝𝜈 ∪ {𝛼}, 𝑞𝜈 ↾ dom𝑝𝜈 = 𝑝𝜈 ↾ dom𝑝𝜈
and

𝑞𝜈(𝛼) = {(𝜉, 0) ∶ 𝜉 ∈ proj 𝑝𝜈 ⧵ 𝜈} ∪
⋃

𝜉∈proj 𝑝𝜈∩𝜈

{𝜉} × 𝜇𝜉,
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WETZEL FAMILIES AND THE CONTINUUM 9 of 27

for every 𝜈 ∈ 𝐾. Otherwise, there is a minimal 𝜇 ∈ 𝐾 so that 𝛼 ∈ dom𝑝𝜇. In this case, pick the
least 𝑎𝜉 so that (𝜉, 𝑎𝜉) ∈ 𝑝𝜇(𝛼), for every 𝜉 ∈ proj 𝑝𝜇. Then, for each 𝜈 ∈ 𝐾, we let 𝑞𝜈 extend 𝑝𝜈
as before, but with

𝑞𝜈(𝛼) = 𝑝𝜈(𝛼) ∪ {(𝜉, 𝑎𝜉) ∶ 𝜉 ∈ proj 𝑝𝜈 ⧵ 𝜈} ∪
⋃

𝜉∈proj 𝑝𝜈∩𝜈

{𝜉} × 𝜇𝜉.
□

Now let 𝜉 ∈ [𝜔, 𝜅) be arbitrary.

Claim 4.3. There is 𝑞̄ ⩽ 𝑝̄ so that 𝜉 ∈ proj 𝑞𝜆.

Proof. If 𝜉 < 𝜆−, simply extend every single 𝑝𝜈(𝛽), for 𝜈 ⩾ 𝜆 and 𝛽 ∈ dom𝑝𝜈, by adding {𝜉} × 𝜇𝜉 .
This works since pairwise intersections occurring below 𝜈− ⩾ 𝜆− do not matter when extending
𝑝𝜈.
If 𝜉 ∈ [𝜆−, 𝜆), 𝜆 is a successor and 𝜇𝜉 = 𝜆−. Then, we can assume already that for every 𝜈 ⩾ 𝜆+

and 𝛽 ∈ dom𝑝𝜈, {𝜉} × 𝜇𝜉 ⊆ 𝑝𝜈(𝛽), using the same procedure as before. Since | dom𝑝𝜆| < 𝜆 and
thus | dom𝑝𝜆| ⩽ 𝜆−, it is easy to find pairwise disjoint sets 𝑋𝛽 ⊆ 𝜇𝜉 = 𝜆− of size 𝜇𝜉 = 𝜆−, for all
𝛽 ∈ dom𝑝𝜆. Simply extend each 𝑝𝜆(𝛽) by adding {𝜉} × 𝑋𝛽 .
Finally, if 𝜉 ⩾ 𝜆, we can assume already that 𝜉 ∈ proj 𝑝𝜈, for 𝜈 = |𝜉|+, using what we have just

shown. Then, we can easily find pairwise distinct 𝑎𝛽 , so that (𝜉, 𝑎𝛽) ∈ 𝑝𝜈(𝛽), for all 𝛽 ∈ dom𝑝𝜈,
since | dom𝑝𝜈| ⩽ 𝜈− = |𝜉| = 𝜇𝜉 and |𝑝𝜈(𝛽) ∩ ({𝜉} × 𝜇𝜉)| = 𝜇𝜉 , for every 𝛽 ∈ dom𝑝𝜈. Now simply
extend all 𝑝𝜈′(𝛽), for 𝜈′ ∈ 𝐾 ∩ [𝜆, 𝜈) and 𝛽 ∈ dom𝑝𝜈′ , by adding in (𝜉, 𝑎𝛽). □

The 𝜎𝛼 as defined above, for 𝑆𝛼 = 𝑆𝜔𝛼 , are then as required.

Claim 4.4. ℙ preserves all regular cardinals.

Proof. Let 𝜆 ∈ 𝐾. We will show how to factor ℙ into a two-step iteration of a < 𝜆+-closed and a
𝜆+-cc forcing. Let ℙ0 = {𝑝̄ ↾ [𝜆+, 𝜅] ∶ 𝑝̄ ∈ ℙ} and note that ℙ0 is < 𝜆+-closed and thus does not
add sequences of length 𝜆.† Let 𝐺0 be ℙ0-generic over 𝑉. Let 𝑆𝛼 = 𝑆𝜆

+

𝛼 , for 𝛼 < 𝜅, be defined as
before, that is,

𝑆𝛼 =
⋃
𝑝̄∈𝐺0

𝑝𝜆+(𝛼).

Let ℙ1 consist of all 𝑝̄ ↾ 𝜆+, for 𝑝̄ ∈ ℙ, where

𝑝𝜆(𝛼) ⊆ 𝑆𝛼,

for each 𝛼 ∈ dom𝑝𝜆. Then, it is easy to verify that if 𝐺1 is ℙ1-generic over 𝑉[𝐺0], 𝑉[𝐺0][𝐺1] is a
ℙ-generic extension of 𝑉. Work in 𝑉[𝐺0] and suppose that ⟨𝑝̄𝑖 ∶ 𝑖 < 𝜆+⟩ is an anti-chain in ℙ1.
Note that for any 𝑖 < 𝜆+, there is 𝛿 < 𝜆 so that dom𝑝𝑖

𝜆′
as well as 𝑝𝑖

𝜆′
(𝛼) are the same for all

𝜆′ ∈ [𝛿, 𝜆) ∩ 𝐾 and fixed 𝛼 ∈ dom𝑝𝑖
𝜆
, since these sets grow and are subsets of dom𝑝𝑖

𝜆
and 𝑝𝑖

𝜆
(𝛼),

†When 𝜆 = 𝜅, then ℙ0 is simply the trivial forcing.
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10 of 27 SCHILHAN and WEINERT

respectively, which have size strictly less than 𝜆.† We may assume that this 𝛿 is the same for all
𝑖 < 𝜆+ and let

𝐷𝑖 = dom𝑝𝑖
𝜆′
,

for any, equivalently all 𝜆′ ∈ [𝛿, 𝜆) ∩ 𝐾, if this exists.‡
Since 𝜆<𝜆 = 𝜆, a Δ-system argument lets us assume that there are sets 𝐷 and 𝐸 such that 𝐷 =

𝐷𝑖 ∩ 𝐷𝑗 and dom𝑝𝑖
𝜆
∩ dom𝑝

𝑗

𝜆
= 𝐸, for all 𝑖 < 𝑗 < 𝜆+. Note that we can also do the same for all

𝜆′ ∈ 𝛿 ∩ 𝐾 simultaneously, as 𝛿 < 𝜆. To bemore precise, we can assume𝐷𝜆′ = dom𝑝𝑖𝜆′ ∩ dom𝑝
𝑗

𝜆′
,

for all 𝜆′ ∈ 𝛿 ∩ 𝐾 and 𝑖 < 𝑗 < 𝜆+. Moreover, using another Δ-system argument, we can assume
𝑅𝑖
𝜆
∩ 𝑅

𝑗

𝜆
= 𝑅, for some fixed 𝑅 and all 𝑖 < 𝑗 < 𝜆+, where 𝑅𝑖

𝜆
=
⋃
𝛼∈dom𝑝𝑖

𝜆
𝑝𝑖
𝜆
(𝛼).

Now comes the heart of the thinning out argument. Let 𝑖 < 𝜆+ be arbitrary, then note that for
any distinct 𝛼, 𝛽 and any 𝜆′, 𝑝𝑖

𝜆′
(𝛼) ∩ 𝑆(𝛽) is a < 𝜆 sized subset of 𝑆(𝛼) ∩ 𝑆(𝛽), which has size at

most 𝜆. Also 𝑅 has size < 𝜆. Thus, we find 𝑖 < 𝑗 < 𝜆+ such that

𝑝𝑖
𝜆′
(𝛼) ∩ 𝑆(𝛽) = 𝑝

𝑗

𝜆′
(𝛼) ∩ 𝑆(𝛽)

and

𝑝𝑖
𝜆′
(𝛼) ∩ 𝑅 = 𝑝

𝑗

𝜆′
(𝛼) ∩ 𝑅,

for all 𝜆′ ∈ 𝛿 ∩ 𝐾 and distinct 𝛼, 𝛽 ∈ 𝐷𝜆′ , also for any, equivalently all, 𝜆′ ∈ [𝛿, 𝜆) ∩ 𝐾 and dis-
tinct 𝛼, 𝛽 ∈ 𝐷, and for 𝜆′ = 𝜆 and distinct 𝛼, 𝛽 ∈ 𝐸. It is straightforward to check that 𝑝̄𝑖 and 𝑝̄𝑗
are compatible.
Now let us check that all regular cardinals 𝜃 are preserved. Suppose that in 𝑉ℙ, cf (𝜃) = 𝜇 < 𝜃.

If 𝜇 ⩾ 𝜅, then either 𝜅 is regular and we have shown above that ℙ is 𝜅+-cc, so in particular 𝜃-cc.
Or 𝜅 is singular, 𝜇 ⩾ 𝜅+ and |ℙ| ⩽ 𝜅+, so ℙ is 𝜅++-cc and also 𝜃-cc. If 𝜇 < 𝜅, ℙ is the iteration of a
𝜇+-closed and a 𝜇+-cc forcing and 𝜃 ⩾ 𝜇+. □

It is clear that in𝑉ℙ, 2ℵ0 ⩾ 𝜅 since {𝜎𝛼 ↾ 𝜔 ∶ 𝛼 < 𝜅} is an almost disjoint set of functions from𝜔

to𝜔. In the other direction, note that 2𝜆 ⩽ 𝜅 for any regular 𝜆 < cf (𝜅). Namely ℙ is ℙ0 ∗ ℙ̇1, where
ℙ0 does not add any new sequences of length 𝜆 and ℙ1 has size at most 𝜅 and is 𝜆+-cc. A counting
of names argument then shows 2𝜆 ⩽ 𝜅. In particular, 2ℵ0 = 𝜅 and |𝐻(𝜅)| = 2<𝜅 = 𝜅, when 𝜅 is
regular. □

Corollary 4.5. The answer to [33, Question 22] is positive. Namely, assuming 𝖦𝖢𝖧, it is pos-
sible to add arbitrarily large strongly almost disjoint families of functions in ℵ

ℵ𝜔+1
𝜔 without

collapsing cardinals.

The following is of further interest, especially for Question 8.1 at the end of the paper. In the
second paragraph after the proof of Lemma 3.2, we have shown the following using a simple
construction:

†Of course, if 𝜆 is a successor cardinal, this is trivial as we may choose 𝛿 such that 𝐾 ∩ [𝛿, 𝜆) is empty. Otherwise, recall
that 𝜆 is regular.
‡ If 𝐾 ∩ [𝛿, 𝜆) is empty, 𝐷𝑖 is left undefined as it will be irrelevant.
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WETZEL FAMILIES AND THE CONTINUUM 11 of 27

Proposition 4.6. 2ℵ0 = ℵ2 implies that there is ⟨𝜎𝛼 ∶ 𝛼 < 𝜔2⟩ so that for any 𝛼 < 𝛽 < 𝜔2,
𝜎𝛼 ∈

𝜔2𝜔1 and |𝜎𝛼 ∩ 𝜎𝛽| < 𝜔1.
In fact,𝖬𝖠 + 2ℵ0 = ℵ2 (in particular 𝖯𝖥𝖠) implies that we can even assume finite intersections,

and thus the conclusion of Proposition 4.1 holds.

