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Abstract 
During my doctoral studies I had the opportunity to participate in several bioinformatics 

projects under the supervision of professor Brancolini, to address pressing scientific questions 

regarding the involvement of the class IIa histone deacetylases (HDACs) epigenetic regulators, 

which exert a repressive function on transcription, in cancer.  Firstly, my efforts were dedicated 

to exploring colorectal cancer (CRC) clinical samples, in addition to profiling the gene 

expression of the tumor microenvironment’s cell populations and the hypoxic milieu, two key 

factors influencing CRC patients’ prognosis, to estimate their oncogenic contribution. 

Secondly, another analysis was centered on investigating the impact of HDAC4 knockout on 

the transcriptome of leiomyosarcoma (LMS) cells, through the quantitative assessment of the 

H3K27ac histone mark on several putative class IIa HDACs and MEF2 target genes, 

particularly those displaying an unconventional drop in the acetylation signal after HDAC4 

depletion. Furthermore, the effect of the HDAC inhibitor NKL54, a PAOA (pimeloylanilide o-

aminoanilide) derivative, in leiomyosarcoma cells was also examined by ChIP-seq data 

analysis, following the promising anti-proliferative action observed in vitro, with the aim of 

understanding its effect on the genomic occupancy of class IIa HDACs, MEF2 and on the 

changes in H3K27ac distribution. Overall, these results helped expand the horizon about the 

oncogenic potential of the class IIa HDACs-MEF2 axis in two different tumoral contexts, CRC 

and LMS, towards a better understanding of epigenetic-driven carcinogenesis.  
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Introduction 
In the last decade, our research group has dedicated significant efforts in studying and 

comprehending the contribution to oncogenesis of the class IIa HDACs epigenetic regulators, 

describing an increasingly complex framework. In particular, after the first demonstration of 

the oncogenic potential of a hyper-mutated form of HDAC4 in fibroblasts and mice or and the 

pro-proliferative action of HDAC7 in the mammary gland, the focus shifted to those tumor 

types where a specific HDAC-MEF2 signature could justify further study and dedication for 

the clinical benefit. These tumors emerged to be the soft tissue sarcomas, a heterogeneous group 

of tumors which includes leiomyosarcoma (LMS), where the MEF2 signature appears 

suppressed and can correlate either with the PTEN oncosuppressor or with HDAC4, 

showcasing the MEF2 transcription factors (TFs) as a converging hub for HDAC4-driven 

oncogenic transformation (Di Giorgio et al., 2013).  

To extend the horizon to other tumoral contexts, we decided to investigate if class IIa HDACs 

could exert a role in one of the increasingly prevalent cancers associated with an important 

clinical-societal burden, colorectal cancer (CRC), in the context of the COLONACT project, 

aimed at culturing patient-derived organoids for the optimization of treatment and an effective 

personalized medicine, also taking into account the tumor microenvironment (TME) 

conditions.  

1.1 THE MYOCYTE ENHANCER FACTOR 2 (MEF2) FAMILY 

The MEF2 TFs were identified the first time in differentiating myoblasts as being able to bind 

the muscle-specific creatine kinase enhancer (Gossett et al., 1989). Subsequent studies have 

delineated their crucial role during early myogenesis for the diverse muscle types (smooth and 

striated), although subordinated to the 4 basic helix–loop–helix (bHLH) myogenic master 

regulators, particularly myogenin (Cserjesi and Olson, 1991); however, they appear to be 

expressed in a variety of other tissues, including the developing nervous system. Currently, the 

MEF2 family has been involved in a multitude of heterogeneous processes, for example muscle 

differentiation (Taylor and Hughes, 2017), promotion of neuronal cell survival (Yin et al., 

2012), response to stress stimuli and growth factors (Di Giorgio et al., 2018), inflammation 

(Tóth et al., 2018) and, finally, cancer (Potthoff and Olson, 2007; Di Giorgio et al., 2017; Chen 

et al., 2017). 
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1.1.1 ORIGIN AND GENOMIC ORGANIZATION OF THE MEF2     
TRANSCRIPTION FACTORS 

MEF2 can be found in simple organisms such as the yeast Saccharomyces cerevisiae and 

Drosophila melanogaster, which possess only a copy of the gene, while in Vertebrates several 

gene duplication events gave rise to 4 MEF2 paralogues (MEF2A, MEF2B, MEF2C and 

MEF2D), among which MEF2B is the most divergent due to a reduced selective pressure 

(Hobson et al., 1995, Wu et al., 2011). The coding region appears well conserved, with 9 

common exons and 2 mutually exclusive ones (the ubiquitous α-1 and the muscle-specific α-

2), whereas greater variability exists in the 5’-UTR region, comprising 7 non-coding exons 

along 60 kb (Ramachandran et al., 2008). Functionally, MEF2 belongs to the MADS-box 

family (MCM1 agamous deficiens SRF), and presents the homonym conserved A/T-rich DNA 

binding motif (YTA(A/T)4TAR), known as the MEF2 response element (MRE), localized at 

the N-terminus region in proximity to the MEF2 domain, responsible for the interaction with 

other cofactors; these two domains constitute an unstructured N-terminal tail formed by 3 α-

helixes (H1-3) and 3 β-sheets, where H1 and H3 are involved in DNA binding and H2 seems 

concerned with mutually exclusive partner interactions (Wu et al, 2010). On the other side, the 

C-terminus appears poorly conserved among the 4 MEF2 members and presents 2 transcription 

activation domains (TADs) and the nuclear localization signal (NLS); besides, this region is 

subjected to alternative splicing events (Potthoff and Olson, 2007). 

 

 
  

Fig.1.1.1 Structure of MEF2A 
MADS-box/MEF2 domains 
bound to DNA (PDB 3KOV) 
(modified from Di Giorgio et 
al., 2018). 
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1.1.2 MECHANISMS OF MEF2 REGULATION 

Several actors contribute to the control of the MEF2 function at multiple levels, which can be 

summarized as follows: 

1. binding of direct/indirect transcriptional corepressors, primarily class IIa HDACs 

(Miska et al., 1999), but also HDAC3, Cabin1, Smad3, or coactivators like p300 and 

Ash2L (Rampalli et al., 2007); 

2. post-transcriptional modifications (PTMs), such as phosphorylation and SUMOylation 

which lead to positive/negative and negative effects on transcription, respectively 

(Gregoire et al., 2005), as well as acetylation and methylation with positive and negative 

effects, respectively (Ma et al., 2005; Choi et al., 2014); 

3. control of the MEF2 transcript stability by means of miRNAs (Townley-Tilson et al., 

2010); 

4. regulation of the MEF2 protein turnover via different mechanisms: caspase and protease 

cleavage (Tang et al., 2005), the ubiquitin-proteasome pathway (Butts et al., 2005), 

autophagy (Yang et al., 2009). 

In particular, class IIa HDACs represent the most prominent partners of MEF2 TFs, through 

different types of actions exemplified by the recruitment of the repressive complex N-

CoR/SMRT/HDAC3 (Grégoire et al., 2007, Clocchiatti et al., 2013). The very first evidence of 

class IIa HDAC-MEF2 close relationship emerged with the discovery of MITR, a splicing 

variant of HDAC9 able to bind the MEF2 domain without interfering with the binding to DNA 

(Sparrow et al., 1999). Soon after, HDAC4 yeast’s HDA1 homolog was characterized as a new 

repressor of the MEF2A activity (Miska et al., 1999), an association under the influence of 

calmodulin/CAMK (calmodulin-dependent protein kinase) and which appears important in 

triggering cardiomyocyte hypertrophy (Youn et al., 2000; Lu et al., 2000). Among the PTMs, 

phosphorylation at multiple sites plays a central role in the regulation of MEF2, usually 

resulting in an increased MEF2 activity, and a number of protein kinases are involved: casein 

kinase II (CKII), that acts on a conserved amino acid (Ser59 in MEF2C) (Molkentin et al., 

1996); ERK5, belonging to the mitogen-activated protein kinases (MAPK) family, activates 

MEF2C after the addition of fetal serum in cultured cells (Kato et al., 1997). Moreover, the 

ERK5-MEF2 axis seems crucial for neuronal survival in response to the brain-derived 

neurotrophic factor (BDNF) during early stages of the central nervous system (CNS) 

development (Liu et al., 2003), and also in the inhibition of TRAIL-induced apoptosis in Her2+ 

mammary cancer cells (Borges et al., 2007). Another important MAPK is p38, a potent MEF2A 
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activator which is involved in inflammation and infection responses (Han et al., 1997, Suzuki 

et al., 2004), and also in the re-establishment of the differentiation program in 

rhabdomyosarcoma (RMS) cells mediated by the activation of MEF2 (Puri et al., 2000). 

