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A B S T R A C T   

The widespread adoption of lithium-ion batteries (LIBs) in modern electric vehicles has successfully addressed 
the issues of limited oil and gas resources, as well as environmental degradation. This development is crucial for 
achieving “carbon neutrality” and reduce “carbon peaking”. Proper disposal of used LIBs is vital for effective 
resource management and avoiding pollution and potential hazards associated with toxic substances. Moreover, 
a significant weight fraction of LIBs is constituted by so-called critical raw materials (CRMs), presenting a high 
supply risk and price variability. Over the past few years, considerable progress has been made in developing 
processes for the safe treatment and material recovery from spent LIBs, besides the recovery of CRMs. Among 
them, hydrometallurgical recycling of LIBs components employing affordable and eco-friendly ionic liquids (ILs) 
and deep eutectic solvents (DESs) has gained significant attention for their potentially superior selectivity, low 
energy consumption, and environmental impact. Such liquids present various advantages over traditional 
organic solvents employed in liquid separations in terms of volatility, safety, chemical and thermal stability, 
recyclability, and selectivity. This review provides an overview of the most recent advances in the application of 
ILs and DESs to recover CRMs from LIBs.   

1. Introduction 

Electric vehicles (EVs) have become the primary choice for countries 
worldwide to tackle the urgent problem of the climate change caused 

using fossil fuels since the first industrial revolution. The non-polluting 
and zero-emission nature of EVs has contributed to their exponential 
growth in global sales over the past decade, with approximately 5.1 
million EVs on the road in 2018 [1]. This rapid development of EVs has 
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led to a significant increase in the demand for batteries [2]. Specifically, 
lithium-ion batteries (LIBs) are used for energy storage in EVs, as well as 
in numerous consumer goods due to their long life cycle, high energy 
density, small self-discharge effect, high working voltage, no memory 
effect, wide applicable temperature range, and green environmental 
protection [3,4]. 

The supply chain of the materials needed for manufacturing LIBs 
could face serious issues as the production is projected to range between 
0.33 and 4 million tons per year from 2015 to 2040 [5]. In parallel, by 
2030 the demand for Li and Co is estimated to increase by eighteen and 
five times, respectively, compared to current supply levels [6]. The ex-
pected rise in demand, combined with the limited number of suppliers 
(vide infra), characterizes multiple constituents of LIBs (Co, Li, P, Cu, 
graphite) as critical raw materials (CRMs) [7]. 

Several alternatives aim to replace LIBs to avoid CRMs like Co or Li. 
Sodium ion batteries are a promising alternative due to the abundance of 
Na in nature. However, the theoretical capacity of Na batteries is lower 
compared to LIBs [8–10]. Potassium ions are expected to have an even 
smaller desolvation energy than Li- and Na-based systems in aprotic 
solvents but could be easier trapped in the structure of the anode 
compared to smaller Na+ and Li+. Furthermore, the large ionic radius 
makes the preparation of oxides with high stoichiometry of K for cath-
ode materials difficult [11]. Multivalent ions like Mg2+, Ca2+, Zn2+, or 
Al3+ can increase capacity, but practical implementation of electrolytes 
and cathodes remain limited to research laboratories. The main chal-
lenge lies in the low gravimetric energy densities, typically in the order 
of a few hundred Wh/kg, coupled with limited demonstrated durability 
and slow kinetics [12]. Aqueous zinc batteries offer unique properties, 
but face issues like limited potential window, electrode material disso-
lution and dendrite formation [13]. Al has the highest volumetric and 
good gravimetric capacity, is stable in the air atmosphere and is the most 
abundant element in Earth’s crust. However, Al has less negative stan-
dard reduction potential than the other metals, leading to a lower energy 
density. Moreover, there are challenges related to lifecycle, corrosion, 
refueling, efficiency, which limit their widespread adoption and make 
them better suited for specific niche applications where their advantages 
outweigh their disadvantages [14]. Cobalt-free cathodes like lithium 
iron phosphate offer cost and sustainability advantages, but may have 
lower energy density [15]. 

Remanufacturing and repurposing of used battery packs require 
partial disassembly, processing, testing and repacking of the battery 
cells are considered important stages of the value chain (Fig. 1), but not 
sufficient to mitigate the dependence on CRM to address the market 
demand [16]. 

The main strategy to relieve the pressure on the supply chain is to 
develop economically competitive recycling processes characterized by 
high recovery rates, low energy, and resources. Future supply crisis can 
only be prevented through 100 % LIB recycling with at least 90 % metal 
recovery or through the technologically, economically, environmentally 
friendly, and efficient metal recovery from low-grade primary resources 
[17]. Despite exploratory mining efforts, the global suppliers of CRMs 
employed in LIBs manufacturing (Co, Li, graphite, etc.) are limited to 
some countries [18]: for example, in 2022 Democratic Republic of 
Congo produced about 68 % of the total Co worldwide [19]. Numerous 
LIBs component materials including Co, Li, phosphorus, and graphite 
(Table 1), remain on the 2023 CRMs list [20]. With an estimated 21 
million end-of-life (EoL) LIB packs expected to be generated between 
2015 and 2040 [21], the recycling of spent LIBs becomes crucial. 
Notably, in 2019, China managed to recover over 36 % of spent LIBs in 
terms of quantity [22], whereas in 2022, the United States lagged 
significantly behind, with less than 1 % of spent LIBs being recycled 
[23]. 

This need for sustainable recycling processes promoted a vast num-
ber of fundamental and applied studies for CRMs recovery from EoL 
LIBs: a search conducted on the Web of Science database on May 2, 
2024, using the terms “LIBs” and “recycling” revealed a growing interest 
within the scientific community on the topic (Fig. 2). 

2. Challenges in LIB recycling 

Cathodes are key components of LIBs which determine the perfor-
mance, and their composition is often closely linked to the specific 
application. Additionally, cathodes contain most weight fraction of the 
CRMs which could be potentially recovered. Metal oxides are commonly 
used as cathode materials in LIBs (Table 2), each with different perfor-
mance, while graphite is the most common material utilized as anode. 
Among the cathodes reported in Table 2, NMC are currently dominating 
the market, mostly due to their high energy density and, according to a 
recent paper, are expected to reach 80% of the total storage capacity by 
2025 [27]. 

A first reason to recycle the LIBs is to prevent the hazard related to 
the highly toxic materials contained. As an example, the LIBs cathodes, 
typically contain high concentrations of Co and Ni (Table 3) which are 
known to pose significant risks to living organisms [31] if dispersed in 
the environment in an uncontrolled manner. Furthermore, other 
non-metallic components, such as fluorine-containing materials (e.g. 
hexafluorophosphates in electrolyte and the PVDF binder) may generate 
fluorine pollution of soil and water [32]. 

Also, a practical reason supports the recycling of LIBs: spent batteries 
contain valuable metals at much higher concentrations than those found 
in industrial ores [33]. Thus, this process of “secondary mining” would 
be much more efficient than processing natural minerals. For instance, 
the Li content of spent LIBs is approximately 10 times that of primary Li 
ore (lithium pyroxene) and 30 times that of Li carbonate salts found in 
brine pools [34]. Additionally, the escalating prices in metal supply 
chains, particularly for NMC cathode components (Table 3), further 
highlight the pressing need for LIB recycling. 

Fig. 1. Life cycle of a LIBs.  

Table 1 
Composition of LIBs [24–26].  

Components Materials Weight percentage 
(%) 

Anode Graphite 15–20 
Cathode LCO, LMO, LPF, NMC, LNMO 25–30 
Binder PVDF 3 

Electrolyte 
LiPF6, LiBF4, LiAsF6, LiClO4, PC, EC, 
DMC 10 

Separator PE, PP 1–2 
Current 

collectors 
Al, Cu 10–20  
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3. Battery preparation for recycling 

The recycling process involves sorting, discharging, and dismantling, 
with one major challenge being the diverse assembly of cells, modules, 
and packs. Manufacturers utilize various cell geometries, such as pris-
matic, cylindrical, and pouch cells (Fig. 3), making disassembly difficult 
[35]. Battery cells are often tightly sealed and assembled in modules and 
packs using different adhesives. Active electrode materials, in granular 
form, are attached to collector plates using binders like PVDF, known for 

its resistance to high temperatures and non-reactivity with battery 
components [36]. Efficient cell dismantling and recycling face hurdles 
primarily due to the intricate assembly of packs and modules. 

3.1. Mechanical processing 

The discharging process is often done by immersion in a concen-
trated saline solution. This step is required to reduce the risk of com-
bustion, explosion, and toxic gas emissions for high voltage cells. 

Fig. 2. The yearly published article counts with the keywords “LIBs” and “recycling”.  

Table 2 
LIB cathodes [28–30].  

