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Epithelioid hemangioendothelioma (EHE) and epithelioid hemangioma (EH), are 

ultra-rare vascular tumors characterized by recurrent chromosomal rearrangements. 

WWTR1::CAMTA1 fusions typify ~90% of EHEs, while less than 10% carry the 

YAP1::TFE3 gene fusion. Instead, fusions involving FOS or FOSB are detected in ~70% of 

EH. EHE is classified as a malignant tumor, while EH is a controversial entity. In fact, the 

WHO classification of Soft Tissue and Bone tumors classifies it differently depending on the 

site of origin: EH is considered a benign tumor if arisen in soft tissues whilst is classified as 

an intermediate grade tumor if developed in bones due to the common infiltrative growth 

pattern.  

Both EHE and EH show high propensity to multifocal presentation. Approximately 60% of 

EHE and up to 25% of EH develop synchronous or metachronous lesions in different bones or 

organs. Given its malignant nature, multifocal EHE lesions are by default considered 

metastases. Conversely, whether multifocal EH are independent lesions or rather represent 

metastatic spreading of the primary neoplasm is debated. Understanding if multicentric 

tumors are clonally related clearly impacts on the prognosis and patients’ management. To 

shed light on this issue, and in particular to elucidate the clinical and pathological 

characteristics of EH, we combined a clinical study with a thorough molecular 

characterization of EH multiplicity and used the fusion breakpoint as a clonality marker. In 

parallel, malignant EHE were analyzed as a reference. 

The clinical characterization of 42 EH of bone patients demonstrated that their prognosis, 

irrespective of whether they developed synchronous or metachronous lesions and irrespective 

of the type of treatment, was excellent. Thus, EH is clearly a clinically benign tumor. 

Molecular analyses showed that in both EH and EHE, multiple lesions arisen in the same 

patients shared an identical breakpoint, indicating a common clonal origin. This result 

demonstrates that, irrespective of benign looking histological appearance and irrespective to 

the excellent prognosis, form a biological standpoint EH feature an intrinsic propensity to 

metastatic spreading, similar to an overt malignant tumor such as EHE. This paradox may be 

explained by phenomena of passive spreading, whereby EH, being vascular lesions, shed 

tumor cells into the circulation which colonize distal sites while maintaining their intrinsic 

benign biological nature. 

Furthermore, EHE and EH comparison through differential gene expression analysis allowed 

us to pinpoint some pathways potentially implicated in the aggressive clinical behavior of 

EHE.   
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1. Mesenchymal tumors: classification and genetics 

Mesenchymal tumors are a heterogeneous group of neoplasms of mesenchymal nature 

that include benign and malignant entities (sarcomas). The classification of these tumors is 

based on morphological characteristics, lineage and site of origin. The World Health 

Organization (WHO) divides mesenchymal tumors in two main categories: Soft Tissue and 

Bone tumors. Soft tissue tumors arise in fat, muscle, blood vessel and nerve tissue, while bone 

tumors typically interest cartilage and bone and comprise not only bone-derived neoplasms, 

but also tumors of different origin but with bone localization 1. Genetically, they are divided 

into: complex karyotype tumors, with no recurrent genetic alterations; simple karyotype 

tumors, which are characterized by specific genetic alterations such as chromosomal 

translocations, amplifications or oncogenic mutations 2.  

About 1/3 of mesenchymal tumors carry histotype-specific fusion transcripts, which are 

helpful in the diagnosis, prognosis and management of patients 3. Chromosomal 

rearrangements giving origin to reciprocal or non-reciprocal translocations can result in the 

production of highly specific fusion genes 4. Not only translocations, but also inversions, 

deletions and insertions are responsible for the generation of gene fusions5. Since in certain 

mesenchymal tumors gene fusions represent the predominant aberration and these tumors 

have a low tumor mutational burden, the fusion product is considered the driver oncogenic 

event that hallmarks the lesion 639. Thus, fusion products are considered diagnostic tools and 

the fusion breakpoint may be employed as a clonality marker 10312.  

 

2. Vascular tumors  

Vascular tumors belong to the class of mesenchymal tumors and represent a rare and 

heterogeneous group arising in the blood vessels of different anatomic sites. Several tumors 

belong to this group, ranging from benign entities such as hemangiomas to highly aggressive 

tumors like angiosarcomas1. Diagnosis is based on morphology, histologic features (e.g. 

abnormal vascular growth) and expression of typical endothelial markers such as CD31, 

CD34 and ERG 1,13. However, in the case of vascular tumors with epithelioid morphology, 

diagnosis may be challenging14. In fact, mesenchymal tumors with epithelioid morphology, 

which include epithelioid hemangioma (EH), pseudomyogenic hemangioendothelioma 

(PHE), epithelioid hemangioendothelioma (EHE) and epithelioid angiosarcoma 1, show 

histological and immunological characteristics that overlap with other pathological entities 
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such as metastatic carcinomas or epithelioid sarcomas14,15, a fact that may be source of 

erroneous diagnoses and inapt treatments16.  

Luckily, the progressive identification of histotype-specific genetic alterations such as 

recurrent chromosomal aberration giving raise to fusion genes (Table 1) has offered the 

opportunity to solve these diagnostic dilemmas. Indeed, epithelioid vascular tumors represent 

a paradigmatic example on how the inclusion of molecular analyses have dramatically 

reduced diagnostic errors 14,17. Importantly, EH and EHE were originally considered the same 

tumor entity 18, because of highly similar histologic appearance (well-defined cell borders, 

abundant densely eosinophilic cytoplasm, cytologic atypia) 19. Subsequently, the two tumors 

were recognized as distinct entities 16,20322, and the difference is further supported by the 

identification of different chromosomal rearrangements 12,23326. 

 

Table 1. Recurrent fusion genes identified in vascular tumors. 

Vascular tumor Gene fusion Fusion reported Studies in which was reported 

EH 

FOS 
rearrangement 

FOS::VIM 
(a.k.a FOS::chr10) 

24,26,27 

FOS::LMNA 27 

FOS::lincRNA 24 

FOS::MBNL1 24 

FOSB 
rearrangement 

ZFP36::FOSB 26,28,29 

WWTR1::FOSB 26,28,30 

SETD1B::FOSB 31 

ACTB::FOSB 32 

FOXO1 
rearrangement GATA6::FOXO1 33 

PHE 
FOSB 

rearrangement 

SERPINE1::FOSB 34,35 

ACTB::FOSB 32,36 

CLTC::FOSB 37 

WWTR1::FOSB 38,39 

EHE 

WWTR1 
rearrangement 

WWTR1::CAMTA1 12,23,40347 

WWTR1::MAML2 
WWTR1::ACTL6A 

48 

YAP1 
rearrangement YAP1::TFE3 25,43,44,47,49353 

Angiosarcoma 

CIC 
rearrangement 

CIC::LEUTX, 
Unknown partner 

54 

Other 
rearrangements NUP160::SLC43A3 55 

 

Epithelioid vascular tumors include tumors of different grades and clinical behavior, form 

benign to very aggressive forms. In this context, the classification of EH is quite 
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controversial. EH is classified as a benign tumor if arisen in soft tissues but it is considered an 

intermediate-locally aggressive tumor if developed in bones 1. Indeed, bone EH may be 

characterized by a locally destructive growth pattern, sometimes associated with lymph node 

involvement. Moreover, these tumors may show multifocal presentation 1,56,57. These facts are 

in apparent contradiction with the benign looking histologic appearance and would suggest an 

aggressive clinical behavior. Indeed, whether these EH multiple lesions from the same patient 

are distinct entities or they are rather clonally related is still debated 19,56. Shedding light on 

this issue is of paramount importance not only for understanding the biology of the disease 

but also for adequate patients’ management.  

EH and EHE will be discussed in detail further on, since they are the focus of this thesis. 

 

2.1. Epithelioid hemangioma 

Epithelioid hemangioma (EH) is an ultra-rare vascular tumor. EH is composed of 

endothelial cells that exhibit an epithelioid morphology 1. 

EH occurs in soft tissue, bone but also in other sites. Macroscopically, the tumor has a 

nodular appearance. Loose connective tissue composes the stroma of the tumor and is often 

enriched with inflammatory cells such as eosinophils 19,22,58. When developed in bone, EH 

appears as a lytic mass that can extend into the soft tissues and erode the cortex 57.  

The main histologic categories of EH are classic or atypical/cellular 29. Classic EH (Figure 1) 

shows thin well-developed blood vessels lined by large epithelioid endothelial cells that may 

occasionally project into the lumina. Only a few mitosis and small foci of necrosis can be 

observed. The atypical/cellular variant of EH (Figure 2) shows a more solid growth, 

increased cellularity, nuclear pleomorphism and necrosis.  

 

              

Figure 1. Histology of a classic variant of EH. From Righi et al.29. 
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Figure 2. (A) Histology of an atypical/cellular variant of EH evidences an increased nuclear atypia compared to the classic 
variant. (B) Some cases show a strong and diffuse nuclear expression of FOSB antibody. From Righi et al. 29. 

 

The tumor cells are positive for the endothelial markers CD31, CD34, FLI1, ERG, and the 

factor VIII-related antigen. Positivity for keratin and EMA have also been observed 20,58. EH 

is hallmarked by gene rearrangements involving either FOS or FOSB and resulting in 

increased protein expression 24,26,28,29. EH enters in differential diagnosis with angiosarcoma 

and EHE 19,59. However, morphologically angiosarcoma differs from EH for the lack of 

lobular architecture, presence of nuclear atypia and higher mitotic index; EHE do not have the 

well-developed vasculature that typify EH 1. From a genetic standpoint, the detection of the 

pathognomonic fusions that characterize EH and EHE plays an important role in differential 

diagnosis. 

Approximately 25% of EH present as multifocal lesions, phenomenon particularly common 

for EH developing in bone 19,22,58,60 where tumor foci may involve the same bone, contiguous 

bones but also non-contiguous, distal bones 22,61,62 . Invasion of adjacent soft tissues may also 

be observed. Treatment includes en bloc resection, curettage and radiotherapy 22.  

 

2.1.1. Molecular genetics of EH 

Pathognomonic genetic rearrangements of EH involve the genes FOS (~70% of cases) 

or, less commonly, FOSB (Figure 3). FOS gene fusions seem more common in EH of bone 

than in EH at other anatomical sites 26,27. FOS fusions are truncating fusions. In fact, the intra 

o interchromosome rearrangement involving FOS results in the generation of a premature stop 

codon downstream the exon 4. This results in the removal of the C-terminal regulatory 

domain of the protein, leading to FOS increased stability and hyperactivation 24,63.  
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Figure 3. Graphical representation of EH fusions, adapted from Ong et al. 17. FOS and FOSB fusions lead to constitutive 
activation of the AP-1 transcription factor and transcription of its downstream genes, leading to increased proliferation and 
survival. 

 

Specifically, the truncated FOS allele resulting from FOS fusions retains the basic leucine 

zipper (bZIP) domain, responsible for initiating transcriptional activity, but loses the LALL 

motifs that physiologically are responsible for the turnover of FOS. Functional studies 

revealed that truncated FOS is resistant to ubiquitin-mediated degradation and is therefore 

more stable and promotes endothelial sprouting and abnormal vessel formation in HUVEC 

cell lines 63.  

Being truncating events, there is no preferential gene partner for FOS fusions and that these 

fusions often involve intergenic, non-coding region of the genome 24,63. 

FOS fusion events reported in the literature include: intergenic regions as in the case of 

FOS::VIM 24,26,27; long non-coding RNAs such as lincRNA (RP11-326N17.1) 24 or intronic 

regions of protein coding genes as in MBNL1 24 and LMNA 27.  

Different from FOS, the fusions involving FOSB generate chimeric proteins. FOSB usually 

fuses downstream with the Zinc Finger Protein 36 (ZFP36) 26,28,29 or WW Domain Containing 

Transcription Regulator 1 (WWTR1) 28,30 leading to ZFP36::FOSB or WWTR1::FOSB 

fusions. The promoter swap event in FOSB rearranged EHs leads to overexpression of FOSB. 

Consequently, FOSB-regulated pathways are overactivated  and promote vascular 

tumorigenesis, as demonstrated in in vitro studies in HUVEC cells 64.  

FOS and FOSB belong to the FOS family of transcription factors, which also includes 

FOSL1, FOSL2 and ΔFOSB. Under physiological conditions, wild-type FOS and FOSB 

heterodimerize with JUN to form the transcription factor Activator Protein (AP)-1, which is 

responsible for the induction of cell growth, differentiation, and apoptosis. Their activity is 
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normally turned off by the cellular proteasome machinery 65. However, cancer cells evolved 

different mechanisms to prolong or increase the activity of these proteins to constitutively 

activate the transcription of genes involved in cancer initiation and progression. A role for 

AP-1 proteins has been described in several cancer types 66. In particular, FOS 67 has been 

found to be overexpressed in osteosarcoma, endometrial cancer, ovarian cancer, melanoma 

and lung cancer, while the role of FOSB has been well characterized in breast cancer, where 

its expression is associated with a well-differentiated phenotype and is downregulated in 

poorly differentiated tumors 66.  

In bone tumors, FOS plays a key role in oncogenic transformation: it is a marker for 

osteoid/osteomas and osteoblastomas 68. Similar to EHs, osteoblastomas are characterized by 

FOS truncating rearrangements 69, while osteosarcomas and chondrosarcomas require the 

expression of this protein for tumor formation 70. FOSB oncogenic role has been explored in 

detail in another vascular tumor, the PHE, which shares FOSB fusions with EH 64,71,72. 

 

2.2. Epithelioid hemangioendothelioma 

Epithelioid hemangioendothelioma (EHE) is an ultra-rare vascular tumor, with an 

incidence of 0.038/100000/year 73. The tumor is constituted by epithelioid endothelial cells  

and is commonly localized in soft tissue, bone, but also lung, liver and skin 1,74,75.  