Additionally, GSK3β (glycogen synthase kinase 3β) regulates MEF2 activity, too, although 

indirectly through a crosstalk with p38 both in the skeletal and cardiac muscle, acting as a 

suppressor of myogenesis and cardiomyocyte hypertrophy (Dionyssiou et al., 2013). However, 

in some cases phosphorylation is associated with a suppressive function, as it is the case for 

CDK5 (cyclin-dependent kinase 5), where it precedes the caspase cleavage of MEF2A/D in 

primary neurons after neurotoxic damage (Tang et al., 2005), while the resulting N-terminal 

fragments bring to NMDA-induced neuronal apoptosis (Okamoto et al., 2002). SUMOylation 

appears generally associated with the negative regulation of MEF2, an effect reinforced by 

HDAC4 (although this is inhibited by the sumoylation of HDAC4 itself) and reversed by 

SENP3 and ERK5 (Gregoire and Yang, 2005). Furthermore, also acetylation affects MEF2 

activity, as trichostatin A and nicotinamide upregulate this modification in MEF2D, and 

HDAC3 can catalyze the deacetylation by interacting with MADS box, unlike class IIa HDACs, 

thus inhibiting myogenesis in vitro and in vivo (Grégoire et al., 2007). Regarding the regulation 

by alternative splicing, MEF2C and MEF2D undergo tissue-specific splicing events, presenting 

an ubiquitously expressed isoform (α1) and a muscle-specific one (α2); a ChIP-seq experiment 

(Sebastian et al., 2013) revealed that these MEF2D isoforms bind overlapping sets of genes but 

only the latter is capable of activating late muscle differentiation gene expression, and this 

difference may be attributed to the escape from protein kinase A (PKA) inhibitory 

phosphorylation due to exon switching, thus abrogating the PKA binding site in MEF2D-α2 

and aiding the recruitment of Ash2L for the transactivation of muscle genes. Similarly, 

MEF2C-α1 displays no myogenic activity while MEF2C-α2 is required for muscle 

differentiation; moreover, the α2/α1 ratio is down-regulated in rhabdomyosarcoma (RMS) and 

the over-expression of MEF2C-α2 mediated by SRPK3 promotes the differentiation of RMS 

cells inhibiting proliferation (Zhang et al., 2015). MEF2D appears also involved in cerebellar 

neurons’ survival in response to DNA damage, being phosphorylated and activated by ATM 

(ataxia telangiectasia mutated); in fact, the MEF2D-silenced neurons are more susceptible to 

cell death induced by DNA disruption (Chan et al., 2014). It has been also demonstrated that in 

some circumstances the MEF2 activity is post-transcriptionally regulated by miRNAs: for 

example, in the heart miR-1 is able to block MEF2A and calmodulin, consequently inhibiting 

the hypertrophic process (Ikeda et al., 2009); by contrast, in skeletal muscle miR-1 promotes 
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myogenesis through the targeting of HDAC4, a well-acknowledged blocker of muscle-related 

gene expression (Chen et al., 2005). 

With respect to the MEF2 protein stability, at least in myocytes and neurons these transcription 

factors are highly expressed and have extended life, due to the fully differentiated state of these 

cell types (Yu, 1996). In rat cerebellar granule neurons the induction of apoptosis causes the 

phosphorylation of MEF2A/D (but not MEF2B/C), diminished transcriptional activity and 

caspase-dependent cleavage, leading to the loss of their pro-survival role (Li et al., 2001). An 

analogous phenomenon happens also through the caspase-dependent cleavage of HDAC4, 

whose amino-terminal resulting fragment acts as a repressor of MEF2C independently from the 

HDAC domain and it induces cell death because of the release of mitochondrial cytochrome c 

(Paroni et al., 2004). Autophagy, the cellular mechanism by which unnecessary cellular 

components are actively eliminated, seems to be involved at least in the neuron in the turnover 

of MEF2D through the chaperone protein Hsc70, while the inhibition of this process causes the 

accumulation of MEF2D in the cytoplasm, pointing to a potential link with Parkinson’s disease 

(Yang et al., 2009). 

 

 
  

Fig.1.1.2 Signaling 
and differentiation 
pathways converging 
on MEF2 TFs in 
several cell types 
(Potthoff and Olson, 
2007). 
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1.1.3 FUNCTIONS OF MEF2 FROM EMBRYOGENESIS TO THE ADULT 

As anticipated, the MEF2 TFs represent important contributors in the myogenesis process, as 

firstly reported in Drosophila melanogaster, where Mef2 is induced via enhancer by the bHLH 

transcription factor Twist in the early mesoderm, this event corresponding to the initiation of 

the myoblast fusion (Baylies and Bate, 1996; Cripps et al., 1998). Further genome-wide studies 

have underlined the central role of MEF2 in all stages of muscle development, from flies to 

humans, for instance in the neuromuscular junction and ionic transport (Sandmann et al., 2006). 

In vertebrates, the 4 bHLH myogenic factors (MyoD, Myf5, Myogenin and MRF4) have been 

elevated to master regulators of skeletal muscle development, as they are necessary and 

sufficient to induce terminal myogenic differentiation also if expressed ectopically (Olson, 

1990). In particular, MyoD and Myf5 appear firstly in proliferating myoblasts, while Myogenin 

and MRF4 are expressed only after the exit from the cell cycle (Olson and Klein, 1994; 

Rudnicki and Jaenisch, 1995). The smooth and the heart muscle types share several genes with 

the skeletal muscle but in these contexts the bHLH regulators are absent, suggesting the 

presence of an additional actor, MEF2, which alone is incapable of fully determining the muscle 

phenotype (Cserjesi and Olson, 1991; Yu et al., 1992). Recently, the MEF2 activity emerged 

being regulated by the cAMP-dependent signaling in myocyte-like cells, preventing the 

pathological activation by hypo-phosphorylated HDAC5 (He et al., 2020). Besides, the MEF2 

activity is enhanced in cardiac hypertrophy and additionally seems to be involved in heart 

failure (Tobin et al., 2017). The specific functions of the different MEF2 members can be 

evaluated in mice, where animals deficient for MEF2A or MEF2C result in embryonic and 

soon-after-birth lethality, respectively, due to severe cardiac abnormalities, whereas MEF2D-

null mice appear unaffected (Lin et al., 1997; Naya et al., 2002; Arnold et al., 2007). However, 

since the pattern of expression of MEF2 members is overlapping, as well as their function, 

researchers have been conducting studies with conditional mutants, hyper-active forms (VP16) 

and super-repressive ones (ENGRAILED) in order to delineate more accurately the singular 

roles (Karamboulas et al., 2006). The MEF2-HDAC7 interaction is important in maintaining 

vascular integrity by targeting metalloproteinase-10 (MMP10); indeed, HDAC7-null mice are 

embryonic lethal because of vascular collapse and also MEF2 appears to be essential in vascular 

remodeling through the ERK5 mediation (Chang et al., 2006; Hayashi et al., 2004). Neurons, 

second to the muscle cells, present the highest MEF2 levels, particularly in the cerebellum, the 

cortex, and the hippocampus. During development, the MEF2 expression pattern follows the 

neuronal differentiation gradient, peaking at fully differentiated cells (Lyons et al., 1995). 
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Furthermore, MEF2 TFs play a role in other developmental processes, i.e. in the bone and in 

particular in the craniofacial formation, as well as in the thymocytes maturation. For example, 

MEF2C deletion in the neural crest leads to severe craniofacial defects and consequently choke-

related neonatal lethality in mice (Verzi et al., 2007). MEF2C is also involved in chondrocyte 

hypertrophy preceding endochondral ossification (Arnold et al., 2007), while MEF2D in 

cooperation with HDAC7 negatively regulates the survival of double-positive CD4+ CD8+ 

thymocytes through the pro-apoptotic factor Nur77, following T cell receptor (TCR) activation 

(Dequiedt et al., 2003). It can be argued that in adult organisms MEF2 mostly mediates adaptive 

and remodeling responses, such as the skeletal and cardiac muscular hypertrophy 

(Kolodziejczyk et al., 1999; Potthoff e Olson, 2007). Additionally, a SUMOylation-induced 

repressive form of MEF2A seems to participate in the synapse development and plasticity 

(Shalizi et al., 2006), reinforcing the idea of an anti-apoptotic function of MEF2 in the neuron 

(Okamoto et al., 2000), where in the presence of high levels of activity and soaring intracellular 

calcium levels, the CAMK-dependent phosphorylation of HDACs leads to the MEF2-HDAC 

dissociation, turning MEF2 into transcriptional activators (Shalizi and Bonni, 2005). MEF2 

TFs also play a role in neuronal migration and differentiation, axon guidance, dendrite 

formation and remodeling (Ma and Telese, 2015; Latchney et al., 2015). MEF2 activity is not 

limited to neurodevelopmental processes, though, as data are emerging for a potential role of 

MEF2C in different mental disorders (Assali et al., 2019). 

 1.1.4 EMERGING EVIDENCE OF A MEF2 ROLE IN CANCER 

The function played by MEF2 in cell fate and adaptive programs is well-acknowledged. 