Cathode types LCO LFP LMO NCA NMC LNMO 

Full name 
Lithium Cobalt 
Oxide 

Lithium Iron 
Phosphate 

Lithium Manganese 
Oxide 

Lithium Nickel Cobalt 
Aluminum Oxide 

Lithium Nickel Manganese Cobalt 
Oxide 

Lithium Nickel 
Manganese Oxide 

Chemical 
formula 

LiCoO2 LiFePO4 LiMn2O4 Li(Ni,Co,Al)O2 

LiNi0.33Mn0.33Co0.33O2 

(NMC111) 

LiNi0.5Mn1.5O4 

LiNi0.5Mn0.3Co0.2O2 

(NMC532) 
LiNi0.6Mn0.2Co0.2O2 

(NMC622) 
LiNi0.8Mn0.1Co0.1O2 

(NMC811) 
Crystal 

structure 
Layered Olivine Spinel Layered Layered Spinel 

Safety Moderate Excellent Very good Good Good Excellent 
Energy density Very good Good Good Excellent Excellent Excellent 
Power density Good Very good Very good Very good Good Very good 
Cycle lifespan Good Very good Good Very good Good Very good 
Performance Very good Very good Good Very good Very good Very good 
Cost Poor Very good Very good Very good Good Very good 

Market Outdated 
Electric bikes, 
buses 

Small Steady 
Growing (from NMC111 to no-Co 
chemistries) 

Electric vehicles  

Table 3 
Weight composition of NMC battery packs and a cost analysis of battery materials per ton.  

Material 
NMC111* NMC532* NMC622* NMC811* 2022** 2020** 

(kg) (USD) 

Lithium  0.141  0.136  0.118  0.1 27,327 7250 
Nickel  0.351  0.508  0.531  0.6 32,424 15,090 
Cobalt  0.352  0.204  0.178  0.75 81,860 33,000 
Manganese  0.328  0.285  0.166  0.07 2400 1565 
Aluminum  3.11  3.07  3.017  2.921 3048 1582 
Copper  0.677  0.661  0.605  0.549 9820 6788 
Graphite  0.978  0.981  0.96  0.961 3800 3400 

* “BatPaC,” 2020; ** “Benchmark Minerals, Lithium carbonate prices break through 40USD/kg barrier,” 2022; “Fastmarkets: Graphite pricing,” 2022; “Futures price of 
cobalt worldwide from August 2019 to August 2023,” 2023; “Markets Insider, Business Insider Commodities: Aluminum price,” 2022; “Markets Insider, Business 
insider commodities: copper price,” 2022; “Markets Insider, Business Insider Commodities: nickel price,” 2022; “SMM, Price metal-Manganese,” 2022. 
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For EoL battery recycling, wet and dry crushing methods are used: 
wet crushing involves using a water or salt solution to create a cool, 
oxygen-free environment, but generates wastewater and may over-crush 

foils, while dry crushing produces fewer impurities [37,38]. Sorting, 
sieving, and magnetic separation are then employed to separate frag-
ments. Pre-treatment methods like ultrasonic [39], microwave [40], 
solvent [41,42], or thermal treatment [43–45] were used before for 
separating active electrode material from current collector foil. Me-
chanical processes like milling or sieving may also be necessary to 
disrupt crystal structures [46–48]. 

3.2. Binder removal 

In LIBs, a binder serves as a crucial component within the electrode 
structure, facilitating the adhesion of active material to the current 
collector. Typically composed of polymers (PVDF, PAA, PVA), binders 
ensure mechanical integrity and promote stable electrochemical per-
formance by securely holding together the electrode’s active materials 
during charge and discharge cycles. Binder removal from cathode ma-
terial poses a significant challenge in battery recycling. High tempera-
ture pyrolysis is effective, but energy-intensive and environmentally 
impacting, due to toxic gas emissions [21,49,50]. A more efficient 
method is dissolution of binder utilizing proper solvent. Common pro-
cesses for PVDF binder removal are shown in Tables 4 and 5. 

Mechanical processes offer a low-cost, simple, and flexible alterna-
tive for binder removal and carbon black separation from cathode 
composites. Common methods include grinding, sieving, magnetic, 
electrostatic or pneumatic separation, and flotation [51]. Delamination 
involves crushing material into layers [44] utilized vibrating screens to 
separate black mass and graphite from Al and Cu foil, while [52] used 
high-powered ultrasound for rapid delamination. Also ionic liquids 
(ILs), like [C4mim][BF4], dissolve PVDF at lower temperatures with high 
efficiency [53]. 

Spouted bed elutriation is another method that implements separa-
tion of particles based on their size, shape and density, utilizing a stream 
of gas or liquid flowing in an opposite direction of sedimentation [54]. 

4. Methods of recycling 

After pretreatment, electrode materials are collected in an interme-
diate product, the so-called “black mass”, which contains all valuable 
metals such as Co, Mn, Ni, and Li [61] and is then subjected to the 
separation and purification stages [62]. Metal recovery can be achieved 
through a range of technologies. The metallic fraction undergoes pro-
cesses like hydrometallurgy [63,64], pyrometallurgy [65,66], combi-
nation methods [67–69], and direct recycling [70,71] as depicted in  
Fig. 4. 

4.1. Pyrometallurgy 

Pyrometallurgical technology is commonly used in the industrial 
recycling of LIBs as it employs thermal treatment to reduce metal oxides 
into an alloy. This process is advantageous due to its high processing 
capacity [16], simple operation, no need of chemical pretreatment. The 
primary environmental concerns associated with pyrometallurgy are the 
high-energy consumption and significant gaseous emissions. Further-
more, the process is unable to recover all battery components, as organic 
compounds are converted to pure carbon. The alloy produced by this 
process is mixture of different metals present in the LIBs and requires 
additional processing, to recover pure metals [72]. 

4.2. Direct recycling 

Cathode materials can undergo regeneration through direct recovery 
pathways, such as restoring the crystal structure while simultaneously 
compensating for the loss of Li electroactivity in situ. This approach is 
motivated by the fact that the decline in battery performance often stems 
from an insufficient supply of active Li and irreversible structural tran-
sitions [73,74]. In contrast, direct recycling is a low-cost alternative that 

Fig. 3. Commonly used cell geometries for battery pack construction.  

Table 4 
Comparison of different methods for PVDF binder removal.  

Method 
Temperature 
(◦C) Time 

Efficiency 
(%) Ref. 

Thermal processes 

Pyrolysis with CaO 300 10 min  97 [49] 
Pyrolysis under air 150–500 1 h  100 [21] 
Pyrolysis under nitrogen 550 3 h  100 [50] 
Dissolution processes 
Diacetone alcohol 165 2 h  8.6 [55] 
Diethyl glycol 

monoethylene ether 
200 2 h  10.7 [55] 

Acetone 56 2 h  12.3 [55] 
DMAc 160 2 h  31.4 [55] 
DMF 150 2 h  33.1 [55] 
5 M NaOH + catalyst 80 2 h  60.5 [55] 
ChCl:glycerol (2.3:1) 190 15 min  100 [56] 
Citrus juice 90 20 min  100 [57] 
N-Methyl-2-pyrrolidone 100 1 h  100 [58] 
DMSO 60 85 min  100 [59] 
5 M KOH + catalyst 80 2 h  100 [55] 
ChCl:EG nanofluids 100 10 h  100 [60]  

Table 5 
General comparison between pyrometallurgical, hydrometallurgical processes 
and direct recycling [26,79,80].  

Recycling 
method 

Pros Cons 

Pyrometallurgy 

Process simplicity; high 
productivity; large scale 
application; commercially 
viable, high efficiency. 

Gas clean-up is required to 
avoid the release of toxic 
emissions; high energy 
consumption; material loss (Li 
in the slag); additional 
process needed for metal 
separation, high energy 
consumption. 

Direct recycling 

Can recover all battery 
components; is economically 
viable for cheaper battery 
chemistries like LFP and 
LMO; no strong acid 
consumption; short recovery 
route. 

Requires single cathode input; 
degradation may limit 
repetition; not demonstrated 
at larger scale; high 
operational and equipment 
requirements; incomplete 
recovery. 

Hydrometallurgy 

Low cost; low energy 
consumption; process 
flexibility; high recovery 
efficiency; high purity of 
products; no gaseous 
emissions. 

Big dependence on pre- 
treatment; acid breaks down 
original cathode structure; 
large amount of VOC; only 
economical for batteries 
containing Co and Ni; 
wastewater productions.  
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retains the cathode structure of LIBs instead of dissolving, extracting, 
and reassembling materials. This method establishes its 
cost-effectiveness in relation to other methods by minimizing interven-
tion on the active material [75]. It has been argued that full repurposing 
of battery requires a comparable number of steps as the 

leaching/re-synthesis process, potentially negating any economic 
advantage. Wang et al. [76] introduced an innovative ionothermal 
approach for the regeneration of NMC111 using ILs, specifically 
[C2OHmim][Tf2N]. Unlike conventional solid-state and hydrothermal 
methods, the ionothermal method offers the advantage of regenerating 

Fig. 4. General scheme for different processes for LIB recycling.  

