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ABSTRACT
BACKGROUND: Patients with psychosis and patients with depression exhibit widespread neurobiological abnor-
malities. The analysis of dynamic functional connectivity (dFC) allows for the detection of changes in complex brain
activity patterns, providing insights into common and unique processes underlying these disorders.
METHODS: We report the analysis of dFC in a large sample including 127 patients at clinical high risk for psychosis,
142 patients with recent-onset psychosis, 134 patients with recent-onset depression, and 256 healthy control
participants. A sliding window–based technique was used to calculate the time-dependent FC in resting-state
magnetic resonance imaging data, followed by clustering to reveal recurrent FC states in each diagnostic group.
RESULTS: We identified 5 unique FC states, which could be identified in all groups with high consistency (mean r =
0.889 [SD = 0.116]). Analysis of dynamic parameters of these states showed a characteristic increase in the lifetime
and frequency of a weakly connected FC state in patients with recent-onset depression (p , .0005) compared with
the other groups and a common increase in the lifetime of an FC state characterized by high sensorimotor and
cingulo-opercular connectivities in all patient groups compared with the healthy control group (p , .0002).
Canonical correlation analysis revealed a mode that exhibited significant correlations between dFC parameters
and clinical variables (r = 0.617, p , .0029), which was associated with positive psychosis symptom severity and
several dFC parameters.
CONCLUSIONS: Our findings indicate diagnosis-specific alterations of dFC and underline the potential of dynamic
analysis to characterize disorders such as depression and psychosis and clinical risk states.

https://doi.org/10.1016/j.bpsc.2024.02.013
Psychotic and affective disorders are both prevalent and highly
disruptive to patients’ quality of life, making these disorders
some of the most important contributors to global disease
burden (1). Understanding the pathophysiology underlying
these disorders through neuroimaging might facilitate the
development of tools for early diagnosis or the identification of
novel interventions (2,3). The analysis of connectivity between
brain regions, particularly dynamic functional connectivity
(dFC), has proven to be an effective method of characterizing
brain alterations in health and disease (4,5). Studying dFC
abnormalities in patients with psychiatric disorders could
reveal important information on brain changes associated with
psychiatric symptoms and provide indications of their
mechanisms.

The discovery of the behaviorally meaningful network
structure of brain FC at rest (6,7) spurred numerous in-
vestigations of FC in patients with a range of brain disorders,
including psychosis and depression (8,9). Several more recent
ª 2024 Society of Biological Psychiatry. Pu
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studies have also examined changes in FC in patients at
clinical high risk (CHR) for psychosis (10–12), a prodromal
stage that often precedes a full psychotic disorder. This pop-
ulation is particularly interesting because pathophysiological
processes can be investigated before potential effects of
treatment, hospitalization, and disability are consolidated (13).
Since there is significant clinical overlap between patients with
depression, patients with psychosis, and patients at CHR for
psychosis (2,14), comparing brain changes between these
groups might provide insights into diagnosis-specific disease
processes.

Studies of static, or time-averaged, functional brain con-
nectivity indicate robust alterations in patients with depression
(15,16) and patients with psychosis (17,18). Aberrant connec-
tivity patterns particularly in the default mode network (DMN),
central executive network, and salience network have been
identified in both affective and psychotic disorders, but the
specific patterns of abnormalities differ between diagnoses
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(19,20). While patients with psychosis exhibit reduced FC both
within the DMN and between the DMN and salience network
(21), studies show an increase in FC in these networks and a
decrease in connectivity between the DMN and central exec-
utive network in patients with depression (16). Communication
between cortical and subcortical areas is also disturbed in both
disorders, with alterations in FC commonly found between
subcortical structures such as the striatum and areas in the
prefrontal cortex (22,23). The same brain networks are likewise
affected in patients at CHR for psychosis (24), although a dif-
ferentiation between psychotic, affective, and CHR-specific
changes is lacking.