However, in relation to cancer the evidence is currently scarcer but nonetheless increasingly 

established (Pon and Marra, 2016), with several MEF2 genetic alterations occurring in various 

cancers (Di Giorgio et al., 2018). This correlation was firstly suggested by the discovery, after 

serum stimulation, of a MEF2D-mediated activation of c-Jun involved in the cell cycle 

progression (Han and Prywes, 1995); furthermore, also receptors like the G protein-coupled 

receptors (GPCRs) and the epidermal growth factor receptor (EGFR) seem to converge on 

MEF2 for the activation of c-Jun (Coso et al., 1997; Clarke et al, 1998). Putative positive 

mediators for the MEF2 oncogenic potential are calmodulin and some MAPK members, whose 

pathways are subjected to reciprocal crosstalk and reinforcement; for instance, calmodulin 

activates calmodulin-dependent protein kinase IV (CAMKIV) causing the nuclear extrusion of 

HDAC4, permitting the interaction between MEF2 and the coactivator p300 (Lu et al., 2000). 
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On the other side, ERK5 and p38 directly activate MEF2 through the phosphorylation of the 

TAD (Passier et al., 2000). Overall, these pathways converging on MEF2 effectively contribute 

to the hypertrophy of cardiomyocytes. Indeed, in satellite cells the depletion of MEF2A/C/D 

does not impair proliferation but impacts negatively on the regenerative potential after muscle 

damage derived from disease or injury, in which HDAC4 is also involved (Liu et al., 2014; 

Choi et al., 2014). In the liver, however, the MEF2 expression associates positively with the 

proliferation of stellate cells (HSC) in vitro and fibrosis in vivo, inducing at the same time α-

smooth muscle actin (α-SMA) and collagen I, through the mediation of p38 (Wang et al., 2004); 

in the same context, the inhibition of HDAC4 effectively reduces HSC activation markers and 

blocks proliferation (Mannaerts et al., 2013). Moreover, the MEF2D level in hepatic carcinoma 

is higher than in the corresponding normal tissue, it represents a prognostic marker and, finally, 

also seems involved in epithelial to mesenchymal transition (EMT) through TGF-β (Ma et al., 

2014; Yu et al., 2014). Moving forward, in RMS cells MEF2D appears repressed and its 

overexpression promotes the differentiation by up-regulating p21 (Zhang et al., 2013). In 

concert with class IIa HDACs, MEF2 TFs form a complex which is often deregulated in soft 

tissue sarcomas (STS), and in a subset of these tumors the MEF2 signature is suppressed, 

pointing to an oncogenic function of HDAC4 (Di Giorgio et al., 2013). Leiomyosarcomas 

(LMS) constitute about 10% of STS cases, with few therapeutic options and poor prognosis; in 

LMS, the MEF2 expression inversely correlates with overall survival and the coexistence of 

activator and repressor complexes with HDAC9 can influence tumor aggressiveness, driving 

either pro-oncogenic or onco-suppressor activities in vitro (Di Giorgio et al., 2017, 2018). More 

recently, MEF2D emerged as the privileged partner of class IIa HDACs in LMS, leading to a 

vicious circle that is able to sustain cell proliferation through the formation of repressive 

complexes with HDAC4 and HDAC9, preferentially at distal regions, acting as super-

enhancers (SE) (for a description of super-enhancers see paragraph 1.3) (Di Giorgio et al., 

2020). These data support the view that in LMS the HDAC IIa-MEF2 axis represents a 

promising target, even though the MEF2 TFs themselves are undruggable, pointing the 

attention on the research of effective and selective class IIa HDACs inhibitors. 

1.2 THE CLASS IIA HDACs EPIGENETIC REGULATORS 

Histone deacetylases (HDACs) constitute an ancient protein superfamily found also in 

prokaryotes and, in contraposition to histone acetylases (HATs), they exert an important 

regulatory function on gene expression, bringing to a reset of the chromatin to a condensed and 
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inaccessible state associated with transcriptional repression (Bannister and Kouzarides, 2011). 

However, members of class IIa HDACs (HDAC4, HDAC5, HDAC7, HDAC9) represent to 

some extent an exception, characterized by an almost negligible action on histone tails due to 

a single-point mutation occurred in vertebrates (Lahm et al., 2007). In contrast to other HDAC 

sub-families, class IIa HDACs possess a bipartite structure with an extended N-terminal domain 

(residues 450-600) where reside several phosphorylation target sites for the nuclear-

cytoplasmic shuttling mediated by 14-3-3 chaperons and a polyQ domain responsible for 

numerous interactions, like the  one with with Runx2 (Clocchiatti et al, 2011); the C-terminus, 

instead, contains a conserved deacetylase domain and the nuclear export sequence (NES) for 

cytoplasmic accumulation. Partners of this class include chromatin remodeling factors (CtBP, 

HP1 and the SUV39H1 methyltransferase), development-associated factors (Runx 2/3, GATA 

1/2, FOXP3, Nkx2-5) and hypoxia-inducible factor-1 α (HIF-1α) which is stabilized in hypoxic 

conditions by HDAC7 (Kato et al., 2004), but the list is on the rise. The most studied partners, 

however, are represented by the MEF2 TFs, as reported more than 20 years ago with the first 

characterization of HDAC4 and its repressive impact on the MEF2A signature (Miska et al., 

1999). Turning back to the nuclear extrusion, this event constitutes the prevalent mechanism of 

class IIa HDAC inactivation and is influenced by several kinases, for example CAMK I-IV, 

PKD, MARK2-3, SIK1 and Dyrk1B, which make this HDAC sub-class responsive to a variety 

of signaling pathways, from the response to mechanical stress in the heart to T cell apoptosis 

(Martin et al, 2007). On the other hand, phosphorylases restore the HDAC IIa activity taking 

them back to the nucleus: in this regard, PP2A is the best characterized (Paroni et al, 2007). 

 

 

Fig.1.2 The histone 
deacetylase family is 
subdivided in subfamilies 
(Clocchiatti et al., 2011). 
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 1.2.1 HDACs IIA IN HEALTH AND DISEASE 

Dysregulation of class IIa HDAC has been implicated in a wide variety of diseases, as a 

consequence of the complex regulatory networks and multifaceted activities exerted by this 

class, notably in cardiovascular development, immune response, cancer, and neurodegenerative 

diseases (Zhang et al, 2002, Clocchiatti et al, 2011, Mielcarek et al, 2013), leading to an 

increasing interest towards their therapeutic targeting. 

Currently, most biological functions of class IIa HDACs can be linked to the axis with the 

MEF2 TFs, exemplified during the embryogenesis stage in which the detachment from MEF2 

is fundamental for beginning the myogenic development, reinforced by the existence of 

negative feedback loops (McKinsey et al., 2000, Haberland et al., 2006). In primary 

cardiomyocytes, HDAC5/9 counteract the hypertrophic adaptation guided by MEF2A: in fact, 

HDAC9 knockout mice become more sensitive to hypertrophic stimuli (Zhang et al., 2002). 

During bone formation, HDAC4 negatively regulates MEF2C-mediated chondrocyte 

hypertrophy, and the HDAC4-null phenotype results lethal within 2 weeks due to severe bone 

malformations and ectopic ossification (Vega et al, 2004, Arnold et al., 2007). HDAC7, on the 

other hand, plays crucial roles in vasculogenesis: it is specifically expressed in the vascular 

endothelium during embryogenesis, where it participates in the maintenance of vascular 

integrity through the repression mediated by MEF2 of the expression of matrix 

metalloproteinase-10 (MMP-10), a secreted endoproteinase that degrades the extracellular 

matrix (ECM); in fact, HDAC7-null mice are embryonic lethal because of the rupture of blood 

vessels (Chang et al., 2006). HDAC5, upon phosphorylation by protein kinase D (PKD), 

dissociates from GATA1 because of erythropoietin influence, in this manner affecting red cell 

development (Delehanty et al., 2012). Additionally, HDAC7 is highly expressed in CD4+ CD8+ 

double-positive thymocytes, where it is involved in the T cell receptor (TCR)-mediated 

apoptosis as a result of nuclear extrusion and Nur77 expression (Dequiedt et al., 2003). 

Evidence is emerging for a role of class IIa HDACs also in diabetes pathogenesis, since these 

epigenetic regulators seem to regulate the production of hormones involved in blood glucose 

levels and insulin resistance, particularly in skeletal muscle, through the modulation of GLUT4 

mediated by HDAC5 (McGee et al., 2008). 