Macroscopically, EHE of soft tissues appears as a solid mass surrounded by the vessel wall in 

soft tissues, whereas EHE of bone is usually a lytic lesion that may erode the cortex 58. EHE 

can extend to the surrounding tissues such as skeletal muscle or fat 16,74.  

There are two EHE histological variants. The classic and most common variant (about 90% of 

the cases) consists of epithelioid and spindle-shaped cells in a myxohyaline stroma, with 

copious eosinophilic cytoplasm and is genetically characterized by the expression in most 

cases of the WWTR1::CAMTA1 gene fusion 40,41. The other, less common variant, is defined 

YAP1::TFE3 EHE variant due to the expression of the YAP1::TFE3 gene fusion (Figure 4). 

YAP1::TFE3 rearranged tumors tend to growth as solid sheets of well-formed vessels and 

their cells show abundant cytoplasm with moderate nuclear atypia. The myxohyaline stroma 

is usually absent 25.  
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Figure 4. (A) EHE CAMTA1 positive. Tumor cells with glassy eosinophilic cytoplasm and sharply defined cell borders, and 
round to ovoid bland, vesicular nucleus with small, centrally located nucleoli, (B) they show a strong nuclear expression of 
CAMTA1. (C) TFE3 positive EHEs exhibit variable vasoformative features, ranging from the presence of prominent and 
readily discernible open lumina to focal and more subtle findings. (D) They show a strong nuclear expression of TFE3. From 
Righi et al. 29. 

 

EHE tumor cells express endothelial markers such as CD31, CD34, ERG, FLI1, factor VIII-

related antigen and podoplanin (D2-40), PROX1, markers of lymphatic differentiation. 

Positivity for keratin and EMA may also be present 16,74,76,77. SMA is expressed in the 50% of 

cases 78. The immunohistochemical positivity for CAMTA1 or TFE3  fusion products may 

help in the identification of fusion-driven tumors, although sensitivity and specificity of the 

immunohistochemical approach are not optimal 43,79.  

EHE can be confused with metastatic carcinomas, because of positivity for keratins, with 

epithelioid angiosarcomas and with EH. However, the detection of the pathognomonic fusion 

is discriminant in these cases 45,80.  

The prognosis of EHE is influenced by tumor location and genetics. EHE of skin have an 

excellent prognosis; EHE of soft tissues tend to be relatively indolent although in about 20% 

of the cases the tumor metastasizes; EHE of bones tend to have a poorer prognosis and the 

development of multifocal, metastatic lesions is quite common. These lesions may involve the 

same bone or non-contiguous separate bones 74. Moreover, TFE3 rearranged tumors tend to 

be more aggressive than WWTR1::CAMTA1 tumors 25. 

Treatment usually consists in wide resection, and, in the case of metastatic lesions, systemic 

therapy including antiangiogenics 73,81. Additional treatments include MEK inhibitors 82, 

mTOR inhibitors 83, the microtubule inhibitor Eribulin 84, or TEAD inhibitors 

(NCT05228015). The mortality rate for these tumors is about 20%. Multifocal EHEs are 

associated with a bad prognosis. Clinically, EHE of bone can be indolent for several years and 

then suddenly become aggressive. Currently, there are no biomarkers that can be associated 

with the clinical course of the disease 85.  

The monoclonality of multifocal, metastatic EHE lesions was demonstrated by using the gene 

fusion breakpoint as a clonality marker 12,29. 
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2.2.1. Molecular genetics of EHE 

WWTR1::CAMTA1 fusion typify the 90% of EHE, while <10% of tumors harbor 

YAP1::TFE3 fusion. Both are responsible for the deregulation of the Hippo pathway. 

The mechanism by which these fusions drive tumorigenesis and tumor progression is highly 

similar (Figure 5). 

 

 

Figure 5. Adapted from Garcia et al. 86 (A) Hippo pathway activation results in a series of phosphorylation events involving 
the serine/threonine kinases the mammalian sterile 20-like 1/2 (MST1/2) and large tumor suppressor kinase 1/2 (LATS 1/2), 
that in turn phosphorilate and activate TAZ and YAP. In physiological conditions, TAZ/YAP shuttle from the nucleus into 
the cytosol under external stimuli. Binding of TAZ/YAP to 14-3-3 proteins and their ubiquitin-mediated degradation and 
inactivation of the pathway. (B) TAZ/YAP fusion proteins escape from Hippo pathway regulation and degradation, allowing 
them to accumulate in the nucleus. In addition to interacting with the TEAD family of transcription factors, fusion partners 
can recruit chromatin/transcriptional co-activator complexes, to drive an altered TEAD-based transcriptional program that is 
responsible of tumorigenesis. 

 

The WWTR1::CAMTA1 fusion joins the first exons of WWTR1 (a.k.a. TAZ) with 

CAMTA1, a transcriptional activator usually expressed in the nervous system 87,88 . The 

YAP1::TFE3 fusion retains the N-terminal domain of YAP and links it with the C-terminus of 

TFE3. The N-terminal domain of TAZ (WWTR1) and YAP contains a DNA binding domain 

and the TEAD binding site, which is responsible for the interaction with other transcription 

factors. The C-terminal fusion partners provide a nuclear localization sequence that is 

essential for aberrant transcription of the chimeric factor 49,89391. WWTR1::CAMTA1 is 

insensitive to the inhibitory Hippo signals and constitutively activates the TAZ (WWTR1) 
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transcriptome 90. The YAP/TAZ pathway is involved in cancer development and metastatic 

spreading 89,92. YAP/TAZ have been reported to be upregulated in prostate cancer, cervical 

cancer, melanoma and ovarian cancer, among others. Mutations or gene fusions involving 

YAP/TAZ and conferring constitutive activation and nuclear localization have been reported 

in sarcomas and brain tumors 93,94. 

Besides the pathognomomic fusions, few studies have addressed the additional genetic events 

involved in EHE pathogenesis. The most common secondary genetic alteration associated 

with the EHE is the loss of CDKN2A 95 that functionally contributes to EHE tumor 

progression in vivo 
96 and promotes genomic instability and senescence 97. Other common 

variants include CDKN2B, RB1, ATRX, APC and FANCA, which are involved in cell cycle 

regulation, growth signaling and DNA damage response 95. NOTCH3 missense mutations 98 

and MSH2 mutations 99 have also been reported.  

 

3. Angiogenesis 

Angiogenesis is a key process that consists in new blood vessels formation starting 

from a pre-existing vascular network. In physiologic conditions, it is a finely regulated and 

coordinated process, in which endothelial cells (ECs) differentiation, proliferation and 

migration are under the control of several pro-angiogenic and anti-angiogenic factors 100. 

There are different models of neo vessel formation 101. In the conventional model of 

angiogenesis 102, the sprouting angiogenesis, a hypoxic environment is required to drive 

vascular endothelial growth factor A (VEGF-A) secretion (Figure 6).  

 

 

        Figure 6. Conventional angiogenesis model. From Lee et al. 100. 
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This molecule acts on the capillary bed cells that start migrating towards a VEGF-A gradient. 

In parallel, the recruitment of pro-inflammatory cells is responsible of matrix 

metalloproteinases (MMPs) production that have the function to break the surrounding 

extracellular matrix and facilitate endothelial cell migration. Depending on their position in 

the angiogenic sprout, endothelial cells can differentiate into <tip= or <stalk= cells. <Tip= cells 

feel the VEGF gradient and move the growing sprout toward it. <Stalk= cells follow the tip 

cell and form the vascular lumen 100. 

To prevent disordered vessels growth, angiogenic sprouting is regulated by the activation of 

Notch signaling at endothelial cell3cell link sites. VEGF induces DLL4 expression in <tip= 

cells. In contrast, Notch is expressed in the other surrounding <stalk= vascular cells, adjacent 

to the tip cells. This interaction induces the expression of genes that prevent excessive 

vascular growth 103. 

 

 

          Figure 7. Signaling pathways and ligands involved in tumor angiogenesis. From Vimalraj et al. 104. 

 

Angiogenesis is regulated by several pathways (Figure 7) that involve both pro- and anti-

angiogenic factors 104 (Table 2).  

A balanced expression of these factors allows neo vessels formation and prevents 

disorganized vessels growth. Deregulation of these pathways is observed in solid tumors-

associated vessel 101. In fact, neo-angiogenesis is a hallmark of cancer and represents a key 

factor for three-dimensional tumor growth, invasion, and metastasis 105. Deregulation of 

angiogenic pathways associated to disordered angiogenesis was also described in vascular 

tumors 106. 
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Table 2. Pro and anti- angiogenic factors, from Krock et al. 107. 

Pro-angiogenic Anti-angiogenic 

VEGF, Flt-1 (VEGF-R1), Kdr (VEGF-R2) DLL1-4 

Ang-1/2, Tie-2 VASH1 

ADM THBS1 

FGF CA-9 

PGF RGS5 

PDGF-B Angiostatin 

SCF Endostatin (precursor COL18A1) 

Osteopontin Canstatin (precursor COL4A2) 

SERPINE1 Interferons (IFN-α, IFN-³, IFN-´) 

MMP, TIMP  

NOS  

COX-2  

Endoglin  

A1B-adrenergic receptor  

Endothelin-1  

Semaphorin 4D  

Integrins, leptin  

Endosialin  

Adenosine A2A receptor  

Oxygen-regulated protein-150  

SDF-1  

Interleukins (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10)  

ADM, adrenomedullin; Ang-1/2, angiopoietin-1/2; COX-2, cyclo-oxygenase 2; DLL, delta-like ligand; FGF, 
fibroblast growth factor; Flt-1, fms-related tyrosine kinase 1; Kdr , kinase insert domain containing receptor; 
MMP, matrix metalloproteinases; NOS, nitric oxide synthases; PAI-1, plasminogen activator inhibitor31; PGF, 
placenta growth factor; PDGF-B, platelet-derived growth factor beta; SCF, stem cell factor; SDF-1, stromal-
derived growth factor; Tie-2 , TEK tyrosine kinase endothelial; TIMP, tissue inhibitor of metalloproteinases; 
VEGF, vascular endothelial growth factor; VEGF-R , VEGF receptor. 

 

3.1. Angiogenic pathway alterations in vascular tumors 

Several intracellular signaling are involved in endothelial cells tumors development 106 

(Figure 8). However, whilst angiosarcomas have been long studied, less information is 

available about the rarer EH and EHE.  

In angiosarcoma, alterations of vascular endothelial growth factor receptor (VEGFR) and its 

signaling pathway have been reported, including high levels of VEGF-A , VEGFR1 (a.k.a. 

FLT1), VEGFR2 (a.k.a. KDR) or VEGFR3 (a.k.a. FLT4) 108, angiopoietin-2 (Ang2), tyrosine 

kinase with immunoglobulin like and EGF like domains 1 (Tie1), and Tie2 109 ; activating 

VEGFR2 110 and Phospholipase C Gamma 1 (PLCG1) mutations 111; amplifications of 

VEGFR3 112 . Moreover, angiosarcoma is characterized by loss of function mutations in the 

Protein Tyrosine Phosphatase Receptor Type B (PTPRB) 113 that result in increased Ang/Tie2 

signaling and related pathways involved in survival, migration and proliferation 114. 
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Additional mutations include: K-H- and N-RAS, BRAF and MAPK1, Tsc1, together with 

amplification of B- C- RAF, MAPK1 115 and C-MYC 112. 

 

 
 

Figure 8. Common pathways deregulated in vascular tumors. From Wagner et al.106. 

 

Apart from the pathognomonic gene fusion, very little information is known about the 

pathways involved in EHE and EH. Regarding the typical vascular pathways, VEGF staining 

has been associated with more aggressive disease in EHE 116,117. The WWTR1::CAMTA1 

gene fusion that typifies EHE has been shown to regulate the connective tissue growth factor 

(CTGF), that sustains VEGF production via the MAPK pathway 118. Instead, truncated FOS-

driven angiogenic sprouting is dependent on matrix metalloproteinases (MMPs) and Notch 

signaling 63. 

The Hippo pathway, involved cell survival, proliferation and invasive migration and 

metastasis 119 and activated in EHE via gene fusion, plays also a role in vascular development 

120. 
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4. Passive and active mechanisms of tumor spreading 

Tumor cells are known to be able to detach from the tumor mass and to enter 

circulation as circulating tumor cells (CTCs). CTCs have been shown to be able to 

disseminate to distant sites but can also re-seed in the site of origin 121. Nevertheless, self-

seeding, as well as cancer dissemination to distant sites, can generate tumors that are even 

more aggressive of the initial ones 121. 

During metastatic dissemination (Figure 9), tumor cells bypass a number of barriers: detach 

from the primary site, enter into circulation, survive in the lymphatic/circulatory system, exit 

the circulation, colonize secondary sites and expand 122.  

 

 

Figure 9. Steps of tumor spreading. From Ring et al. 122. 

 

Metastatic dissemination is usually considered an active process where all these steps are 

regulated by specific signaling pathways,  but a number of evidence suggest that tumor 

spreading may occur also as a passive phenomenon 123. Pathways that are shown to contribute 

to active metastatic dissemination include hypoxia 124, Wnt signaling, epithelial-to-

mesenchymal transition (EMT), integrins and other pathways related to reorganization of 

cytoskeleton proteins for polarization and migration 122.  
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As mentioned above, an increasing body of evidence support the notion that tumor cells may 

disseminate and relocate distally from the primary site also through a passive phenomenon. 

Evidence in support of passive intravasation include the demonstration that CTCs are mostly 

unviable cells 125, that primary tumors shed more tumor cells after traumatic stresses 126, that 

tumors, especially large masses, can generate stress factors by themselves through 

uncontrolled growth  that may facilitate an inert penetration of vessels 127,128. Finally, the fact 

that a tumor develop as a vascular structure may be per se a facilitating factor of intravasation. 
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The main aim of this thesis was to understand whether tumor multifocality in the 

context of EH subtends tumor multiplicity (multiple independent tumors) or dissemination of 

a primary tumor (metastatization). To shed light on this issue, fusion transcriptome profiling 

was performed using fusion breakpoints as clonality markers. Metastatic EHEs were also 

included in the study and used as a positive control.  