However, analyses of static FC are limited as they neglect
the time-dependent variability of brain network connectivity.
These techniques cannot uncover alterations in FC in patients
with psychiatric disorders that occur only in the temporal
domain. Since research suggests that dynamic properties of
FC change in depressive and psychotic disorders (4,25–27),
examination of these properties might reveal symptom-related
and transdiagnostic brain abnormalities. One powerful
approach to detecting temporal alterations of brain connec-
tivity is based on computing FC within sliding windows. This
allows for the identification of recurrent FC states, which are
characterized by specific patterns of correlated activity be-
tween brain regions or brain networks (28,29). The character-
istics of such FC states are promising potential biomarkers of
psychotic and affective disorders and reveal information about
changes in transient brain activity and mechanisms that cannot
be gained from static FC alone (5,30).

The analysis of dynamic connectivity has so far been limited
to studies with small sample size and provided heterogeneous
findings (4,5,31,32). Some initial findings suggest an overall
decrease in temporal variability in depression (33), with pa-
tients spending a longer time in a weakly connected state (4).
In contrast, patients with psychosis spend less time in states
characterized by high connectivity within and between sensory
areas and more time in states with high connectivity within the
DMN (25). Moreover, other studies indicate that psychosis is
associated with temporal disconnectivity (30,34). The limited
data available on dFC changes in patients at CHR for psy-
chosis indicate not only some overlap of abnormalities with
patients with psychosis in the connectivity pattern of a domi-
nant FC state, but also variations specific to the prodromal
state (27). It is still unclear, however, to what extent those
findings are related to psychotic symptoms, rather than to a
general burden of disease or affective symptoms that both
patients at CHR and patients with psychosis commonly
experience. Due to the wide variety of methodologies
employed in dFC analyses (28), comparing results across
studies remains challenging, which makes it particularly
important to contrast patients at CHR, patients with psychosis,
and patients with depression with each other as well as with
healthy control (HC) individuals.

In the present work, we provide first results from a large-
scale neuroimaging study of patients at CHR of psychosis,
patients with recent-onset psychosis (ROP), patients with
recent-onset depression (ROD), and HC participants. We
investigated dFC changes by combining the sliding window
method with a consensus clustering approach to identify a set
of FC states. We then compared the dFC features of these
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
states, specifically lifetimes, frequencies, and transition fre-
quencies, across diagnostic groups. We investigated their
relationship with clinical variables such as symptom severity,
level of functioning, and cognitive scores with the aim of
identifying specific and transdiagnostic alterations in dFC.

METHODS AND MATERIALS

Participants

The PRONIA (Personalised Prognostic Tools for Early Psy-
chosis Management; www.pronia.eu) study is a multicenter,
naturalistic longitudinal study including patients with ROP,
patients with ROD, patients at CHR for psychosis, and HC
participants. A comprehensive baseline assessment including
a detailed clinical characterization, neurocognitive testing,
blood sampling, and a multimodal neuroimaging protocol
(structural magnetic resonance imaging [MRI], resting-state
functional MRI [fMRI], diffusion tensor imaging) was conduct-
ed in all study participants. All participants were invited for
follow-up examinations over a period of 36 months. Further
details regarding the study design are provided in previous
publications (35,36). All adult study participants provided
written informed consent before inclusion in the study. Minor
participants (younger than 18 years of age) provided assent,
and written informed consent was obtained from their guard-
ians. The study was registered at the German Clinical Trials
Register (DRKS00005042) and approved by the local research
ethics committees in each study center. Patients with ROD and
ROP were included in the study if they met criteria for the
respective diagnosis within the past 3 months according to the
Structured Clinical Interview for DSM-IV-TR (37) and the cur-
rent episode did not last longer than 24 months. Patients at
CHR for psychosis were included in the study if they fulfilled
cognitive disturbances criteria as assessed by the Schizo-
phrenia Proneness Instrument, Adult Version (38) or ultra-high-
risk criteria for psychosis as assessed by the Structured
Interview for Psychosis-Risk Syndromes (39). Further details
on inclusion and exclusion criteria are available in the
Supplement.