Proposition 4.7. 𝖬𝖠 + 2ℵ0 = ℵ2 implies that there is ⟨𝜎𝛼 ∶ 𝛼 < 𝜔2⟩ so that for any 𝛼 < 𝛽 < 𝜔2,
𝜎𝛼 ∈

𝜔2𝜔1 and |𝜎𝛼 ∩ 𝜎𝛽| < 𝜔.
Proof. We recursively construct a sequence as above, but where each 𝜎𝛼 is an element of∏
𝛽<𝜔2

max(𝜔1, 𝛽 + 1). This clearlymakes no difference.We also ensure that 𝜎𝛼 always constantly
maps to 𝛼 on [𝛼, 𝜔2). Suppose that ⟨𝜎𝛽 ∶ 𝛽 < 𝛼⟩ has been constructed. Using a simple diagonalisa-
tion argument, we find a function 𝑆∶ 𝛼 → [𝜔1]

𝜔, so that for any 𝛽 < 𝛼, {𝜉 < 𝛼 ∶ 𝜎𝛽(𝜉) ∈ 𝑆(𝜉)} is
countable. Now let ℙ be the natural poset with finite conditions adding a function 𝜎 ∈

∏
𝜉<𝛼 𝑆(𝜉)

that has finite intersectionwith each 𝜎𝛽 , 𝛽 < 𝛼. To bemore precise,ℙ consists of pairs (𝑠, 𝑤)where
𝑠 is a finite partial function 𝑠 ∈

∏
𝜉∈dom(𝑠) 𝑆(𝜉) and 𝑤 ∈ [𝛼]<𝜔. A condition (𝑡, 𝑢) extends (𝑠, 𝑤) if

𝑠 ⊆ 𝑡,𝑤 ⊆ 𝑢 and for every 𝛽 ∈ 𝑤, (𝑡 ⧵ 𝑠) ∩ 𝜎𝛽 = ∅. Once we have shown thatℙ is ccc, we can apply
𝖬𝖠 to find 𝜎. Then simply let 𝜎𝛼 ↾ 𝛼 = 𝜎 and 𝜎𝛼 ↾ [𝛼, 𝜔2) constantly equal 𝛼.
So suppose that ⟨(𝑠𝛿, 𝑤𝛿) ∶ 𝛿 < 𝜔1⟩ is an uncountable anti-chain in ℙ. Without loss of gener-

ality, we can assume that ⟨dom(𝑠𝛿) ∶ 𝛿 < 𝜔1⟩ forms a Δ-system with root 𝑟 and that 𝑠𝛿 ↾ 𝑟 = 𝑠
and | dom(𝑠𝛿)| = 𝑛, for all 𝛿 and some fixed 𝑠 and 𝑛. Also we may assume that ⟨𝑤𝛿 ∶ 𝛿 < 𝜔2⟩
is a Δ-system with root 𝑤. Since ⟨dom(𝑠𝛿) ⧵ 𝑟 ∶ 𝛿 < 𝜔1⟩ is pairwise disjoint and for each 𝜎𝛽 ,
𝜎𝛽 ∩

⋃
𝜉<𝛼 ({𝜉} × 𝑆(𝜉)) is countable, there is a large enough 𝛾 ∈ [𝜔, 𝜔1), so that for every 𝛿 ∈

[𝛾, 𝜔1),
𝑠𝛿 ↾ (dom(𝑠𝛿) ⧵ 𝑟) ∩ 𝜎𝛽 = ∅,

for all 𝛽 ∈
⋃
𝑖∈𝜔 𝑤𝑖 . Note that this means that (𝑠𝑖 ∪ 𝑠𝛿, 𝑤𝑖 ∪ 𝑤𝛿) ⩽ (𝑠𝑖, 𝑤𝑖), for every 𝑖 ∈ 𝜔. Thus,

the only way in which (𝑠𝑖, 𝑤𝑖) and (𝑠𝛿, 𝑤𝛿) can be incompatible, is if there is 𝛽 ∈ 𝑤𝛿 ⧵ 𝑤 and 𝜉 ∈
dom(𝑠𝑖) ⧵ 𝑟, so that

𝜎𝛽(𝜉) = 𝑠𝑖(𝜉).

For any 𝛿 ⩾ 𝛾, let us define functions 𝜉𝛿 and 𝛽𝛿 with domain 𝜔 so that 𝜉𝛿(𝑖) ∈ dom(𝑠𝑖) ⧵ 𝑟 is a
witness 𝜉 as above for 𝛽𝛿(𝑖) ∈ 𝑤𝛿 ⧵ 𝑤. Since for all 𝑖 ∈ 𝜔, dom(𝑠𝑖) ⧵ 𝑟 has finite size ⩽ 𝑛, there
must be 𝛿0 < 𝛿1 and an infinite 𝑥 ⊆ 𝜔 so that

𝜉𝛿0 ↾ 𝑥 = 𝜉𝛿1 ↾ 𝑥.

Since 𝑤𝛿0 ⧵ 𝑤 and 𝑤𝛿1 ⧵ 𝑤 are finite, we find an infinite 𝑦 ⊆ 𝑥 so that both 𝛽𝛿0 ↾ 𝑦 and 𝛽𝛿1 ↾ 𝑦
are constant, say with values 𝛽0 and 𝛽1. Now 𝛽0 ≠ 𝛽1, since 𝑤𝛿0 ⧵ 𝑤 and 𝑤𝛿1 ⧵ 𝑤 are disjoint. But
then 𝜎𝛽0 ∩ 𝜎𝛽1 is infinite, yielding a contradiction. □

5 WETZEL FAMILIESWITH ARBITRARY CONTINUUMANDMA

In this section, we prove our main result that Wetzel families can coexist with arbitrary values of
the continuum and in combination with Martin’s Axiom.
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12 of 27 SCHILHAN and WEINERT

5.1 Adding entire functions

Definition 5.1. The poset ℚ consists of all conditions

𝑝 = (𝑎𝑝, 𝑓𝑝, 𝜀𝑝,𝑚𝑝),

where 𝑎𝑝 ∈ [ℂ]<𝜔,𝑓𝑝 ∈ (ℂ), 𝜀𝑝 is a positive rational number and𝑚𝑝 ∈ 𝜔. A condition 𝑞 extends
𝑝 if and only if 𝑎𝑝 ⊆ 𝑎𝑞, 𝑓𝑞 ↾ 𝑎𝑝 = 𝑓𝑝 ↾ 𝑎𝑝, 𝜀𝑞 ⩽ 𝜀𝑝,𝑚𝑝 ⩽ 𝑚𝑞 and ‖𝑓𝑞 − 𝑓𝑝‖𝑚𝑝 ⩽ 𝜀𝑝 − 𝜀𝑞.
Definition 5.2. Let𝐻∶ 𝑋 → (ℂ), for some 𝑋 ⊆ ℂ. Then, we define

ℚ(𝐻) = {𝑝 ∈ ℚ ∶ 𝑎𝑝 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝑎𝑝(𝑓𝑝(𝑧) ∈ 𝐻(𝑧))}.

Note that the notion of incompatibility of conditions 𝑝, 𝑞 ∈ ℚ(𝐻) is not dependent on 𝐻.
Namely, if 𝑟 extends 𝑝 and 𝑞 in ℚ, then (𝑎𝑝 ∪ 𝑎𝑞, 𝑓𝑟, 𝜀𝑟,𝑚𝑟) ∈ ℚ(𝐻) and also extends 𝑝 and 𝑞.
In other words, ℚ(𝐻) is a sub-forcing of ℚ (see Definition 2.4). For most considerations, it is also
not relevant in which transitive model of set theory𝑀, we evaluate the definition ofℚ(𝐻), as long
as𝐻 ∈ 𝑀.

Lemma 5.3. Let 𝑀 ⊆ 𝑉 be a transitive model of 𝖹𝖥−(possibly a proper class) and 𝐻 ∈ 𝑀 be a
partial function from ℂ to (ℂ). Then, ℚ(𝐻)𝑀 is a dense sub-forcing of ℚ(𝐻)𝑉 .

Proof. Note that conditions 𝑝 such that 𝑓𝑝 is a polynomial in coefficients in the field generated
by dom𝐻 ∪

⋃
𝑧∈dom𝐻 𝐻(𝑧) ⊆ 𝑀 form a dense sub-poset of ℚ(𝐻)𝑉 . Namely, if ‖𝑓 − g‖𝑚 = 𝛿 < 𝜀,

and 𝑓 ↾ 𝑎 = g ↾ 𝑎, (𝑎, g , 𝜀 − 𝛿,𝑚) ⩽ (𝑎, 𝑓, 𝜀,𝑚). □

In particular, any iteration of the form ℚ(𝐻0) ∗ ℚ̇(𝐻1), where𝐻0,𝐻1 are in the ground model,
is equivalent to the product ℚ(𝐻0) × ℚ(𝐻1) and the ccc of the iteration is equivalent to that of the
product. This will be used at least implicitly in several arguments.

Lemma 5.4. Suppose that 𝐻(𝑧) is dense in ℂ, for every 𝑧 ∈ dom𝐻. Then, ℚ(𝐻) generically adds
an entire function 𝑓 such that 𝑓(𝑧) ∈ 𝐻(𝑧) for every 𝑧 ∈ dom𝐻.

Proof. Let 𝐺 be ℚ(𝐻)-generic over 𝑉. For any 𝑛 ∈ 𝜔, the set 𝐷𝑛 = {𝑝 ∈ ℚ(𝐻) ∶ 𝜀𝑝 <
1

𝑛
∧ 𝑚𝑝 > 𝑛}

is clearly dense open. Moreover, for any 𝜉 ∈ ℂ and any 𝑝 ∈ ℚ(𝐻), consider

𝑓𝜉(𝑧) = 𝑓𝑝(𝑧) + 𝜉
∏
𝑦∈𝑎𝑝

(𝑧 − 𝑦).

Note that 𝑓𝜉(𝑦) = 𝑓𝑝(𝑦), for every 𝑦 ∈ 𝑎𝑝. Let 𝑧 ∈ dom𝐻 ⧵ 𝑎𝑝 be arbitrary. Since 𝐻(𝑧) is dense,
we can easily find a small enough 𝜉 so that

𝛿 ∶= ‖𝑓𝑝 − 𝑓𝜉‖𝑚𝑝 < 𝜀𝑝
and 𝑓𝜉(𝑧) ∈ 𝐻(𝑧). Then, (𝑎𝑝 ∪ {𝑧}, 𝑓𝜉, 𝜀𝑝 − 𝛿,𝑚𝑝) ⩽ 𝑝. This shows 𝐸𝑧 = {𝑞 ∈ ℚ(𝐻) ∶ 𝑧 ∈ 𝑎𝑞} is
dense open. We claim that for any sequences ⟨𝑝𝑛 ∶ 𝑛 ∈ 𝜔⟩ and ⟨𝑞𝑛 ∶ 𝑛 ∈ 𝜔⟩, with 𝑝𝑛, 𝑞𝑛 ∈ 𝐷𝑛 ∩
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WETZEL FAMILIES AND THE CONTINUUM 13 of 27

𝐺, ⟨𝑓𝑝𝑛 ∶ 𝑛 ∈ 𝜔⟩ and ⟨𝑓𝑞𝑛 ∶ 𝑛 ∈ 𝜔⟩ converge uniformly on compact sets to the same function
𝑓 ∈ (ℂ). To see this, use Proposition 2.2 and notice that when 𝑝, 𝑞 ∈ 𝐷𝑛 ∩ 𝐺 are arbitrary, there
is 𝑟 ⩽ 𝑝, 𝑞 and thus

‖𝑓𝑝 − 𝑓𝑞‖𝑛 ⩽ ‖𝑓𝑝 − 𝑓𝑟‖𝑛 + ‖𝑓𝑟 − 𝑓𝑞‖𝑛 < 1

𝑛
+
1

𝑛
.