Fig. 5. Schematic representation showing the circularity potential of LIBs recycling.  
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cathode active materials at relatively low temperatures (150–250 ◦C) 
and under ambient pressure. Notably, the combination of [C2OHmim] 
[Tf2N] and LiCl at 150 ◦C yielded the highest discharge capacity 
retention (approximately 99 %) among the various regeneration tech-
niques employed for NMC111. Shi et al. [73], demonstrated re-lithiation 
with LiNO3:LiOH (3:2) deep eutectic solvent (DES) at 300 ◦C. Li content 
can be fully restored after 4 h. A short annealing step after re-lithiation is 
necessary so NMC523 particles can be completely restored to their 
original pristine composition. Without annealing step, cathode contains 
many amorphous regions which can decrease battery electrochemical 
performance. 

Establishing and maintaining a direct recycling system can be 
expensive, especially when specialized equipment and processes are 
required for each battery type. The costs associated with collection, 
sorting, and processing may not always be economically viable [70]. 

4.3. Hydrometallurgy 

Hydrometallurgical processes have the advantage of producing 
exceptionally pure products from low-grade ores and being low energy- 
intensive [41]. Traditional hydrometallurgical processes employ vola-
tile organic compounds (VOCs) or multiple extracting ligands to extract 
valuable metals and separate different metals present in the leachates 
[77]. Although VOCs can be separated from the reaction medium, it can 
pose serious threats to living organisms. Exposure to VOCs through skin 
contact, inhalation, or ingestion can cause irritation, nausea, and 
dizziness, and long-term exposure may lead to liver, kidney, and central 
nervous system damage [78]. Additionally, VOCs present serious safety 
issues as they are highly flammable. 

The pursuit of sustainable hydrometallurgical processes for LIBs 
processing using safer solvents has been subject of numerous studies in 
the last two decades. 

Compared to conventional VOCs, ILs and DESs display high thermal 
and chemical stability, a wide electrochemical window, negligible vapor 
pressure and lower toxicity [81,82]. Additionally, DESs offer benefits 
like easier preparation methods, enhanced purity of synthetic products, 
reduced costs, less corrosive impact on equipment, relatively straight-
forward biodegradation, and generally lower toxicity [82]. 

This review focuses on the recent advancements in the hydrometal-
lurgical recovery of CRMs from LIBs using ILs and DESs, as depicted in  

Fig. 5. It is organized as follows: i) introduction of ILs and DESs and 
properties relevant to separation processes; ii) leaching and recovery of 
the CRMs by liquid-liquid extractions employing ILs and DES as 
receiving phases; iii) application of ILs/DES in supported liquid mem-
branes; iv) status of industrial applications of separations employing 
ILs/DES; v) conclusions and outlook. 

5. ILs and DESs for hydrometallurgical applications 

5.1. Ionic Liquids 

ILs are salts formed by an organic cation and an organic or inorganic 
anion which are in the liquid state at temperatures below 100 ◦C [83]. 
The structure of some common anions and cations, for LIBs recycling, 
are shown in Fig. 6. When in the liquid state at room temperature, they 
are also called Room Temperature ILs (RTILs) [84]. 

Understanding the structure and thermodynamic characteristics of 
metal ion solvation within specific solvents [85–95] and ILs [96–102] is 
crucial for a precise understanding of chemical phenomena within the 
liquid. This understanding is not only fundamental but also pivotal for 
practical applications [102–106]. The evolution in IL composition over 
the years demonstrates a growing sophistication in tailoring their 
properties to meet specific application requirements [107–109]. 

The physical, chemical, and thermal properties of ILs are signifi-
cantly influenced by the selection of cations, including their nature, 
length, and symmetry, as well as the choice of anions, considering their 
structure and charge distribution [110–112]. For instance, variations in 
the anion composition within the IL structure can strongly impact its 
melting point, viscosity, thermal properties, and hydrophobicity [113, 
114]. 

In hydrometallurgical solvent extraction processes, modifications in 
the composition of ILs can result in a variety of behaviors in metal in-
teractions, thereby influencing the efficiency and mechanism of 
extraction [115,116]. Depending on the extraction conditions, such as 
the composition of the aqueous feed solutions, and the presence of 
auxiliary extracting molecules in the IL phase, different mechanisms can 
be identified [117,118]: 

- Neutral extraction: This mechanism involves the formation and 
extraction of a neutral complex in the IL phase. While it shares simi-
larities with conventional solvents, the detailed mechanisms can vary. In 

Fig. 6. Structures of cations and anions used in ILs for LIBs recycling.  
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this mode, the IL functions as a polar non-aqueous solvent [119]. 
- Cation exchange: Unique to IL systems, this mode entails the IL 

acting as a liquid ion exchanger, transferring cationic complexes from 
the aqueous phase into the IL phase. Consequently, an IL cation shifts to 
the aqueous phase while a metal cation moves to the IL phase to 
maintain electro-neutrality [120,121]. 

- Anion exchange: Also specific to IL systems, this mode involves the 
formation of over-neutralized anionic complexes that can be transferred 
to the IL phase. In exchange, an IL anion moves to the aqueous phase. It’s 
worth noting that anion exchange is less common compared to cation 
exchange [122,123]. 

The ion-exchange mechanisms pose a significant drawback in IL- 
based extraction systems, as a portion of the IL is lost into the aqueous 
phase, essentially acting as a sacrificial component. The primary factor 
influencing this exchange mechanism is the solubility of the IL compo-
nent in the aqueous phase [124]. Furthermore, increasing the hydro-
phobicity, such as by extending the alkyl chain of the IL cation, can shift 
the mechanism from ion exchange to neutral complex extraction [125, 
126]. 

5.2. Deep Eutectic Solvents 

DESs were introduced as a family of solvents derived from ILs in the 
early 2000s by Abbott et al. [127], who described eutectic mixtures 
whose melting point is much lower than those of the pure components 
(Fig. 7). They are formed by a compound that acts as hydrogen bond 
acceptor (HBA), typically a quaternary ammonium salt, and either a 
metal salt or an organic compound that acts as hydrogen bond donor 
(HBD) [128]. 

Common HBAs and HBDs employed in the preparation of DESs are 
inexpensive starting materials, some of which are shown in Fig. 8 [129]. 
The latter features make DESs interesting in terms of economic sus-
tainability and scaling of the process [130]. 

The properties of DESs, such as conductivity, density, melting point, 
polarity, and viscosity, are influenced by their known composition. By 
adjusting the HBA:HBD ratio, one can tailor these properties to achieve 
different properties and characteristics [131,132]. DESs offer advan-
tages similar to ILs, but they tend to exhibit higher viscosities, posing a 
limitation in separative applications [133]. 

Fig. 7. Eutectic point representation on a two-component phase diagram.  

Fig. 8. Structures of HBAs and HBDs used in the preparation of DESs for LIBs recycling.  

Table 6 
Physicochemical properties of selected DESs used for LIBs recycling.  

DES 
Molar 
ratio 

Melting 
point (◦C) 

Density (g 
cm–3) 

Viscosity 
(cP) Ref. 

ChCl:EG 1:2 –66 1.12 36 [136–138] 
ChCl: 

glycerol 1:2 –40 1.18 376 [136,137] 

ChCl:OXA 1:1 34 1.24 89 
[136,139, 
140] 

ChCl:PPA 1:1 20 - - [139] 
ChCl:MAC 1:1 - 1.24 541.1 [141] 
ChCl:PTSA 1:1 - 1.19 170 [142] 
D2EHPA: 

TOPO 1:1 –100.1 0.94 88 [143] 

D2EHPA: 
menthol 1:1 - 0.94 31.2 [144,145] 

[A336] 
[Cl]: 
menthol 

6:4 − 20.8 0.88 450.7 [146] 

[A336] 
[Cl]: 
menthol 

3:7 − 9.9 0.89 257.6 [146] 

TOPO:decA 1:1 - 0.88 39 [147,148]  
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Although the viscosity problem can be solved quickly and easily in 
the case of DESs by varying the temperature or by using water as an 
additional component, a large excess of water can, in some cases, lead to 
the complete decomposition of the DES [134,135]. Some properties of 
DESs used in the recycling LIBs are reported in Table 6. 

DESs can solubilize metal salts and oxides [149], making it possible 
to use them for the direct leaching of metals from primary or secondary 
resources to replace conventional leaching methods with acids [150, 
151]. In Table 7 the distinctive properties of ILs, DESs, and VOCs are 
compared [152]. 

6. Recycling of metals from spent LIBs 

Cathodes take up around 30 % of LIBs weight (Table 1). The 
conductor plate to which cathode is attached is typically made of Al, 
while the cathode material can contain various other metals which are 
economically viable for recycling (Tables 2 and 3) [36]. Because of this 
variety in composition, recycling is particularly challenging. Choosing a 
recycling method depends on the specific metal that needs to be 
recovered, as each method has varying recovery efficiencies that make 
them more suitable for certain types of battery materials [169]. 