Subsequently, we aimed to identify deregulated genes and pathways that are responsible of 

the different biology of EH and EHE, shedding light on the molecular bases of EHE 

malignant phenotype. 
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5. Clinical data of EH of bone patients 

The most recent classification of the WHO classifies EHs of soft tissues as benign 

tumors and EHs of bone as intermediate-locally aggressive tumors. In fact, despite being 

composed of <benign looking cells=, EH of bone may show a local destructive growth pattern 

and has often multifocal presentation, generating doubts on its benign nature and suspecting a 

malignant behavior. Although the series of EH of bone reported so far suggest an indolent 

clinical behavior, the rarity of this disease has so far prevented a definitive assessment of the 

prognosis. Ambiguity in tumor classification, along with lack of consensus on treatment 

strategies, contribute to the consideration of EH as a controversial entity.  

To gain insights into the clinical behavior and biology of EH of bone, we took advantage of 

an ongoing clinical trial (NCT03169595) to retrospectively analyze a series of 42 patients 

cured at the Rizzoli Institute from 1978 to 2021. This is one of the largest cohorts of EH of 

bone analyzed so far. 

Of 42 patients (see Table 3), 17 showed multifocal presentation (16 synchronous, 1 

metachronous). Tumor mean size was 4.5 cm, the range was between 1.4-11.0 cm. Treatment 

included: en-bloc resection (n=12), intralesional curettage (n=24) and biopsy, occasionally 

followed by radiotherapy (n=6). Follow-up information was available for 38 patients (range 

12-120 months) and only 5/38 presented local recurrence. In none of the cases death of 

disease was observed.  

 

Table 3. Details of the 42 patients with Epithelioid Hemangioma of bone 

Patient 
ID 

Age Gender Location Presentation Treatment 
Outcome 

(FUmonths) 

EH1 29 F Bone (verterbra) Solitary Surgery (WM) NED (276) 

EH2 35 M Bone (humerus) Solitary Surgery (WM) RXT NED (84) 

EH3* 83 M Bone (tibia) Multifocal Surgery (IL) DOO (94) 

EH4* 45 M Bone (tibia, calcaneus) Multifocal Surgery (IL) NED (24) 

EH5* 33 M Bone (tibia, cuboid, cuneiform) Multifocal Surgery (IL), RXT NED (92) 

EH6* 40 M Bone (calcaneus, fibula) Multifocal Surgery (IL) NED (33) 

EH7* 60 F Bone (metatarsal) Multifocal Surgery (IL), RXT NED (106) 

EH8 42 M Bone (metatarsal, cuneiform) Multifocal Surgery (WM) NED (38) 

EH9* 39 F Bone (tibia, rotula) Multifocal Surgery (IL) Lost 

EH10 31 M Bone (humerus) Solitary Surgery (WM) NED (126) 

EH11 48 F Bone (femur) Solitary Surgery (WM) NED (166) 

EH12 45 F Bone (vertebra, rib) Multifocal Surgery (WM) NED (52) 

EH13 22 M Bone (tibia) Solitary Surgery (IL) NED (25) 

EH14 38 F Bone (vertebra) Solitary Surgery (IL) RXT NED (200) 

EH15 58 M Bone (ulna) Solitary Surgery (WM) NED (314) 

EH16 28 F Bone (pelvis) Solitary Surgery (IL) NED (256) 
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EH17 42 M Bone (femur) Multifocal Surgery (WM) NED (32) 

EH18 51 M Bone (femur, tibia) Multifocal Surgery (IL) DOO (96) 

EH19 55 F Bone (vertebra) Solitary Biopsy, RXT NED (27) 

EH20 39 F Bone (vertebra, rib) Multifocal Biopsy, SAE NED (70) 

EH21 12 M Bone (humerus) Solitary Surgery (IL) NED (44) 

EH22 12 F Bone (femur, tibia) Multifocal Surgery (WM,IL) Lost 

EH23 65 M Bone (fibula, calcaneus) Multifocal Surgery (IL) RXT NED (202) 

EH24 22 F Bone (sacrum) Solitary Surgery (IL) NED (211) 

EH25 28 M Bone (vertebra) Solitary Biopsy AWD (39) 

EH26 57 F Bone (cuneiform) Solitary Surgery (IL) NED (53) 

EH27 33 M Bone (humerus) Solitary Surgery (WM) NED (182) 

EH28 25 M Bone (femur, pelvis) Multifocal Biopsy, RXT NED (79) 

EH29 41 M Bone (metacarpal) Solitary Surgery (IL) NED1 (178) 

EH30 44 M Bone (humerus) Solitary Surgery (WM) NED (185) 

EH31 40 M Bone (tibia) Multifocal Surgery (WM) NED (202) 

EH32 21 F Bone (vertebra) Solitary Biopsy, SAE NED (28) 

EH33 20 F Bone (humerus, radius, skull, 
sacrum) 

Multifocal Surgery (WM, IL) NED2 (240) 

EH34 34 M Bone (clavicle) Solitary Surgery (WM) NED (195) 

EH35 34 F Bone (talus, tibia) Multifocal Surgery (IL) Lost 

EH36 28 M Bone (tibia) Solitary Surgery (IL) NED (102) 

EH37 28 F Bone (humerus) Solitary Surgery (IL) NED1 (239) 

EH38 60 M Bone (sternum) Solitary Surgery (IL), SAE NED1 (72) 

EH39 39 F Bone (pelvis) Solitary Biopsy AWD (30) 

EH40 46 F Bone (cervical vertebra) Solitary Surgery (IL) NED (24) 

EH41 58 F Bone (distal phalanx, second 
finger, foot) 

Solitary Surgery (IL) NED1 (29) 

EH42 28 M Bone (clavicle) Solitary Surgery (IL) Lost 

M, male; F, female; RXT, radiation therapy; SAE, Selective arterial embolization; WM, wide margin; IL, intralesional curettage; NED, no 
evidence of disease; NED1, no evidence of disease after one local recurrence; NED2, no evidence of disease after two local recurrence; 
AWD, alive with disease; DOO, dead of other cause; FU, follow up; *cases with biological material available. 

 

One patient presented with metachronous lesions (EH33): He underwent resection and 

curettage of the various lesions involving skull, humerus, radius and sacrum. Despite these 

multiple lesions, the patient had a favorable prognosis at 19-years follow-up 62. Thus, overall 

the prognosis of EH, irrespective of tumor multifocality, is excellent. 

 

6. Fusion transcriptome profiling of multiple EHs  

To understand if multiple EHs developed in the same patient were clonally related, 

cases for which biological material of matched lesion was available, were selected (Table 4). 

In 2 of 6 such cases (EH3, EH6), however, RNA quality in one of the matched lesions was 

poor, leaving 4 cases suitable for molecular characterization by targeted RNA-sequencing, 

whole transcriptome analysis and relative orthogonal validations. 
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Table 4. EH cases with multifocal presentation selected for molecular analysis.  

Patient 
ID 

Sample Anatomic site Diagnosis 
Paired samples suitable 

for RNA analysis 

EH3 
EH3A Distal tibia (B) 

Atypical/cellular No 
EH3B Proximal tibia (B) 

EH4 
EH4A Tibia (B) 

Classic Yes 
EH4B Calcaneus (B) 

EH5 
EH5A Distal tibia (B) 

Classic Yes 
EH5B III cuneiform (B) 

EH6 
EH6A Calcaneus (B) 

Classic No 
EH6B Distal fibula (B) 

EH7 
EH7A IV metatarsus (B) 

Classic Yes 
EH7B II metatarsus (B) 

EH9 

EH9A Left tibia (B) 

Atypical/cellular Yes EH9B Rotula (B) 

EH9C Proximal tibia (B) 

B=Bone 

 

Separate EH lesions were all synchronous and with bone localization. They involved 

contiguous bones (EH5, EH7, EH9) or non-contiguous bones (EH4).  

Targeted RNA-sequencing was performed by using a customized Archer assay, a 

commercially available kit based on Anchored Multiplex PCR-NGS sequencing approach. 

Briefly, the Archer assay (schema in Figure 10) 129 relies on the use of gene-specific and 

universal PCR primers, that anneal on a pre-modified cDNA in which adapters were 

previously legated. After the annealing, two cycles of PCR allow the production of NGS 

libraries, that are then sequenced and analyzed with a dedicated bioinformatic pipeline 

(Archer suite) that relies on a proprietary fusion transcript database (Quiver). Theoretically 

this approach may allow the identification of fusion events affecting one of the genes covered 

by the primers of the assay even without prior knowledge of the fusion partner.  
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Figure 10 : Steps of an anchored multiplex PCR, from Zhu et al. 36. 

 

The commercial assay was customized in order to include also primers for the detection of 

FOS and FOSB fusions. After, sequencing raw data were analyzed using the Archer 

bioinformatic suite.  

This Archer-based analysis yielded as <high confidence= the expression of a WWTR1::FOSB 

fusion transcript in case EH9 and a fusion involving  FOS and a non-coding sequence on 

chromosome 11 in case EH4 (Table 5). In both cases the multiple lesions of the same patient 

expressed the same fusion with identical breakpoints. No <high confidence fusion= was 

detected by the Archer bioinformatics suite in cases EH5 and EH7.  

The fact of having detected oncogenic FOS fusion in only 1 of 4 EH was in contradiction with 

literature data that indicated that over 70% of bone EH express FOS fusions. For this reason, 

we sought to <manually= re-analyze the raw data using a different RNA-sequencing fusion 

caller, namely Arriba. This <manual= approach allowed us to identify FOS fusion events also 

in cases EH5 and EH7 (Table 5).  Intriguingly, these fusions were not reported even in the list 

of <discarded/low confidence fusion= of the Archer suite.  
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Table 5. Fusion transcriptome profiling in EH cases: Analysis of Archer data with the Archer 

bioinformatics suite and the Arriba fusion caller.  

Targeted RNA- sequencing (Archer) 

 Bioinformatic approach: 

Archer suite 

Bioinformatic approach: 

Arriba 

Patient ID Sample Gene1 Gene2 Gene1 Gene2 

EH9 

EH9A 
WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

EH9B 
WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

EH9C 
WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

WWTR1 
chr3:149542335 

FOSB 
chr19:45470629 

EH4 

EH4A 
FOS 
chr14:75281167 

ENSG00000255202 
chr11:33694437 

FOS 
chr14:75281167 

ENSG00000255
202 
chr11:33694437 

EH4B 
FOS 
chr14:75281167 

ENSG00000255202 
chr11:33694437 

FOS 
chr14:75281167 

ENSG00000255
202 
chr11:33694437 

EH5 

EH5A No fusion detected 
FOS 
chr14:75281016 

chr21 
(~ADAMTS1) 
chr21:26829622 

EH5B No fusion detected 
FOS 
chr14:75281016 

chr21 
(~ADAMTS1) 
chr21:26829622 

EH7 

EH7A No fusion detected 
FOS 
chr14:75281108 

chr10 (~VIM) 
chr10:17238133 

EH7B No fusion detected 
FOS 
chr14:75281108 

chr10 (~VIM) 
chr10:17238133 

 

This finding has a diagnostic relevance. The Archer approach (kit and relative bioinformatic 

suite) is widely utilized in diagnostic laboratories for the diagnosis of fusion-driven tumors. 

However, it should be kept in mind that if the fusion is not annotated in the Archer proprietary 

fusion database (Quiver), the fusion may not be recognized as a high confidence fusion by the 

Archer suite. As better explained below, the FOS fusions that characterize EH are truncating 

fusions that do not yield a fusion protein and do not usually recognize a canonical fusion 

partner. Truncating fusions without recurrent fusion partner have been reported in other 

sarcomas, such as also in tenosynovial giant cell tumor (e.g. CSF1::ERV-LTR1B) 130 and in 

Dedifferentiated Liposarcoma (e.g. HMGA2 fusions) 131. These fusions may be missed by the 

Archer suite, thus yielding false negative results. This is an aspect that diagnostic laboratories 

should be aware of when dealing with tumors that may produce truncating fusions.   

The fusions identified by the <manual= annotation of raw Archer sequencing data with the 

Arriba fusion caller in cases EH4, 5, and 7 are illustrated in Figure 11 and were all 

orthogonally validated by RT-PCR/Sanger sequencing. 
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In detail, in case EH4 FOS fusion partner on chromosome 11 was a long non-coding RNA in 

opposite orientation (FOS::ENSG00000255202 fusion). Case EH7 expressed in both lesions 

an identical FOS::chr10 fusion, involving FOS and an intergenic region on chromosome 10 

located between VIM and ST8SIA6. A fusion of FOS with an intergenic region present on 

chromosome 21, located between ADAMTS1 and CYYR1 genes, was detected in the 

multiple EH lesions of EH5 (FOS::chr21 fusion) with identical breakpoints.  

All FOS fusions occurred between the exon 4 of FOS and a non-coding region (intergenic or 

intronic), resulting in a truncated version of FOS with a stop codon close to the breakpoint. 

According to previous data and the biological significance of these truncating fusions 24,63, a 

recurrent fusion partner was not identified among different EH cases.  