Clinical Assessment

The clinical assessment of study participants included the
Beck Depression Inventory–II (40), the Positive and Negative
Syndrome Scale (PANSS) (41), the Global Functioning: Role
Scale (42) and Global Functioning: Social Scale (43) for global
role and social functioning, and the Global Assessment of
Functioning (44). In addition, types and dosages of psychiatric
medications were recorded.

MRI Acquisition and Preprocessing

All participants underwent multimodal neuroimaging including
acquisition of structural and resting-state fMRI. T1 reference
images were acquired using a multiecho magnetization-
prepared rapid acquisition gradient-echo sequence with the
following parameters: repetition time = 9.5 ms, echo time = 5.5
ms, 8� flip angle, 250 3 250 mm2

field of view, 256 3 256
matrix size, 190 contiguous sagittal slices of 1.0-mm thickness
and 1.0-mm gap, 0.97 mm 3 0.97 mm 3 1 mm voxel size, and
pixel band width = 650 Hz. Blood oxygenation level–
024; -:-–- www.sobp.org/BPCNNI
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dependent images of the whole brain were acquired using an
echo-planar imaging sequence with 53 ascending slices
(repetition time = 3000 ms, echo time = 30 ms, 90� flip angle,
230 3 230 mm2

field of view, 3.0-mm thickness and 3.0-mm
gap, 80 3 80 matrix size, 2.875 mm 3 2.875 mm 3 3 mm
voxel size) using the intercommissural line (anterior
commissure-posterior commissure) as a reference. Resting-
state fMRI scans resulted in 200 volumes (603-second dura-
tion), and participants were instructed to keep their eyes open
during the scan.

T1 structural MRI images were preprocessed using CAT12
(https://www.neuro.uni-jena.de/cat12) (45). Resting-state fMRI
preprocessing steps comprised realignment, coregistration,
warping to Montreal Neurological Institute space and
smoothing, motion correction by time series despiking with the
Brain Wavelet Toolbox (46), background filtering, temporal
bandpass filtering (0.01–0.08Hz), signal extraction from white
matter and cerebrospinal fluid, and calculation of framewise
displacement for each participant to determine inclusion (47).
The preprocessed volumes were parcellated using the 160-
region Dosenbach atlas (48). Details of the preprocessing
procedure are available in the Supplement.

dFC Analysis

We obtained time-resolved FC for each participant using the
sliding window method (49) (Figure 1). For a given time win-
dow, we calculated the Pearson correlation coefficient of brain
activity between each pair of brain areas, yielding a 160 3 160
FC matrix. We selected a window length of 30 repetition times,
or 90 seconds, which has been recommended for dynamic
connectivity analysis (50,51). Since conventional sliding win-
dow analysis considers data points only within the window,
peaks in brain activity can lead to large changes in FC between
subsequent windows as they enter or exit the range of data
points under consideration. To reduce this effect, we calcu-
lated a weighted correlation using a Gaussian kernel (s = 3),
allowing data points to move into and out of the window
gradually (52). Subsequently, the window was shifted by an
offset of 1 frame, and new correlation coefficients were
determined. This process was repeated until the last frame was
Biological Psychiatry: Cognitive Neuroscien
reached, resulting in 162 FC matrices. We applied the Fisher z
transformation to the correlation coefficients, yielding an
approximately normally distributed feature. Since FC matrices
are symmetrical and the correlation of the activity in each area
with itself is always perfect, we conducted further analyses on
the 12,720 elements of their upper triangulars excluding the
diagonal. Thus, for each participant, we obtained a matrix of
size 162 3 12,720 representing the 12,720 pairwise FCs be-
tween brain regions for a total of 162 time points.