6.1. Leaching 

Leaching involves the dissolution of the desired material into a liquid 
solution, usually by treating the starting material, traditionally using a 

Table 7 
Comparison of main features of VOCs, ILs and DESs.   

VOCs ILs DESs 

Formed by Complex process 
Organic cation & 
organic/inorganic 
anion 

Hydrogen bond 
donor & 
acceptor 

Number of 
solvents > 1000 > 1000,000 > 1000,000 

Melting point < 0 ◦C < 100 ◦C < 100 ◦C 
Preparation Hard Hard Easy 
Tunability No Yes Yes 
Viscosity No High [153] High [154] 

Thermolability Labile Stable up to 300 
◦C [155] 

Stable up to 200 
◦C [156] 

Volatility High Low [157] Low [158] 

Flammability Flammable 
Non-flammable  
[159] 

Non-flammable  
[160] 

Biodegradability 
Challenging for 
multiple VOCs  
[161] 

No [162] Yes [163] 

Recyclability 
Low, for selective 
solvents Yes [164] Yes [165] 

Cost Low High Medium 

Toxicity 
High, many 
carcinogenic  
[166] 

High to Aquatic 
biota [167] 

Low [168]  

Table 8 
Comparison between leaching processes.  

Cathode 
type Leaching media 

Temperature 
(◦C) Time 

Solid/Liquid 
ratio (g/L) Leaching efficiency (%) Ref. 

LCO 

1 M HNO3 + 1 % H2O2 80 1 h 20 Li 100, Co 100 [175] 
4 M HCl 80 1 h 100 Li 100, Co 100 [58] 
0.5 M H2SO4 + 30 % H2O2 80 2 h 18.52 Li 100, Co 100 [178] 
2 M H2SO4 + 5 % H2O2 75 30 min 100 Li 94, Co 93 [179] 
3 M H2SO4 70 6 h 200 Li 98, Co 98 [180] 
1 M H2SO4 + 0.2 M NaCl + 30 % Cu powder - 2 h 17.125 Li 90, Co 90 [181] 
2 M H2SO4 + 5 mL of glucose after 2 h 80 8 h 74 Li 92, Co 88 [182] 
1.5 M MAC + 2 % H2O2 90 45 min 20 Li 100, Co 90 [41] 
1.5 M MAC + 2 % H2O2 - 40 min 20 Li 100, Co 90 [186] 
1.5 M SAC + 4 % H2O2 70 40 min 15 Li 96, Co 100 [189] 
1.25 M CIT + 1 % H2O2 90 30 min 20 Li 100, Co 90 [186] 
1.5 M Aspartic acid + 4 % H2O2 - 2 h 10 Li 60, Co 60 [186] 
2 M Serine 70 3 h 10 Li 80, Co 98 [198] 

1 % A. Niger 30 
40 
days 25 Li 100, Co 82 [195] 

LMO 2 M HNO3 80 2 h 
Whole battery 
cathode Li 100, Mn 95 [174] 

NCA 4 M HCl 90 18 h 50 Li 100, Co 100, Ni 100, Al 100 [170] 

NMC 

1 M HNO3 25 2 h 3 Li 77, Mn 100, Co 91, Ni 99 [176] 
1.75 M HCl 50 24 h 200 Li 99, Mn 99, Co 99 [171] 
2 M HCl 60–80 1.5 h 20 Li 100, Co 100 [172] 
5 M HCl 95 70 min 10 Li 97.59, Co 99.74 [173] 
10 M HNO3 87.8 10 min 20 Li 80.5 [177] 

2.5 M H2SO4 + Al/Cu 60 6 h 50 
Li 98.23, Mn 98.64, Co 98.37, 
Ni 95.45 

[183] 

2.5 M H2SO4 90 2.5 h - Li 99, Mn 99, Co 99, Ni 99 [184] 
4 M H2SO4 + 10 % H2O2 85 2 h 100 Li 96, Co 95 [185] 

Aqua regia 60 48 h 100 Li 100, Mn 100, Co 100, Ni 
100 

[187] 

1.5 M CIT 95 30 min 100 Li 97, Co 95, Ni 99 [187] 
1 M MAC 95 30 min 100 Li 96, Co 98, Ni 99 [187] 
1.5 M CIT + ultrasound 50 24 h 20 Li 82, Mn 95, Co 81, Ni 74 [188] 
2 M FAC + 6 % H2O2 60 2 h 50 Li 99.9 [190] 

1.5 M LAC + 0.5 % H2O2 70 20 min 20 Li 97.7, Mn 98.4, Co 98.9, Ni 
98.2 

[191] 

0.75 M FA + microwave 50 30 min 15 Li 93, Mn 96, Co 99, Ni 96 [40] 
3 M (NH4)2SO4 + 0.75 M (NH4)2SO3 - - 83 Li 98, Mn 92, Co 81, Ni 98, [199] 

1 M NH3 + 0.5(NH4)2SO3 + 1 M (NH4)2CO3 80 1 h 10 
Li negligible, Mn negligible, 
Co 94, Ni 37 [200] 

40 g/L Acidithiobacillus ferrooxidans + Acidithiobacillus thiooxidans 
+ 36.7 g/L FeSO4, pH = 1.5 

30 - 5 Li 99.2, Co 50.4, Ni 89.4 [194]  
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strong acid or base. In the case of leaching processes of waste cathodes 
from LIBs, essentially all protocols involve the use of mineral acids such 
HCl [58,170–173], HNO3 [174–177] or H2SO4 [178–185] at various 
concentrations (Table 8). Alternatively, weak acids which can be 
derived from biomass (citric [186–188], malic [41,186,187], succinic 
[189], etc.) have been tested, sometimes in combination with H2O2 [41, 
175,178,179,185,186,189–191]. The latter methods have been shown 
to be effective but are usually slower and need higher operating tem-
peratures (Table 8). Besides the ability to dissolve the starting material 
quickly and efficiently, the leaching agents have a strong influence on 
the speciation of the metals in solution. For example, Co2+ ion is com-
plexed with Cl− (e.g. CoCl42− ) in concentrated chloride-containing so-
lutions, while this is not the case when HNO3 is employed (Co2+ is 
present as aqua-ion) [192]. Therefore, this step determines the metal 
species which is extracted in the receiving phase. This is also true when 
weak carboxylic acids are used, as they can act as complexing agents for 
cations [193]. 

Microorganisms, such as bacteria and fungi, have been considered in 
recent years for their ability to extract metals from ores through a pro-
cess known as bioleaching [194,195]. This environmentally friendly 
technique utilizes the metabolic activities of microorganisms to dissolve 
metals from mineral ores, making them more accessible for extraction. 
Bioleaching offers several advantages over traditional chemical leaching 
methods, including lower energy consumption, reduced environmental 
impact, and the ability to process low-grade ores economically [196, 
197]. 

6.2. Metal extraction processes with ILs 

Several families of hydrophobic ILs have been tested as receiving 
phases in liquid-liquid metal extractions (see 5.1). The [P66614][TMPP] 
IL was applied in the recycling process of the NMC cathode powder 
[201], for the selective extraction of Co over Ni. In order to enhance the 

separation, a chelating extractant such as LIX 84-IC was employed 
[202]. Notably, [P66614][TMPP] IL demonstrates the ability to extract 
the metals through adduct formation with the phosphinate compound, 
especially when the acid concentration is relatively low [201]. This 
differs from another member of the phosphonium-based IL family, 
[P66614][Cl], where the exchange occurs between the chloride ions of 
the IL molecules and the anionic chloridometalates (MClxn− ) [203,204], 
observed at high HCl aqueous concentrations. 

The separation of metals in NMC cathodes followed a specific 
sequence: Mn was initially separated using a mixture of TODGA diluted 
in [C4mim][Tf2N] IL [115], while Co was separated by [P66614][Cl] IL in 
H2SO4 media. Wellens et al. [205] utilized [P66614][TMPP] combined 
with another immiscible IL, [C2mim][Cl], and observed a high selec-
tivity for Co over Ni. In another study, [P66614][Cl] was used to selec-
tively extract Mg from Li in a LMO cathode at pH 5.5, achieving a 
remarkable extraction efficiency of 99.6 % for Mg [206]. To compare 
anion impact on the extraction efficiency, Dhiman and Gupta utilized 
[P66614][Br] IL and H2SO4, HCl, and HNO3-based leachate solutions for 
the extraction of Co from exhausted LIBs taken from mobile phones 
[207]. The study revealed that the efficiency of Co extraction increased 
proportionally with the concentration of HCl (Table 9). In contrast, the 
extraction yield remained consistently low when using samples con-
taining H2SO4 and HNO3. 

Conversely, [P66614][SCN] IL was employed to separate Co from Li 
from concentrated H2SO4 solutions [208]. Co exhibited a remarkable 
capacity to preferentially form the tetra thiocyanate complex [Co 
(SCN)4]2− by interacting with the IL’s anion. This interaction occurred 
through a split-anion extraction mechanism. 