 

 

Figure 11. Schematic representation of the fusion breakpoints at RNA level. In the upper panel and chromatogram of the 

sequence in the lower panel. The arrows indicate the breakpoints at the RNA (cDNA) level. (A) Schematic representation of 

WWTR1::FOSB detected in the multifocal lesions of patient EH9 (A, left tibia; B, rotula; C, proximal tibia). (B) Schematic 

representation of the FOS::chr10 fusion detected in both lesions of EH7. The fusion involved FOS exon 4 and an intergenic 

region of chromosome 10, close to the VIM gene. An identical breakpoint in lesion A (IV metatarsus) and lesion B (II 

metatarsus) was identified. The greyish area indicates the de-novo STOP codon provided by the 3' partner. (C) Illustration of 

the FOS::chr21 fusion detected in case EH5 involving FOS exon 4 and an intergenic region of chromosome 21 close to the 

ADAMTS1 gene. Breakpoint sequence detected in both lesions of this patient was exactly the same in both lesions (A, distal 

tibia; B, III cuneiform). (D) EH4 lesions carried an identical FOS fusion (FOS exon 4 with lncRNA ENSG00000255202) in 

the lesions of the tibia and calcaneus (A and B, respectively).  
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The equivalence in the breakpoint sequence was further confirmed at the level of genomic 

DNA in the multiple lesions of cases EH9 and EH5 (Figure 12) adding further support to the 

common clonal origin.  

 

 

Figure 12. Fusion analysis of multifocal lesions at the genomic DNA level. (A) Schematic representation of the 

WWTR1::FOSB fusion detected in EH9. The chromatogram in the lower panel confirms that the three EH lesions in this 

patient (A, left tibia; B, rotula; C, proximal tibia) also share the same breakpoint at the DNA level. (B) Illustration of the 

FOS::chr21 fusion detected in case EH5. In both lesions of this patient (A, distal tibia; B, III cuneiform) The same breakpoint 

sequence was also detected at the genomic DNA level. 

 

The clonal relationship between paired lesions of a same patients was also corroborated by the 

analysis of the transcriptome. Separate EHs of a same patient showed highly similar 

transcriptomes, as highlighted by Unsupervised hierarchical clustering and Principal 

Component Analysis (PCA) (Figure 13). Moreover, whole transcriptome fusion analysis, 

with Arriba and Fusion Catcher fusion callers, allowed us to identify additional fusion events. 

Importantly, these additional fusion events were shared by the tumor lesions of a same patient 

and showed identical breakpoints (Table 6). In cases EH5 and EH9 the additional fusions that 

were identified by both fusion callers (PSME3IP1::WWOX, FOSB::WWTR1 and 

TFG::ADGRG7) were also orthogonally validated through RT-PCR (not shown). 

Unexpectedly, in EH9 (see Table 6), whole transcriptome profiling highlighted the presence 

of a FOSB::WWTR1. This fusion event involved the N-terminus of FOSB and the region 

corresponding to the transactivation domain of WWTR1, but did not the precisely correspond 

to the reciprocal of the WWTR1::FOSB transcript. The pathological significance of this 

additional event prompts further investigation. 
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Figure 13. Unsupervised hierarchical clustering (A) and Principal Component Analysis (B), of the multifocal EHs of patients 

EH4, EH5 and EH9 show co-clustering of paired lesions of the same patient.  

 

Table 6. Additional fusion events identified by whole RNA-sequencing in the separate tumor 

lesions of cases EH4, EH5 and EH9. 

Pt ID Sample Gene1 Gene2 breakpoint_1 breakpoint_2 Arriba§ 
Fusion 

Catcher§ 

EH4 

EH4A SYN2 ACTG1 
chr3:12071910 
Intron 

chr17:81510151 
3'UTR 

high - 

EH4B SYN2 ACTG1 
chr3:12071910 
Intron 

chr17:81510151 
3'UTR 

low - 

EH5 

EH5A PSME3IP1 WWOX 
chr16:57185821 
5'UTR/splice-
site 

chr16:78164183 
CDS/splice-site 

high high 

EH5B PSME3IP1 WWOX 
chr16:57185821 
5'UTR/splice-
site 

chr16:78164183 
CDS/splice-site 

high high 

EH5A NDUFS8 chr11 
(~GSTP1) 

chr11:68033283 
CDS/splice-site 

chr11:67577746 
intergenic 

high - 

EH5B NDUFS8 chr11 
(~GSTP1) 

chr11:68033283 
CDS/splice-site 

chr11:67577746 
intergenic 

high - 

EH5A PMEPA1 PURB 
chr20:57651860 
UTR 

chr7:44879426 
UTR 

- high 

EH5B PMEPA1 PURB 
chr20:57651861 
UTR 

chr7:44879426 
UTR 

- high 

EH9 

EH9A WWTR1* FOSB* 
chr3:149528238 
intron 

chr19:45469785 
intron 

high - 

EH9B WWTR1* FOSB* 
chr3:149528238 
intron 

chr19:45469785 
intron 

high - 

EH9C WWTR1* FOSB* 
chr3:149528238 
intron 

chr19:45469785 
intron 

low - 

EH9A FOSB WWTR1 
chr19:45472706 
CDS/splice-site 

chr3:149527969 
CDS/splice-site 

high high 

EH9B FOSB WWTR1 
chr19:45472706 
CDS/splice-site 

chr3:149527969 
CDS/splice-site 

low - 

EH9C FOSB WWTR1 
chr19:45472706 
CDS/splice-site 

chr3:149527969 
CDS/splice-site 

low - 

EH9A TFG ADGRG7 
chr3:100720058 
CDS/splice-site 

chr3:100629598 
CDS/splice-site 

low high 
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EH9B TFG ADGRG7 
chr3:100720058 
CDS/splice-site 

chr3:100629598 
CDS/splice-site 

low high 

EH9C TFG ADGRG7 
chr3:100720058 
CDS/splice-site 

chr3:100629598 
CDS/splice-site 

high high 

Pt=patient, *Pre-splicing transcript, §Confidence Level 

 

7. Fusion transcriptome profiling of multiple EHEs  

Malignant EHEs were analyzed as a reference, to confirm the validity of the approach 

used in EH. Given the malignant nature of EHE, the presence of tumor multifocality or 

metachronous lesion development is by default considered symptomatic of metastatic 

dissemination. Indeed, the metastatic nature of liver metastasis from EHE has been previously 

molecular demonstrated 12. 

 

Table 7. EHE cases with multiple presentations.  

Patient ID Sample Anatomic site Diagnosis M/S 

EHE1 
EHE1A Thigh (ST) 

Classic M 
EHE1C Lung 

EHE3 
EHE3A Iliac Wing (B) 

Classic S 
EHE3B Lymph node 

EHE6 
EHE6A Thigh (ST) 

Classic M 
EHE6B Thigh (ST) 

EHE7 
EHE7A L4 vertebra (B) 

Classic M 
EHE7B Back (ST) 

EHE8 

EHE8A Thigh (ST) 

Classic S EHE8B Thigh (ST) 

EHE8C Thigh (ST) 

ST=Soft tissue, B=Bone, M=Metachronous, S=Synchronous 

 

To corroborate the clonal relationship between multiple EHE lesions, 5 EHE cases (3 soft 

tissue and 2 bone EHE) were selected for having synchronous or metachronous EHEs (Table 

7). A targeted RNA-sequencing was performed on one of the paired lesions and specifically 

on the one with better RNA quality. In the case of detection of fusion product, the same 

fusion was searched in the paired lesion by RT-PCR followed by Sanger sequencing.  

The results of these analyses are summarized in Table 8. In all cases, the targeted RNA-

sequencing approach (Archer) identified a pathognomonic WWTR1::CAMTA1 gene fusion. 
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Table 8. Fusion transcriptome profiling in EHE cases. 

 
Targeted RNA- sequencing 

(Archer approach) 
RT-PCR validation of the fusion detected 

in one of the paired lesions 

Pt ID Sample Fusion Fusion 

EHE1 

EHE1A 
WWTR1::CAMTA1 

chr3:149572864-chr1:7663755 
WWTR1::CAMTA1 

chr3:149572864-chr1:7663755 

EHE1C ND 
WWTR1::CAMTA1 

chr3:149572864-chr1:7663755 

EHE3 

EHE3A 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE3B ND 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE6 

EHE6A 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE6B ND 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE7 

EHE7A ND 
WWTR1::CAMTA1 

chr3:149573000-chr1:7663928 

EHE7B 
WWTR1::CAMTA1 

chr3:149573000-chr1:7663928 
WWTR1::CAMTA1 

chr3:149573000-chr1:7663928 

EHE8 

EHE8A 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE8B 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

EHE8C 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 
WWTR1::CAMTA1 

chr3:149572864-chr1:7661726 

Pt= Patient, ND=Not Done 

 

RT-PCR/Sanger sequencing analyses confirmed the expression of the specific fusion in the 

paired lesion of the same patient. In cases EHE 3, 6, and 8 type A fusion (exon 3 WWTR1, 

exon 8 CAMTA1) was detected in both lesions; EHE1 and EHE7 carried a type B fusion 

(exon 3 WWTR1, exon 9 CAMTA1) and a type C fusion (exon 2 WWTR1, exon 9 

CAMTA1), respectively.  

Thus, all separate EHE tumors derived from a same patient expressed the same fusion 

transcript, confirming a common clonal origin (Figure 14). In one case (EHE7) the 

WWTR1::CAMTA1 fusion breakpoint was also validated at the genomic DNA level (Figure 

14D). Also, whole transcriptome profiling confirmed the presence of WWTR1::CAMTA1 

fusions detected by the targeted RNA-sequencing approach. 
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Figure 14. Fusion analysis of multifocal EHEs (A) Schematic representation of type A (exon 3 WWTR1, exon 8 CAMTA1) 

breakpoint, shared by EHE3, 6 and 8. In all the cases multiple EHE lesions of a same patient shared an identical breakpoint 

sequence. (B) Schematic representation of type B (exon 3 WWTR1, exon 9 CAMTA1) breakpoint found in EHE1, with 

identical breakpoint in lesion A (thigh) and C (lung). (C) Schematic representation of type C (exon 2 WWTR1, exon 9 

CAMTA1) breakpoint found in EHE7, with identical breakpoint in lesion A (L4 vertebra) and B (back soft tissue). (D) 

Schematic representation and chromatogram of a WWTR1 intron 2 and CAMTA1 exon 9 fusion at the genomic DNA level.  

 

8. Whole transcriptome profiling of EHE vs. EH  

To identify molecular pathways that may support the aggressive behavior of EHE, the 

transcriptional profile of EHE was compared to that of EH (Table 9). This analysis was 

conducted on 6 single EHs and 4 single EHEs included in the clonality study. Three 

additional EHE (EHE4, 10 and 11), all scoring negative for CAMTA1 or TFE3 fusion 

analysis, were also included. All samples had tumor cellularity above 70%, thus were highly 

representative of the tumor transcriptome.  
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Table 9. EHE single lesions and EH single lesions employed in whole-transcriptome analysis. 
 

EHE 

Patient ID Sample Anatomic site Diagnosis Molecular data 

EHE1 EHE1A Thigh (ST) Classic WWTR1::CAMTA1 

EHE3 EHE3A Iliac Wing (B) Classic WWTR1::CAMTA1 

EHE4 EHE4A Leg (ST) Classic No fusion detected 

EHE6 EHE6A Thigh (ST) Classic WWTR1::CAMTA1 

EHE8 EHE8A Thigh (ST) Classic WWTR1::CAMTA1 

EHE10 EHE10 Clavicle (B) Classic No fusion detected 

EHE11 EHE11 T12 vertebra (B) Classic No fusion detected 

EH 

Patient ID Sample Anatomic site Diagnosis Molecular data 

EH3 EH3A Distal tibia (B) Classic No fusion detected 

EH4 EH4A Tibia (B) Classic FOS::ENSG00000255202 

EH5 EH5A Distal tibia Classic FOS::chr21 

EH6 EH6A Calcaneus (B) Classic No fusion detected 

EH7 EH7B II metatarsus (B) Classic FOS::chr10 

EH9 EH9A Left tibia (B) Atypical/cellular WWTR1::FOSB 

ST=Soft tissue, B=Bone 

 

Unsupervised Hierarchical Clustering and PCA indicated a net separation between the two 

tumor types (Figure 15).  

 

 

Figure 15. Unsupervised hierarchical clustering (A) and Principal Component Analysis (B), show co-clustering of EHs 

(salmon) and EHEs (light blue).  
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The separation between EH and EHE was maintained also when their transcriptome was 

analyzed in the context of a larger and diversified tumor series by t-SNE dimensionality 

reduction analysis that allow to better emphasize similarity between samples (Figure 16).  

 

 

Figure 16. t-SNE was performed on different sarcoma types available in our laboratory. EH and EHE samples analyzed in 

my cohort are labeled with the sample ID (EH cluster is colored in salmon and EHE in light blue). 

 

We then performed Differential Expression (DE) analysis and compared EHE vs. EH. Over 

1000 genes were differentially expressed, 1149 up-regulated and 544 down-regulated (filtered 

by log2FoldChange g|1| and p-value adjusted f 0.05).  

Functional annotation of DE genes was performed by a pre-ranked gene set enrichment 

analysis (GSEA) on MSigDB Gene Ontology Biological Processes (GOBP), Hallmarks and 

Oncogenic Signatures (Figures 17-19). Surprisingly, the top enriched signatures in EHE were 

muscle-related processes (Figure 17) and several muscle-related molecules such as ACTA1, 

MYOG and MYOD1, were indeed upregulated in a fraction of EHE. A consultation with the 

pathologist revealed that EHE do not express skeletal muscle markers but that muscular 

invasion is a very common feature of EHE. Our samples were selected for having a tumor cell 

fraction always greater than 70%. Thus, the fact that a limited presence of non-tumoral cells 

determines such an impact on the differential expression analysis of EHE vs. EH suggests that 

the transcriptome of EHE and EH tumor cells is quite similar. 
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In addition to the preponderant representation of muscle-related pathways, GSEA of 

differentially expressed genes indicated that EHEs featured also overactivation of mTORC, 

MEK and hypoxia (Figure 17). The implication of MEK and mTORC pathways in EHE has 

been previously reported and these molecules are currently exploited in clinics for therapeutic 

purposes 82,83.  

 

 

 

 

Figure 17. GSEA of the GOBP, hallmarks and oncogenic signatures enriched in EHE selected by FDR f 0.25 and p-value f 

0.05. 