For any 𝑧 ∈ dom𝐻, we can find a decreasing sequence ⟨𝑝𝑛 ∶ 𝑛 ∈ 𝜔⟩ such that 𝑝𝑛 ∈ 𝐷𝑛 ∩ 𝐸𝑧 ∩
𝐺, for every 𝑛. Then, 𝑓(𝑧) = lim𝑛→∞ 𝑓𝑝𝑛(𝑧) = 𝑓𝑝0(𝑧) ∈ 𝐻(𝑧). □

Let us make the following interesting observation that will somewhat elucidate the necessity
of the approach taken in the proof of the main result.

Lemma5.5. Let dom𝐻 be uncountable and suppose that there is an entire𝑓 such that𝑓(𝑧) ∈ 𝐻(𝑧),
for every 𝑧 ∈ dom𝐻. Then, ℚ(𝐻) is not ccc.

Proof. Let 𝑛 ∈ 𝜔 be such that 𝐵𝑛(0) ∩ dom𝐻 is uncountable and let 𝜀 > 0 be so that ‖Re(𝑓′)‖𝑛 <
𝜀. For any 𝑧0 ∈ 𝐵𝑛(0) ∩ dom𝐻, define

𝑓𝑧0(𝑧) = 2𝜀(𝑧 − 𝑧0) + 𝑓(𝑧0).

Note that there is 𝛿 > 0 and 𝑚 ⩾ 𝑛 so that whenever ‖g − 𝑓𝑧0‖𝑚 < 𝛿, then ‖g ′ − 2𝜀‖𝑛 < 𝜀.† Let
𝑝𝑧0 = ({𝑧0}, 𝑓𝑧0 , 𝛿,𝑚). We claim that {𝑝𝑧0 ∶ 𝑧0 ∈ 𝐵𝑛(0) ∩ dom𝐻} is an anti-chain. Namely, sup-
pose 𝑧0, 𝑧1 ∈ 𝐵𝑛(0) ∩ dom𝐻 are arbitrary and that 𝑟 ⩽ 𝑝𝑧0 , 𝑝𝑧1 . Then, ‖𝑓𝑟 − 𝑓𝑧0‖𝑚 < 𝛿 and so‖𝑓′𝑟 − 2𝜀‖𝑛 < 𝜀. In particular, for any 𝑧 ∈ 𝐵𝑛(0), Re(𝑓′𝑟(𝑧)) > 𝜀. At the same time, by the complex
mean value theorem (see e.g. [14, Theorem 2.2]),

𝜀 < Re

(
𝑓𝑟(𝑧0) − 𝑓𝑟(𝑧1)

𝑧0 − 𝑧1

)
= Re

(
𝑓(𝑧0) − 𝑓(𝑧1)

𝑧0 − 𝑧1

)
< 𝜀,

which poses a contradiction. □

It would be interesting to obtain some sort of converse to Lemma 5.5. For instance, suppose
that 𝐻 only maps to countable sets. Does the non-ccc of ℚ(𝐻) imply at least that there is a Borel
function 𝑓, with 𝑓(𝑧) ∈ 𝐻(𝑧) for uncountably many 𝑧 ∈ dom𝐻(𝑧)?

Corollary 5.6. Let dom𝐻 be uncountable and suppose that𝐻(𝑧) is dense inℂ, for every 𝑧 ∈ dom𝐻.
Then, ℚ(𝐻) × ℚ(𝐻) is not ccc.

Proof. Either ℚ(𝐻) is already not ccc, or dom𝐻 is preserved to be uncountable and by Lem-
mas 5.3 and 5.4, we are in the situation of Lemma 5.5 after forcing with ℚ(𝐻) once. Thus,
⊩ℚ(𝐻) ‘ℚ(𝐻) is not ccc’ and by Lemma 2.3, ℚ(𝐻) ∗ ℚ̇(𝐻) ≅ ℚ(𝐻) × ℚ(𝐻) is not ccc. □

Thus, the forcingsℚ(𝐻) can generally not be recycled in a ccc construction. If one wants to add
another entire function, one has to pass to a new𝐻.

† For instance, this follows easily from Proposition 2.2. This part of the argument strongly depends on the special geometry
of holomorphic functions. The statement is clearly not true for functions that are merely infinitely often differentiable.
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14 of 27 SCHILHAN and WEINERT

5.2 Tools for the successor step

Lemma 5.7. Let 𝑙, 𝑚 ∈ 𝜔 and 𝐾 ⊆ ℂ𝑙+1 be compact, such that every element of 𝐾 is one-to-one.
Then, there is 𝐿 > 0 such that for any 𝑧̄ ∈ 𝐾, there is g ∈ (ℂ) with ‖g‖𝑚 < 𝐿, g(𝑧𝑖) = 1 for every
𝑖 < 𝑙 and g(𝑧𝑙) = 0.

Proof. Consider an interpolation formula such as

g(𝑧̄, 𝑧) =
∑
𝑖<𝑘

(𝑧 − 𝑧𝑘)

(𝑧𝑖 − 𝑧𝑘)

∏
𝑗<𝑘
𝑗≠𝑖

(𝑧 − 𝑧𝑗)

(𝑧𝑖 − 𝑧𝑗)
,

and simply note that 𝑧̄ ↦ g(𝑧̄, ⋅) is a continuous map from 𝐾 to (ℂ) in the norm ‖ ⋅ ‖𝑚. The
claim follows from the compactness of 𝐾. □

Lemma5.8. Let𝐻0,… ,𝐻𝑛 be such thatℚ(𝐻0) ×⋯ × ℚ(𝐻𝑛) is ccc. Let 𝑧 ∈ ℂ be arbitrary and𝐻′0 ⊇
𝐻0, where dom𝐻′0 = dom𝐻0 ∪ {𝑧} and 𝐻

′
0
(𝑧) is countable. Then, ℚ(𝐻′

0
) × ℚ(𝐻1) ×⋯ × ℚ(𝐻𝑛)

is ccc.

Proof. Suppose towards a contradiction that ⟨𝑝̄𝛼 ∶ 𝛼 < 𝜔1⟩ is an anti-chain in ℚ(𝐻′0) × ℚ(𝐻1) ×
⋯ × ℚ(𝐻𝑛). Then, we may assume without loss of generality that for every 𝛼 < 𝜔1, 𝑧 ∈ 𝑎𝑝𝛼(0) and
𝑓𝑝𝛼(0)(𝑧) = 𝑦, for some fixed 𝑦 ∈ 𝐻

′
0
(𝑧). Otherwise, we find an uncountable anti-chain inℚ(𝐻0) ×

⋯ × ℚ(𝐻𝑛). Furthermore, we may assume 𝜀𝑝𝛼(0) = 𝜀,𝑚𝑝𝛼(0) = 𝑚, |𝑎𝑝𝛼(0)| = 𝑙 + 1 and 𝑎𝑝𝛼(0) ⧵ {𝑧}
is enumerated by 𝑧̄𝛼 = ⟨𝑧𝛼,𝑖 ∶ 𝑖 < 𝑙⟩, for every 𝛼 and some fixed 𝜀, 𝑚 and 𝑙. Even more, we can
assume ‖𝑓𝑝𝛼(0) − 𝑓𝑝𝛽(0)‖𝑚 < 𝜀

2
, for every 𝛼, 𝛽 < 𝜔1.

Then, there is some 𝛽 < 𝜔1, such that 𝑧̄𝛽 is an 𝜔1-accumulation point of {𝑧̄𝛼 ∶ 𝛼 < 𝜔1} in ℂ𝑙,
in the sense that for any open neighbourhood of 𝑧̄𝛽 , there are uncountably many 𝛼 with 𝑧̄𝛼 in
said neighbourhood.† Let 𝑂 ∋ 𝑧̄𝛽 be a compact neighbourhood of 𝑧̄𝛽 so that every element of 𝑂
is one-to-one and does not have 𝑧 in any coordinate. This is easily possible as 𝑧̄𝛽 is one-to-one
and 𝑧 ∉ {𝑧𝛽,𝑖 ∶ 𝑖 < 𝑙} = 𝑎𝑝𝛽(0) ⧵ {𝑧}. According to Lemma 5.7, and considering 𝐾 = 𝑂 × {𝑧}, there
is 𝐿 > 0 such that for any 𝑧̄ ∈ 𝑂, there is g ∈ (ℂ) such that g(𝑧) = 0, g(𝑧𝑖) = 1, for all 𝑖 < 𝑙, and‖g‖𝑚 < 𝐿. Now let 𝜀′ < 𝜀

2𝐿
and for each 𝛼 < 𝜔1, let 𝑝̄′𝛼 be such that 𝑝

′
𝛼(𝑖) = 𝑝𝛼(𝑖), for 𝑖 > 0 and

𝑝′𝛼(0) = (𝑎𝑝𝛼(0) ⧵ {𝑧}, 𝑓𝑝𝛼(0), 𝜀
′, 𝑚).

Then, note that 𝑝̄′𝛼 ∈ ℚ(𝐻0) ×⋯ × ℚ(𝐻𝑛), for every 𝛼. Thus, there are 𝛾 < 𝛿 < 𝜔1 such that
𝑧̄𝛾, 𝑧̄𝛿 ∈ 𝑂 and 𝑞̄′ ⩽ 𝑝̄′𝛾, 𝑝̄

′
𝛿
, for some 𝑞̄′ ∈ ℚ(𝐻0) ×⋯ × ℚ(𝐻𝑛). Let g ∈ (ℂ) be such that ‖g‖𝑚 <

𝐿, g(𝑧𝛿,𝑖) = 1 for every 𝑖 < 𝑙 and g(𝑧) = 0. Let 𝑘 = 𝑓𝑞′(0) − 𝑓𝑝𝛾(0) and consider 𝑓 = 𝑓𝑝𝛾(0) + g ⋅ 𝑘.
Note that

‖𝑓 − 𝑓𝑝𝛾(0)‖𝑚 = ‖g ⋅ 𝑘‖𝑚 ⩽ ‖g‖𝑚 ⋅ ‖𝑘‖𝑚
<𝐿 ⋅

𝜀

2𝐿
=
𝜀

2
.

†When 𝑙 = 0, then ℂ𝑙 contains one element, namely the empty sequence, which all 𝑧̄𝛼 then equal to.
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WETZEL FAMILIES AND THE CONTINUUM 15 of 27

As ‖𝑓𝑝𝛾(0) − 𝑓𝑝𝛿(0)‖ < 𝜀

2
, we immediately find

‖𝑓 − 𝑓𝑝𝛿(0)‖𝑚 < 𝜀

2
+
𝜀

2
= 𝜀.

Also, note that since 𝑓𝑞′(0)(𝑧𝛾,𝑖) = 𝑓𝑝𝛾(0)(𝑧𝛾,𝑖), 𝑘(𝑧𝛾,𝑖) = 0 for every 𝑖 < 𝑙. Then, by choice of g
and the fact that 𝑞̄′ ⩽ 𝑝̄′𝛾, 𝑝̄

′
𝛿
, it is easy to compute 𝑓𝑝𝛾(0) ↾ 𝑎𝑝𝛾(0) ⊆ 𝑓 and 𝑓𝑝𝛿(0) ↾ 𝑎𝑝𝛿(0) ⊆ 𝑓. Thus,

if we let 𝑞̄ be such that 𝑞(𝑖) = 𝑞′(𝑖) for 𝑖 > 0, and

𝑞(0) = (𝑎𝑝𝛾(0) ∪ 𝑎𝑝𝛿(0), 𝑓, 𝜀
∗,𝑚),

for some small enough 𝜀∗ < 𝜀, we have 𝑞̄ ⩽ 𝑝̄𝛾, 𝑝̄𝛿, contradicting our initial assumption. □

Note that by a simple inductive argument, the previous lemma implies that we can extend
simultaneously each𝐻𝑖 in countablymany arbitrary points with arbitrary countable sets of values
and preserve the ccc:

Proposition 5.9. Let𝐻0,… ,𝐻𝑛 be such thatℚ(𝐻0) ×⋯ × ℚ(𝐻𝑛) is ccc. Let𝐻′0 ⊇ 𝐻0,… ,𝐻
′
𝑛 ⊇ 𝐻𝑛

be such that for every 𝑖 ⩽ 𝑛,

(1) dom𝐻′
𝑖
⧵ dom𝐻𝑖 is countable,

(2) and for any 𝑧 ∈ dom𝐻′
𝑖
⧵ dom𝐻𝑖 ,𝐻′𝑖 (𝑧) is countable.