When the ammonium-based ILs, [A336][SCN] and [A336][Cl], were 
employed, the recovery of Co was 10.5 % with [A336][Cl], whereas the 
efficiency of Co extraction reached 94.3 % when undiluted [A336] 
[SCN] was used under the condition of 10 min at 30 ◦C (Table 10) [211]. 

Nevertheless, the widespread use of ILs is hindered by excessive 
costs, environmental issues, and recycling problems. Bio-based ILs offer 
a greener alternative, as they are obtained from renewable sources like 
amino acids, sugars, or fatty acids. Anions derived from fatty acids, such 
as oleate and linoleate, remain immiscible with water, and tertiary 
amines and quaternary ammonium salts demonstrate effective anion 
exchange. Moreover, the use of bulky, long-chained tetraalkylphos-
phonium cations and hydrophobic oleate anions helps to prevent the 
loss of the IL to the aqueous phase [212]. Two hydrophobic fatty 
acid-based ILs were synthesized, [N1888][Ol], and [N1888][Linol]. These 
ILs were used in a single-stage extraction process to extract Co and Ni 
from an aqueous solution, demonstrating high efficiency even at low 
concentrations [213]. 

Nevertheless, amino acids have good prospects in industrial appli-
cations because of their high biocompatibility, low price, and excellent 
availability. Five amino acids (glycine, phenylalanine, serine, gluta-
mine, and glutamic acid) were investigated in [N4444][HSO4] IL on 
separation of Co and Ni from Mn [214]. 

Also ILs containing the [TTA]− anion of ILs, have also been studied in 
the field of metal extractions [215,216]. The [Omim][TTA] IL used for 
the selective recovery of Co from a LCO cathode leached using TAC 

Table 9 
Comparison between phosphonium-based IL member families for Co recycling.  

IL Cathode 
type 

A:O 
ratio 

Conditions % Co 
recovered 

Ref. 

[P66614] 
[Cl] 

Synthetic 
NMC 

1:1 

30 min, 25 ◦C, 
9 M H2SO4 

92.8 [115] 

LCO 

10 min, 60 ◦C, 
0.5 M HCl 17.7 

[209] 10 min, 60 ◦C, 
4 M HCl 

97.8 

[P66614] 
[Br] 

Mixed 
1:3 10 min, 25 ◦C, 

5 M HCl 
99 

[207] 
2:1 10 min, 25 ◦C, 

5 M HCl 
69.8 

[P66614] 
[TMPP] NMC 1:1 

10 min, 25 ◦C, 
pH= 2.0 ~20 

[201] 
10 min, 25 ◦C, 
pH= 4.0 

~38 

10 min, 25 ◦C, 
pH= 5.4 

~86 

5 min, 25 ◦C, 
pH= 2.5 ~34 

[202] 5 min, 25 ◦C, 
pH= 6.0 91 

10 min, 25 ◦C, 
pH= 2.5 

34 

[210] 10 min, 25 ◦C, 
pH= 6.0 

90 

10 min, 60 ◦C, 
pH= 5.0 96 

[P66614] 
[SCN] 

LCO 1:1 

10 min, 30 ◦C, 
pH= 2.0 49.7 

[208] 
10 min, 30 ◦C, 
pH= 4.5 

~85 

10 min, 30 ◦C, 
pH= 5.5 

95.7  

Table 10 
Comparison between different IL member families for Co recycling.  

IL Cathode 
type 

A:O 
ratio 

Conditions % Co 
recovered 

Ref. 

[A336] 
[SCN] LCO 1:1 

15 min, 30 
◦C 

94.3 
[211] 

[A336][Cl] 10.5 
[N1888][Ol] 

Synthetic 1:1 15 min, 25 
◦C 

>95–99 [213] [N1888] 
[Linol] 

[Omim] 
[TTA] 

LCO 3–5:1 120 min, RT 88 [217]  
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[217] (Table 10) gave a high extraction rate for Co 88 % with all Li 
retained in the aqueous phase. 

A novel processes for the selective extraction of Li from spent 
NMC532 cathode by two carboxyl-functionalized ILs ([HO2C3MN] 
[Tf2N] [218] and [HO2Cmim][Tf2N] [219], Table 11) using TBP as 
auxiliary extractant. Despite employing the same cation-exchange 
mechanism, the stoichiometry of extraction differs between the two 
ILs. In the former case [218], the extractive stoichiometry revealed the 
formation of a 3:1 complex between TBP molecules and Li ions. 
Conversely, when utilizing [HO2Cmim][Tf2N] in conjunction with TBP 
[219], a 1:1 complex between Li ions and TBP molecules was formed. 

In a recent development, researchers successfully utilized a [TBP]- 
based IL, denoted as [TBP][DTPA], in aqueous sulfate solutions for 
extracting Li and Co from a spent LCO battery [220]. 

6.3. Metal extraction processes with DESs 

Several types of DES could be utilized for LCO cathode leaching. 
Acidic components of DESs [221–224], additives [225], or microwave 

radiation [226] reduce leaching time or temperature, as depicted in  
Table 12. By adjusting the temperature and leaching time, solid liquid 
ratio doesn’t play a significant role in leaching. In all cases, Co and Li 
leached more than 90 %. Yan et al. [221] and Tian et al. [227] both 
utilized GH:LAC DES. Leaching time and solid:liquid ratio was the same, 
but because of AAC addition by Yan et al., leaching temperature 
decreased by 30 ◦C, while leaching efficiency decreased by only 2–3 %. 

PTSA is an organic acid, and when used as a HBA in DES, it imparts 
acidity of the solvent mixture. While, ChCl is a quaternary ammonium 
salt and contains a positively charged nitrogen atom, making it a po-
tential proton donor that also impacts acidity of DES. Hydrated PTSA 
was employed by Roldán-Ruiz et al. [228] and Chen et al. [229]. By 
utilizing DES with hydrated PTSA, leaching temperature is almost two 
times lower, while leaching time decrease 280 times compared to dry 
PTSA [230]. Moreover, efficiency increase from 75 % to 94 %. 
Compared to organic acids, PTSA:ChCl-based DESs offered a significant 
reduction of the solute-to-solvent ratio needed for full Co dissolution. 
This brings economic and sustainability benefits and promising scal-
ability due to low solvent volumes necessary. Using PTSA:ChCl-based 
DESs for leaching, Co recovery from spent LIBs reached 94.1 %. The 
process was finalized by the precipitation with either Na2CO3 or 
(NH4)2CO3, and the final calcination to obtain Co3O4 [229]. 

PolyEG is a non-ionic polymer made up of repeating EG units that 
acts as HBD through its oxygen atoms, which can engage in hydrogen 
bonding in solution and does not impact DES acidity. In PTSA:ChCl DES, 
both compounds are acidic, which significantly helps in the leaching of 
LCO. This DES can leach LCO cathode in 15 min, while PTSA:EG DES 
needs 24 h to leach the cathode on similar temperatures. Suriyanar-
ayanan et al. [231] have demonstrated a novel and efficient method for 
Co extraction from spent LCO-based LIBs using a DES made of N-methyl 
urea and acetamide. Previously, cathode was treated with N-Meth-
yl-2-Pyrrolidone to separate aluminum foil from active cathode mate-
rial. The product, after leaching in DES, was dissolved in 1 % CH3COOH 

Table 11 
Comparison between two carboxyl functionalized ILs for Li recovery.  

IL Cathode 
type 

TBP:IL 
ratio 

Conditions % Li 
recovered 

Ref. 

[HO2C3MN] 
[Tf2N] 

NMC532 8:2 20 min, 25 ◦C, 
pH= 3.0 

63.2 [218] 
6:4 48.7 

[HO2Cmim] 
[Tf2N] 

NMC532 
8:2 

30 min, 25 ◦C, 
pH= 1.0 31.2 

[219] 

30 min, 25 ◦C, 
pH= 3.0 

82.7 

30 min, 25 ◦C, 
pH= 5.0 

82.1 

6:4 30 min, 25 ◦C, 
pH= 5.0 

71.3  

Table 12 
Comparison between DES for LCO cathode leaching, conditions, and efficiencies.  

DES Temperature (◦C) Time Solid/Liquid ratio % recovered Ref. 