In accordance with previous studies (29), we identified a set
of recurrent brain states for each diagnostic group and the HC
group individually using k-means clustering and a consensus
clustering approach. Here, k-means clustering was conducted
10 times, and results were aggregated to improve the reliability
of the clustering solution. We calculated the rate at which 2 FC
vectors were assigned to different clusters for each pair of
matrices in our data. The resulting matrix served as a distance
estimation for an agglomerative hierarchical clustering algo-
rithm, which produced the final consensus clustering assign-
ment. Since there is no consensus on the optimal number of
FC states, with different studies identifying between 2 (4) and 5
(53) states, we explored a range of partition models comprising
between 2 and 10 states and computed a set of clustering
quality metrics. First, we performed a split-half analysis, clus-
tering the first and second halves of HC scans separately. We
then determined the correlation between the means of first-half
and matching second-half states, identifying values for k that
yielded states with high consistency between the samples. In
addition, we determined the Davies-Bouldin (54) and the Cal-
i�nski-Harabasz (55) scores.

Differences in dFC in CHR, ROD, and ROP Groups

As brain states were identified separately for HC, ROD, ROP,
and CHR groups, we performed a matching procedure to
establish correspondence between brain states across diag-
nostic groups. Here, similarity between 2 brain states was
quantified by the correlation between the state means. The
pairwise similarity for each brain state was computed for each
patient group (CHR, ROD, and ROP) relative to the HC group,
which resulted in 3 similarity matrices (CHR vs. HC, ROD vs.
Figure 1. Generation of time-resolved functional
connectivity (FC). Using a sliding window technique,
FC matrices representing pairwise correlations be-
tween brain regions were computed for each time
window. The upper triangulars of the FC matrices for
each time window for each subject were combined
into 1 matrix. K-means clustering was performed
repeatedly, and a clustering consensus was derived.
Based on the clustering solution, unique FC states
were identified and characterized. BOLD, blood
oxygenation level–dependent; S3T, subjects 3 time
points.
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HC, ROP vs. HC). In each matrix, we selected the pair of states
with the highest correlation and assigned the state identified in
the patient group to the corresponding HC state. The corre-
lation values of both states to all other states, i.e., the row and
column in the similarity matrix that contained the highest value
in their intersection, were then set to 0. The process was
repeated until all states identified in the patient group were
assigned a corresponding HC state. In addition, we calculated
the average connectivities within and between the resting-
state networks identified by Dosenbach et al. (48), as well as
the average connectivities within cortical, subcortical, and
cortico-subcortical links, of each HC state mean to better
characterize the FC states we identified.

For each participant group and each brain state, we
computed 1) state lifetimes (the average amount of time spent
in the state until transition to the next state), 2) state proba-
bilities (the percentage of time participants spent in the state),
and 3) transition frequencies (the number of times each state
switches into another state) (28). We transformed the param-
eters to a normal distribution using the Yeo-Johnson trans-
formation and removed gender, age, and site effects, as well
as motion effects related to mean framewise displacement, via
confound regression. Then, we compared the 4 participant
groups with respect to these metrics employing Mann-Whitney
U tests. We further analyzed the network described by the
transition frequencies and compared the in-degree, i.e., the
total number of transitions into each state, between groups.

Association With Clinical Variables

Subsequently, we employed canonical correlation analysis
(CCA) (56,57) to relate patterns of dFC features represented by
the brain states to clinical variables and to identify trans-
diagnostic brain-behavior relationships in the patient groups.
We considered lifetimes, frequencies, and transition fre-
quencies for each state or pair of states as dFC features and
symptom severity, demographic variables, and cognitive
domain scores as clinical features. Missing values in one of the
clinical variables were replaced with a groupwise median.
Participants with more than one missing value were excluded
from the analysis. To determine the statistical significance of
the correlation between the 2 variates, as well as between each
variate and the associated features, we performed
permutation-based hypothesis testing. We generated 1000
versions of the original dataset but randomized the order of the
dFC features and clinical features. Then, CCA was applied to
identify modes that highly correlate between each randomized
dataset and the original data, producing distributions of cor-
relation values for each component against which the original
correlations were tested.