 

EHE featured also enrichment of signatures related to YAP/TAZ (Figure 17).  
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The activation of YAP/TAZ is in keeping with the presence of the pathognomic fusions 

involving these genes in the majority of EHEs. A focused single sample GSEA (ssGSEA) 

analysis highlighted an overrepresentation of the Hippo signature (Figure 18) even in two 

samples scoring negative in fusion analysis (EHE4 and EHE10), thus supporting the 

relevance of the activation this pathway in the pathogenesis of EHE.  

 

 

Figure 18. ssGSEA showing the expression of a Hippo signature and the top25 genes expressed in each sample. 

 

Among the genes included in the signature overexpressed in EHE, it is worth mentioning 

transglutaminase 2 (TGM2) 132, an enzyme that stabilizes the cross linking of the extracellular 

matrix, thus promoting matrix stiffness that induces the Hippo pathway. Moreover, TGM2 

has been shown to bind and inhibit p53 133 and p53 and YAP are known to crosstalk 134. Thus, 

TGM2 might contribute to the EHE tumorigenic phenotype through converging pathways. 

A scrutiny of the list of the genes differentially expressed genes between EHE and EH 

highlighted also upregulation of the secreted frizzled-related protein 2 (SFRP2), which is 

known to be overexpressed also in angiosarcomas 135. Also, multimerin-2 (MMNR2) was 
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downregulated in EHE, and loss of MMNR2, an extracellular matrix glycoprotein that 

regulates VEGFA/VEGFR2 signaling axis, induces reduced vessels perfusion and vascular 

leakage, which correlates with tumor hypoxia, a known trigger of metastatization 136.  

The output of GSEA analysis suggested also that EH features characteristics of a regulated 

vessel formation. In fact, EH showed enrichment in signaling pathways related to 

angiogenesis (e.g. VEGF-A) (Figure 19). Moreover, a greater immunogenicity, compared to 

EHE, was suggested by the overrepresentation of pathways related to antigen processing and 

presentation and allograft rejection (Figure 19). 

 

 

Figure 19. GSEA of the GOBP, hallmarks and oncogenic signatures enriched in EH selected by FDRf 0.25 and p-value f 

0.05. 

 

Indeed, EH overexpressed both pro- and anti-angiogenic factors (Figure 20). 
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Figure 20. Heatmap showing the expression levels of anti- angiogenic factors (top), genes involved in regulated angiogenesis 

(middle) and pro-angiogenic factors (bottom).  
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EHE and EH are vascular tumors with the common feature of multifocal presentation, 

but of different histological and clinical characteristics. EHE is a malignant tumor, with 20% 

of mortality rate and a high propensity to distal metastasis 12. Clinically, EHE can be indolent 

for several years and suddenly become aggressive and the molecular mechanisms or 

biomarkers associated with the clinical course of the disease have not been identified yet 85. 

Conversely, the nature of multifocal presentation in EH is a matter of debate 56,58. In fact, the 

WHO classifies EH of soft tissue and EH of bone in different ways. The former are classified 

as benign tumors, the latter as intermediate, locally aggressive tumors 1. Indeed, in the 

absence of objective criteria, the classification of EH of bone remains controversial 1,59. Some 

authors consider EH of bone as benign as a EH of soft tissue due to the relatively benign 

looking appearance of EH cells; others argue that EH has traits of aggressiveness because 

frequently shows local destructive growth with demolition of cortex and extension to soft 

tissues. Moreover it often shows multifocal presentation 1,18,19,21,58 . 

To resolve this ambiguity, the clinical and biological characteristics of 42 patients with EH of 

bone were studied. The study, which is based on a retrospective cohort because of the rarity of 

EH, represents one of the largest case series analyzed so far. The study of the clinical history 

of the patients with EH of bone showed that prognosis was excellent. No patient died of the 

disease and most patients were cured with relatively non-aggressive treatments (curettage or 

resection). Only 5 patients experienced local recurrence (13%), all of them treated with 

curettage. Almost half of the patients presented at the diagnosis with multifocal disease (17/42 

patients, 40%), and the multiple EH lesions could involve the same, contiguous but also non-

contiguous bones. Yet, irrespectively of this multifocality, surgical treatment was curative. 

The nature of this multiple lesions was then analyzed molecularly. We used the fusion 

breakpoint as a clonality marker and demonstrated that separated lesions affecting the same 

patient expressed the same fusion transcripts with identical gene breakpoints. These results 

are in keeping with a previous work 24 in which it was concluded that EH foci affecting 

adjacent bones represent multifocal regional spread. Our work extends this observation also to 

EHs involving non-contiguous bones and supports the concept that multifocal presentations in 

this tumor represent the spread of a same neoplastic clone rather than simultaneous 

independent tumors. Thus, even if EH cells have a benign appearance and the clinical course 

is benign, the tumor shows a high propensity to metastasis. These concepts are only 

apparently contradictory. It is estimated that a tumor sheds millions of cells every day, but 

only a tiny fraction of these cells will eventually create secondary colonies 122. Metastasis 

relies on tumor cells bypassing a series of obstacles: they must detach from the primary site, 



 40 

survive in the lymphatic/circulatory system and colonize secondary sites 123,137. Vascular 

tumors appear to be facilitated in some of these steps. Indeed, the multifocal presentation is a 

distinctive feature of vascular tumors of bone, including classical hemangioma, 

hemangioendothelioma and angiosarcoma. Although some cases present lymph node invasion 

and distal metastasis 26,56,62, EH shows regional reseeding, suggesting that the capacity of EH 

cells to survive in the lymphatic/blood stream is limited, and that their congenial soil is the 

organ of origin. In multifocal EH, the separate tumor lesions maintain their intrinsic <benign= 

nature, as the presence of secondary seeding does not associate with poor outcome. Thus, EH 

dissemination does not appear to be associated with aggressive biological traits having rather 

features of a passive phenomenon. Indeed, it has been previously reported that tumors may 

shed passively into the blood or lymphatic vessels in the absence of active cell migration 123.  

In conclusion, the excellent prognosis of EH of bone supports the notion that it is a clinically 

benign tumor. Like other vascular tumors, EH of bone may present in a multifocal way. 

Although tumor multifocality in EH of bone is the manifestation of a disseminative process, 

as established by clonality analysis, this has no major impact on the clinical course of the 

disease, even for patients treated exclusively by surgery or biopsy. Therefore, EH of bone is a 

tumor with disseminative potential but of benign clinical nature.  

The development of distal metastasis not associated with poor outcome is also a characteristic 

of the giant cell tumor 138 which, despite its "metastatic" potential, is not ranked among 

sarcomas by the current WHO. This fact somehow reinforces the concept of the <benign 

metastases= or <benign dissemination=. 

This study highlighted also a fact of paramount importance in the diagnostic setting. We 

demonstrate that the Archer approach (kit and relative bioinformatic suite), an approach 

widely utilized in diagnostic laboratories for the diagnosis of fusion-driven tumors, shows 

important limitation when dealing with tumors hallmarked by truncating fusions without 

recurrent fusion partners. As in the case of CSF1 fusions found in tenosynovial giant cell 

tumor 130 or in the HMGA2 fusions detected in Dedifferentiated Liposarcoma 131, the use of 

the Archer bioinformatic suite associated to the kit may easily yield false negative results. 

Thus, using this kit for the diagnosis of tumors that may produce truncating fusions, a 

manually curated bioinformatic approach should be considered.  

From a genetic standpoint, the fusions detected in our EH series (3 FOS and 1 FOSB fusion) 

are in line with literature data which indicate that about 70% of the cases bear FOS fusions 

and the remaining fraction carry FOSB fusions 24,26328,30. In detail, the WWTR1::FOSB fusion 
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detected in one case had been previously reported in EH (3 cases) 26,28,30 but also in PHE (2 

cases) 38,39. About the FOS fusions, the fusion involving a genomic sequence proximal to the 

VIM gene (FOS::VIM, labelled FOS::chr10 in our work in the light that the coding sequence 

of VIM was not directly involved in the fusion) had been previously described 24,26,27. 

Conversely, the other two FOS fusions identified in our study (FOS::ENSG00000255202 and 

FOS::chr21) are novel. Thus, our study extends the knowledge about FOS fusion partners in 

EH.   

In this work we used EHE as a reference metastatic tumor for validating the use of the fusion 

breakpoint as a clonality marker and compared the transcriptome profiling of this malignant 

vascular tumor to that of EH with the intend to identify signaling pathway sustaining the 

aggressive clinical behavior of the former.  

According to the literature the WWTR1::CAMTA1 fusion hallmarks about 90% of EHE 

while the remaining cases are either fusion-negative or carry YAP1::TFE3 fusions 1,23,40,41,49. 

Differential gene expression analysis, besides supporting a drift from a <controlled= 

angiogenic process in EHE vs. EH, highlighted in EHE the role of the Hippo, YAP/TAZ 

mediated pathway in EHE aggressiveness. In our series the canonical TAZ fusion, namely the 

WWTR1::CAMTA1 fusion, was detectable only in 5/8 cases (63%), despite a high RNA 

sequencing coverage. Noteworthy, the expression levels of WWTR1 mRNA was comparable 

in translocated and non-translocated cases and the Hippo signaling was found to be 

deregulated also in the subset of EHE devoid of YAP/TAZ fusions. Thus, besides 

chromosome translocations, it is possible that other mechanisms sustain YAP/TAZ signaling 

activation in these tumors. For instance, hypoxia is known to induce YAP/TAZ 139 and the 

hypoxia signaling was enriched in EHE. Thus, it is tempting to speculate that the lousy 

organization of the vessels in EHE may favor hypoxic conditions that sustain the pro-

metastatic YAP/TAZ signaling. Intriguingly, we found that EHE overexpress TGM2. TGM2 

is a YAP/TAZ transcriptional target that has been shown to directly bind and inhibit p53 133. 

Most EHEs retain the TP53 gene in a wild type status and secondary alterations, besides the 

fusion, are rare and not recurrent 95. Thus, overexpression of TGM2 might contribute to 

attenuate the p53 response in this tumor thus favoring malignant progression.  

Differential gene expression analysis highlighted also a high expression of SFRP2, a molecule 

that stimulates angiogenesis via a Calcineurin/NFAT Signaling 135. Since it is highly 

expressed also in angiosarcoma, recently a novel humanized monoclonal antibody to this 

protein was proposed as an innovative therapeutic strategy 140. Provided that the in vivo 
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results are promising, it will be interesting to determine the eligibility to anti-SFRP2 

treatments also for EHE. 
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Fusion transcriptome profiling revealed a common clonal origin of the multiple lesions 

in patients affected by EH. The discovery that a histological and clinically benign tumor 

metastasizes was unexpected. This result suggests that EH dissemination is probably due to a 

phenomenon of passive spreading. Investigations by using in vivo EH models are needed to 

corroborate this hypothesis.  

Intriguingly, in one EH case (EH9) besides the WWTR1::FOSB fusion, a fusion already 

described in literature, transcriptome profiling highlighted the presence of an additional fusion 

event of FOSB with WWTR1, only apparently reciprocal of the driver fusion 

(WWTR1::FOSB). The analysis of the protein domain retained by the FOSB::WWTR1 fusion 

suggests the generation of an oncogenic fusion protein. We are planning to validate the 

pathogenicity of the FOSB::WWTR1 fusion and its contribution to the malignant phenotype 

of WWTR1::FOSB engineered HUVEC cells. 
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9. Tumor samples analyzed 

Formalin-Fixed Paraffin-Embedded (FFPE) blocks or Fresh Frozen samples from 13 

EH and 14 EHE, were retrieved from the pathology files of the Rizzoli Orthopedic Institute in 

Bologna. Only specimens with a tumor cell fraction greater than 70% were analyzed.  

10. RNA and DNA extraction 

Nucleic acids were extracted using the AllPrep DNA/RNA mini kit columns (Qiagen, 

Germantown, MD, USA) for frozen samples and either the QIAamp DNA FFPE Tissue Kit 

(QIAGEN) or the FFPE RNA/DNA purification plus kit (Norgen Biotek Corporation, 

Ontario, Canada) for FFPE specimens, according to the manufacturer’s instructions. Frozen 

EHE of bone were extracted according to Carter et al. protocol 141. RNA and DNA were 

quantified with a fluorometer using the Qubit RNA HS Assay Kit or DNA BR Assay Kit 

(ThermoFisher Scientific). RNA and DNA qualities were evaluated by electrophoresis using 

the RNA and gDNA Assay Kit (Agilent Technologies) on the Agilent 2200 TapeStation 

instrument. 

11. Targeted RNA-sequencing and fusion calling 

Libraries were generated starting from 100-250 ng of total RNA. A customised Archer 

FusionPlex sarcoma RNA-sequencing panel v1.1 (ArcherDX, Boulder, CO, USA) was 

employed for library generation, covering 26 genes involved in sarcoma-associated fusions 

and supplemented with spike-ins primers for FOS (exon 4, forward primer) and FOSB (exons 

1 and 2, reverse primers). Libraries were run on an Illumina MiSeq sequencing platform and 

were analyzed with the Archer Analysis suite software version 7.1.0. Raw data were also 

analyzed with the Arriba fusion caller 142,143.  

12. Retro-transcription (RT)-PCR and Sanger sequencing 

RT-Polymerase Chain Reaction (RT-PCR) and RT-PCR/Sanger sequencing were 

employed for orthogonal validations. 

Total RNA (from 50ng to 500 ng) was reverse-transcribed into cDNA using the Superscript 

III reverse transcriptase protocol (Invitrogen) following the manufacturer’s instructions.  

PCR was carried out using the GoTaq Green Master Mix Kit (Promega), using the primers 

listed in Table 10. 
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Table 10. Primer list. 