Regarding the involvement of class IIa HDACs in cancer development and progression, 

evidence is still limited, as most studies have focused the attention on class I HDACs; 

nonetheless, it seems to be strictly context dependent (Ropero and Esteller, 2007). For example, 

HDAC4, which was characterized as a transcriptional repressor more than 20 years ago (Wang 
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et al., 2000), has been implicated in the DNA damage response when it is recruited at repair 

foci by interacting with 53BP1 (Kao et al., 2003) and also in the regulation of cell proliferation 

as a component of the p53 pathway, since its suppression induces resistance to p53-dependent 

cell cycle arrest (Berns et al., 2004). Moreover, HDAC4 is involved in triggering apoptosis as 

a result of caspase cleavage and release of cytochrome c (Paroni et al., 2004). In STS sub-

groups, HDAC4 has been established to have a pro-oncogenic role dependent on the repression 

of some MEF2 targets (Di Giorgio et al., 2013) and, specifically, the pro-survival effect is 

particularly effective in leiomyosarcoma in concert with HDAC9 and MEF2D complexes 

which exert a dominant positional effect, mostly from distant intergenic regions (Di Giorgio et 

al., 2020). The involvement of HDAC7 in the control of proliferation and angiogenesis is a 

smoking gun for its role in cancer (Clocchiatti et al., 2011); for instance, higher HDAC7 (and 

HDAC9) expression is correlated with poor prognosis in childhood acute lymphoblastic 

leukemia (ALL), but an alteration of HDACs expression appears as a common characteristic of 

many tumors (Moreno et al., 2010). More recently, HDAC7 together with HDAC1 have been 

found to be required for the maintenance of cancer stem cells (CSCs) in both breast and ovarian 

tumors, and the inhibition of HDAC1/3 resulted in the downregulation of HDAC7 leading to 

decreasing H3K27ac levels at the TSS and super-enhancers (SE) (discussed in the paragraph 

1.3), selectively in CSCs (Caslini et al., 2019). One peculiar characteristic of HDAC9 is 

represented by the extensive alternative splicing events it undergoes; in particular, MEF2-

interacting transcription repressor (MITR) was the first to be characterized, lacking the C-

terminal domain but maintaining the capability of MEF2 repression (Sparrow et al., 1999); 

furthermore, HDAC9 is itself a target of MEF2 and a negative feedback loop exists that is 

particularly effective during muscle differentiation (Haberland et al., 2006). HDAC9 appears 

to be also involved in the Foxp3-dependent suppressive function of Treg cells after treatment 

with a HDAC inhibitor (Tao et al., 2007). Moreover, HDAC9 is highly expressed in the nervous 

system where in developing cortical neurons it seems to regulate dendritic growth (Sugo et al., 

2010). HDAC9 (and HDAC5) high expression has been found to be correlated with poor overall 

survival in medulloblastoma patients and silencing of these HDACs led to decreased cell 

viability in vitro (Milde et al., 2010). HDAC9 is over-expressed in breast cancer cells, 

particularly in the basal subtype, where it exerts a pro-tumorigenic function by targeting SOX9 

and decreasing the efficacy of HDACs inhibitors (Lapierre et al., 2016). In mammary epithelial 

cells, HDAC7 contributes to cell proliferation and stem-like status by regulating the 

surrounding microenvironment by repressing a number of cytokines including IL-24 (Cutano 

et al., 2019). The broad-range HDAC inhibitor vorinostat has been approved for the treatment 
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of T cell lymphoma and several other inhibitors are under study, as for instance the selective 

class IIa HDAC inhibitor TMP195 (Lobera et al., 2013; Wu et al., 2019). 

1.2.2 TARGETING THE MEF2-HDAC IIA AXIS WITH SMALL 
MOLECULES 

The consolidated data about the dysregulation of several HDAC members in different cancers 

have highlighted the possibility of interfering with HDACs function to restore the altered 

epigenome. The discovery of small molecule inhibitors, either class-specific or broad-targeting, 

which have relevant biological and clinical effects demonstrates how promising this research 

field is, as an adjuvant anticancer treatment in a combinatorial regimen with conventional 

chemotherapeutics to reach synergistic effects (West and Johnstone, 2014; Hontecillas-Prieto 

et al., 2020). Based on the chemical structure, HDAC inhibitors (HDACi) are grouped in 

distinct classes: hydroxamic acids (trichostatin A, vorinostat), carboxylic acids (valproate, 

butyrate), aminobenzamides (entinostat, mocetinostat), cyclic peptides (apicidin, romidepsin), 

epoxy ketones (trapoxins), and hybrid molecules. The first HDACi were identified many 

decades ago, when the aspecific inhibitor butyrate was found to induce cell cycle arrest and 

differentiation in vitro (Candido et al., 1978), followed in later years by the characterization of 

the antibiotic trichostatin A (Yoshida et al., 1995) and SAHA (suberoylanilide hydroxamic 

acid) as pan HDAC inhibitors. SAHA became the first FDA-approved HDACi for the treatment 

of advanced cutaneous T cell lymphoma, followed by romidepsin, whereas many others are 

clinically tested (Xu et al., 2007). These compounds target the Zn2+-dependent catalytic site, 

thus not appearing particularly effective and specific against class IIa HDACs; moreover, the 

discovery of class-specific HDACi would greatly benefits in terms of safety with less side 

effects, although HDACi are generally well-tolerated in spite of the deleterious consequences 

of experimentally removing single HDAC members, due to the transient nature of 

pharmacological action and, probably, the non-dissociation of the repressive complexes 

HDACs take part in (Haberland et al., 2009). To selectively affect class IIa HDACs, three main 

targets potentially exist: the zinc binding domain (ZBD), the N-terminal domain and the 

nuclear-cytoplasmic shuttling; these strategies could directly or indirectly interfere the binding 

of HDACs with their partners, most importantly MEF2, thus repressing the pro-oncogenic 

function, for example in leiomyosarcoma cells (Di Giorgio et al., 2013). However, the clinical 

relevance of these molecules is not limited to cancer, extending to endothelial dysfunctions, 

angiogenesis, skeletal abnormalities, and neurodegenerative diseases. Likely, all these 



16 
 

conditions present an altered epigenome which could be susceptible of pharmacological 

treatment to restore the chromatin to a pre-disease state (Haberland et al., 2009). 

1.3 INVESTIGATING EPIGENETIC MARKERS AND TRANSCRIPTOMIC 
DATA 

Epigenetics is referred to as the potentially heritable genetic and phenotypic patterns which do 

not involve a change of the DNA sequence (Kouzarides, 2007). This additional layer of 

information adds to the complexity of the genome, since in contrast to the singularity of the 

latter a multitude of epigenomes exist, representing a key contributor to cell identity and gene 

expression regulation. 

Development, intended in general terms, is an epigenetic phenomenon, since epigenetic 

changes have the great advantage of being flexible and reprogrammable; in particular, histone 

marks offer a valuable and short-term medium to accomplish cell diversity and gene regulation, 

in contrast to the more stable changes in DNA methylation patterns (Reik, 2007). Epigenomics 

aims to study global epigenetic changes, benefiting from an unbiased approach and the 

application of the most recent high-throughput technologies. These epigenetic changes are 

involved in virtually all cellular processes to some extent, both physiological and disease-

related, constituting a “chromatin-based signaling” (Jenuwein and Allis, 2001; Audia and 

Campbell, 2016). 

The study of epigenetics has greatly benefited from the implementation of high-throughput 

next-generation sequencing technologies, such as ChIP-seq and Hi-C, which have made 

possible the unbiased and hypothesis-free analysis of chromatin structure and histone 

modifications (Rivera and Ren., 2013). Relevant large-scale projects, like ENCODE 

(Encyclopedia of DNA Elements, 2003), have also contributed to mapping a reference of the 

epigenome and functional elements (The ENCODE Project Consortium, 2012; Roadmap 

Epigenomics Consortium, 2015).  

A high number of epigenetic markers exist: acetylation, methylation, phosphorylation, 

ubiquitination and other classes of modifications of the core histones offer a varied and fine-

tuned control on gene expression, the so-called histone code which appears not entirely 

deciphered yet. Together with DNA methylation, acetylation and methylation of lysine residues 

found in the histone tails are the most frequently investigated epigenetic markers, as they can 

correlate with the formation of chromatin domains, specifically euchromatin and 

heterochromatin. Some histone marks such as H3K27me3 or H3K9me2 are generally 

associated with condensed chromatin and are enriched for example in the inactive X 
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chromosome, while others (H3K27ac and H3K4me2) are often found at promoters or enhancers 

of transcriptionally active genes (Bartova et al., 2008). Specific enzymes are responsible for 

these modifications and must achieve an equilibrium, as is the case of histone deacetylases 

(HDACs) which antagonize the action of histone acetylases (HATs) removing an acetyl group 

to the N-terminal tails of histones (Bannister and Kouzarides, 1996). Epigenetic alterations can 

be found in many diseases, including cancer, where the methylation of tumor suppressor genes’ 

promoters can represent a mechanism leading to their silencing, and treatment with HDACi 

and demethylating agents is able to reactivate the expression of these important genes 

(Yamashita et al., 2018). In particular, H3K27ac is one of the most studied histone marks in 

gene expression profiling and developmental studies, as it is associated with decondensed and 

accessible chromatin, thus representing a robust epigenetic marker of gene expression 

activation, also helping distinguishing active from inactive enhancers, which are delimited 

genomic regions (50–1500 bp) promoting gene transcription in cis via distal mechanisms (up 

to 1 Mb), either up- or down-stream from the target gene; in the human genome hundreds of 

thousands of enhancers are estimated to exist, scattered across the non-coding DNA (Creyghton 

et al., 2010; Pennacchio et al., 2013). The term super-enhancer (SE) is applied to describe 

clusters of enhancers in genomic proximity with high levels of Mediator (Med1) and RNApol 

II binding, eRNAs (unstable RNAs transcribed bidirectionally from enhancer loci and 

correlated with their activity), chromatin marks and other features. SEs span large genomic 

regions, generally an order of magnitude larger than traditional enhancers; moreover, in cancer 

cells SEs are enriched at oncogenes, and some identified translocations can bring SEs in 

proximity of oncogenes (Pott and Lieb, 2015). For this reason, new therapeutic strategies aim 

at targeting SEs to hamper the expression of oncogenes, such as Myc in hematologic 

malignancies (Jia et al., 2019). 