RESULTS

Sample Description

Of the 688 participants in the dataset, 4 were excluded due to
missing data, and another 14 were excluded due to excessive
motion during the fMRI scan. Therefore, 261 HC participants,
130 patients at CHR for psychosis, 143 patients with ROP, and
136 patients with ROD were included in the present analysis
(Table 1). There were significant differences in the age and
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI
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gender distributions of the participants, with the ROP group
comprising fewer male participants than the ROD group (pROP-
ROD = .005), the HC group containing a lower proportion of male
participants than both the CHR and ROP groups (pHC-CHR =
.044, pHC-ROP , .001), and the mean age of participants in the
CHR group lower than in all other groups (pHC-CHR = .010,
pCHR-ROP = .013, pCHR-ROD = .011). Significant differences
between the groups were also present in the clinical scores
and medication dose, although the CHR and ROD groups did
not differ significantly in any feature except the positive
symptom domain of the PANSS. Participants were recruited
from 7 research centers. The highest number of patients were
tested at the Munich (n = 179) and Cologne (n = 123) centers,
with additional participants included from the Basel (n = 92),
Udine (n = 88), Birmingham (n = 69), Turku (n = 78), and Milan
(n = 41) centers. The distribution of participants by group
differed significantly between several of the sites (Table S1).
Identification of FC Brain States

We tested the robustness of the clustering procedure by
applying it separately to the first and second halves of the
scans of HC participants and by varying the number of clusters
obtained by the algorithm. In the analysis of the split-half fMRI
time series (Figure S1A), multiple states correlated very highly
between halves, regardless of the number of states k consid-
ered. For k , 4, all correlations of matching states identified in
separate halves were higher than the maximum correlation
between separate states identified in the same half of the data.
For partition models with more clusters, the correlations be-
tween some of the matching states remained robust, while
other states were less similar to their closest equivalent in the
other halves of the scans. For k = 5, all but one of the states
were highly consistent, and the state with the lowest consis-
tency still correlated more strongly between halves than in
most of the other partition models. While the Cali�nski-Har-
abasz score did not suggest a particular number of states to be
ideal, the solutions with 5, 7, and 10 states exhibited particu-
larly low Davies-Bouldin scores (Figure S1B, C). Since the
model yielding 5 clusters performed well with respect to both
the split-half consistency and the clustering score, we selected
it for further analysis.

The 5 distinct FC patterns of the brain states we obtained
for each diagnostic group are shown in Figure 2A. States
identified in the patient groups were matched to their closest
HC state, with the correlations of the states between groups
presented in Figure 2B. The means of states 2, 4, and 5 were
highly consistent between groups, indicating that these states
could be identified robustly in all patients and HC participants.
State 1 exhibited slightly lower correlations in its mean be-
tween the HC, CHR, and ROD groups, with the ROP group
mean diverging from all 3 groups. The mean of state 3
exhibited a high correlation between the HC and CHR groups
but low correlations in the other group comparisons.

For each HC state, we computed average connectivities in
and between functional networks identified by Dosenbach
et al. (48) (Figure 2C, D). State 1 was characterized by dis-
connectivity between the sensorimotor and cingulo-opercular
networks as well as DMNs and connectivity within the areas
belonging to the DMN and cingulo-opercular network. Within-
Biological Psychiatry: Cognitive Neuroscien
network and between-network connectivities in almost all re-
gions were high in state 2. The cerebellum network and the
DMN were strongly connected in state 3, with disconnectivity
between the cerebellar network and the sensorimotor network
as well as the DMN. States 4 and 5 displayed particularly low
connectivities both within and between networks, with cingulo-
opercular and sensorimotor connectivity, as well as
sensorimotor-cerebellar disconnectivity, higher in state 4.