Case Fusion Forward (5'3') Reverse (5'3') 

EH5 

 

FOS::chr21 
GCTTCCCTTGATCTGACTGGG 

FOS exon 4 
GGACCATTCAAAACATAGCCCT 

Intergenic chr21 

PSME3IP1::WWOX 
GTGAGGTCGTCTCGCCTCC 

PSME3IP1 5'UTR 
ATGCGTGACACTGCTTCACT 

WWOX exon 5 

EH4 
FOS::ENSG000002552

02 
TGATGACTTCCTGTTCCCAGC 

FOS exon 4 
AGCCATCTCCAGAAGACTTGG 

ENSG00000255202 

EH7 FOS::chr10 
TGAAGACCGAGCCCTTTGA 

FOS exon 4 
ATCTTCCGCTAGCAAGATGC 

Intergenic chr10 

EH9 

 

WWTR1::FOSB 
AGGATTCGAATGCGCCAAGA 

WWTR1 exon 4 
AAGAGATGAGGGTGGGTTGC 

FOSB exon 2 

WWTR1::FOSB 
GTCTCTGACAAAGTGTTTTGA

GAGG 
WWTR1 intron 4 

CCGACCAATCAGAGTCCTGG 
FOSB intron 2 

FOSB::WWTR1 
CAAACCGGGCTGCAAGATCC 

FOSB exon 4 
CCTGAACTGGGGCAAGAGTC 

WWTR1 exon 5 

FOSB::WWTR1 
CTTCCGATCCCCTGAACTCG 

FOSB 3'UTR 
ACCAGGCAACCATTAGTATTCTT 

WWTR1 intron 4 

TFG::ADGRG7 
TTCCTTTGCAATTCAGTGCAG

TA 
TFG exon 3 

CCATTTTCCCAGGTTCCACC 
ADGRG7 exon2 

EHE1 

WWTR1::CAMTA1 
AAGACCCTAGGAAGGCGATG 

WWTR1 exon 3 
CGTCCTGGGAAAGGCGAAC 

CAMTA1 exon 9 

WWTR1::CAMTA1 
GTCAGTTCCACACCAGTGCCT 

WWTR1 exon 3 
CATGGTGTACACGGCCTCATT 

CAMTA1 exon 9 

EHE3,6,8 

WWTR1::CAMTA1 
AAGACCCTAGGAAGGCGATG 

WWTR1 exon 3 
GCTGTTCCACCGAGAAGCCT 

CAMTA1 exon 8 

WWTR1::CAMTA1 
GTCAGTTCCACACCAGTGCCT 

WWTR1 exon 3 
ATTGCTGCAGGTCCACTTGAT 

CAMTA1 exon 8 

EHE7 

WWTR1::CAMTA1 
GTCCTACGACGTGACCGAC 

WWTR1 exon 2 
CTGGCCCTGCTTTGGGTTAT 

CAMTA1 exon 9 

WWTR1::CAMTA1 
GGCTGGGAGATGACCTTCACG 

WWTR1 exon 2 
GGGGTCAAAGTTCATGGTGGT 

CAMTA1 exon 9 

WWTR1::CAMTA1 
TCTCAGTCCCGCCTCATACA 

WWTR1 intron 2 
TTCTGGAATCTTCCGGCCAC 

CAMTA1 exon 9 

 

PCR reactions were carried out by using an initial denaturing step (95°C for 2 min) followed 

by 40 cycles of amplification including denaturation (95°C for 30 sec), 30 sec annealing 

(from 56°C to 59°C depending on the primer pair) and extension (72°C for 30sec). Final 

extension was performed for 4 min at 72°C.  

DNA Wizard® SV Gel-PCR Clean-Up System (Promega) was used for the DNA extraction 

of PCR products from agarose gel. Sanger sequencing was carried out with the BigDye™ 

Terminator v3.1 Cycle Sequencing Kit and the same primers used for PCR generation. 

Sequences were run on an Applied Biosystems® 3130xl Genetic Analyzer. 

13. Whole transcriptome RNA-sequencing and data processing 

An amount ranging from 50 to 250 nanograms of total RNA was used for the 

generation of RNA-sequencing libraries using the Illumina Stranded Total Ribo-Zero Plus 
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RNA library prep kit (Illumina, San Diego, CA, USA), according to the manufacturer’s 

protocol. Briefly, RNA was first depleted form ribosomal RNA (rRNA) by using enzymatic 

rRNA depletion; then it was converted into double-stranded cDNA. cDNA fragments were 

then adenylated at the 3’ end. After ligation of adapters, libraries were amplified by PCR with 

concomitant incorporation of indexes. 

Libraries were quantified by a fluorometric assay (Qubit dsDNA High Sensitivity Assay Kit, 

ThermoFisher Scientific) and evaluated for size and purity by TapeStation electrophoresis 

(D1000 Assay Kit, Agilent Technologies). Finally, libraries were diluted, pooled to a 2 nM 

total concentration and loaded to an Illumina Hiseq 1000 or Nextseq 550 platforms using the 

Hiseq Rapid PE Cluster v2 Kit or the Nextseq 500/550 high output kit v2.5 (Illumina, San 

Diego, CA, USA) to reach a sequencing depth g 40 million paired-end reads per sample. 

Once sequencing was completed, data (in the form of bcl files) were converted into FASTQ 

files using the bcl2fastq software (Illumina). FastQC (v0.11.9), MultiQC (v1.0), and 

Trimmomatic (v0.39) software were used for FASTQ sequence quality measurements and 

trimming. 

The reads obtained were then aligned to the human reference genome assembly hg38 

(GRCh38.p13) using STAR (v2.7.10a) 144. The RSEM tool (v1.3.1) 145 was used for reads 

quantification and GENCODE v.27 146 was employed for gene annotation.  

Since some rRNA genes were not efficiently depleted by the probes for ribosomal depletion 

included in the kit, genes corresponding to this gene type (<Mt_rRNA=, <Mt_tRNA=, 

<rRNA=, <rRNA_pseudogene=) as well as genes showing sequence identity with ribosomal 

RNA ("ENSG00000283907.1", "ENSG00000280800.1", "ENSG00000281383.1", 

"ENSG00000280614.1", "ENSG00000281181.1", "ENSG00000284419.1") were 

computationally removed from the expression matrix. 

Arriba (v2.3.0) 143 and FusionCatcher 147 fusion calling tools were used for fusion transcript 

identification. 

Raw expression data (read counts from RSEM) were loaded in R (v4.2.2) and converted into 

normalized read counts using the Variance Stabilizing Transformation (VST) function in 

DESeq2 package (v1.26) 148 as input for Principal Component Analysis (PCA), unsupervised 

hierarchical clustering analysis (UHCA) and t-Distributed Stochastic Neighbor Embedding (t-

SNE).  

PCA is a an algorithm used to reduce the dimensionality of the data, while preserving the 

variation among the samples 149. PCA analysis was performed using the prcomp function built 
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in DESeq2, while UHCA was performed using the <Euclidean method" to calculate the 

distances and the <complete linkage method= to calculate the hierarchical cluster. t-SNE is a 

technique used to reduce the dimensionality of the data, well suited to emphasize the 

similarities in high-dimensional datasets150. t-SNE analysis was performed using the Rtsne 

package. For all the graphical representation ggplot2, ggrepel, gplots, RColorBrewer 

packages were employed. 

PCA and UHCA were performed on the top 5000 variant genes (EH multiple lesions 

comparison) or top 500 variant genes (EHE vs. EH primary lesions) with highest variance. t-

SNE used to visualize EH and EHE in a larger tumor series, was performed on the top1000 

variant genes (perplexity 3 to 40; perplexity 8 is shown in figure 16). 

Differential expression analysis was performed using the DESeq2 R package. Genes 

expressed at a very low level were excluded from the analysis and filtered using the 

filterByexpress function of the EdgeR package (filterByexpress>10). Genes were considered 

differentially expressed (DE) if the absolute value of the log2 Fold Change (log2FC) was g 1 

and the adjusted p-value was f 0.05 (|log2(FC)| g 1 and padj f 0.05). 

Read counts from RSEM were converted Transcripts per million (TPM). TPM calculation is 

based on sequencing depth and gene length and it is useful to compare gene expression within 

a sample and among samples 145,151,152. Protein coding TPM (pTPM) were employed as input 

for heatmaps generation. Heatmap plots were generated by using the Morpheus web app 

(https://software.broadinstitute.org/morpheus), in which input pTPM data were Z-score 

normalized. 

 

14. Functional data annotation  

Functional annotation of RNA-sequencing data was done using a pre-ranked Gene Set 

Enrichment Analysis (GSEA) and Overrepresentation Analysis (ORA).  

Pre-ranked GSEA uses the list of DE genes and define whether a reference, pre-defined 

geneset, shows statistically significance and concordant differences between two conditions.  

To rank our list of DE genes (EHE vs. EH), according to the statistical significance and fold 

change, we used the formula [-log10(p- value) *(sign of log2(Fold-Change))] as in Plaisier et 

al. 153.  

Pre-ranked GSEA was performed using the GSEA desktop app (version 4.3.2) using the 

following parameters: number of permutations = 1000; enrichment statistic = weighted; 

https://software.broadinstitute.org/morpheus
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minimum size = 3; maximum size = 2000; collapse/remap to gene symbols = no collapse 154. 

We interrogated the following reference datasets: MSigDB Hallmark gene sets 

(Hallmarks=h.allv2022.1.Hs.symbols.gmt) (https://www.gsea- 

msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H) Gene Ontology Biological 

Processes gene sets (GOBP=c5.go.bp.v2022.1.Hs.symbols.gmt) (https://www.gsea- 

msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO:BP) and Oncogenic Signatures 

gene set (Oncogenic signature= c6.all.v2022.1.Hs.symbols.gmt) (https://www.gsea-

msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C6).  

We also performed single-sample GSEA (ssGSEA) on a HIPPO_SIGNATURE obtained 

combining CORDENONSI_YAP_CONSERVED_SIGNATURE and 

GOBP_HIPPO_SIGNATURE using GSVA (v1.46) and GSEABase (v1.60) libraries in R. 

ssGSEA is an extension of GSEA that calculates separate enrichment scores for each pairing 

of a sample and gene set. Each ssGSEA enrichment score represents the degree to which the 

genes in a particular gene set are coordinately up- or down-regulated within a sample. Input 

data used in these analyses were pTPM and heatmaps were generated with the Morpheus web 

app. 

Functional annotation of DE genes was also performed by ORA, a statistical method that 

determines whether genes from pre-defined sets are over-represented in a subset of your data. 

To this end we used the <ShinyGo= online tool (http://bioinformatics.sdstate.edu/go/) against 

the gene ontology biological processes, hallmark, oncogenic signatures. Genes up and down-

regulated were annotated separately. 
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mangioma of bone

Aims: Epithelioid haemangioma (EH) of bone remains

a highly controversial entity. Indeed, the WHO clas-

sifies EHs of soft tissues as benign tumours, whereas

bone EHs are considered intermediate–locally aggres-

sive tumours due to common multifocal presentation

and local destructive growth. To gain insights into

the clinical behaviour and biology of EH of bone we ret-

rospectively analysed 42 patients treated in a single

institution from 1978 to 2021.

Methods and results: Multifocal presentation was

detected in 17 of 42 patients (40%) primarily as syn-

chronous lesions. Patients were treated with curettage

(57%), resection (29%) or biopsy, followed by radio-

therapy or embolisation (14%). Follow-up (minimum

24 months) was available for 38 patients, with only

five local recurrences (13%) and no death of disease.

To clarify whether the synchronous bone lesions in

multifocal EH represent multicentric disease or clonal

dissemination, four cases were profiled by RNA-

sequencing. Separate lesions from the same patient,

which showed a similar transcriptional profile,

expressed the same fusion transcript (involving FOS or

FOSB) with identical gene breakpoints.

Conclusions: These results indicate that, in EH of bone,

multifocal lesions are clonally related and therefore

represent the spread of a same neoplastic clone rather

than simultaneous independent tumours. This finding

is in apparent contradiction with the benign clinical

course of the disease, and suggests that tumour dissem-

ination in bone EH probably reflects a phenomenon of

passive spreading, with tumour cells colonising distal

sites while maintaining their benign biological nature.

Keywords: clonal analysis, epithelioid haemangioma of bone, FOS, FOSB, fusion transcript, RNA-sequencing

Introduction

Vascular bone tumours represent controversial entities

because of their rarity, unusual morphology, variable

classifications and unpredictable biological behaviour.1,2

Epithelioid haemangioma (EH) is a tumour of unclear

aetiology and pathogenesis that may arise in diverse

anatomical sites, including bone.1–4 The differential
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diagnosis of EH includes epithelioid haemangioendothe-

lioma and epithelioid angiosarcoma, characterised by

significantly different clinical courses.1,5 Imaging is of

limited help, as this tumour lacks characteristic imaging

features.6 The recent identification of FOS and FOSB

gene rearrangements as a genetic hallmark of EH, and

CAMTA1 and TFE3 gene rearrangements as recurrent

alterations in epithelioid haemangioendothelioma, pro-

vides an objective and powerful diagnostic tool for distin-

guishing EH from other vascular tumours.7–12 EH of soft

tissues is classified by the most recent World Health

Organisation (WHO) Classification of Soft Tissue and

Bone Tumours as a benign tumour, while EH of bone is

classified as intermediate and locally aggressive

tumour.1 Despite the benign histological appearance, EH

of bone may show a locally destructive growth pattern,

lymph node involvement and multifocal

presentation.1,6,13 These data would suggest an aggres-

sive clinical behaviour and reinforce the concept that EH

of bone is a controversial entity.14,15 Moreover, whether

multifocal lesions of a EH of bone, similar to multifocal

epithelioid haemangioendothelioma, are the result of

tumour spreading of a primary lesion, as proposed,16 or

rather represent independent tumours, due to a type of

‘field effect’, is still debated.1,13,17,18 This uncertainty,

which is particularly relevant when separate lesions

affect different bones, impacts upon clinical decision-

making and, indeed, there is no consensus regarding the

treatment that ranges from intralesional curettage to en-

bloc resection.3,6,17

In the attempt to shed light into the clinical and bio-

logical characteristics of EH of bone, we retrospectively

analysed 42 patients treated in a single institution

from 1978 to 2021.