Transcriptomics accounts for the qualitative and quantitative analysis of the whole 

transcriptome (i.e. the sum of all RNA transcripts), allowing a thorough analysis of the gene 

expression profile of an organism, of a specific tissue or cell (Lowe et al., 2017). Before the 

advent of transcriptomics, the studies focused for many decades mainly on individual 

transcripts; in the 1980s, the conception of the Sanger sequencing was used to sequence random 

fragments of individual transcripts called expressed sequence tags (ESTs), useful for the 

identification of new genes without the need of sequencing the whole genome (Marra et al., 

1998); other widely applied quantitative methods, although laborious and low-throughput, were 

the Northern blotting and the reverse Transcriptase quantitative PCR (RT-qPCR) (Alwine et 

al., 1977; Becker-André et al., 1989). The term ‘transcriptomics’ was initially adopted in the 
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1990s, when SAGE (serial analysis of gene expression) was introduced, which took advantage 

of the Sanger sequencing of concatenated random transcript fragments, where the transcripts 

were quantified by matching those fragments to known genes (Velculescu et al., 1995). The 

advent of microarrays (oligonucleotide arrays and Affymetrix’s GeneChip platforms were the 

most widely diffused) represented a breakthrough (Schena et al., 1995), allowing the 

determination of transcript abundance via the hybridization of thousands of fluorescently-

labeled transcripts on an array of complementary probes (short nucleotide oligomers), 

becoming the method of choice until the late 2000s. Technological advances in manufacturing 

and fluorescence detection greatly improved over time the specificity and sensitivity of 

microarrays, in particular for low abundance transcripts (McLachlan et al., 2005). Thanks to 

the increasing adoption of next-generation sequencing, which progressively overcame Sanger 

sequencing, RNA-sequencing (RNA-seq) could be developed, based on the counting of 

sequenced transcripts cDNAs, with the earliest reports published in 2006 (Bainbridge et al., 

2006) and increasing its popularity after 2008, allowing the quantification of the entire human 

transcriptome (Mortazavi et al., 2008). The analysis of the transcriptome has broad 

applications, from diagnostics to gene function annotation and study of the non-coding portion 

of the genome. For example, RNA-seq allows the dissection of regulatory features, splicing 

variants, SNPs, allele-specific expression, and gene fusions associated with diseases (Ozsolak 

and Milos, 2010; Khurana et al., 2016). The great majority of transcriptomic experiments is 

devoted to the analysis of protein-coding messenger RNAs (mRNAs); however, the same 

techniques can be also applied to non-coding RNA, primarily miRNAs and long non-coding 

RNAs (lncRNAs), which are involved in many important cellular biological processes, from 

RNA splicing to protein translation, potentially contributing to the onset of several diseases, 

including cancer (Hüttenhofer et al., 2005; Esteller et al., 2011). 

1.3.1 THE CHIP-SEQ TECHNOLOGY ALLOWS THE STUDY OF 
EPIGENETIC CHANGES AND PROTEIN-DNA INTERACTIONS 

The ChIP-seq technique was first introduced more than 10 years ago; combining chromatin 

immunoprecipitation with massively parallel next-generation sequencing; this powerful 

methodology makes possible to implement the genome-wide discovery of transcription factor 

binding sites and the prevalence of histone marks, replacing and improving microarray-based 

ChIP-chip thanks to lower starting material requirements and offering higher resolution and 

greater coverage at a lower cost; nonetheless, the implementation of ChIP-seq has required the 

development of new and still evolving analytical tools (Zhang et al., 2008; Park, 2009). The 
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essential concept at the basis of ChIP-seq is the enrichment of DNA segments bound by a 

protein (TF) of interest or harboring a specific histone mark; the DNA fragments are sequenced 

(most frequently single-end reads from 5’ end only) and then aligned to a reference genome to 

investigate for example the TF binding strength and/or pattern between two experimental 

conditions (differential binding), unearthing the underlying molecular insights regarding a 

biological effect. Currently, this technique has become the gold standard for dissecting DNA-

protein binding events and large datasets have been generated for several TFs and histone 

modifications, which can be harnessed to test hypotheses about the mechanisms of gene 

regulation. Given the importance of DNA-binding proteins in many processes, for example in 

transcription, replication and DNA repair, ChIP-seq experiments and data analysis have 

become a critical asset for many research groups worldwide. Depending on the research 

question, ChIP-seq experiments can be essentially classified in point-source, broad-source, and 

mixed-source, based on the nature of the signal: if highly localized (TFs), spanning large 

regions of the DNA (some histone modifications such as H3K36me3) or displaying both 

patterns (RNApol II), respectively. The peak calling is the computational method used to 

discover the genomic areas in which the alignment of several reads has produced a pileup 

(enrichment), corresponding to a putative TF binding site, an indicator of chromatin state or 

DNA methylation. The selection of the most suitable peak calling tool, as for example the 

popular MACS2, represents a signal to noise problem and the chosen parameters strongly affect 

the outcome; additionally, the researcher must decide if prioritize specificity or sensitivity. The 

choice of the peak finder will also depend on the type of ChIP signal, as well as the sequencing 

depth to be used, since a higher depth (optimally 20-40M reads) allows the detection of a higher 

number of sites with reduced enrichment, as it is usually the case with a broad signal (Furey, 

2012). Finally, careful planning must be done while preparing experimental controls (input, 

lacking the immunoprecipitation step and required for signal normalization) and biological 

replicates, since at least two are required as the ideal condition to reach a greater robustness of 

results. This large-scale information can be further complemented with additional functional 

genomics assays (e.g. DNAse I footprinting, FAIRE-seq and Hi-C) to predict the chromatin 

state, gene expression patterns and long-range interactions (Jiang and Mortazavi, 2018). 

Moreover, the recently developed single-cell ChIP-seq allows to investigate intra-tissue cellular 

diversity and intra-tumor heterogeneity (Nakato and Sakata, 2021). 
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1.3.2 RNA-SEQ OFFERS AN UNBIASED QUANTITATIVE 
TRANSCRIPTOME PROFILING TOOL 

RNA-sequencing represents a revolutionary method to quantitatively assess the level of 

transcripts by using next-generation sequencing (NGS) technologies, overcoming the intrinsic 

limits of microarrays (e.g. the limited dynamic range and the higher amount of starting material 

(micrograms rather than nanograms) (Wang et al., 2009). Over the last decade, RNA-seq has 

become an invaluable tool for transcriptome-wide analysis and differential gene expression 

profiling, evolving with the advancement of NGS technologies, and extending nowadays to the 

study of several aspects of RNA biology, from its structure to spatial transcriptomics 

(spatialomics) and single-cell gene expression (scRNA-seq) (Stark et al., 2019). RNA-seq is 

most commonly used to study mRNA as a proxy for protein expression, but the vast RNA 

output from noncoding regions, like long non-coding RNAs (lncRNA), small regulatory RNAs 

(sRNA) and enhancer RNAs (eRNA), has not to be neglected, virtually permitting the 

simultaneous profiling of all RNA classes subsequently distinguished in silico (Westermann et 

al., 2016). RNA-seq is also becoming an important tool in the clinical routine, allowing for 

example the detection of novel splicing variants potentially linked to genetic diseases (Marco-

Puche et al., 2019). This technological evolution has paralleled the development of better 

computational tools for data analysis and interpretation of increasingly complex datasets, from 

read mapping and batch effect correction to normalization (Chen et al., 2019). Since a typical 

RNA-seq experiment generates a large amount of raw data, the implementation of robust 

algorithms is essential to process it and several bioinformatics tools exist, each designed to 

address a specific analytic purpose depending on the experimental design. Four main 

processing stages can be identified: quality control, alignment, quantification, and differential 

expression (Van Verk et al., 2013). In particular, the quantification of sequence alignments 

(over the reference genome) may be performed at the gene, transcript or exon level, generating 

a table of read counts for each feature, ready for the differential gene expression analysis 

associated with data normalization and statistical assessment, providing probability estimates 

of these differences. A common and accurate method employed for transcript abundance 

quantification is RSEM, derived from the homonym package and useful for both single-end 

and paired-end RNA-seq data, without requiring a reference genome (Li and Dewey, 2011). In 

the end, transcriptomic analyses can be also finally validated by independent techniques, such 

as quantitative PCR (qPCR) in vitro and knockdown studies in vivo (Lowe et al., 2017). 
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1.4 FOCUS ON CANCER 

1.4.1 GENETIC ALTERATIONS AT THE BASIS OF CANCER 

The maintenance of genome integrity is a prerequisite for the proper functioning of 

multicellular organisms, and this requires the intervention of several safe-guard mechanisms 

for repairing the damaged DNA or inducing apoptosis when necessary. However, the events at 

the basis of the carcinogenic process pose a great challenge to the correct preservation of the 

genome, resulting in varying degrees of mutation burden and genetic instability, which 

themselves represent a hallmark of cancer with a direct causal relationship (Dixon and Kopras, 

2004; Armaghany et al., 2012). Among the major somatic tumor alterations of the mammalian 

genome, gene deletions or amplifications and single nucleotide variants (SNV) contribute 

mostly to the malfunctioning of the cancer cell, together with the still poorly characterized 

epigenomic alterations which are, however, more difficult to profile routinely in a clinical 

setting. Moreover, large-scale chromosomal alterations and rearrangements occur in cancer as 

well, as it was firstly documented decades ago for leukemia patients through cytogenetic studies 

(Balmain, 2001). Overall, the model of proto-oncogene activation and tumor suppressor 

inactivation as principal drivers of tumorigenesis in diverse tissues is well-established, as it 

mechanistically explains the accelerated behavior of cancer cells. In fact, molecular alterations 

drive phenotypic changes in cancer cells and their microenvironment, as it is usually assessed 

through histopathology. Nowadays, the traditional methodologies can potentially be aided by 

machine learning, as recently demonstrated with a deep learning algorithm able to predict a 

wide range of molecular alterations from routine, paraffin-embedded histology slides, 

potentially favoring the implementation of personalized cancer therapy (Kather at al., 2020). 