GH:LAC (1:2) + AAC  50 24 h 1:50 Li 97.42, Co 96.91 [221] 
ChCl:PTSA⋅3 H2O  90 15 min 1:20 Co 94 [228] 
PTSA:PolyEG (1:1)  100 24 h 1:50 Co 99.5 [229] 
ChCl:PTSA  150 72 h 1:50 Co 75.0 [230] 
ChCl:EG  87.5 2 h 1:50 Li 100, Co 100 [232] 
ChCl:THBA  110 12 h 1:67 Li 98.04, Co 98.04 [233] 
ChCl:OXA  180 10 sec 1:150 Li 100, Co 100 [222] 
ChCl:OXA  110 2.5 1.50 Li 100, Co 100 [223] 
ChCl:FAC + 10 % H2O + microwave radiation  70 10 min 1:50 Li 100, Co 100 [226] 
ChCl:LAC (1:2)  105 5 h 1:77 Co 95, Li 95 [224] 
ChCl:MAC  150 72 h 1:50 Li 98.78, Co 98.61 [230] 
ChCl:benzenesulfonic acid:ethanol (1:1:2)  90 2 h 1:50 Li 99, Co 98 [234] 
ChCl:PTSA:MAC  150 72 h 1:50 Li 98.78, Co 98.61 [230] 
ChCl:glycerol  200 20 h 1:50 Co 95.7 [235] 
ChCl:CIT + H2O  120 4 h 1:50 Li 100, Co 97.6 [236] 
BHC:LAC  120 2.2 h 1:50 Li 99.98, Co 99.86 [237] 
EG:TAC  120 12 h 1:50 Li 98.34 [238] 
DMT:OXA + H2O  60 15 min 1:40 Li 99.8, Co 0.5 [225]  

Table 13 
Comparison between ChCl:organic acid DES for NMC cathode leaching, conditions, and efficiencies.  

DES Temperature (◦C) Time Solid/Liquid ratio % recovered Ref. 

ChCl:LAC (2:1)  50 1 h 1:25 Li 96, Mn 96, Co 96, Ni 96 [239] 
ChCl:LAC:CIT (3.3:5.3:1.3)  55 3 h 1:50 Co 99 [241] 
ChCl:OXA + DMSO  120 10 h 1:20 Co 95, Ni 99, Mn 95 [242] 
ChCl:OXA  110 20 min 1:50 Co 100, Mn 100, Ni 100 [223] 
ChCl:LAC (1:2) + H2O2  45 6 h 1:20 Li 86.7, Co 88.5, Ni 84.5 [243] 
ChCl:PPA (1:2) + H2O2  45 6 h 1:20 Li 100, Co 98.7 [243] 
ChCl:PTSA⋅H2O (1:1)  90 2 h 1:60 Li 97.96, Ni 99.46, Co 100, Mn 100 [244] 
ChCl:AA  120 12 h 1:50 Li 100, Mn 99.2, Co 100, Ni 100 [245]  
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and 0.1 M KNO3. Co was electro-deposited, dried, and calcinated before 
adding LiOH for fabrication of new LIBs. Other DES combinations, pa-
rameters, and leaching efficiencies are shown in Table 12 below. 

Compared to LCO cathode material, NMC cathode material contains 
other types of transition metals Ni and Mn, which makes leaching and 
separation more difficult. ChCl is an extremely popular hydrogen donor 
in DES for NMC leaching. Combined with organic acids, leaching tem-
perature decrease significantly [239], compared with ChCl:EG combi-
nation [240] (Table 13). Mixing DES with DMSO did not improve the 
process leaching time. 

Xu et al. [246] used microwave assisted ChCl:OXA DES for LMO 
cathode leaching. Best conditions were 15 min leaching at 75 ◦C at 
solid/liquid ratio 1:60. Under these conditions, 96 % of Li and Mn is 
leached. 

Three-component DES systems are shown in Table 14. ChCl DES 
requires higher temperatures and longer leaching time compared to 
systems without ChCl [247], as a hydrogen donor. DES without organic 
acid, such as ChCl:urea:EG, has the lowest leaching efficiencies for 
transition metals [248]. 

EG is another common component for DES. Acidic components such 
as OXA, Sulfosalicylic acid dihydrate, and LAC improve leaching con-
ditions compared to ChCl:EG DES, as shown in Table 15. Schiavi [240] 
and Wang [252] proposed very similar processes for selective Co 
extraction from NMC cathode. In ref. [240] differences in solubility of 
Co and Ni were exploited by increasing the DES temperature. The lower 
solubility on temperatures lower than 180 ℃, found for Ni as compared 
to the other metals contained in the waste material may be explained by 
the formation of complexes with Cl− and EG. Unlike the other metals 
(Me), which can form stable [MeClj]n− species, Ni is the only metal 
coordinated by glycol molecules, thus forming [Ni(EG)3]2+ complexes 
[240]. EG is not expected to be a good ligand in its protonated form, and 
thus the formation of [Ni(EG)3]2+ may be only promoted at the 

temperature above 180 ◦C [252]. 
Wang et al. [252] after successful leaching performed coextraction of 

Ni, Co, Mn and Li using 2-ethylhexyl phosphonic acid 
mono-2-ethylhexyl ester (P507) in sulfonated kerosene as the diluent. 
H2SO4 was added as stripping agent to recover Ni, Co and Mn from P507 
solution. The post-process economic analysis revealed significant ben-
efits of NMC regeneration through recycled materials, notably in cost 
reduction. Synthesizing NMC cathodes from raw materials incurred a 
cost of $189.49/kg, whereas using recycled materials brought it down to 
$144.77/kg, saving $44.72/kg in cathode production costs. 

Other popular types of DES used for cathode recycling contain 
organic acids as HBDs and different HBAs (Table 16). 

Kozhevnikova et al. [144] applied hydrophobic DES for metal sepa-
ration from three LIBs after HCl leaching. Two systems were chosen for 
metal separation [A336][Cl]:menthol (1:1) and D2EHPA:menthol (1:1). 
The process was carried out in multiple steps at different conditions for 
each metal. The DES:water phase was always 1:1. Each metal extraction 
step was followed by washing step for DES recovery, and further metal 
separation. All conditions are shown in Table 17. 

Metals can undergo further separation through various techniques, 
enhancing the purity of the resulting materials. Two prominent methods 
for achieving this separation are precipitation using OXA [221,227,247, 
257,267], and high-temperature calcination to produce metal oxides 
[227,242,268]. 

Table 14 
Various ternary DES systems for NMC cathode leaching.  

DES 
Temperature 
(◦C) Time 

Solid/ 
Liquid 
ratio 

% recovered Ref. 

ChCl:urea: 
EG (1:2:1)  100 72 h 1:50 

Li 97, Co 41, 
Ni 40, Mn 34 [248] 

ChCl:EG: 
PTSA  100 72 h 1:100 

Li 97, Co 97, 
Ni 97, Mn 97 [249] 

TOPO:decA: 
HCl  

100 4 h 1:23 Co 100, Mn 
100, Ni 90 

[148] 

DMT:OXA: 
H2O  

60 15 min 1:40 Li 99, Co 0.2, 
Ni 0.1, Mn 8.3 

[225] 

ChCl:EG: 
TAC  120 10 min 1:200 

Ni 98.8, Co 
100, Mn 100 [250] 

ChCl:CIT: 
H2O  

110 4 h 1:50 
Li 99.88, Ni 
99.90, Co 
99.77, Mn 100 

[236] 

ChCl:LAC: 
TCCA  60 2 h 1:3.8 

Co 47.9, Ni 
57.2, Li 56.2, 
Mn 59.7 

[251]  

ChCl: 
MAL: 
glycine +
H2O2 

60 2 h 1:3.8 
Co 60.1, Ni 
66.1, Li 66.8, 
Mn 65.0  

ChCl:SAC: 
TCCA 60 2 h 1:3.8 

Co 53.5, Ni 
44.3, Li 73.4, 
Mn 73.4  

ChCl: 
GUC: 
TCCA 

60 2 h 1:3.8 
Co 51.4, Ni 
49.6, Li 59.9, 
Mn 65.1  

ChCl:CIT: 
PHM 
(1:1:1) 

60 2 h 1:3.8 Li 87.7, Mn 
73.7  

ChCl:CIT: 
H2O2 

(1:2:1) 
60 2 h 1:3.8 

Co 51.5, Ni 
59.3, Li 50.8, 
Mn 61.8  

Table 15 
EG-based DES for NMC battery cathodes leaching, conditions used and effi-
ciencies of leaching.  

DES 
Temperature 
(◦C) Time 

Solid/ 
Liquid 
ratio 

% 
recovered Ref. 