Then, ℚ(𝐻′
0
) ×⋯ × ℚ(𝐻′𝑛) is ccc.

5.3 Tools for the limit step

Lemma 5.10. Let 𝑀 ⊆ 𝑉 be a transitive model of 𝖹𝖥− (possibly a proper class). Let 𝑓 ∈ (ℂ),
𝑎 ∈ [ℂ]<𝜔 ∩ 𝑀 such that 𝑓 ↾ 𝑎 ∈ 𝑀, 𝐾 ∈ [ℂ ⧵ 𝑎]<𝜔 ∩ 𝑀 such that 𝑓 ↾ 𝐾 is constant, 𝜀 > 0 and
𝑚 ∈ 𝜔. Moreover, for any 𝜉 ∈ ℂ, let

g𝜉(𝑧) = 𝜉
∑
𝑥∈𝐾

∏
𝑦∈𝐴⧵{𝑥}

(𝑧 − 𝑦)

(𝑥 − 𝑦)
,

where 𝐴 = 𝑎 ∪ 𝐾. Then, there is 𝑓 ∈ (ℂ) ∩𝑀 and 𝛿 > 0 such that 𝑓 ↾ 𝑎 ⊆ 𝑓, 𝑓 ↾ 𝐾 is constant,‖𝑓 − 𝑓‖𝑚 < 𝜀 and
(1) ∀𝜉 ∈ 𝐵𝛿(0)(‖𝑓 + g𝜉 − 𝑓‖𝑚 < 𝜀),
(2) ∃𝜉 ∈ 𝐵𝛿(0)∀𝑧 ∈ 𝐾(𝑓(𝑧) + g𝜉(𝑧) = 𝑓(𝑧)).

Whenever 𝑓 ∈ 𝑀, we can assume 𝑓 = 𝑓.

Before we continue to the proof, let us note that g𝜉 ∈ (ℂ) is simply a function such that g𝜉 ↾ 𝐾
is constantly 𝜉 and g𝜉(𝑧) = 0, for 𝑧 ∈ 𝑎. Also, the smaller the absolute value of 𝜉 is, the smaller‖g𝜉‖𝑚 gets.

Proof. We may assume, without losing generality, that 𝑚 is large enough such that 𝐴 ⊆ 𝐵𝑚(0).
Let 𝛿 < 𝜀

2
be small enough so that for any 𝜉 ∈ 𝐵𝛿(0), ‖g𝜉‖𝑚 < 𝜀

2
. Since 𝑓 ↾ 𝑎 ∈ 𝑀, we can easily
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16 of 27 SCHILHAN and WEINERT

find a function 𝑓 ∈ (ℂ) ∩𝑀 such that 𝑓 ↾ 𝑎 ⊆ 𝑓, 𝑓 is constant on 𝐾 and ‖𝑓 − 𝑓‖𝑚 < 𝛿 < 𝜀. If
𝑓 ∈ 𝑀 already, we may simply use 𝑓 = 𝑓. For (1),

‖𝑓 + g𝜉 − 𝑓‖𝑚 ⩽ ‖𝑓 − 𝑓‖𝑚 + ‖g𝜉‖𝑚
<𝛿 + 𝛿 <

𝜀

2
+
𝜀

2
= 𝜀.

For (2), define 𝜉 = 𝑓(𝑧) − 𝑓(𝑧), for any, equivalently every, 𝑧 ∈ 𝐾. Then, 𝜉 ∈ 𝐵𝛿(0) and for any
𝑧 ∈ 𝐾, 𝑓(𝑧) + g𝜉(𝑧) = 𝑓(𝑧). □

For a set 𝐹 of finite partial functions on ℂ, let

ℚ0(𝐹) ∶= {𝑝 ∈ ℚ ∶ 𝑓𝑝 ↾ 𝑎𝑝 ∈ 𝐹}.

Forcingsℚ(𝐻) are a particular type of forcings of the formℚ0(𝐹). As withℚ(𝐻), the interpretation
of ℚ0(𝐹) in any transitive model that contains 𝐹 is easily seen to be a dense subset of ℚ0(𝐹) as
interpreted in 𝑉. The following lemma will be formulated for this more general type of forcing,
since that will be needed in Section 7. The proof of this core lemma originates in ideas fleshed
out in Burke’s [8]. For instance, Claim 2.8 in the aforementioned paper corresponds roughly to
Claim 5.12 below. Burke remarks that this is a version of an argument by Shelah from [29].

Lemma 5.11. Let𝑀 ⊆ 𝑉 be as in Lemma 5.10, 𝐹 ∈ 𝑀, 𝑧 ∈ ℂ ∩ (𝑀 ⧵
⋃
ℎ∈𝐹 domℎ) and 𝑐 a Cohen

real over𝑀.† Furthermore, let 𝐹′ = 𝐹 ∪ {ℎ ∪ {(𝑧, 𝑐)} ∶ ℎ ∈ 𝐹} and ℙ ∈ 𝑀 be a forcing notion that is
dense in a forcing ℙ′ ∈ 𝑉. Then,

ℚ0(𝐹) × ℙ ⋖𝑀 ℚ0(𝐹
′) × ℙ′.

Proof. It is easy to see that ℚ0(𝐹) × ℙ is a sub-forcing of ℚ0(𝐹′) × ℙ′ (the incompatibility relation
is preserved). Now let 𝐸 ∈ 𝑀, 𝐸 ⊆ ℚ0(𝐹) × ℙ be pre-dense in ℚ0(𝐹) × ℙ and suppose towards
a contradiction there exists 𝑝̄ = (𝑝0, 𝑝1) ∈ ℚ0(𝐹′) × ℙ′, such that 𝑝̄ ⟂ 𝐸, where 𝑧 ∈ 𝑎𝑝0 and so
𝑓𝑝0(𝑧) = 𝑐. By extending 𝑝̄, we may assume without loss of generality that 𝑝1 ∈ ℙ and that 𝑎𝑝0 ⊆
𝐵𝑚𝑝0

(0).

Let 𝑎 ∶= 𝑎𝑝0 ⧵ {𝑧}, 𝐾 ∶= {𝑧}, 𝑓 ∶= 𝑓𝑝0 , 𝜀 ∶=
𝜀𝑝0
4
,𝑚 ∶= 𝑚𝑝0 and apply Lemma 5.10 to find 𝑓 ∈

𝑀 and 𝛿 > 0 as in the conclusion of the lemma. Let 𝑝̃0 ∶= (𝑎, 𝑓,
𝜀𝑝0
2
,𝑚). Then, (𝑝̃0, 𝑝1) ∈ (ℚ0(𝐹) ×

ℙ) ∩ 𝑀. Since 𝑐 ∈ 𝐵𝛿(𝑓(𝑧)), we may find a basic open set 𝑂 ⊆ 𝐵𝛿(𝑓(𝑧)) such that 𝑐 ∈ 𝑂.
In the following, for a condition 𝑝 and a subset 𝐸 of a poset, we write 𝑝 ⩽ 𝐸 to mean that 𝑝

extends some element of 𝐸.

Claim 5.12. There is a dense open set 𝑈 ⊆ 𝑂 coded in 𝑀 so that for every 𝑑 ∈ 𝑈, there is 𝑞̄ ∈
ℚ0(𝐹) × ℙ with 𝑞̄ ⩽ 𝐸, (𝑝̃0, 𝑝1) and 𝑓𝑞0(𝑧) = 𝑑.

Once we prove the claim we are done. Namely, as 𝑐 ∈ 𝑂 is Cohen generic over 𝑀, 𝑐 ∈
𝑈. Then, according to the claim, there is 𝑞̄ ⩽ 𝐸, (𝑝̃0, 𝑝1) such that 𝑓𝑞0(𝑧) = 𝑐. Letting 𝑟0 ∶=

† That is, 𝑐 is in any open dense subset of ℂ coded in𝑀.
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WETZEL FAMILIES AND THE CONTINUUM 17 of 27

(𝑎𝑟0 , 𝑓𝑞0 , 𝜀𝑞0 ,𝑚𝑞0), where
𝑎𝑟0 ∶= 𝑎𝑞0 ∪ {𝑧},

we clearly have 𝑟 = (𝑟0, 𝑞1) ⩽ 𝑞̄ and 𝑟 ∈ ℚ0(𝐹′) × ℙ′. Moreover, we have 𝑟0 ⩽ 𝑝0 and thus 𝑟 ⩽ 𝑝̄, 𝐸:

‖𝑓𝑝0 − 𝑓𝑟0‖𝑚𝑝0 = ‖𝑓𝑝0 − 𝑓𝑞0‖𝑚 ⩽ ‖𝑓𝑝0 − 𝑓‖𝑚 + ‖𝑓 − 𝑓𝑞0‖𝑚
<
𝜀𝑝0
4
+

( 𝜀𝑝0
2
− 𝜀𝑞0

)
=
3

4
𝜀𝑝0 − 𝜀𝑟0

< 𝜀𝑝0 − 𝜀𝑟0 .

This contradicts the assumption that 𝑝̄ ⟂ 𝐸.

Proof of Claim. Work in𝑀. Let 𝑂0 ⊆ 𝑂 be an arbitrary non-empty open set. We will find a non-
empty open set 𝑂1 ⊆ 𝑂0 that will be included in 𝑈. Let 𝑒 ∈ 𝑂0 be an arbitrary rational complex
number. Then, we find 𝜉 ∈ 𝐵𝛿(0) such that 𝑓𝜉(𝑧) = 𝑒, where

𝑓𝜉 = 𝑓 + g𝜉

and g𝜉 is the function from the statement of Lemma 5.10. Then, by (1) of the lemma,

𝜀∗ ∶= ‖𝑓𝜉 − 𝑓‖𝑚𝑝0 ⩽ ‖𝑓𝜉 − 𝑓𝑝0‖𝑚 + ‖𝑓𝑝0 − 𝑓‖𝑚
<
𝜀𝑝0
4
+
𝜀𝑝0
4
= 𝜀𝑝̃0 .