1.4.2 THE TCGA RESOURCE FOR CANCER RESEARCH 

The Cancer Genome Atlas (TCGA) represents a collection of genomic, transcriptomic, and 

clinical data covering a multitude of cancer types. The pilot project was launched in 2005 by 

the National Institutes of Health (NIH), as a public funded project to catalog cancer-related 

genome alterations in large cohorts of clinical samples, initially limited to brain, lung and 

ovarian cancers, while in a later phase (2014) extending to more than 30 types of tumors and 

counting about 11 thousand profiled patients. Several centers contribute at managing the well-

organized structure of TCGA: different Tissue Source Sites (TSSs) collect the required 

biospecimens and send them for sample processing to the Biospecimen Core Resource (BCR) 

for cataloging and quality control, followed by the submission of clinical data to the Data 
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Coordinating Center (DCC); subsequently, molecular analytes are delivered to the Genome 

Characterization Centers (GCCs) and Genome Sequencing Centers (GSCs) for high-throughput 

sequencing and bioinformatics analyses. The genomic data are made available to the research 

community and Genome Data Analysis Centers (GDACs). The GDACs implement 

information-processing and visualization tools for a broader usage of TCGA data. The aim is 

to provide publicly available cancer genomic datasets that will allow the improvement of 

diagnostic methods, treatment standards and ultimately cancer prevention (Tomczak et al., 

2015). Several investigators have already taken advantage of this plethora of information, 

publishing highly cited papers which have contributed to the advancement of cancer biology 

understanding (Cancer Genome Atlas Network, 2008, 2011, 2012, 2014, 2015, 2017). 

1.4.3 COLORECTAL CANCER IS ONE OF THE MOST PREVALENT 
TUMORS WORLDWIDE 

Colorectal cancer (CRC) is the third most common cancer diagnosed every year globally, with 

approximately 1.2 million cases and over 600 thousand deaths. Its incidence is strongly 

correlated with aging, as the median age at diagnosis is 70 years in developed countries and is 

typically linked to a so-called Western lifestyle. Most cases are sporadic despite the existence 

of predisposing hereditary conditions, such as familial adenomatous polyposis and Lynch 

syndrome, but these account for only 5% of CRC cases. However, a large twin study twenty 

years ago seemed to suggest that a substantial heritable component exist, with 35% of CRC risk 

which may be attributable to heritable factors, albeit the underlying genetics is still poorly 

characterized (Brenner et al, 2014; Lichtenstein et al., 2000). In more recent years, the 

prognosis has steadily improved, although a disparity exists between high- and low-income 

countries. CRC staging indicates the degree of extension of the tumor and is obtained through 

the TNM system, which accounts for local invasion (T), lymph node involvement (N) and 

metastasis spreading (M); as with most tumors, the stage at diagnosis represents the most 

critical prognostic factor, with 5-year survival dramatically dropping from stage I (over 90%) 

to stage IV (about 11%); additionally, the stage affects the therapeutic decision. There is not a 

single risk factor responsible for most CRC cases, however the following have been well-

recognized: age, male sex, familiarity (especially first-degree relatives) and inflammatory 

bowel disease, while others appear modifiable: smoking, excessive alcohol consumption, 

obesity, diabetes, Helicobacter pylori infection and high intake of red and processed meat. 

Among the protective factors, there are physical activity, hormone replacement therapy, aspirin 

and a healthy dietary pattern in addition to endoscopy for the removal of precancerous lesions 
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(Brenner et al., 2014). The molecular pathogenesis of CRC is heterogenous yet clinically 

relevant, as it can affect the prognosis and the response to treatment. The traditional model was 

proposed in the 80s and today is well-established, represented by the adenoma-carcinoma 

sequence, a slow and multistep process evolving through 10 or even more years, with the APC 

(adenomatous polyposis coli) oncosuppressor mutation occurring as one of the earliest events 

disrupting the Wnt signaling and leading to dysplastic benign (pre-malignant) adenomas; APC 

functions in a multitude of cellular processes, from mitosis, cell migration, regulation of 

genome stability and stabilization of CTNNB1 (β-catenin), a key component of the Wnt 

pathway (Dunn et al., 2013). The further progression to invasive carcinoma is promoted by the 

activating mutation of the KRAS oncogene and the inactivation of the TP53 tumor suppressor, 

often accompanied by chromosomal instability. Indeed, APC restoration in mice can revert the 

tumoral phenotype into differentiated normal crypt cells, independently from the KRAS and 

TP53 mutation status (Dow et al., 2015). However, about 10-15% of sporadic cases lacking 

APC alteration cannot be explained by this model, pointing to additional molecular events: for 

example, the presence of genomic instability which can take the form of chromosomal 

instability, microsatellite instability or CpG methylator phenotype (CIMP), and furthermore 

epigenetic alterations, involving in particular promoter hypermethylation of tumor suppressor 

genes. Such alterations are commonly associated with the BRAFV600E mutation and serrated 

precursor lesions, which are more difficult to diagnose (Armaghany et al., 2012; Brenner et al., 

2014). 

1.4.4 LEIOMYOSARCOMA IS A RARE TUMOR, CURRENTLY 
DIFFICULT TO TREAT 

Soft tissue sarcomas (STS) are a heterogenous group of rare tumors of mesenchymal origin, 

which includes over 50 histological subtypes, with the exclusion of parenchymatous organs and 

Kaposi sarcomas. These tumors are generally aggressive and with poor prognosis, indeed about 

one patient in two will develop relapse or metastasis (Cormier and Pollock, 2004). In particular, 

leiomyosarcoma appears as an aggressive STS with currently few therapeutic options; this 

tumor can be diagnosed at various sites, mostly the retroperitoneum, the uterus, the dermis and 

the blood vessels. The precise tumor initiating cell (TIC) is still a mystery, also because a 

corresponding benign form does not exist, even if presumably it is represented by a 

mesenchymal stem cell which failed the proper differentiation program into a smooth muscle 

cell (Danielson et al, 2010); some evidence highlighted the role of TP53 alterations in this 

context, as the re-expression of wild-type TP53 reduces tumorigenicity in uterine LMS (ULMS) 
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cells (Rubio et al, 2012; Pollock et al, 1998). Moreover, high grade LMS presents 3 times more 

amplifications compared to low grade LMS, in which deletions are more common, suggesting 

that the inactivation of oncosuppressors may precede the activation of proto-oncogenes in 

tumor initiation and progression (Yang et al., 2009). Noteworthy, some organ-specific 

alterations occur, like the over-expression of cell cycle-related genes in ULMS (Barlin et al., 

2015). Being scarcely responsive to chemo- and radiotherapy, chirurgical resection represents 

the main solution for affected patients, with 5-year survival approaching 50%. Due to the 

complex karyotype and the absence of recurrent genetic alterations, a precise medicine 

treatment for LMS is still missing. An RNA-seq analysis revealed a molecular sub-

classification associated with different clinical outcomes, although not clearly corresponding 

to histological markers, complicating its interpretation (Guo et al., 2015). Myocardin seems to 

exert an onco-suppressive function in ULMS (Kimura et al., 2010), and this is similarly true 

when over-expressing MEF2, which overcomes the HDAC4-mediated repressive function and 

oncogenic potential (Di Giorgio et al., 2013). However, recent evidence supports the idea that 

MEF2 in LMS can have either pro-oncogenic or onco-suppressive roles, depending on the 

interaction with co-activator or co-repressor (class IIa HDACs) complexes, which influence the 

underlying genetic programs involved; in particular, class IIa HDACs are over-expressed in 

about one quarter of LMS, where high expression of MEF2, HDAC4 and HDAC9 inversely 

correlate with overall survival. In this context, HDAC9 knockout inhibits the transformative 

potential of LMS cells, making HDAC9 a potential therapeutic target (Di Giorgio et al., 2017). 