Group-Level Differences in Dynamic Parameters of
FC States

Lifetimes and frequencies of each state in each group after
transformation to a Gaussian distribution and confound
regression are displayed in Figure 3A and B. States 4 and 5,
which showed the highest correspondence across groups,
also occurred with the highest frequency: State 5 was active
for approximately 50% of the time, and state 4 was active
between 18% and 30% of the time. The other states each
accounted for less than 20% of the total time. Similarly, state 5
exhibited the longest average lifetime, and state 4 exhibited the
second longest average lifetime (Table S3). Significant differ-
ences between groups emerged in all states. Participants in
the ROD group spent less total time in state 2 than participants
in the HC and ROP groups. They also exhibited higher fre-
quencies than participants in the other groups and longer
lifetimes than participants in the HC and ROP groups in state 5.
In the ROP group, state 1 was active for longer in total than in
the CHR and ROD groups and for longer lifetimes than in the 3
other groups. All patient groups experienced state 4 for longer
lifetimes than the HC group. The ROP group showed higher
frequencies in this state than HC and ROD groups. For state 3,
all group differences except those between the HC and CHR
groups in both parameters were significant, although the
extent of the differences was relatively small. In addition, wide
distributions could be observed for multiple groups and states
across both parameters, suggesting a high level of between-
participant variability.

The analysis of state transitions (Figure 4) showed that
across the diagnostic groups, the majority of states transi-
tioned most often into state 5, the most common and longest-
lasting state in each group. From state 5, the transition into
state 4 was most frequent in each group, although the fre-
quency was increased in the ROP and ROD groups. Transi-
tions from state 5 to states 2 and 3 were also common in the
HC and CHR groups. The other groups transitioned into state 2
roughly a quarter of the time, with the other transitions much
less common. In the HC and CHR groups, transitions from
state 4 into state 3 were also particularly common, whereas
they were less frequent in the ROD group and rare in the ROP
group. The in-degree of patients in the ROD group was
significantly lower than that of patients in the ROP group for
state 1 and significantly higher for state 2. The transition
behavior of state 3 was fairly inconsistent, with significant
differences in the in-degree between most groups.

Association Between dFC and Clinical
Characteristics

CCA identified 2 sets of linear combinations of dFC features
that correlated significantly with linear combinations of clinical
ce and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI 5
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Figure 2. Unique functional connectivity patterns identified by k-means clustering (k = 5). (A) Network representation of functional connectivity states across
diagnostic groups. For each group, the difference in distributions of connectivity values between matrices assigned to a given state and the remaining data
points were evaluated using a Mann-Whitney test. Nonsignificant effects (p , .05/[12,720 3 k]) were disregarded, and the top 5% of connections with the
largest effect sizes are displayed. Red lines indicate positive connectivity values, and blue lines indicate negative connectivity values. (B) Correlation matrix of
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Figure 3. Groupwise comparison of dynamic functional connectivity parameters. (A) Frequencies and (B) lifetimes of each state for each group after
normalization and confound regression. *Significant differences after Bonferroni correction (p, .0016). Effect sizes and p values are listed in Tables S2 and S3.
CHR, clinical high risk; HC, healthy control; ROD, recent-onset depression; ROP, recent-onset psychosis.
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variables. The loadings, the correlation of each feature with the
respective component, and the relationship between dFC and
clinical component values are shown in Figure 5. The first
clinical component was highly associated with positive
symptom severity as well as medication dose. The corre-
sponding dFC component exhibited a strong positive corre-
lation with the frequency of states 1, 4, and 5, in addition to the
lifetime of state 5 and the transition from state 5 to state 3. This
mode achieved a degree of separation of diagnostic groups,
with the ROP group scoring higher in both dimensions than the
CHR and ROD groups and the CHR group scoring slightly
higher in the clinical component than the ROD group. Two
other modes, one of which was associated in particular with
the PANSS general score, also appeared to be significant, but
did not survive Bonferroni correction for multiple comparisons
(Figure S2).
DISCUSSION

In this study, we aimed to characterize common and unique
alterations of dFC in psychosis and depression. We computed
dynamic parameters of FC states in CHR, ROP, and ROD
groups as well as an HC group; compared those features
between the groups; and associated them with clinical, de-
mographic, and cognitive variables.