Consider a condition 𝑞′
0
= (𝑎, 𝑓𝜉, 𝜀𝑞′

0
, 𝑚) ∈ ℚ0(𝐹), where 𝜀𝑞′

0
< 𝜀𝑝̃0 − 𝜀

∗ and 𝜀𝑞′
0
is small enough

so that 𝐵2𝜀𝑞′
0

(𝑒) ⊆ 𝑂0. Then, 𝑞′0 ⩽ 𝑝̃0 as

‖𝑓𝜉 − 𝑓‖𝑚𝑝̃0 = 𝜀∗ = 𝜀𝑝̃0 − (𝜀𝑝̃0 − 𝜀∗) < 𝜀𝑝̃0 − 𝜀𝑞′0 .
In particular, (𝑞′

0
, 𝑝1) ⩽ (𝑝̃0, 𝑝1). Now let 𝑞̄′′ ∈ ℚ0(𝐹) × ℙ be such that 𝑞̄′′ = (𝑞′′

0
, 𝑞′′
1
) ⩽

𝐸, (𝑞′
0
, 𝑝1). Let 𝛾 ∈ (0, 𝜀𝑞′

0
) be small enough so that for any 𝑣 ∈ 𝐵𝛾(0) there is an entire function ℎ𝑣

with ‖ℎ𝑣‖𝑚𝑞′′
0

< 𝜀𝑞′′
0
, ℎ𝑣(𝑧) = 𝑣 and ℎ𝑣 ↾ 𝑎𝑞′′

0
constantly equals 0 (e.g. using a similar formula as

in Lemma 5.10).
As ‖𝑓𝑞′′

0
− 𝑓𝜉‖𝑚𝑞′

0

< 𝜀𝑞′
0
, we have that for any 𝑣 ∈ 𝐵𝛾(0) and ℎ𝑣 as above,

‖(𝑓𝑞′′
0
+ ℎ𝑣) − 𝑓𝜉‖𝑚𝑞′

0

⩽ ‖𝑓𝑞′′
0
− 𝑓𝜉‖𝑚𝑞′

0

+ ‖ℎ𝑣‖𝑚𝑞′
0

< 𝜀𝑞′
0
+ 𝜀𝑞′′

0
⩽ 2𝜀𝑞′

0
.

Now we let 𝑂1 ∶= 𝐵𝛾(𝑓𝑞′′
0
(𝑧)) ⊆ 𝐵2𝜀𝑞′

0

(𝑒) ⊆ 𝑂0. The inclusion follows, since for any 𝑑 ∈

𝐵𝛾(𝑓𝑞′′
0
(𝑧)), |𝑑 − 𝑒| = |𝑓𝑞′′

0
(𝑧) + ℎ𝑣(𝑧) − 𝑓𝜉(𝑧)| < 2𝜀𝑞′

0
for some 𝑣 ∈ 𝐵𝛾(0). 𝑈 is constructed in 𝑀

as the union of all sets 𝑂1 that we obtain in this way.
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18 of 27 SCHILHAN and WEINERT

Let us check that this works. So working in 𝑉, let 𝑑 ∈ 𝑂1 be arbitrary. Then, there is 𝑣 ∈ 𝐵𝛾(0)
and ℎ𝑣 as before so that 𝑓𝑞′′

0
(𝑧) + ℎ𝑣(𝑧) = 𝑑.

Let 𝑞0 = (𝑎𝑞0 , 𝑓𝑞0 , 𝜀𝑞0 ,𝑚𝑞0), where 𝑎𝑞0 = 𝑎𝑞′′0 , 𝑓𝑞0 = 𝑓𝑞′′0 + ℎ𝑣,

𝜀𝑞0 < 𝜀𝑞′′0
− ‖𝑓𝑞0 − 𝑓𝑞′′0 ‖𝑚𝑞′′

0

and𝑚𝑞0 = 𝑚𝑞′′0 . Then, 𝑓𝑞′′0 ↾ 𝑎𝑞′′0 = 𝑓𝑞0 ↾ 𝑎𝑞0 as ℎ𝑣 ↾ 𝑎𝑞′′0 is constantly 0. So if we let 𝑞̄ = (𝑞0, 𝑞
′′
1
),

then 𝑞̄ ∈ ℚ0(𝐹) × ℙ and 𝑞̄ ⩽ 𝑞̄′′ ⩽ 𝐸, (𝑝̃0, 𝑝1):

‖𝑓𝑞0 − 𝑓𝑞′′0 ‖𝑚𝑞′′
0

= 𝜀𝑞′′
0
− (𝜀𝑞′′

0
− ‖𝑓𝑞0 − 𝑓𝑞′′0 ‖𝑚𝑞′′

0

)

< 𝜀𝑞′′
0
− 𝜀𝑞0 .

Moreover, 𝑓𝑞0(𝑧) = 𝑑 as required. This finishes the proof of the claim. □

Proposition 5.13. Let𝑀 ⊆ 𝑉 be as in Lemma 5.10,𝐻0,… ,𝐻𝑛 ∈ 𝑀 and𝐻′
0
⊇ 𝐻0,… ,𝐻

′
𝑛 ⊇ 𝐻𝑛 be

partial functions from ℂ to (ℂ) such that

(1) dom(𝐻′
𝑖
) ⧵ dom(𝐻𝑖) ⊆ 𝑀, for all 𝑖 ⩽ 𝑛;

(2) for any pairwise distinct pairs (𝑖𝑗, 𝑧𝑗), 𝑗 ⩽ 𝑙, where 𝑖𝑗 ⩽ 𝑛, 𝑧𝑗 ∈ dom(𝐻′𝑖𝑗 ) ⧵ dom(𝐻𝑖𝑗 ), and any

sequence ⟨𝑐𝑗 ∶ 𝑗 ⩽ 𝑙⟩, 𝑐𝑗 ∈ 𝐻′𝑖𝑗 (𝑧𝑗), we have that ⟨𝑐𝑗 ∶ 𝑗 ⩽ 𝑙⟩ is mutually Cohen generic over𝑀.†

Then, ℚ(𝐻0) ×⋯ × ℚ(𝐻𝑛) ⋖𝑀 ℚ(𝐻′
0
) ×⋯ × ℚ(𝐻′𝑛).

Proof. This is an inductive argument using Lemma 5.11. Let 𝐸 ∈ 𝑀 be pre-dense in ℚ(𝐻0) ×⋯ ×

ℚ(𝐻𝑛). Towards a contradiction, suppose that 𝑙 is minimal such that there is 𝑝̄ ∈ ℚ(𝐻′0) ×⋯ ×

ℚ(𝐻′𝑛), 𝑝̄ ⟂ 𝐸 and {(𝑖, 𝑧) ∶ 𝑖 ⩽ 𝑛, 𝑧 ∈ 𝑎𝑝𝑖 ⧵ dom(𝐻𝑖)} is enumerated by a sequence ⟨(𝑖𝑗, 𝑧𝑗) ∶ 𝑗 ⩽
𝑙⟩. Then, according to (2), ⟨𝑐𝑗 ∶ 𝑗 ⩽ 𝑙⟩ = ⟨𝑓𝑝𝑖𝑗 (𝑧𝑗) ∶ 𝑗 < 𝑙⟩ is mutually Cohen generic over 𝑀. In
𝑀[𝑐0, … , 𝑐𝑙−1], consider

𝐻′′𝑖 = 𝐻𝑖 ∪ {(𝑧𝑗, {𝑐𝑗}) ∶ 𝑗 < 𝑙, 𝑖𝑗 = 𝑖},

for every 𝑖 ⩽ 𝑛. Then, by the minimality of 𝑙, 𝐸 is still pre-dense in ℚ(𝐻′′
0
) ×⋯ × ℚ(𝐻′′𝑛 ). Now

apply Lemma 5.11 once to accommodate the full condition 𝑝̄ and reach a contradiction. □

5.4 The main theorem

Theorem 5.14 (GCH). Let 𝜅 be an infinite cardinal of uncountable cofinality. Then, there is a
cofinality and cardinal preserving forcing extension in which

(1) 2ℵ0 = 𝜅,
(2) there is a Wetzel family,
(3) if 𝜅 is regular,𝖬𝖠 holds.

† That is, ⟨𝑐𝑗 ∶ 𝑗 ⩽ 𝑙⟩ is in any open dense subset of ℂ𝑙+1 coded in𝑀.
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WETZEL FAMILIES AND THE CONTINUUM 19 of 27

Proof. Start with themodel obtained in Proposition 4.1, where there is an almost disjoint sequence⟨𝜎𝛼 ∶ 𝛼 < 𝜅⟩ in∏
𝜉<𝜅 𝜇𝜉 , 𝜇𝜉 = max(|𝜉|, ℵ0). This is our ground model 𝑉 now. Fix a bookkeeping

function 𝐵 with domain 𝜅. The details of 𝐵 are going to be discussed at the end. We are going to
recursively define a ccc finite support iteration ℙ = ⟨ℙ𝛼,ℚ𝛼 ∶ 𝛼 < 𝜅⟩. Additionally, there will be
the following objects for each 𝛼 < 𝜅:

(1) ℙ𝛼+1-names 𝐶̇𝛼,𝜉 , 𝜉 < 𝜇𝛼, for pairwise disjoint countable dense sets of complex numbers, such
that any 𝑐 ∈ (

⋃
𝜉<𝜇𝛼

𝐶𝛼,𝜉)
<𝜔 is mutually Cohen generic over 𝑉ℙ𝛼 ,

(2) a countable set 𝑋𝛼 ⊆ 𝜅,
(3) a ℙ𝛼-name 𝑧̇𝛼 for a complex number,
(4) a ℙ𝛼+1-name 𝑓̇𝛼 for an entire function, such that⊩ℙ𝛼+1

𝑓̇𝛼(𝑧̇𝛿) ∈
⋃
𝜉<𝜇𝛿

𝐶̇𝛿,𝜉 , for all 𝛿 < 𝛼.

For any 𝜎 ∈
∏
𝜉<𝛼 𝜇𝜉 , we then let 𝐻̇𝜎 be a ℙ𝛼-name for

{(𝑧𝛿, 𝐶𝛿,𝜎(𝛿)) ∶ 𝛿 < 𝛼}.

We will inductively prove that for any 𝑛 ∈ 𝜔 and 𝜉0 <⋯ < 𝜉𝑛 ∈ 𝜅 ⧵
⋃
𝛿<𝛼 𝑋𝛿,

⊩ℙ𝛼
ℚ(𝐻̇𝜎𝜉0↾𝛼

) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛼
) is ccc. (*)

Start with ℙ0 = {𝟙}. Clearly (∗) above is satisfied when 𝛼 = 0.† Suppose we have constructed
ℙ𝛼 and we showed that (∗) holds. Then, we first define a forcing notion ℙ+𝛼 extending ℙ𝛼.
Suppose 𝐵(𝛼) is a ℙ𝛼-name 𝔸̇ for a ccc poset of size < 𝜅. In not, we simply let ℙ+𝛼 = ℙ𝛼. In 𝑉ℙ𝛼 ,

there may be 𝜉0 <⋯ < 𝜉𝑛 ∈ 𝜅 ⧵
⋃
𝛿<𝛼 𝑋𝛿 such that

𝔸 × ℚ(𝐻𝜎𝜉0↾𝛼
) ×⋯ × ℚ(𝐻𝜎𝜉𝑛↾𝛼

) is not ccc.

Note then, that ℚ(𝐻𝜎𝜉0↾𝛼) ×⋯ × ℚ(𝐻𝜎𝜉𝑛↾𝛼
) forces that 𝔸 is not ccc and this remains the

case in any further ccc extension, by Lemma 2.3. Also, this forces that for any 𝜉′
0
<⋯ < 𝜉′𝑚 ∈

𝜅 ⧵
⋃
𝛿<𝛼 𝑋𝛿 ∪ {𝜉0 <⋯ < 𝜉𝑛},

ℚ(𝐻𝜎𝜉′
0
↾𝛼) ×⋯ × ℚ(𝐻𝜎𝜉′𝑚

↾𝛼) is still ccc.

If no such 𝜉0 <⋯ < 𝜉𝑛 exist, then𝔸 preserves that all such products are ccc, again by Lemma 2.3.
We let ℙ+𝛼 be ℙ𝛼 ∗ 𝔹̇, where 𝔹̇ is a ℙ𝛼-name for ℚ(𝐻𝜎𝜉0↾𝛼) ×⋯ × ℚ(𝐻𝜎𝜉𝑛↾𝛼

) or 𝔸, depending on
which of the cases occur. In 𝑉, using the ccc of ℙ𝛼, we let 𝑋−𝛼 be a countable set that contains any
such 𝜉0, … , 𝜉𝑛 that we might choose in the former case. Then, (∗) still holds if we replace ℙ𝛼 by
ℙ+𝛼 and if 𝜉0 <⋯ < 𝜉𝑛 are in 𝜅 ⧵ (𝑋−𝛼 ∪

⋃
𝛿<𝛼 𝑋𝛿), by what we have already noted.