More recently, the MEF2D-HDAC9 relationship, under a negative feedback loop deregulated 

in LMS, gained attention as a promoter of cell survival through the repression of FAS, 

interestingly presenting mainly distant binding at enhancers, a new modality of gene regulation 

described for class IIa HDACs (Di Giorgio et al., 2020). 

1.5 THE TUMOR MICROENVIRONMENT RECLAIMS A PROMINENT 
ROLE IN MOST SOLID TUMORS 

Cancer cells do not sustain their uncontrolled proliferation by themselves but depend on the 

establishment of complex interactions with the surrounding non-transformed stromal and 

immune cells, which overall constitute the tumor microenvironment (TME), a niche that can 

nurture the growth and invasion of the tumor after losing its homeostatic function. Indeed, the 

TME is not static but dynamically changes with cancer progression, with either pro-tumorigenic 

or anti-tumorigenic roles, thus emerging as a promising therapeutic target (Quail and Joyce, 

2013). One of the first pieces of evidence came from the increased incidence of cancer in tissues 
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subject to chronic inflammation, where an accumulation of activated cells leads to a 

malfunctioning tissue homeostasis, as for instance is the case of cirrhosis and hepatocellular 

carcinoma or inflammatory bowel disease and CRC (Grivennikov et al., 2010). Furthermore, 

retrospective studies have shown that the incidence of multiple cancer types can also be 

correlated with an impaired immune response, for example in transplant recipients, suggesting 

a protective effect exerted by a properly functioning immune system. Several actors in the TME 

take part in promoting tumorigenesis, most notably cancer-associated fibroblasts and tumor-

associated macrophages (CAFs and TAMs, respectively), as a result of a phenotypic switch 

driven by the growing tumor (Qian and Pollard, 2010). For instance, TAMs are the result of the 

functional plasticity (polarization) of macrophages and promote the invasive potential of tumor 

cells by releasing proteases and cytokines (EGF, CSF-1), through a paracrine signaling loop 

(Quail and Joyce, 2013). CAFs, abundant in the TME, are activated by a multitude of cytokines 

and, at least in breast cancer, have the capability to induce a mesenchymal phenotype which 

favors the occurrence of metastasis (Dumont et al., 2013). There are additional players in the 

tumor milieu, from the myeloid as well as the lymphoid lineages, such as myeloid-derived 

suppressor cells (MDSCs) and regulatory T cells (Treg). MDSCs are immature mixed myeloid 

cells with immunosuppressive properties, which are mobilized and then infiltrate the 

developing tumor enhancing vascularization and metastasis, disrupting the mechanisms of 

immunosurveillance (Gabrilovich et al., 2012). Regulatory T cells in physiological conditions 

coordinate in a complex manner the activity of T and B cells, besides that of innate cytotoxic 

lymphocytes, thus their effect on diverse types of tumors may result the opposite, correlating 

with either poor (breast and HCC) or improved survival (CRC) (Whiteside et al., 2012, Frey et 

al., 2010). Overall, the presence of these immunosuppressive cell populations in the TME 

significantly contributes to halt an effective immune response targeted against the tumor, and 

this needs to be considered when developing immunotherapeutic strategies (Ohue and 

Nishikawa, 2019). 

1.6 HYPOXIA IS A HALLMARK OF THE TUMOR MILIEU 

The TME is characterized by a decreasing gradient of oxygen moving from the external to the 

inner zones of the tumor, resulting in dynamically changing levels of hypoxia (when oxygen 

demand is superior to the supply) in about half of the solid tumors and representing a negative 

prognostic factor (Harris, 2002). Hypoxia poses a strong selective pressure on cancer cells, 

which must adapt to this adverse condition acquiring more malignant characteristics, thus 
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favoring the emergence of apoptosis-deficient or TP53-mutated cells; this adaptation is 

associated with increased genomic instability and mutagenesis, resistance to cytotoxic drugs, 

metastatic dissemination and poor prognosis (Bristow and Hill, 2008; Luoto et al., 2013; Dhani 

et al., 2015). Moreover, a hypoxia-driven metabolic reprogramming is another key stone, with 

a rewiring of cellular energetic networks towards a glycolytic metabolism, which contributes 

to sustain the rapid proliferation and growth of cancer cells (the Warburg effect), a discovery 

that goes back to 1930 (Phan et al., 2014). Hypoxia inducible factor 1α (HIF-1α), which is 

specifically expressed and stabilized during hypoxia, is the master regulator of this 

phenomenon and supervises a high number of downstream genes crucial for cancer progression, 

among which VEGF and erythropoietin, that help in promoting oxygen delivery through new 

blood vessel formation (Semenza, 2003; Lee et al., 2004). Consequently, hypoxia has emerged 

as a promising therapeutic target, for instance through bioreductive prodrugs activated only in 

the hypoxic tissue or by inhibiting HIF-1α (Wilson and Hay, 2011); moreover, since hypoxia 

is known to down-modulate a proper immune response in the TME, targeting hypoxia could 

also benefit the efficacy of immunotherapy regimens (Wang et al., 2021). 
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Aims 
Different scientific questions have been addressed in this thesis, through in silico data analysis 

tools. In the first part, we wanted to investigate the potential involvement of class IIa HDACs 

and MEF2 transcription factors in one of the most prevalent, yet hardly treatable and genetically 

complex tumors, represented by colorectal cancer (CRC). This analysis took great advantage 

from the TCGA resources to study gene expression, its prognostic value, and several clinical 

associations in a large cohort of CRC patients. Since the tumor microenvironment (TME) seems 

to play an essential role in the progression of the disease together with the strictly correlated 

hypoxia phenomenon, published gene signatures concerning these components were used to 

better decipher the gene expression profiles available for these patients, and potentially to 

assess a clinical-oriented value. 

 

Secondly, we focused on the in-depth characterization of ChIP-seq datasets obtained from 

leiomyosarcoma (LMS), an aggressive and incurable cancer of mesenchymal origin in which 

class IIa HDACs seem to exert a pro-tumorigenic function by repressing the MEF2 signature. 

This analysis extends from recently published data by our research group (Di Giorgio et al., 

2020), which described the complex genetic programs under the supervision of the HDAC IIa 

repressive complexes, specifically HDAC4 and HDAC9 in cooperation with MEF2D. By 

taking a divergent approach, we focused on those genes displaying a reduction of H3K27ac 

levels (a marker of active promoters and enhancers) in HDAC4 KO cells, implying a 

transcriptional activation exerted by class IIa HDACs, an overlooked behavior in most studies, 

given their well-acknowledged repressive role.  

 

A third part of this thesis was devoted to dissecting the effects of the putative HDAC inhibitor 

NKL54, recently under study by our research group in the EPIC project together with other 

similar compounds, to selectively target the class IIa HDAC-MEF2 axis in LMS, aiming to 

investigate the H3K27ac changes occurring after NKL54 treatment in LMS cells. 
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Results 

3.1 HDAC IIA AND MEF2 IN COLORECTAL CANCER - A TCGA 
ANALYSIS 

3.1.1 GENETIC ALTERATIONS OF CLASS IIA HDACs AND MEF2s IN 
CRC 

To investigate the potential roles played by class IIa HDACs and MEF2 TFs in colorectal 

cancer (CRC), we first explored their gene alterations and mutational landscapes in the TCGA-

COADREAD cohort of patients (n=640). We observed a very low frequency of mutations and 

copy number variations in these genes, with HDAC9 and MEF2C being the most frequently 

altered in the respective families (data available at cBioPortal and summarized in Table 1). 

Gene Single Nucleotide 
Variants (SNV) 

Deletions Amplifications 

HDAC4 4 1  - 

HDAC5 2 1 2 

HDAC7 4 - - 

HDAC9 11 - 3 

MEF2A 2 1 2 

MEF2B 1 3 - 

MEF2C 7 5 - 

MEF2D 1 - 3 

 



29 
 

Table 1 Gene alteration occurrence of class IIa HDACs and MEF2s transcription regulators in 

the TCGA-COADREAD cohort. 