ChCl:EG (1:2)  160 24 h 1:50 Co 90, Ni 10 [240] 

ChCl:EG (1:2)  180 24 h 1:80 

Li 91.63, Co 
92.52, Ni 
94.92, Mn 
95.47 

[252] 

ChCl:EG 
(thermally 
treated)  

180 4 h 1:50 Co 100, Ni 
93, Mn 94 

[253] 

BHC:EG (1:5)  140 10 min 1:40 
Li 99, Mn 
99, Co 99, 
Ni 99 

[254] 

BHC:EG (6:1)  140 20 min 1:25 

Ni 99.7, Co 
99.6, Mn 
99.1, Li 
99.5 

[255] 

EG:OXA⋅2 H2O 
(1:2)  90 12 h 1:62.5 

Li 94.4, Co 
1.2, Ni 1.2 
Mn 1.2 

[256] 

EG:sulfosalicylic 
acid 
dihydrate⋅2 H2O 
(12:1)  

110 6 h 1:25 

Li 100, Co 
94.8, Ni 
99.1, Mn 
100 

[257] 

EG:MAC (3:1)  90 6 h 1:33 

Li 95.63, Ni 
84.63, Co 
92.74, Mn 
91.31 

[258] 

EG:CIT (2.5:1)  95 10 h 1:67 

Li 99.1, Co 
96.2, Ni 
97.6, Mn 
98.3 

[259] 

EG:TAC (5:1)  120 12 h 1:50 
Li 98.86, Ni 
0, Mn 0, Co 
0 

[238] 

EG:DMPT (3:1)  100 1 h 1:50 

Li 99.59, Ni 
99.28, Co 
99.04, Mn 
99.45 

[260]  
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6.4. Supported Liquid Membranes 

In liquid-liquid separations, the hydrophobic phase (IL or DES) can 
be immobilized onto a supporting membrane, which separates a feed 
aqueous phase containing the metals to be separated into the IL/DES and 
a receiving phase where the separated metals are collected [269–272]. 
One notable advantage of supported liquid membranes (SLMs) is the 
reduced amount of solvent employed with respect to liquid-liquid 
biphasic systems, which could be useful for the industrialization of 
separations involving ILs, given their relatively high cost. Moreover, 
extraction and stripping occur in a single step (Fig. 9). On the other 
hand, a drawback is the limited life due to the leakage of IL. To extend 
the lifetime of the membrane, polymer inclusion membranes (PIMs) 

have been proposed as an alternative [273–276]. 
A recent work [276] studied the application of PIMs ([A336][Cl] and 

[P66614][Cl]) in the separation and recovery of Co and Li from LIBs, 
achieving good recovery performances with a long-term stability. 

Co extraction using [P66614][Cl] in a SLM demonstrated up to 86 % 
extraction with high selectivity over Ni from a synthetic solution [277]. 
While stripping with deionized water is possible, reusability is hindered 
by IL leaching. While Zante et al. [278] assessed the potential for 
selectively recovering Li from aqueous solutions containing Na, Co, and 
Ni ions using a SLM created by a PVDF membrane support with a blend 
of [C4mim][Tf2N] and TBP as the carrier. Notably, their stability ex-
periments revealed that the leakage of IL into the aqueous phase could 
be minimized by introducing salt into either the feed or the stripping 
phase. 

DES-based SLMs exhibit distinct advantages, such as lower solvent 
loss and improved efficiency in liquid separation without loading limi-
tations [279]. The chemical potential gradient in DES-based SLMs fa-
cilitates mass transfer on both sides, ensuring durability as the feed 
solute does not chemically react with the DES carrier during passive 
diffusion. 

However, the fabrication process depends on parameters like DES 
type, composition, membrane support thickness, wettability, and addi-
tives [280–282]. Achieving long-term durability necessitates a reliable 
match between DES and its membrane support, an aspect requiring 
considerable investigation effort. 

However, several challenges hinder their large-scale application of 
SILMs [272]. Current preparation methods are intrinsically inefficient as 
they basically rely on a trial-and-error approach. More systematic 
screenings involving molecular simulations [283] and machine learning 
techniques [284] could help to improve this aspect. Balancing perme-
ability, selectivity and useful membrane lifetime remains a significant 
challenge. Innovations in interface regulation and mass transfer opti-
mization through a more rational preparation would help in this 
direction. 

6.5. Reusability of ILs and DES 

In the quest for the reuse of metal-free ILs and DESs, specific pro-
cedures are indispensable, frequently involving multiple washing steps 
with strip solutions to eliminate any residual metals and solution [204, 
285–287]. The recyclability of ILs and DESs hinges largely on their 
physico-chemical properties. Hydrophilic ILs, which encompass cations 
like ammonium and phosphonium along with anions such as [Cl]–, tend 
to exhibit reduced recyclability due to the loss of anion during water 
washing. For instance, [A336][Cl] and [P66614][Cl] [288] displayed an 
8 % decrease in extraction efficiency ( i.e., the ratio of extracted metal to 
the total amount in the feed) even after a single washing cycle. 

On the contrary, hydrophobic ILs like [P66614][TMPP] and [P66614] 
[Tf2N], characterized by hydrophobic anions [289], demonstrate supe-
rior recyclability, retaining their extractability across multiple 
extraction-stripping cycles. This disparity in recyclability has posed 
significant challenges when scaling up IL-assisted solvent extraction 
processes, especially for chloro-complexes that involve ion-exchange 
reactions. The loss of IL molecules diminishes the availability of 
extractants, necessitating additional treatments to recover the dissolved 
IL molecules in aqueous solutions. Recognizing the importance of the 
recovery and reuse of ILs and DESs is fundamental for the successful 
commercialization of applicable technologies, as it plays a pivotal role in 
efficient resource utilization and environmental preservation 
[290–292]. The approach to recycling these compounds typically de-
pends on their hydrophobic or hydrophilic nature. Consequently, re-
searchers have been actively exploring the recycling of spent LIBs using 
ILs and DESs. 

Table 16 
Other types of DES for metal leaching from NMC cathode material.  

DES 
Temperature 
(◦C) Time 

Solid/ 
Liquid 
ratio 

% 
recovered Ref. 

Benzethonium 
chloride:LAC 
+ H2O2  

45 6 h 1:20 Co 89.2 [243] 

BHC:LAC  110 18 min 1:50 
Co 99.7, Ni 
99.3, Mn 
99.0, Li 99.9 

[237] 

BHC:CIT  80 30 min 1:50 

Mn 99.2, Ni 
99.1, Li 
99.8, Co 
99.8 

[261] 

BHC:FA  140 6 h 1:50 

Li 98.03, Ni 
96.01, Co 
94.19, Mn 
92.35 

[262] 

TEAC:AAC (1:1)  80 2 min 1:50 
Ni 99.6, Co 
99.4, Mn 
99.3, Li 99.1 

[263] 

TBAC:MCA (1:3)  100 7 h 1:15 
Li 100, Co 
100, Ni 100, 
Mn 100 

[264] 

ChCl:glucose  100 24 h 1:10 
Li 93.7, Co 
94.2, Mn 
97.6, Ni 82.4 

[265] 

GH:FA  140 40 min 1:50 

Li 99.79, Ni 
98.86, Co 
99.51, Mn 
96.12 

[266]  

Table 17 
Comparison in conditions from different LIBs proposed by Kozhevnikova et al. 
[144].   

DES Number of 
extraction steps 

Number of 
washing steps 

% recovered 

LIB 
1 

[A336][Cl]: 
menthol (1:1) +
0.5 M HCl  

5 6 with H2O Cu 98.47 

[A336][Cl]: 
menthol (1:1) +
4 M HCl  

9 1 with H2O Co 99.00 

D2EHPA:menthol 
(1:1), pH = 2.5  

2 1 with 1 M HCl Al 99.00 

LIB 
2 

[A336][Cl]: 
menthol (1:1) +
0.45 M HCl  

4 1 with H2O Fe 99.47 

[A336][Cl]: 
menthol (1:1) +
4 M HCl  

7 6 with H2O Co 98.99 

D2EHPA:menthol 
(1:1), pH = 2.5  

6 1 with 1 M HCl Al 99.54 

LIB 
3 

D2EHPA:menthol 
(1:1), pH = 2.5  

4 - Fe 99.75, Al 
99.98  
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6.6. Transition to industrial applications 

Despite the academic research on the application of ILs/DESs in the 
recovery of metals from LIBs for more than a decade (Fig. 2), and the 
promising performances achieved in selective extraction processes on 
the lab scale, currently, there are no commercial processes for metal 
recovery from LIBs employing ILs or DESs. More generally, it should be 
noted that also the full industrialization based on IL/DES-based pro-
cesses for other metal extractions has not been reached yet. The only IL- 
based separation process known is related to rare earth recycling from 
permanent magnets [293], which is currently in an advanced demon-
stration stage (Ionic Technologies, former Seren Technologies [294]). 

As for pilot scale plants, while some examples on LIBs recycling 
based on other technologies, such as multi-step solvent separation 
[295], smelting [296], or selective precipitation [171], are available, 
similar examples based on ILs/DESs are not reported to date. On the 
other hand several lab-scale plants relevant to LIBs recycling employing 
continuous bench-scale processes have been reported for Co/Ni sepa-
ration [297,298], also employing microfluidic reactors [299]. 

However, the interest in moving towards industrial applications 
exists, as the number of patents related to metal recycling from LIBs has 
constantly increasing in the last decade (a search on Google Patents 
reports 89 results from 20101). 

One of the main barriers for the industrialization of processes 
employing ILs and DESs for separations is their cost, which is much 
higher than VOCs (Table 7) [301]. The prices of ILs and DES are strongly 
dependent on the specific solvent, and estimations based on chemicals 
catalogues may not be reliable as they are often referred to small 
quantities of research-grade products. Specific studies on economic 
feasibility of metals recycling from LIBs have not been published. 
However, some information can be obtained from other works on ap-
plications of ILs/DESs, where the cost of these materials has been esti-
mated on an industrial scale. 