Next, we let 𝑧̇𝛼 = 𝐵(𝛾), where 𝛾 is least such that 𝐵(𝛾) is a ℙ𝛼-name for a complex number
distinct fromany 𝑧̇𝛿, 𝛿 < 𝛼. Letℂ𝜇𝛼 be the forcing for addingmutually generic Cohen reals ⟨𝑐𝛼,𝜉,𝑖 ∶
𝜉 < 𝜇𝛼, 𝑖 ∈ 𝜔⟩. Let ℙ++𝛼 = ℙ+𝛼 × ℂ𝜇𝛼 and 𝐶̇𝛼,𝜉 be a ℙ

++
𝛼 -name for {𝑐𝛼,𝜉,𝑖 ∶ 𝑖 ∈ 𝜔}. For any 𝜉0 <⋯ <

𝜉𝑛 ∈ 𝜅 ⧵ (𝑋
−
𝛼 ∪

⋃
𝛿<𝛼 𝑋𝛿), we still have

⊩ℙ++𝛼
ℚ(𝐻̇𝜎𝜉0↾𝛼

) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛼
) is ccc,

† ℚ(∅) has a countable dense subset, for example, consisting of those conditions 𝑝, where 𝑓𝑝 is a polynomial in
rational coefficients.
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20 of 27 SCHILHAN and WEINERT

since Cohen forcing preserves the ccc of any poset. Let 𝜂𝛼 ∈ 𝜅 ⧵ (𝑋−𝛼 ∪
⋃
𝛿<𝛼 𝑋𝛿) be arbitrary, let

𝑋𝛼 = 𝑋
−
𝛼 ∪ {𝜂𝛼},

ℙ𝛼+1 = ℙ++𝛼 ∗ ℚ(𝐻̇𝜎𝜂𝛼 ↾𝛼
),

and 𝑓̇𝛼 be a name for the entire function added by ℚ(𝐻𝜎𝜂𝛼 ↾𝛼), as described in Lemma 5.4.
Now, for any 𝜉0 < ⋯ < 𝜉𝑛 ∈ 𝜅 ⧵ (

⋃
𝛿<𝛼+1 𝑋𝛿),

⊩ℙ𝛼+1
ℚ(𝐻̇𝜎𝜉0↾𝛼

) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛼
) is ccc

and by Proposition 5.9,
⊩ℙ𝛼+1

ℚ(𝐻̇𝜎𝜉0↾𝛼+1
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛼+1

) is ccc.

So (∗) holds at 𝛼 + 1. It remains to show that (∗) is preserved in limits 𝛼. So once again, let
𝜉0 <⋯ < 𝜉𝑛 ∈ 𝜅 ⧵ (

⋃
𝛿<𝛼 𝑋𝛿). Then, there is 𝛽 < 𝛼 so that 𝜎𝜉𝑖 (𝛿) ≠ 𝜎𝜉𝑗 (𝛿) and hence following,

𝐶𝛿,𝜎𝜉𝑖 (𝛿)
∩ 𝐶𝛿,𝜎𝜉𝑗 (𝛿)

= ∅, for any 𝑖 < 𝑗 ⩽ 𝑛 and 𝛿 ∈ [𝛽, 𝛼). Thus, by Proposition 5.13,

⊩𝛿+1 ℚ(𝐻̇𝜎𝜉0↾𝛿
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿

) ⋖𝑉ℙ𝛿 ℚ(𝐻̇𝜎𝜉0↾𝛿+1
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿+1

),

which, according to Lemma 2.7, is equivalent to

ℙ𝛿 ∗ ℚ(𝐻̇𝜎𝜉0↾𝛿
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿

) ⋖ ℙ𝛿+1 ∗ ℚ(𝐻̇𝜎𝜉0↾𝛿+1
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿+1

).

By induction, it is then easy to see that for any limit 𝛿 ∈ [𝛽, 𝛼], ℙ𝛿 ∗ ℚ(𝐻̇𝜎𝜉0↾𝛿) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿
)

is the direct limit of the forcings ℙ𝛿′ ∗ ℚ(𝐻̇𝜎𝜉0↾𝛿′ ) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿
′ ), for 𝛿′ ∈ [𝛽, 𝛿) and for 𝛿 < 𝛼,

we know already by (∗) that†

ℙ𝛿 ∗ ℚ(𝐻̇𝜎𝜉0↾𝛿
) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿

) is ccc.

Thus, by Lemma 2.6, ℙ𝛼 ∗ ℚ(𝐻̇𝜎𝜉0↾𝛼) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛼
) is itself ccc. In particular, (∗) now follows,

by Lemma 2.3.
This finishes the construction. The bookkeeping function 𝐵 is supposed to enumerate all ℙ-

names for complex numbers, and in case 𝜅 is regular, also all ℙ-names for ccc forcings on ordinals
< 𝜅 unboundedly often. This is a standard argument.When 𝜅 is regular, it suffices to let𝐵 enumer-
ate all elements of𝐻(𝜅) unboundedly often. A standard argument then shows that𝖬𝖠 holds after
forcing with ℙ. When 𝜅 is not regular, let 𝐵 enumerate all elements of 𝜅𝜔(𝜅), where 

0
𝜔(𝜅) = 𝜅,

𝛼+1𝜔 (𝜅) = 𝛼𝜔(𝜅) ∪ [
𝛼
𝜔(𝜅)]

⩽𝜔, and we take unions at limits. Since 2ℵ0 = 𝜅, |𝜅𝜔(𝜅)| = 𝜅 as well.
It is then standard to see that ℙ ⊆ 𝜅𝜔(𝜅), using the ccc and choosing appropriate names for ℚ̇𝛼,
𝛼 < 𝜅.
Finally, after forcing with ℙ, we have that ⟨𝑧𝛼 ∶ 𝛼 < 𝜅⟩ enumerates the complex numbers and

for every 𝛿, 𝛼 < 𝜅,

𝑓𝛼(𝑧𝛿) ∈ {𝑓𝛽(𝑧𝛿) ∶ 𝛽 ⩽ 𝛿} ∪
⋃
𝜉<𝜇𝛿

𝐶𝛿,𝜉,

which has size ⩽ |𝛿| + 𝜇𝛿 ⋅ ℵ0 = 𝜇𝛿 < 𝜅 = 2ℵ0 . Thus,  = {𝑓𝛼 ∶ 𝛼 < 𝜅} is a Wetzel family. □

† To be slightly more accurate, the direct limit is a dense sub-forcing of ℙ𝛿 ∗ ℚ(𝐻̇𝜎𝜉0 ↾𝛿) ×⋯ × ℚ(𝐻̇𝜎𝜉𝑛 ↾𝛿
).
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WETZEL FAMILIES AND THE CONTINUUM 21 of 27

Let us note that it is not very important that the 𝜎𝛼’s had finite pairwise intersections and we
could easily get by with assuming only countable intersections. In that case, we would just have
to split up the limit stages into countable and uncountable cofinalities. The proof for uncountable
cofinality stays the same and for countable cofinality the ccc follows easily from the previous
steps.
Also, some interesting modifications can be made to the forcing construction above. For exam-

ple, instead of taking care of all complex numbers along the iteration, we can leave out some
values. For example, we may leave out exactly 0. The resulting family  is then a Wetzel fam-
ily on the modified domain ℂ ⧵ {0}, while all values 𝑓(0), for 𝑓 ∈  , are pairwise distinct. To see
this, note that if 𝑧 ∉ dom𝐻, then the function added byℚ(𝐻)maps to a generic complex number
at 𝑧.
More generally, for any given infiniteΩ ⊆ ℂ, we can construct a family of entire functions that

is Wetzel on Ω, while attaining 2ℵ0 -many values at any point outside of Ω. For 𝜅 regular, we can
force♢𝜅 over themodel fromProposition 4.1 without collapsing cardinals or changing cofinalities,
by adding a 𝜅-Cohen real in the standard way. This does not affect the result of Proposition 4.1.
Then, using a standard guessing argument in the iteration of Theorem 5.14, it should not be hard
to modify the construction in order to obtain a model where such families exist for every infinite
subset Ω ⊆ ℂ. Whenever Ω𝛼 ⊆ ⟨𝑧𝛽 ∶ 𝛽 < 𝛼⟩ is guessed at step 𝛼, we may force with ℚ(𝐻𝜎𝜂𝛼 ↾𝛼 ↾
Ω𝛼) instead. Here note that if ℚ(𝐻) is ccc, then for any restriction𝐻′ ⊆ 𝐻, ℚ(𝐻′) is a sub-forcing
(not necessarily complete) of ℚ(𝐻) and thus also ccc.

6 MA ANDUNIVERSAL SETS

In this section, we show that under𝖬𝖠 + ¬𝖢𝖧 there is no universal set. Recall that𝖬𝖠 is saying
that for any ccc partial order ℙ and any family  of less than 2ℵ0 -many dense subsets of ℙ, there
is a filter 𝐺 ⊆ ℙ such that 𝐺 ∩ 𝐷 ≠ ∅, for every 𝐷 ∈ .
We begin by introducing the ccc poset that we will use. The forcing 𝕊 shall consist of conditions

of the form𝑝 = (𝑤, 𝑠) = (𝑤𝑝, 𝑠𝑝), where𝑤 ∈ [ℂ]<𝜔 and 𝑠 is a finite sequence of open intervalswith
rational endpoints in (0, 1) ⊆ ℝ such that

(a) ∀𝑖 < 𝑗 < |𝑠|∀𝑥 ∈ 𝑠(𝑖)∀𝑦 ∈ 𝑠(𝑗)(𝑦 < 𝑥8),
(b) ∀𝑧0, 𝑧1 ∈ 𝑤(|𝑧0 − 𝑧1| ∈ ⋃

𝑖<|𝑠| 𝑠(𝑖) ∪ {0}).
A condition 𝑞 extends 𝑝 if and only if 𝑤𝑝 ⊆ 𝑤𝑞 and 𝑠𝑝 ⊆ 𝑠𝑞.

Lemma 6.1. 𝕊 is ccc.

Proof. Suppose 𝑝𝛼 ∈ 𝕊, for 𝛼 < 𝜔1 are pairwise incompatible. Then, we may assume without loss
of generality that 𝑠𝑝𝛼 = 𝑠 and |𝑤𝑝𝛼 | = 𝑛 is the same for all 𝛼 < 𝜔1. Let us write𝑤𝑝𝛼 = {𝑧𝛼𝑖 ∶ 𝑖 < 𝑛},
for every 𝛼 and consider the function 𝑑∶ ℂ𝑛 × ℂ𝑛 → [0,∞)𝑛×𝑛, where

𝑑(⟨𝑧𝑖 ∶ 𝑖 < 𝑛⟩, ⟨𝑧′𝑖 ∶ 𝑖 < 𝑛⟩) = ⟨|𝑧𝑖 − 𝑧′𝑗| ∶ (𝑖, 𝑗) ∈ 𝑛 × 𝑛⟩.
𝑑 is clearly continuous. Moreover, since {⟨𝑧𝛼

𝑖
∶ 𝑖 < 𝑛⟩ ∶ 𝛼 < 𝜔1} ⊆ ℂ𝑛 is uncountable, there is

some 𝛼 < 𝜔1 such that ⟨𝑧𝛼𝑖 ∶ 𝑖 < 𝑛⟩ is an accumulation point of that set. Thus, let 𝛼𝑘 ≠ 𝛼, 𝑘 ∈ 𝜔,
be such that ⟨𝑧𝛼𝑘

𝑖
∶ 𝑖 < 𝑛⟩→ ⟨𝑧𝛼

𝑖
∶ 𝑖 < 𝑛⟩ as 𝑘 → ∞. Let 𝑐 be the left endpoint of 𝑠(|𝑠| − 1), that
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22 of 27 SCHILHAN and WEINERT

is, 𝑐 is the the infimum of
⋃
𝑖<|𝑠| 𝑠(𝑖). Now note that

𝑑(⟨𝑧𝛼𝑖 ∶ 𝑖 < 𝑛⟩, ⟨𝑧𝛼𝑖 ∶ 𝑖 < 𝑛⟩) ∈
(⋃
𝑖<|𝑠| 𝑠(𝑖) ∪ [0, 𝑐

8)

)𝑛×𝑛

.