Across the diagnostic groups, the states identified over-
lapped substantially. The means of the more prevalent states
2, 4, and 5 correlated strongly between all groups and
=

state means between groups. (C) Mean connectivities within and between resti
nectivities within and between cortical and subcortical areas. CHR, clinical high ri
recent-onset psychosis.

Biological Psychiatry: Cognitive Neuroscien
displayed similar state-specific connectivity patterns, indi-
cating that brain dynamics in all 4 groups are characterized by
alternations between the same set of brain states. States 1 and
3, which occurred least frequently, differed in their means
between groups. In addition, the split-half analysis was able to
identify a majority of states that were consistent between the
datasets regardless of the number of states considered, and
the 7-state clustering solution yielded several states that
matched those identified with k = 5, confirming the robustness
of the 5 states we used for further analysis.

The group-level comparisons of dFC parameters revealed
several significant differences between the diagnostic groups.
All patient groups exhibited increased lifetimes in state 4,
which encompassed low connectivities both within and be-
tween networks, with higher values in the sensorimotor and
cingulo-opercular networks. The ROP group also showed a
higher frequency of this state than the HC and ROD groups.
This increase in the total time spent in state 4 is likely related to
the abnormally high transition frequency from state 5, the most
common state, into state 4, which was specific to patients with
ROP. Since increased synchronization in both the sensori-
motor and the cingulo-opercular networks has been linked to
excess dopamine (58), this finding highlights a potential role of
dopamine signaling disturbances, which have long been
considered a key mechanism in psychosis (59–61), in dFC al-
terations in patients with ROP. Research has not identified the
same abnormalities in the dopamine signaling pathway in pa-
tients with depression (62), suggesting that the common
ng-state networks. Square sizes represent absolute values. (D) Mean con-
sk; HC, healthy control; L, left; R, right, ROD, recent-onset depression; ROP,
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Figure 4. State transitions. (A) Transition matrix showing the average number of switches between each pair of states. (B) Graph representation considering
only the most common transition out of each state. (C) In-degree of each state. *Significant differences after Bonferroni correction (p, .0016). Effect sizes and
p values are listed in Table S4. CHR, clinical high risk; HC, healthy control; ROD, recent-onset depression; ROP, recent-onset psychosis.
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increase in lifetime in this state is not linked to this system.
Further research is necessary to determine whether there is a
common mechanism contributing to the increase in lifetime
across all groups or whether this is a common effect caused by
distinct processes.
Figure 5. Significantly correlated mode identified by canonical correlation an
values in relation to dynamic functional connectivity (dFC) component values. (C
indicate significance before and after Bonferroni correction. *p , .05; **p , .0029
Attn, attention; BDI-II, Beck Depression Inventory–II; BS, Bullying Scale; Cog_to
Global Assessment of Functioning Disability/Impairment; GAF_S, GAF Symptom
SS_gen, Positive and Negative Syndrome Scale General Scale; PANSS_neg, PA
cognition; SoP, speed of processing; VerLrn, verbal learning; WM, working mem

8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
In the ROD group, state 5, the most common state featuring
low connectivities within and between most networks, was
active for significantly longer durations than in the other
groups. These findings match those of previous analyses of
dFC in patients with depression, which have shown an
alysis. (A) Clinical variable loadings. (B) Scatter plot of clinical component
) Dynamic functional connectivity feature loadings. In the heatmaps, stars

. Only transition frequencies with significant loadings (p , .05) are displayed.
tal, total cognition score; CTQ, Childhood Trauma Questionnaire; GAF_DI,
s; GF_R, Global Functioning: Role Scale; GF_S, GF: Social Scale; PAN-

NSS Negative Scale; PANSS_pos, PANSS Positive Scale; Soc_Cog, social
ory.
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increased lifetime of a weakly connected state (4) and
increased temporal stability in FC (33,63), which might result
from longer lifetimes of the most common state. The ROD
group also showed increased frequencies in the highly con-
nected state 2 compared with the HC and ROP groups. While
evidence from dFC studies related to this state is lacking,
Schaefer et al. (64) found that administration of a selective
serotonin reuptake inhibitor leads to a widespread decrease of
FC in healthy individuals, suggesting the possibility that the
increased lifetime of the highly connected state might be linked
to abnormal serotonin signaling reported in patients with
depression (65).