A first study on techno-economic aspects of an industrial gas puri-
fication process involving ILs estimated a cost of IL ranging from 2.5 to 
50 USD kg–1, around 2–50 times higher than that of common VOCs 

employed in industry [302,303]. Other analyses of applications of ILs 
and DESs for gas treatment estimated an average price of 6000 USD/t for 
some imidazolium-based ILs [304]. 

The first route to reduce the production cost is to optimize the syn-
thetic procedures to prepare ILs. In this respect, several examples of 
studies where optimized syntheses are available [305–307]. Also, 
replacing more expensive ILs with cheaper ones can also contribute to 
reducing prices [308]. Besides improvements in chemical and process 
aspects, it should be taken into account that the ILs market is expected to 
grow, and the prices should decrease due to economies of scale as larger 
volumes of ILs are produced [309]. It has been reported that an increase 
of production from 1 kg to 5 tons for two imidazolium ILs can generate a 
decrease of the cost per kg of more than a factor of 3 [301]. 

DES are generally much less expensive than ILs as they are produced 
by simply mixing separate chemicals, which in some cases have an in-
dividual low cost (e.g., urea). 

In a simulated process [310], the ChCl:urea (1:2) DES was considered 
with an estimated price of around 600 USD/t, 10-fold less than the IL 
employed in the same process [304]. A study [311] on the use of ChCl: 
urea (1:2) in a bio-refinery estimated 200 and 90 USD/t for the two 
components of the DES, respectively. A techno-economic analysis on 
biogas upgrading showed that DES-based process could be competitive 
in cost with current technology [312]. Also, natural DESs (NADEs), 
which have been proposed as solvents for bio-refineries, were consid-
ered suitable for an industrial process [313]. Therefore, the results of 
these studies demonstrate the economic feasibility and competitiveness 
of industrial processes based on DESs. 

Additional factors which can help to mitigate the price issue are the 
use of low volumes of ILs and DESs (for example by coupling them with 
membrane supports), extending the operating lifetime and their 
recycling. 

7. Conclusions and Outlook 

The increasing pressure on the supply chain for CRMs used to 
manufacture LIBs and the environmental risks related both to primary 
materials supply and waste disposal highlight the importance of recy-
cling. Due to this increasing demand, there is an urgent need to develop 
an environmentally friendly and cost-effective recycling technology to 

Fig. 9. The extraction mechanism of a metal ion using SILMs.  

1 Using the string in ref. [300] 
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address current challenges. 
ILs and DESs have shown promising potential in separation of metals 

in hydrometallurgical recycling EoL LIBs, as evidenced by numerous 
research works. However, their application is still limited by economic 
and chemical limitations (Fig. 10). Nevertheless, their low volatility 
reduces the risk of emissions, enhancing safety during handling 
compared to VOCs. Furthermore, the potential for multiple cycles of 
reuse makes ILs environmentally sustainable, contributing to cost 
reduction. Their chemical structure is highly adaptable, facilitating 
customization for specific metal recovery applications. Phosphonium- 
based ILs shows promising potential for extracting Co from various 
types of cathodes in LIBs, with recovery percentages varying based on 
the specific IL, cathode type, A:O ratio, and extraction conditions. 
Furthermore, the synergistic utilization of ILs with extractants holds 
significant promise for Li extraction, with the recovery percentages 
being subject to the operational conditions. 

On the other hand, DESs, often considered more “environmentally 
friendly” than ILs as their components are often biodegradable and of 
low cost, have also shown promising results. Like ILs, DESs can be 
designed for selective metal extraction, providing advantages in sepa-
rating different metals present in spent LIBs. Specifically, formulations 
incorporating acidic components such as GH and OXA show a significant 
reduction in the leaching temperature of LCO cathode. For NMC cathode 
materials, formulations with ChCl have demonstrated effectiveness, 
particularly when combined with LAC. Furthermore, metals can un-
dergo further separation utilizing various techniques such as precipita-
tion and calcination. Nevertheless, the process of metal recovery using 
DESs may involve energy-intensive steps, due to the need to operate at 
moderately high temperature to reduce viscosity, impacting overall 
energy efficiency. 

SLMs, where the hydrophobic IL/DES is immobilized onto a mem-
brane, offer reduced solvent usage and single-step extraction and strip-
ping. However, concerns arise over limited membrane lifespan due to 
leakage. To address this, PIMs could serve as an alternative, as suggested 
for Co and Li separation and recovery, showing promising performance 
and long-term stability. 

Thus far, only a limited selection of ILs and DESs have been 
employed for the metal recovery from spent LIBs. The future holds 
substantial potential to broaden the variety of components utilized and 
consequently extend the applications of these solvents. 
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[64] N. Vieceli, C.A. Nogueira, C. Guimarães, M.F.C. Pereira, F.O. Durão, F. Margarido, 
Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with 
sodium metabisulphite, J, Waste Manag 71 (2018) 350–361, https://doi.org/ 
10.1016/j.wasman.2017.09.032. 

[65] H. Dang, N. Li, Z. Chang, B. Wang, Y. Zhan, X. Wu, W. Liu, S. Ali, H. Li, J. Guo, 
W. Li, H. Zhou, C. Sun, Lithium leaching via calcium chloride roasting from 
simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol. 
233 (2020) 116025, https://doi.org/10.1016/j.seppur.2019.116025. 

[66] X. Meng, J. Hao, H. Cao, X. Lin, P. Ning, X. Zheng, J. Chang, X. Zhang, B. Wang, 
Z. Sun, Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent 
lithium-ion batteries using mechanochemical activation and solid-state sintering, 
Waste Manag 84 (2019) 54–63, https://doi.org/10.1016/j.wasman.2018.11.034. 
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[153] K. Paduszyński, U. Domańska, Viscosity of Ionic Liquids: An Extensive Database 
and a New Group Contribution Model Based on a Feed-Forward Artificial Neural 
Network, J. Chem. Inf. Model. 54 (2014) 1311–1324, https://doi.org/10.1021/ 
ci500206u. 

[154] N.F. Gajardo-Parra, V.P. Cotroneo-Figueroa, P. Aravena, V. Vesovic, R.I. Canales, 
Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and 
Modeling, J. Chem. Eng. Data 65 (2020) 5581–5592, https://doi.org/10.1021/ 
acs.jced.0c00715. 
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U. Domańska, Separation of cobalt, lithium and nickel from the “black mass” of 
waste Li-ion batteries by ionic liquids, DESs and organophosphorous-based acids 
extraction, J. Mol. Liq. 343 (2021) 117694, https://doi.org/10.1016/j. 
molliq.2021.117694. 

[244] T. He, J. Dai, Y. Dong, F. Zhu, C. Wang, A. Zhen, Y. Cai, Green closed-loop 
regeneration of ternary cathode materials from spent lithium-ion batteries 
through deep eutectic solvent, Ionics 29 (2023) 1721–1729, https://doi.org/ 
10.1007/s11581-023-04967-3. 

[245] Y. Lyu, J.A. Yuwono, Y. Fan, J. Li, J. Wang, R. Zeng, K. Davey, J. Mao, C. Zhang, 
Z. Guo, Selective Extraction of Critical Metals from Spent Li-Ion Battery Cathode: 
Cation–Anion Coordination and Anti-Solvent Crystallization, Adv. Mater. (2024) 
2312551, https://doi.org/10.1002/adma.202312551. 

[246] Z. Xu, H. Shao, Q. Zhao, Z. Liang, Use of Microwave-Assisted Deep Eutectic 
Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries, JOM 73 
(2021) 2104–2110, https://doi.org/10.1007/s11837-021-04641-x. 

[247] T. Hanada, M. Goto, Cathode recycling of lithium-ion batteries based on reusable 
hydrophobic eutectic solvents, Green. Chem. 24 (2022) 5107–5115, https://doi. 
org/10.1039/D1GC04846E. 

[248] M. Jafari, S.Z. Shafaie, H. Abdollahi, A. Entezari-Zarandi, Green recycling of spent 
Li-ion batteries by deep eutectic solvents (DESs): Leaching mechanism and effect 
of ternary DES, J. Environ. Chem. Eng. 10 (2022) 109014, https://doi.org/ 
10.1016/j.jece.2022.109014. 

[249] E. Ebrahimi, M. Kordloo, G. Khodadadmahmoudi, A. Rezaei, M. Ganjali, G. Azimi, 
Solvometallurgical Recycling of Spent Linixcoymnzo2 (Ncm) Cathode Material 
Using Ternary Choline Chloride-Ethylene Glycol-P-Toluenesulfonic Acid Deep 
Eutectic Solvent, Hydrometallurgy 222 (2023) 106184, https://doi.org/10.1016/ 
j.hydromet.2023.106184. 

[250] J. Cheng, C. Zheng, K. Xu, Y. Zhu, Y. Song, C. Jing, Sequential separation of 
critical metals from lithium-ion batteries based on deep eutectic solvent and 
electrodeposition, J. Hazard. Mater. 465 (2024) 133157, https://doi.org/ 
10.1016/j.jhazmat.2023.133157. 
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