Thus, by continuity, there is 𝑘 large enough so that

𝑑(⟨𝑧𝛼𝑘
𝑖
∶ 𝑖 < 𝑛⟩, ⟨𝑧𝛼𝑖 ∶ 𝑖 < 𝑛⟩) ∈

(⋃
𝑖<|𝑠| 𝑠(𝑖) ∪ [0, 𝑐

8)

)𝑛×𝑛

.

In other words, for all 𝑧0, 𝑧1 ∈ 𝑤𝑝𝛼 ∪ 𝑤𝑝𝛼𝑘 , |𝑧0 − 𝑧1| ∈ ⋃
𝑖<|𝑠| 𝑠(𝑖) ∪ [0, 𝑐8). Let 0 < 𝑏 < 𝑐8, where

𝑏 is strictly bigger than the maximal distance between points in 𝑤𝑝𝛼 ∪ 𝑤𝑝𝛼𝑘 that lies in (0, 𝑐
8).

Similarly, let 0 < 𝑎 < 𝑏, where 𝑎 is strictly smaller than the minimal such distance. Letting 𝐼 be
the interval (𝑎, 𝑏), (𝑤𝑝𝛼 ∪ 𝑤𝑝𝛼𝑘 , 𝑠

⌢𝐼) is a condition extending both 𝑝𝛼 and 𝑝𝛼𝑘 , while 𝛼 ≠ 𝛼𝑘. This
is a contradiction to the assumption that 𝑝𝛼 ⟂ 𝑝𝛼𝑘 . □

In the following, 𝑄 is the set of rational numbers.

Lemma6.2. For every 𝑧 ∈ ℂ and every 𝑛 ∈ 𝜔, the sets𝐷𝑧 = {𝑞 ∈ 𝕊 ∶ 𝑧 ∈ 𝑤𝑞 + (𝑄 + 𝑖𝑄)} and𝐸𝑛 =
{𝑞 ∈ 𝕊 ∶ |𝑠𝑞| ⩾ 𝑛} are dense in 𝕊.
Proof. Let 𝑝 ∈ 𝕊 be arbitrary. If 𝑤𝑝 = ∅, then clearly 𝑞 = ({𝑧}, 𝑠𝑝) extends 𝑝 and lies in 𝐷𝑧. Other-
wise, there is 𝑧0 ∈ 𝑤𝑝 and a small open neighbourhood 𝑂 of 𝑧0 so that for any 𝑧1 ∈ 𝑂, there is an
extension 𝑞 of 𝑝with 𝑧1 ∈ 𝑤𝑞. This is similar to the argument in the proof of Lemma 6.1.𝑂 clearly
contains a rational translate of 𝑧. The case of 𝐸𝑛 is obvious. □

Lemma 6.3. Let 𝑂 ⊆ (0,∞) be open containing arbitrarily small values. Then, there is an
uncountable set 𝑋 ⊆ ℝ such that {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑋, 𝑧0 ≠ 𝑧1} ⊆ 𝑂.
Proof. By recursion construct a Cantor scheme, that is, a map 𝜑 from 2<𝜔 to non-empty open
intervals of ℝ, such that for every 𝑡 ⊆ 𝑡′, 𝜑(𝑡′) ⊆ 𝜑(𝑡), diam(𝜑(𝑡)) ⩽ 1|𝑡|+1 and 𝜑(𝑡⌢0) ∩ 𝜑(𝑡⌢1) =
∅. Start with 𝜑(∅) = (0, 1) and given 𝜑(𝑡), find 𝜑(𝑡⌢0) and 𝜑(𝑡⌢1) such that for every 𝑥 ∈ 𝜑(𝑡⌢0),
𝑦 ∈ 𝜑(𝑡⌢1), |𝑥 − 𝑦| ∈ 𝑂. This is possible since 𝑂 is open and contains arbitrarily small numbers
> 0. Clearly, 𝑋 =

⋂
𝑛∈𝜔

⋃
𝑡∈2𝑛 𝜑(𝑡) works. □

Lemma 6.4 (essentially [1, Proposition 9.4]). Let 𝑋,𝑌 ⊆ ℂ, 𝑋 uncountable, and assume that for
every 𝑥 ∈ {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑋, 𝑧0 ≠ 𝑧1}, 𝑦 ∈ {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑌, 𝑧0 ≠ 𝑧1},

min(𝑥, 𝑦) < max(𝑥, 𝑦)2.

Then, there is no non-constant entire function 𝑓 such that 𝑓′′𝑋 ⊆ 𝑌.

Proof. Suppose there is such 𝑓. Since 𝑓 is non-constant, we can find an accumulation point 𝑥 ∈ 𝑋
of 𝑋 such that 𝑓′(𝑥) ≠ 0. Let 𝑥𝑛 → 𝑥, where 𝑥𝑛 ∈ 𝑋 for every 𝑛 ∈ 𝜔. Then there is ⟨𝑛𝑘 ∶ 𝑘 ∈ 𝜔⟩
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WETZEL FAMILIES AND THE CONTINUUM 23 of 27

such that for all 𝑘,

|𝑥𝑛𝑘 − 𝑥| < |𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)|2
or for all 𝑘,

|𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)| < |𝑥𝑛𝑘 − 𝑥|2.
The former is impossible since then

|𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)||𝑥𝑛𝑘 − 𝑥| ⩾
|𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)||𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)|2 = 1|𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)|

which does not converge, and from the latter, we follow that

|𝑓(𝑥𝑛𝑘 ) − 𝑓(𝑥)||𝑥𝑛𝑘 − 𝑥| ⩽
|𝑥𝑛𝑘 − 𝑥|2|𝑥𝑛𝑘 − 𝑥| = |𝑥𝑛𝑘 − 𝑥|

which converges to 0. This contradicts that 𝑓′(𝑥) ≠ 0. □

Theorem 6.5. 𝖬𝖠 + ¬𝖢𝖧 implies that there is no universal set.

Proof. Let 𝑌 ⊆ ℂ, |𝑌| < 2ℵ0 . Using 𝖬𝖠, find a filter 𝐺 ⊆ 𝕊 intersecting all sets 𝐷𝑧 for 𝑧 ∈ 𝑌 and
𝐸𝑛 for 𝑛 ∈ 𝜔 from Lemma 6.2. Let 𝑍 =

⋃
𝑝∈𝐺 𝑤𝑝, 𝑠 =

⋃
𝑝∈𝑃 𝑠𝑝 and 𝑈 =

⋃
𝑛∈𝜔 𝑠(𝑛). Then, 𝑌 ⊆

𝑍 + (𝑄 + 𝑖𝑄) and {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑍, 𝑧0 ≠ 𝑧1} ⊆ 𝑈. Let 𝑎𝑛 be the left endpoint of 𝑠(𝑛), for every
𝑛 ∈ 𝜔 and consider 𝑂 =

⋃
𝑛∈𝜔(𝑎

4
𝑛, 𝑎

2
𝑛). Then, note that for every 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑂,

min(𝑥, 𝑦) < max(𝑥, 𝑦)2.

Finally apply Lemma 6.3 to find a set 𝑋 ⊆ ℂ of size ℵ1 such that {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑋, 𝑧0 ≠
𝑧1} ⊆ 𝑂. We claim that there is no entire 𝑓 such that 𝑓′′𝑋 ⊆ 𝑌. Otherwise, as 𝑌 ⊆ 𝑍 + (𝑄 + 𝑖𝑄),
there is an uncountable 𝑋′ ⊆ 𝑋 and there are rationals 𝑟0, 𝑟1, such that

𝑓′′𝑋 ⊆ 𝑍 + (𝑟0 + 𝑖𝑟1).

Clearly, {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑍 + (𝑟0 + 𝑖𝑟1), 𝑧0 ≠ 𝑧1} = {|𝑧0 − 𝑧1| ∶ 𝑧0, 𝑧1 ∈ 𝑍, 𝑧0 ≠ 𝑧1} ⊆ 𝑈. This
contradicts Lemma 6.4 □

Corollary 6.6. The existence of a Wetzel family does not imply the existence of a universal set.

Proof. Taking 𝜅 = ℵ2, this follows fromTheorem 6.5 and Theorem 5.14. Note that if we are allowed
to assume the existence of aweakly inaccessible cardinal, this already follows from themain result
in combination with Proposition 3.6. □

7 A UNIVERSAL SETWITH 𝟐ℵ𝟎 = ℵ𝟐

The construction in the following section will use a countable support iteration of proper forcing
notions. For more information, we refer the reader to [20, Chapter 31].
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24 of 27 SCHILHAN and WEINERT

Theorem 7.1 (CH). There is a proper forcing extension of𝑉 preserving all cardinals and cofinalities
in whichℂ𝑉 is universal and 2ℵ0 = ℵ2. In particular, the existence of a universal set is consistent with
2ℵ0 = ℵ2.

Wewill construct a forcing notion that usesmodels as side conditions. For now let us fix an arbi-
trary set 𝑌 of complex numbers. We then say that a pair (𝑀,𝑁) is a node, if (𝑀,∈, 𝑌 ∩𝑀), (𝑁,∈
, 𝑌 ∩ 𝑁) are countable elementary submodels of (𝐻(𝜔1), ∈, 𝑌) and (𝑀,∈, 𝑌 ∩𝑀) ∈ 𝑁. In partic-
ular,𝑀 and𝑁 are transitive. A side condition is a finite set 𝑠 = {(𝑀𝑖,𝑁𝑖) ∶ 𝑖 ⩽ 𝑛} of nodes, where
(𝑀𝑖, 𝑁𝑖) ∈ 𝑀𝑖+1 for every 𝑖 < 𝑛.
Recall the poset ℚ from Definition 5.1. The forcing ℙ(𝑌) then consists of pairs (𝑤, 𝑠) where

𝑠 = {(𝑀𝑖,𝑁𝑖) ∶ 𝑖 ⩽ 𝑛} is a side condition,𝑤 = (𝑎, 𝑓, 𝜀,𝑚) ∈ 𝑀𝑛 ∩ ℚ, 𝑎 ⊆ 𝑀𝑛−1 and for every 𝑖 < 𝑛,⟨𝑓(𝑧) ∶ 𝑧 ∈ 𝑎 ∩ (𝑀𝑖 ⧵
⋃
𝑗<𝑖 𝑀𝑗)⟩ ⊆ 𝑀𝑖+1 ∩ 𝑌 is mutually Cohen generic over 𝑁𝑖 . In other words,

the elements of 𝑎 that appear in amodel𝑀𝑖 , but not before, are mapped tomutually generic-over-
𝑁𝑖 complex numbers that lie in 𝑌 ∩𝑀𝑖+1. A condition (𝑣, 𝑡) extends (𝑤, 𝑠) if 𝑣 extends𝑤 inℚ and
𝑠 ⊆ 𝑡.

Lemma 7.2. ℙ(𝑌) is proper.