The investigation of the links between these dynamic FC
measures and clinical variables via CCA in the CHR, ROP, and
ROD groups revealed several significantly correlated canonical
variates. The strongest association was discovered between
positive psychosis symptom severity and antipsychotic
medication dose and dFC parameters of several states. The
ROP group could be separated along these 2 dimensions from
the CHR and ROD groups, which overlapped. Since the
severity of positive psychosis symptoms is one of the main
clinical factors distinguishing between the groups, it is not
surprising that a component dominated by this feature would
yield the clearest separation between any of the groups. Past
research has found evidence of an association between the
PANSS positive scale and static FC measures (66,67). The fact
that medication dose was significantly correlated with the first
canonical variate complicates the interpretation of this asso-
ciation, as research shows that antipsychotic medication can
affect brain connectivity (68–70). However, the correlation of
the clinical and dFC components of the first mode and the
loadings of the PANSS positive scale on the clinical compo-
nent remained significant even after removing medication ef-
fects via confound regression (Figure S5), suggesting that
medication dose does not drive positive symptom severity and
the shift in dFC parameters independently.

Some limitations of the study methodology should be
considered. We analyzed a large sample and were able to
produce robust findings with regard to confounds such as age,
gender, site, and motion effects (Figures S3, S4), but included
only data from a single study in our investigation. Thus, testing
the methodology on additional, unseen data to validate these
results is advisable. One of the factors particularly susceptible
to variations in the dataset or analysis methodology appears to
be the number of states k, with the chosen value varying
across studies (4,53,71). When we repeated the analysis with a
different number of states, many, but not all, of our results
remained consistent (Figure S6), suggesting that a further
validation of these findings is advisable.

As the scope of the present study is limited to the clinical
factors we incorporated in the analysis, future studies could
expand on these findings by supplementing them with addi-
tional variables. By including follow-up data, clinical value
would be added to such an analysis. To further elucidate
mechanisms of the CHR stage and the progression to psy-
chosis, a stratification of patients at CHR for psychosis based
on long-term outcomes is necessary. For patients with ROD
and patients with ROP, consideration of outcomes would allow
for an analysis of potential risk and resilience factors. The
association of dFC parameters with other biological,
Biological Psychiatry: Cognitive Neuroscien
behavioral, and clinical information, such as genetics, lifestyle
choices, and symptom profiles, would further enrich our un-
derstanding of the mechanisms of psychiatric disorders and
individual variability. In addition, a more thorough investigation
of the less common states 1 and 3 could reveal important in-
formation on brain changes in psychotic and depressive dis-
orders. While they are group-specific features of the dFC
landscape, their lack of consistency between the groups limits
the interpretability of their dFC parameters. The smaller, less
consistent clusters might constitute intermediate states,
highlight abnormalities within some of the more consistent
states, or represent states unique to particular groups alto-
gether. Additional analyses able to better separate clusters of
unequal sizes, and achieve higher temporal resolution, are
necessary for future investigation of this issue.

In this study, we found abnormalities in dFC in patients with
depression and patients with psychosis. The dFC parameters
were associated with both psychosis symptoms and trans-
diagnostic factors. These results indicate specific alterations in
brain communication in patients diagnosed with depression
and psychosis and show that individual variability across
positive psychosis symptom severity is represented in brain
connectivity dynamics. Future studies should investigate how
changes in dFC parameters relate to the risk of conversion to
psychosis in patients with CHR for psychosis.
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