Materials and methods

T U M O U R S E R I E S

The medical records of 42 patients with EH of bone trea-

ted in a single institution between 1978 and 2021 were

retrospectively reviewed. Eight of these patients

were described previously.17 Medical records were avail-

able for 38 patients with a mean follow-up of

100 months (range = 24–314 months). Demographics,

clinical data and follow-up information were retrieved

from medical records (Table 1). The study was approved

by the ethics committee of our institution and registered

at ClinicalTrials.gov (identifier NCT03169595). Parents/

guardians gave written informed consent for the retro-

spective analysis of clinical data according to the Institu-

tional Review Board and before inclusion into ongoing

protocols.

Diagnosis of EH of bone was based on morphologi-

cal, immunohistochemical and molecular analysis.

Histology was reviewed by musculoskeletal tumour

pathology experts. Imaging was available for 23

patients at the onset of their disease [radiographs, 20

patients; computed tomography (CT), 16 patients;

magnetic resonance (MR) imaging, 14 patients] and

was reviewed by a musculoskeletal tumour radiolo-

gist. Surgical treatment ranged from biopsy alone to

en-bloc resection.

I M M U N O H I S T O C H E M I S T R Y ( I H C )

Immunohistochemistry was performed as described

previously.19 The following antibodies were used:

ERG (monoclonal antibody V9; Ventana, Tucson, AZ,

USA), CD31 (monoclonal antibody O13; Ventana),

CK AE1/AE3 (mouse monoclonal antibody, 6F-H2;

Cell Marque, Rocklin, CA, USA), INI1 (mouse mono-

clonal antibody, clone BAF47; Cell Marque), CAMTA1

(rabbit polyclonal antibody, dilution 1:200; Novusbio,

Centennial, CO, USA), TFE3 (rabbit monoclonal anti-

body, clone RQ-37; Cell Marque) and FOSB (rabbit

monoclonal antibody, clone 5G4, 1:100 dilution; Cell

Signalling Technology, Danvers, MA, USA). Antibody

detection was performed using UltraView Universal

DAB detection kit (Ventana). FOSB positivity was

defined as moderate-to-strong nuclear staining in at

least 50% of cells, as in Huang et al.7 Samples were

also stained with a FOS rabbit polyclonal antibody

(ABE457; Millipore, Burlington, MA, USA), unfortu-

nately providing unreliable results probably due to the

decalcification procedure.

F I S H A N A L Y S I S A N D Z F P 3 6 : : F O S B R E V E R S E

T R A N S C R I P T I O N - Q U A N T I T A T I V E P O L Y M E R A S E

C H A I N R E A C T I O N ( R T - Q P C R ) A N A L Y S I S

Fluorescence in-situ hybridisation (FISH) and ZFP36::

FOSB RT-qPCR were performed as previously described17

and detailed in the Supporting information. The fol-

lowing FISH probes were used: SPEC TFE3

(Xp11.23), SPEC WWTR1 (3q25.1) LSI dual colour

break-apart DNA probes (Zytovision, Bremerhaven,

Germany); FOS (14q24.3) dual colour break-apart

probe (Empire Genomics, Williamsville, NY, USA).

T A R G E T E D R N A - S E Q U E N C I N G A N D W H O L E

T R A N S C R I P T O M E A N A L Y S I S

Nucleic acids were extracted using the AllPrep DNA/

RNA mini kit columns (Qiagen, Germantown, MD,

USA) for frozen samples and the FFPE RNA/DNA

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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Table 1. Details of the 42 patients with epithelioid haemangioma of bone

Patient ID Age (years) Gender Location Presentation Treatment Outcome (FUmonths)

EH1 29 F Bone (verterbra) Solitary Surgery (WM) NED (276)

EH2 35 M Bone (humerus) Solitary Surgery (WM) RXT NED (84)

EH3 38 F Bone (vertebra) Solitary Surgery (IL) RXT NED (200)

EH4 12 M Bone (humerus) Solitary Surgery (IL) NED (44)

EH5 22 F Bone (sacrum) Solitary Surgery (IL) NED (211)

EH6 57 F Bone (cuneiform) Solitary Surgery (IL) NED (53)

EH7 34 M Bone (clavicle) Solitary Surgery (WM) NED (195)

EH8 42 M Bone (metatarsal, cuneiform) Multifocal Surgery (WM) NED (38)

EH9 60 M Bone (sternum) Solitary Surgery (IL), SAE NED1 (72)

EH10 31 M Bone (humerus) Solitary Surgery (WM) NED (126)

EH11 48 F Bone (femur) Solitary Surgery (WM) NED (166)

EH12 45 F Bone (vertebra, rib) Multifocal Surgery (WM) NED (52)

EH13 22 M Bone (tibia) Solitary Surgery (IL) NED (25)

EH14 60 F Bone (metatarsal) Multifocal Surgery (IL), RXT NED (106)

EH15 58 M Bone (ulna) Solitary Surgery (WM) NED (314)

EH16 28 F Bone (pelvis) Solitary Surgery (IL) NED (256)

EH17 42 M Bone (femur) Multifocal Surgery (WM) NED (32)

EH18 51 M Bone (femur, tibia) Multifocal Surgery (IL) DOO (96)

EH19 55 F Bone (vertebra) Solitary Biopsy, RXT NED (27)

EH20 39 F Bone (vertebra, rib) Multifocal Biopsy, SAE NED (70)

EH21 45 M Bone (tibia, calcaneus) Multifocal Surgery (IL) NED (24)

EH22 12 F Bone (femur, tibia) Multifocal Surgery (WM, IL) Lost

EH23 65 M Bone (fibula, calcaneus) Multifocal Surgery (IL) RXT NED (202)

EH24 33 M Bone (tibia, cuboid, cuneiform) Multifocal Surgery (IL), RXT NED (92)

EH25 28 M Bone (vertebra) Solitary Biopsy AWD (39)

EH26 83 M Bone (tibia) Multifocal Surgery (IL) DOO (94)

EH27 33 M Bone (humerus) Solitary Surgery (WM) NED (182)

EH28 25 M Bone (femur, pelvis) Multifocal Biopsy, RXT NED (79)

EH29 41 M Bone (metacarpal) Solitary Surgery (IL) NED1 (178)

EH30 44 M Bone (humerus) Solitary Surgery (WM) NED (185)

EH31 40 M Bone (tibia) Multifocal Surgery (WM) NED (202)

EH32 21 F Bone (vertebra) Solitary Biopsy, SAE NED (28)

EH33 20 F Bone (humerus, radius, skull, sacrum) Multifocal Surgery (WM, IL) NED2 (240)

EH34 40 M Bone (calcaneus, fibula) Multifocal Surgery (IL) NED (33)

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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purification plus kit (Norgen Biotek Corporation,

Ontario, Canada) for formalin-fixed paraffin-embedded

(FFPE) specimens.

A customised Archer FusionPlex sarcoma RNA-

sequencing panel version 1.1 (ArcherDX, Boulder, CO,

USA), supplemented with spike-ins primers for FOS

(exon 4, forward primer) and FOSB (exons 1 and 2,

reverse primers) was employed for library generation.

Libraries were run on an Illumina MiSeq sequencing

platform and were first analysed with the Archer Analy-

sis suite software version 6.0.4 (January 2022). Subse-

quently (June 2023), raw data were re-analysed with

the most recent version 7.1.0 release. Raw data were

also analysed with the Arriba fusion caller, as previously

described.20 RT-PCR and RT-PCR/Sanger sequencing

were employed for orthogonal validations. Primer

sequences are provided in the Supporting information.

For whole transcriptome analysis, libraries were gener-

ated with the Illumina Stranded Total Ribo-Zero Plus

RNA library prep kit (Illumina, San Diego, CA, USA) and

run on an Illumina Hiseq 1000 platform. Sequencing

depth was ≥ 50 million paired-end reads per sample.

RNA-sequencing data were analysed as in Gasparotto

et al.21 with minor modifications. Arriba (version 2.3.0)22

and FusionCatcher tools were used for fusion transcript

identification (see Supporting information for details).

Results

T U M O U R S E R I E S : D E M O G R A P H I C A N D C L I N I C A L

F E A T U R E S

The analysis of medical records of 42 patients with

EH of bone (Table 1) showed no age predilection,

with patients’ ages ranging between 12 and 83 years

(mean age = 39 years). Twenty-three patients were

male and 19 were female. Most EHs occurred in the

extremities (seven humerus; one ulna; one radius;

one hand; nine tibia; two fibula; five femur; eight

foot) followed by the trunk (two rib; 10 vertebra;

three pelvis; one clavicle; one sternum). Seventeen of

42 patients (40%) presented with multifocal bone

involvement (13 lower limb; one pelvis and femur;

one upper limb, sacrum and skull; two vertebra and

rib; Figure 1). Except for one patient (EH33), multifo-

cality was synchronous. In most cases the same or

contiguous bones were involved, except in patients

EH21, where non-contiguous bones were affected

(tibia and calcaneus) and EH33 (see below).

Imaging data were available for 23 patients. All

lesions were well-defined and lytic, associated with

sclerosis in only two patients. The cortex was thin,

with a calcified periosteal limitation in three patients

(13%) and completely missing in six patients (26%).

Soft tissues were involved in four patients (17%).

Two patients presented with surface lesions (9%). The

mean size of the bone lesions was 4.5 cm (range =

1.4–11.0 cm). On MR imaging all lesions showed a

high signal on T2W images, but the signal was vari-

able on T1W images (low in five patients, intermedi-

ate six patients and high in three patients). One

vertebral lesion had MR imaging features similar to a

typical haemangioma.

Twenty-four patients (57%) were treated with

intralesional curettage, 12 patients (29%) underwent

en-bloc resection with wide margins and six patients

(14%) were treated with biopsy only, followed by

radiation therapy or selective arterial embolisation.

Table 1. (Continued)

Patient ID Age (years) Gender Location Presentation Treatment Outcome (FUmonths)

EH35 34 F Bone (talus, tibia) Multifocal Surgery (IL) Lost

EH36 28 M Bone (tibia) Solitary Surgery (IL) NED (102)

EH37 28 F Bone (humerus) Solitary Surgery (IL) NED1 (239)

EH38 39 F Bone (tibia, rotula) Multifocal Surgery (IL) Lost

EH39 39 F Bone (pelvis) Solitary Biopsy AWD (30)

EH40 46 F Bone (cervical vertebra) Solitary Surgery (IL) NED (24)

EH41 58 F Bone (distal phalanx, second finger, foot) Solitary Surgery (IL) NED1 (29)

EH42 28 M Bone (clavicle) Solitary Surgery (IL) Lost

AWD, Alive with disease; DOO, Dead of other cause; F, Female; FU, Follow-up; IL, Intralesional curettage; M, Male; NED, No evidence of

disease; NED1, No evidence of disease after one local recurrence; NED2, No evidence of disease after two local recurrence; RXT, Radiation

therapy; SAE, Selective arterial embolisation; WM, Wide margin.

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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Follow-up information was available for 38 patients:

five of 38 patients (13%) had a local recurrence at

12, 26, 28, 48 and 120 months, respectively. Four of

these patients were treated with curettage and only

one with resection. At the last follow-up, no patient

was dead of disease. The only patient with metachro-

nous presentation (EH33) underwent resection of

lesions involving skull and proximal humerus and a

curettage of proximal radius, distal humerus and

sacrum. The patient had a favourable prognosis at

19-years’ follow-up.23

H I S T O L O G I C A L A N D I M M U N O H I S T O C H E M I C A L

F I N D I N G S

IHC showed a strong expression of vascular markers

(CD31 and ERG), retained INI1/SMARCB1 expression

and negativity for pan-keratin AE1/AE3, CAMTA1

and TFE3 in all patients. The diagnosis of EH of bone

with exclusion of EH mimics was supported by molec-

ular analyses (FISH or RT-PCR) whenever the quality

and quantity of biological material allowed. Accord-

ing to morphological, IHC and molecular features, 34

EHs were classified as classic variant and eight as

atypical/cellular variant. On haematoxylin and eosin,

classic EHs showed no significant cytological atypia

(Figure 2). Focal tumoral necrosis was detected in

three patients. The mitotic rate was low, with fewer

than two mitoses per 10 high-power fields in all

patients. The eight atypical/cellular EH presented

solid neoplastic areas constituted of endothelial

cells, and in six of these patients a strong nuclear

immunoreactivity for FOSB was detected (Figure 2,

Table 2). Unfortunately, in our series the FOS stain-

ing was unreliable, probably due to the decalcifica-

tion procedure.

M O L E C U L A R A N A L Y S E S A N D C L O N A L I T Y

A S S E S S M E N T

Molecular analyses were conducted in 15 patients for

which biological material was available (Table 2).

Figure 1. Multifocal EH of the left lower limb of patient EH21. A, Laterolateral radiograph, B, sagittal CT and C, MRI show osteolytic lesions

involving the distal tibia and calcaneus. D, Laterolateral radiograph showing the result after curettage and filling the bone defects with

cement.

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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Figure 2. An example (EH22) of classic variant of epithelioid haemangioma composed of well-formed vascular channels lined by plump epi-

thelioid endothelial cells, featuring moderate to abundant eosinophilic cytoplasm associated with eosinophils-rich inflammatory infiltrate:

A, stain, haematoxylin and eosin, magnification; B, stain, haematoxylin and eosin, magnification; C, a nuclear immunohistochemical expres-

sion for FOSB antibody was observed in endothelial cells (magnification). An example (EH38) of atypical/cellular variant of epithelioid hae-

mangioma of bone that shows solid neoplastic areas constituted of endothelial cells with abundant eosinophilic cytoplasm associated with

extravasated red blood cells: D, stain, haematoxylin and eosin, magnification; E, stain, haematoxylin and eosin, magnification; F, nuclear

FOSB immunoreactivity (magnification).