Proof. Let𝐾 ≼ 𝐻(𝜃) be countable with𝑌 ∈ 𝐾, for some large 𝜃. Furthermore, let𝐾 ∈ 𝐾+ ≼ 𝐻(𝜃)
be another countable model. Consider 𝑀 = 𝐾 ∩ 𝐻(𝜔1) and 𝑁 = 𝐾+ ∩ 𝐻(𝜔1). Then, (𝑀,𝑁) is a
node, since both 𝑀 and 𝑌 ∩𝑀 are hereditarily countable in 𝐾+ and thus elements of 𝑁. Ele-
mentarity of (𝑀,∈, 𝑌 ∩𝑀) and (𝑁, ∈, 𝑌 ∩ 𝑁) follows easily from the definability of𝐻(𝜔1)within
𝐾,𝐾+ and the elementarity of 𝐾,𝐾+. Any subset of𝑀 that lies in 𝐾+ is an element of𝑁, since𝑀
is countable in 𝐾+. In particular, ℙ(𝑌) ∩ 𝐾 = ℙ(𝑌) ∩ 𝑀 ∈ 𝑁. Moreover, for any subset 𝐴 ∈ 𝐾 of
ℙ(𝑌), 𝐴 ∩ 𝐾 = 𝐴 ∩𝑀 ∈ 𝑁.
In the following, 𝑟 ∥ 𝐴means that 𝑟 is compatible with some element of 𝐴.

Claim 7.3. Let𝐴 ∈ 𝑁 be any pre-dense subset of ℙ(𝑌) ∩ 𝑀 and 𝑟 be any condition of the form 𝑟 =

(𝑤, 𝑠 ∪ {(𝑀,𝑁)} ∪ 𝑡), where 𝑠 ∈ 𝑀 and 𝑡 ∩ 𝑀 = ∅. In other words, 𝑟 is any condition that contains
(𝑀,𝑁) in its side condition. Then, 𝑟 ∥ 𝐴.

Proof. We proceed by induction on the length of 𝑡. If 𝑡 is empty, then (𝑤, 𝑠) ∈ ℙ(𝑌) ∩ 𝑀. By
assumption, (𝑤, 𝑠) ∥ 𝐴 since 𝐴 is pre-dense in ℙ(𝑌) ∩ 𝑀. Thus, there is (𝑤′, 𝑠′) ⩽ (𝑤, 𝑠) in 𝑀,
extending an element of 𝐴. Then, (𝑤′, 𝑠′ ∪ {(𝑀,𝑁})) is a condition extending (𝑤, 𝑠 ∪ {(𝑀,𝑁)})
and that same element of 𝐴.
Now suppose 𝑡 = 𝑡0 ∪ {(𝑀1,𝑁1)}, where 𝑡0 ∈ 𝑀1 and let (𝑀0,𝑁0) be the last node of 𝑡0, or

(𝑀,𝑁) if 𝑡0 = ∅. Let

ℚ0 =

{
{𝑤′ ∈ ℚ ∶ ∃𝑠′ ∈ 𝑀, 𝑠 ⊆ 𝑠′((𝑤′, 𝑠′) ∈ ℙ(𝑌))} if 𝑡0 = ∅
{𝑤′ ∈ ℚ ∶ ∃𝑠′ ∈ 𝑀, 𝑠 ⊆ 𝑠′(𝑤′, 𝑠′ ∪ {(𝑀,𝑁)} ∪ 𝑡0) ∈ ℙ(𝑌)} otherwise.

Then, note that ℚ0 ∈ 𝑁0 is a forcing of the form ℚ0(𝐹) for 𝐹 ∈ 𝑁0.† Furthermore, let 𝐸 = {𝑤′ ∈
ℚ ∶ ∃𝑠′((𝑤′, 𝑠′) ∈ 𝐴)}. Then, 𝐸 ⊆ ℚ0, 𝐸 ∈ 𝑁0 and by the inductive hypothesis, it is pre-dense in

† To see that ℚ0, 𝐹 ∈ 𝑁0, note that the subset of𝑀0 consisting of countable elementary sub-models of (𝐻(𝜔1), ∈, 𝑌) can
be defined in 𝑁0 as the elements of𝑀0 that are elementary sub-models of (𝑀0, ∈, 𝑌 ∩𝑀0).
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WETZEL FAMILIES AND THE CONTINUUM 25 of 27

ℚ0. Now use Lemma 5.11, for ℙ, ℙ′ trivial forcings, and a similar argument as in Proposition 5.13
to finish the inductive step. □

Finally, if (𝑤, 𝑠) ∈ 𝐾 is an arbitrary condition, then we have shown that (𝑤, 𝑠 ∪ {(𝑀,𝑁)}) is a
master condition over 𝐾. This proves the lemma. □

Lemma 7.4. Let 𝑝, 𝑌 ∈ 𝐾 ≼ 𝐻(𝜃),𝐾 countable, for large 𝜃, and let 𝑐 be a Cohen real over𝐾. Then,
there is a master condition 𝑞 ⩽ 𝑝 over 𝐾 so that 𝑞 ⊩ 𝑐 is Cohen over 𝐾[𝐺̇].

This is known as ‘almost preserving ⊑Cohen’ in [4, section 6.3.C] and implies the preservation
of non-meager sets in countable support iterations.

Proof. Let𝑀 = 𝐾 ∩ 𝐻(𝜔1) and𝐻 be aColl(𝜔, 𝜆)-generic over𝐾[𝑐], where 𝜆 = |𝐻(𝜔1)|𝐾 . Then, 𝑐 is
still a Cohen real over𝐾[𝐻] and𝐾[𝐻] ⊧ |𝑀| = 𝜔. Moreover,ℙ(𝑌) ∩ 𝐾 = ℙ(𝑌) ∩ 𝑀 ∈ 𝐾[𝐻], since
ℙ(𝑌) ∩ 𝑀 is definable from 𝑀,𝑌 ∩𝑀 ∈ 𝐾[𝐻]. Now let 𝐾+ ≼ 𝐻(𝜃) be countable with 𝐾,𝐻, 𝑐 ∈
𝐾+. Let 𝑝 = (𝑤, 𝑠) and 𝑁 = 𝐾+ ∩ 𝐻(𝜔1). Then, 𝑞 = (𝑤, 𝑠 ∪ {(𝑀,𝑁)}) is a master condition over
𝐾, as in the proof of Lemma 7.2. Let 𝐺 ∋ 𝑞 be ℙ(𝑌)-generic over 𝑉. According to Claim 7.3,
for any pre-dense subset 𝐴 ∈ 𝐾+ of ℙ(𝑌) ∩ 𝐾, 𝐴 ∩ 𝐺 ≠ ∅. Thus, 𝐺 ∩ 𝐾 is ℙ(𝑌) ∩ 𝐾-generic over
𝐾+ and in particular over 𝐾[𝐻][𝑐] ⊆ 𝐾+. But ℙ(𝑌) ∩ 𝐾 is a countable forcing in 𝐾[𝐻] and thus
equivalent to Cohen forcing (or, in the simplest case, a trivial forcing) witnessed through an iso-
morphism in 𝐾[𝐻]. So 𝐾[𝐻][𝑐][𝐺 ∩ 𝐾] is a Cohen extension of 𝐾[𝐻][𝑐], and 𝑐 is still Cohen
generic over 𝐾[𝐻][𝐺 ∩ 𝐾]. In particular, 𝑐 is still Cohen generic over 𝐾[𝐺] = 𝐾[𝐺 ∩ 𝐾] ⊆ 𝐾[𝐻]
[𝐺 ∩ 𝐾]. □

Lemma 7.5. Let 𝑌 ⊆ ℂ be everywhere non-meager. Then, ℙ(𝑌) generically adds a non-constant
entire function 𝑓 such that 𝑓(ℂ𝑉) ⊆ 𝑌.

Proof. Let (𝑤, 𝑠) ∈ ℙ(𝑌) and 𝑧 ∈ ℂ. Extending (𝑤, 𝑠) further, we can assume 𝑧 ∈ 𝑀0 for some
(𝑀0,𝑁0) ∈ 𝑠, where 𝑀0 is minimal with this property and there is a successor (𝑀1,𝑁1) ∈ 𝑠 of
(𝑀0,𝑁0). Since 𝑌 is everywhere non-meager, 𝑀1 knows this and since 𝑁0 is countable in 𝑀1,
there is 𝑐 ∈ 𝑌 ∩𝑀1 that is arbitrarily close to 𝑓𝑤(𝑧) and Cohen generic over 𝑁0[𝑐0, … , 𝑐𝑛], where
𝑐0, … , 𝑐𝑛 enumerates the mutual Cohen generics 𝑓𝑤(𝑥), for 𝑥 ∈ 𝑎𝑤 that first appear in 𝑀0. The
rest then follows as in the proof of Lemma 5.4. □

Proof of Theorem 7.1. Let 𝑌 = ℂ𝑉 and iterate ℙ(𝑌) in a countable support iteration of length 𝜔2.
By Lemma 7.4 and [4, Lemma 6.3.17, 6.3.20], 𝑌 stays everywhere non-meager along the iteration.
Everything else follows from standard counting of names arguments and the fact that ℙ(𝑌) has
size ℵ1 under 𝖢𝖧. □

It seems that it would also suffice to consider nodes where𝑀,𝑁 aremerely countable transitive
models of𝖹𝖥−, (𝑀,∈, 𝑌 ∩𝑀) is countable in𝑁 and𝑌 ∩𝑀 is non-meager in𝑀. This has the slight
advantage that ℙ(𝑌) ∩ 𝑀 is already a definable subclass of𝑀 and not just definable in𝑁. Also in
the proof of Lemma 7.4 we could directly let 𝐾+ = 𝐾[𝐻][𝑐].
There is a also a ccc way to do this starting from a model of ♢. This is a modification of the

construction presented in [8], from which our result draws its main inspiration. Instead of gener-
ically adding an ∈-increasing sequence of nodes using side conditions, we start already with a
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26 of 27 SCHILHAN and WEINERT

given sequence ⟨(𝑀𝛼,𝑁𝛼) ∶ 𝛼 < 𝜔1⟩, where ⟨𝑁𝛼 ∶ 𝛼 < 𝜔1⟩ is an ‘oracle’ (see [30]). It can then
be shown that the resulting forcing, consisting of those 𝑤 ∈ ℚ such that (𝑤, 𝑠) ∈ ℙ(𝑌) for every
𝑠 ⊆ ⟨(𝑀𝛼,𝑁𝛼) ∶ 𝛼 < 𝜔1⟩, is ‘oracle-cc’. In fact, our proper forcing is built directly from this con-
struction. The advantage is that it has a much easier setup and does not depend on a particular
chosen sequence of nodes. Also there might be a bigger potential of generalising it to continuum
higher than ℵ2, although this is not very clear to us.

8 OPEN QUESTIONS

Question 8.1. Does𝖬𝖠 or 𝖯𝖥𝖠 imply that there is a Wetzel family? Is𝖬𝖠 + 2ℵ0 = ℵ2 sufficient?

Recall that non() is the least size of a non-meager set.

Question 8.2. Is every universal set non-meager under ¬𝖢𝖧? In particular, can we replace 𝖬𝖠
with non() = 2ℵ0 in Theorem 6.5?

Question 8.3. Is the existence of a universal set consistent with 2ℵ0 = ℵ3? With 2ℵ0 = 𝜅 for
arbitrary successor cardinal 𝜅?

Recall that a domain Ω ⊆ ℂ is any open connected subset of ℂ. We may then define the
analogous notion of Wetzel families on Ω for functions that are holomorphic on Ω.

Question 8.4. Let Ω ⊂ ℂ be any domain and suppose that there is a Wetzel family on Ω. Does
there exist a Wetzel family on the whole of ℂ? What about Ω = ℂ ⧵ {0}?

Question 8.5. Can we characterise when ℚ(𝐻) is ccc?
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