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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RT-qPCR indicated that 2/4 FOSB IHC-positive

tumours (both atypical/cellular EH) expressed ZFP36::

FOSB fusion; no ZFP36::FOSB fusion was detected in

six FOSB IHC-negative EHs. An additional FOSB

fusion (WWTR1::FOSB) was identified by both tar-

geted and whole RNA-sequencing in a FOSB IHC-

positive atypical/cellular EH. FISH highlighted FOS

rearrangements in three of the four patients analysed,

all classic EHs. RNA-sequencing revealed two further

FOS rearrangements in classic EHs.

To determine the clonality relationship between

separate EHs in the same patient, multifocal syn-

chronous lesions of four patients were analysed for

the expression of fusion transcripts. In these patients

the separate lesions involved the same bone, contig-

uous bones (EH14, EH24, EH38) or non-contiguous

bones (EH21). A targeted RNA-sequencing approach

with a customised Archer fusion panel revealed the

expression of a WWTR1::FOSB fusion with identical

breakpoints in all three lesions of patient EH38

(Figure 3A, Table 3). Conversely, no high confidence

fusions were detected by the Archer-suite software

version 6.0.4 in cases EH14, EH21 and EH24. How-

ever, potential fusions involving FOS were included

in the list of discarded/low-confidence calls. Raw

sequencing data were then reanalysed with a more

recent Archer-suite release (version 7.1.0) and with

the Arriba fusion caller.22 The potential fusions

reported as discarded/low-confidence calls by the

Archer-suite version 6.0.4 were erroneous, while the

Archer-suite version 7.1.0 detected, with high confi-

dence, a fusion of FOS with a sequence located on

chromosome 11 in both lesions of case EH21. The

Arriba tool not only confirmed the expression of this

chimeric transcript, involving FOS and a long non-

coding RNA in opposite orientation (FOS::

ENSG00000255202 fusion; Figure 3B–D, Table 3),

but efficiently captured the fusion events in all cases

and indicated that synchronous EHs of the same

patient shared FOS fusions with identical break-

points. A FOS::VIM fusion had been previously

reported in a metatarsal lesion of patient EH14.16

Arriba analysis highlighted that both EH lesions of

this patient carried indeed an identical FOS::chr10

fusion, involving FOS and an intergenic region on

chromosome 10 located between VIM and ST8SIA6.

An identical fusion of FOS with an intergenic region

of chromosome 21, located between ADAMTS1 and

CYYR1 genes, was also detected in the multiple EHs

of patient EH24 (FOS::chr21 fusion).

These rearrangements, which were orthogonally

validated by PCR-Sanger sequencing (Figure 3A–D),

involved exon 4 of FOS and yielded a truncated FOS

protein, due to the generation of a de-novo stop codon

a few amino acids downstream from the breakpoint.

No recurrent fusion partner was identified, in line

with the fact that the biological significance of these

truncating fusions is the hyperactivation of FOS via

the removal of the C-terminal regulatory region.16,24

The correspondence in the breakpoint sequence was

also confirmed at the level of genomic DNA in the

multiple lesions of cases EH14 and EH24 (not

shown), and the presence of identical fusion events in

separate EHs of the same patient strongly indicated a

clonal origin.

We also analysed the global transcriptional profile

of the multiple tumours of patients EH21, EH24 and

EH38. Separate EHs of a same patient showed similar

transcriptomes (Figure 3E,F). More importantly, RNA-

sequencing not only confirmed the presence of the

FOS or FOSB fusions but identified further identical

fusion events shared by the tumour lesions of the

same patient (Table 3). We focused upon the ones

picked up by both Arriba and FusionCatcher tools

and orthogonally validated by RT-PCR the expression

of PSME3IP1::WWOX and TFG::ADGRG7 chimeras in

cases EH24 and EH38, respectively (not shown). Both

are intrachromosomal events and the TFG::ADGRG7

fusion was reported previously.25

Discussion

The WHO ambivalently classifies EH of soft tissue

and EH of bone. The former are classified as benign

tumours, the latter as intermediate, locally aggressive

tumours.1 Indeed, in the absence of objective criteria,

the classification of EH of bone remains

controversial.1,2 Some authors consider EH a benign

tumour, as none of the patients reported in the liter-

ature experienced an adverse outcome, while others

argue that EH is an aggressive tumour because of its

multifocal presentation and frequent local destruc-

tive growth with destruction of cortex and extension

to soft tissues.1,14,15,26,27

In an attempt to resolve this ambiguity, we studied

the clinical and biological characteristics of 42 patients

with EH treated at a single institution. Although the

retrospective design could be considered a limitation,

the rarity of EH mandates that such a study be retro-

spective to have sufficient patients for analysis28 and

the relatively large case series is an advantage of the

present study.

The retrospective analysis of 38 patients with EH of

bone showed that prognosis was excellent, with no

death of disease. Most patients were treated with

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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Table 2. Immunohistochemical and molecular data of the 42 patients with EH of bone

Patient
ID

Histological
variant

TFE3 and WWTR1
FISH analysis

FOSB
IHC

ZFP36::FOSB RT-
PCR analysis

FOS FISH
analysis

FOS and FOSB fusions identified by
NGS in paired lesions

EH1 Classic � + ND ND

EH2 Classic ND � � ND

EH3 Classic ND + ND ND

EH4 Classic ND � � ND

EH5 Classic ND � ND ND

EH6 Classic ND + ND ND

EH7 Classic ND + ND ND

EH8 Classic ND + ND ND

EH9 Classic ND � ND ND

EH10 Atypical/
cellular

� + ND ND

EH11 Classic � � � ND

EH12 Atypical/
cellular

ND + ND ND

EH13 Classic ND � � ND

EH14 Classic � � ND + FOS::chr10

EH15 Classic ND + ND ND

EH16 Classic ND � ND ND

EH17 Classic � � ND +

EH18 Classic ND + � ND

EH19 Classic ND � ND ND

EH20 Atypical/
cellular

� � ND ND

EH21 Classic ND � ND ND FOS::ENSG00000255202

EH22 Classic ND + ND ND

EH23 Classic � � ND ND

EH24 Classic ND � � ND FOS::chr21

EH25 Classic � � ND ND

EH26 Atypical/
cellular

ND + + ND

EH27 Classic � � ND ND

EH28 Classic ND + ND ND

EH29 Classic � � � +

EH30 Classic ND + ND ND

EH31 Classic ND � ND ND

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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curettage or resection. Local recurrence occurred in

five patients (13%) treated with curettage. Multifocal

presentation was detected in 17 of 42 patients (40%),

in all but one as synchronous EH lesions. The same

contiguous, but in some cases also non-contiguous,

bones were involved.

Molecular characterisation of multifocal tumours

indicated a clonal origin. Synchronous lesions affect-

ing the same patient expressed the same fusion tran-

scripts with identical gene breakpoints. These results

are in keeping with the work by van Ijzendoorn and -

co-workers16 who, by analysing two cases of multifo-

cal EH, concluded that tumour foci affecting adjacent

bones represent multifocal regional spread. Our work

extends this observation also to EH lesions involving

non-contiguous bones and supports the concept that

multifocal presentations in this tumour represent the

spread of a same neoplastic clone rather than simul-

taneous independent tumours.

Taken together, our data indicate that EH of bone

is a tumour with a benign clinical course despite a

disseminative potential. These two concepts are only

seemingly contradictory. It has been estimated that

millions of cells are shed by a tumour every day,

although only a minute fraction of these will eventu-

ally seed into secondary colonies.29 Metastasisation

imposes that a tumour cell bypasses a number of

roadblocks: to detach from the primary site, to survive

in the lymphatic/circulatory system and to colonise

secondary sites with induction of neoangiogenesis for

tumour support.30,31 Intriguingly, vascular tumours

seem to be facilitated in some of these steps. Indeed,

the multifocal presentation is somehow a distinctive

feature of vascular tumours of bone, including classical

haemangioma, haemangioendothelioma and angiosar-

coma. Despite some cases of lymph node invasion and

distal metastasis,9,13,23 EH primarily demonstrates

regional reseeding, suggesting that the capacity of EH

cells to survive in the lymphatic/blood stream is

somehow limited, and that their congenial soil is the

organ of origin. In multifocal EH, the separate

tumour lesions maintain their intrinsic ‘benign’

nature, as the presence of secondary seedings does

not correlate with poor outcome. Thus, EH dissemi-

nation does not appear to be associated with aggres-

sive biological traits; rather, having features of a

passive phenomenon. Indeed, it has been previously

reported that tumours may shed passively into the

blood or lymphatic vessels in the absence of active

cell migration.31

In conclusion, the excellent prognosis of EH of bone

supports the contention that it is indeed a clinically

benign tumour. Like other vascular tumours, EH of

bone may be multifocal. Although tumour

multifocality in EH of bone is the manifestation of a

disseminative process, as established by clonality

Table 2. (Continued)

Patient
ID

Histological
variant

TFE3 and WWTR1
FISH analysis

FOSB
IHC

ZFP36::FOSB RT-
PCR analysis

FOS FISH
analysis

FOS and FOSB fusions identified by
NGS in paired lesions

EH32 Classic ND � ND ND

EH33 Atypical/
cellular

� + + ND

EH34 Classic ND + ND ND

EH35 Classic ND + � ND

EH36 Atypical/
cellular

� + ND �

EH37 Atypical/
cellular

ND � ND ND

EH38 Atypical/
cellular

ND + ND ND WWTR1::FOSB

EH39 Classic � + ND ND

EH40 Classic � + ND ND

EH41 Classic � + ND ND

EH42 Classic ND + ND ND

ND, Not done or not feasible; +, Positive; �, Negative.

� 2023 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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Figure 3. Fusion analysis of multifocal lesions indicates clonal relationship. A, Schematic representation of the WWTR1::FOSB fusion

detected in the multifocal EHs of patient EH38. The arrows indicate the location of the breakpoints in the cDNA. The chromatogram in the

lower panel confirms that the three EH lesions of this patient (A, left tibia; B, rotula; C, proximal tibia) share the same breakpoint. B, Sche-

matic representation of the FOS::chr10 fusion detected in both EHs of case EH14. The fusion involved FOS exon 4 and an intergenic region

of chromosome 10, close to the VIM gene. The chromatograms in the lower panel show that lesion A (IV metatarsus) and lesion B (II meta-

tarsus) carry an identical breakpoint. The greyish area indicates the de-novo STOP codon provided by the 3’ partner. C, Illustration of the

FOS::chr21 fusion detected in case EH24 involving FOS exon 4 and an intergenic region of chromosome 21 close to the ADAMTS1 gene.

The same breakpoint sequence was detected in both lesions of this patient (A, distal tibia; B, III cuneiform). D, Case EH21 carried an identi-

cal FOS fusion (FOS exon 4 and lncRNA ENSG00000255202) in the lesions of the tibia and calcaneus (A and B, respectively). PCA (E) and

unsupervised hierarchical clustering (F) of the multifocal EHs of patients EH21, EH24 and EH38 show co-clustering of paired lesions of the

same patient.
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analysis, this has no major impact on the clinical

course of the disease, even for patients treated exclu-

sively by surgery or biopsy. Therefore, EH of bone is

a tumour with disseminative potential but of benign

nature.
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Table 3. Recurrent fusions identified by RNA-sequencing in the separate tumour lesions of cases EH21, EH24 and EH38

Patient
ID Gene 1 Gene 2 Breakpoint_1 Site1 Breakpoint_2 Site2

Arriba
(confidence)

FusionCatcher
(confidence)

EH21A FOS ENSG00000255202 chr14:75281167 CDS chr11:33694437 Intron High –

EH21B FOS ENSG00000255202 chr14:75281175 CDS chr11:33694437 Intron Low –

EH21A SYN2 ACTG1 chr3:12071910 Intron chr17:81510151 3’ UTR High –

EH21B SYN2 ACTG1 chr3:12071910 Intron chr17:81510151 3’ UTR Low –

EH24A FOS chr21
(~ADAMTS1)

chr14:75281016 CDS chr21:26829622 Intergenic High –

EH24B FOS chr21
(~ADAMTS1)

chr14:75281016 CDS chr21:26829622 Intergenic High –

EH24A PSME3IP1 WWOX chr16:57185821 5’UTR/
splice

chr16:78164183 CDS/
splice

High High

EH24B PSME3IP1 WWOX chr16:57185821 5’UTR/
splice

chr16:78164183 CDS/
splice

High High

EH24A NDUFS8 chr11 (~GSTP1) chr11:68033283 CDS/
splice

chr11:67577746 Intergenic High –

EH24B NDUFS8 chr11 (~GSTP1) chr11:68033283 CDS/
splice

chr11:67577746 Intergenic High –

EH24A PMEPA1 PURB chr20:57651860 UTR chr7:44879426 UTR – High

EH24B PMEPA1 PURB chr20:57651861 UTR chr7:44879426 UTR – High

EH38A WWTR1 FOSB chr3:149542335 CDS/
splice

chr19:45470629 CDS/
splice

High High

EH38C WWTR1 FOSB chr3:149542335 CDS/
splice

chr19:45470629 CDS/
splice

High High

EH38A WWTR11 FOSB1 chr3:149528238 Intron chr19:45469785 Intron High –

EH38B WWTR11 FOSB1 chr3:149528238 Intron chr19:45469785 Intron High –

EH38C WWTR11 FOSB1 chr3:149528238 Intron chr19:45469785 Intron Low –

EH38A TFG ADGRG7 chr3:100720058 CDS/
splice

chr3:100629598 CDS/
splice

Low High

EH38B TFG ADGRG7 chr3:100720058 CDS/
splice

chr3:100629598 CDS/
splice

Low High

EH38C TFG ADGRG7 chr3:100720058 CDS/
splice

chr3:100629598 CDS/
splice

High High

Splice, Splice-site.
1Presplicing transcript.
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