3.1.2 CLASS IIA HDACs AND MEF2D GENE EXPRESSION CHANGES 
WITH TUMOR PROGRESSION AND WITH RESPECT TO NORMAL 
COLON 

Given the limited plausible impact on CRC tumorigenesis of the genetic alterations occurring 

in these gene families, our focus moved to the changes in gene expression levels and, in 

particular, we restricted the analysis to the RNA-seq profiled samples (n=382), evaluating if 

and how gene expression levels varied in CRC and with respect to the tumor progression. The 

stratification based on tumor stage showed that most class IIa HDACs exhibit a significant 

increase in mRNA expression during CRC advancement, with the only exception represented 

by HDAC4; by contrast, only MEF2D displays a strong increase among the MEF2 family 

members (Fig.1). Moreover, absolute expression levels widely change depending on the gene, 

with the highest mRNA levels found in the case of HDAC5, HDAC7 and MEF2D, whereas 

HDAC9 and MEF2B are the lowest expressed (Fig.1). Expression data were also obtained for 

matched normal colon samples from Firebrowse (n=50). The gene expression comparison 

clearly showed that HDAC7 is the only gene under investigation significantly upregulated in 

the tumor tissue, while the other HDACs IIa and MEF2 genes exhibit the opposite trend, being 

significantly downregulated in CRC compared to normal colon (Fig.2A). Secondly, as 

represented in the two correlograms (Fig.2B-C), in some cases the correlation coefficients 

between HDACs IIa and MEF2 gene expression vary substantially between normal and cancer 

tissues, as in the case of HDAC7, HDAC4 and MEF2A, which are strongly associated in normal 

tissue but more mildly associated in CRC. By contrast, in several other cases there seems to be 

only a slight difference, with the highest frequency of non-significant correlations found in 

normal tissue (presumably due to the lower number of profiled patients). 
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Fig.1 Boxplots showing class IIa HDACs and MEF2 mRNA expression levels (RSEM) 

in CRC patients stratified by tumor stage (Kruskal-Wallis global test, P<0.05 (colored in 

red when statistically significant), Wilcoxon paired test, *P<0.05, **P<0.01, 

***P<0.005, ****P<0.001). 
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Fig.2 (A) Comparative boxplots showing the gene expression difference (RSEM log2) 

between normal colon (NC) and matched colorectal cancer (CRC) samples (n=50) 

(Wilcoxon paired test, *P<0.05, **P<0.01, ***P<0.005, ****P<0.001). Correlation 

matrices of class IIa HDACs and MEF2s family members’ RNA-seq expression levels in 

(B) normal colon (n=51) and (C) colorectal cancer (n=382); a strikethrough box indicates 

a non-significant Spearman correlation (P>0.05). 
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3.1.3 EFFECTS OF CLASS IIA HDACs AND MEF2 GENE EXPRESSION 
LEVELS ON PATIENTS’ SURVIVAL 

Afterwards, we assessed the effect of HDACs IIa and MEF2 transcriptional regulators on the 

survival of CRC patients, adopting the median expression level of each gene as the cutoff to 

stratify patients in high and low expression groups. We found that HDAC7, MEF2A and 

MEF2C have a prognostic value, with high expression associated with significantly reduced 

overall survival (logrank test, P < 0.05, Fig.3). On the other hand, statistical significance was 

also obtained evaluating disease-free survival for HDAC7 and MEF2A but not MEF2C (Fig.3) 

We also performed a univariate and multivariate analysis of CRC data, finding that only in the 

case of HDAC7 the prognostic significance seems to be unaffected by the tumor stage and the 

fraction of genome altered (FGA), which are indeed strong prognostic attributes (Table 2). 

Additionally, the correlation of gene expression levels between the three prognostic genes in 

comparison to all the other family members varies substantially and appears as statistically 

significant in all cases, as represented in Table 3, with the strongest association found for 

HDAC9 and MEF2C, besides MEF2A and MEF2C. 
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Fig.3 Survival analysis showing the Kaplan-Meier plots (overall survival (left) and 

disease-free survival (right), logrank test, P<0.05) of patients having high and low mRNA 

expression levels (RSEM) of HDAC7 (A), MEF2A (B) and MEF2C (C) genes, 

respectively. In the lower right plot the K-M curves partially cross, potentially violating 

the assumption of proportional hazards, essential in a Cox model; however, it does not 

appear relevant as the survival analysis does not reach statistical significance. 
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Variable Univariate Multivariate Multivariate (step) 

n
 
  

HR 
(95% 
CI) 

P-value n HR 
(95% 
CI) 

P-value 
 

n HR 
(95% 
CI) 

P-value 
 

HDAC7 (low 
vs high) 

376 0.5646 
(0.366- 
0.871) 

0.00977 373 0.5837 
(0.3738-
0.9115) 

0.0179 373 0.5437 
(0.350-
0.8422) 

0.00636 

MEF2A (low 
vs high) 

376 0.6492 
(0.4239-
0.9941) 

0.0469  0.7626 
(0.4878-
1.1921) 

0.2344    

MEF2C (low 
vs high) 

376 0.6222 
(0.406- 
0.9535) 

0.0294  0.7850 
(0.5004-
1.2314) 

0.2919    

AJCC Stage 
(low vs high) 

376 0.3285 
(0.2078-
0.5194) 

1.9e-06  0.3688 
(0.2309-
0.5891) 

2.99e-05  0.3558 
(0.223-
0.5668) 

1.36e-05 

Fraction of 
genome altered 
(low vs high) 

373 0.5518 
(0.3567-
0.8536) 

0.00756  0.5762 
(0.3692-
0.8992) 

0.0152  0.5914 
(0.379-
0.9211) 

0.02014 

 

Table 2 Univariate and Multivariate analysis of gene expression and clinical data from colorectal 

cancer patients. Gene expression levels (low vs high) of prognostic genes HDAC7, MEF2A and 

MEF2C were considered, as well as tumor stage (low (Stage I and II) vs high (Stage III and IV)) 

and fraction of genome altered (FGA). HR indicates the Hazard Ratio, CI the confidence interval. 

A backward-forward step procedure was applied to optimize the multivariate model with the most 

informative variables. 
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 HDAC4 HDAC5 HDAC7 HDAC9 MEF2A MEF2B MEF2C MEF2D 

HDAC7 0.29 
(1.98E-05) 

0.23 
(3.18E-05) 

1 
0.31 (2.1E-

05) 
0.30 

(4.47E-15) 
0.19 

(4.19E-05) 
0.37 

(1.42E-19) 
0.39 (1.20E-16) 

MEF2A 0.28 
(9.57E-08) 

0.19 
(0.0043) 

0.30 
(4.47E-15) 

0.45 
(4.84E-13) 

1 
-0.01 
(0.04) 

0.57 
(7.34E-53) 

0.48 (1.17E-29) 

MEF2C 0.25 
(3.80E-06) 

0.33 
(5.82E-10) 

0.37 
(1.42E-19) 

0.58 
(3.06E-13) 

0.57 
(7.34E-53) 

0.07 
(2.99E-08) 

1 0.52 (3.95E-28) 

 

Table 3 Spearman correlation between the genes with a prognostic value and all the other class IIa 

HDACs and MEF2 members. 

3.1.4 A TUMOR MICROENVIRONMENT GENE SIGNATURE IS 
VARIABLY EXPRESSED AND CORRELATED WITH HDACs IIA AND 
MEF2 GENES 

We examined a published transcriptomic signature derived from a wide set of tumor 

microenvironment (TME) associated cell populations (Becht et al., 2016), since from our 

previously published data class IIa HDACs, and in particular HDAC7, emerged to have an 

inhibitory function towards inflammatory signals derived from the extracellular environment. 

To evaluate the expression level of these signatures in CRC patients, their gene expression data 

were represented as the median level of expression of their constituting genes. These signatures 

were expressed at different levels in TCGA samples (Fig.4A), with the fibroblasts signature 

(composed of only 8 genes, half encoding collagen chains) having a higher level in comparison 

to most immune-associated gene signatures, the only exception being represented by the 

monocytic lineage. Secondly, the fibroblasts signature expression increased significantly with 

the progression of the tumor, particularly from Stage I to III, although only after Z-score 

normalization of the expression data as these data are available as well (Fig.4B). The increasing 

expression trend, in this case RSEM values, was observed also for the endothelial cells 

signature, comprising 27 genes (Fig.4C). Moreover, we found that high expression of the 

fibroblasts signature is associated with significantly reduced overall survival (Fig.4D, logrank 

test, P< 0.05) and disease-free survival (using the optimal cut-point approach, Fig.4E). The 

Spearman correlation between each signature and HDACs IIa/MEF2 genes, as depicted in the 

heatmap (Fig.5), showed on average a positive correlation, especially with respect to MEF2 

transcription factors (excluding MEF2B), HDAC7 and HDAC9. The strongest overall 
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correlation with the TME signatures was found for MEF2C, particularly with the stromal 

component (fibroblasts and endothelial cells) and the monocytic lineage. This result agrees with 

the increasing MEF2C expression from initial to later stages of CRC and, additionally, it seems 

to confirm the fact that the MEF2 TFs are subject to a regulation exerted by the tumor 

microenvironment (Di Giorgio et al., 2018). 

 

 
Fig.4 (A) Boxplots representing the immune and stromal gene signatures mRNA 

expression levels (RSEM log2), summarized by the respective median expression values 

(Kruskal-Wallis global test, P<0.05). (B) Boxplots showing the increasing gene 

expression trend (Z-scores) of the fibroblasts signature with tumor stage progression 
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(Kruskal-Wallis global test, P<0.05, Wilcoxon paired test, *P<0.05, **P<0.01). (C) 

Boxplots representing the increasing gene expression trend (RSEM) of the endothelial 

cells signature with tumor stage progression (Kruskal-Wallis global test, P<0.05, 

Wilcoxon paired test, *P<0.05, ***P<0.005). Kaplan-Meier plots (overall survival (D) 

and disease-free survival (E)) of patients having high and low mRNA expression levels 

of the fibroblasts signature (logrank test, P<0.05). 

 

 
Fig.5 Heatmap depicting the Spearman correlation coefficients calculated between the 

mRNA expression levels (RSEM) of the HDACs IIa and MEF2 genes and the median 

expression levels of the Immune and Stromal gene signatures. 

3.1.5 EVALUATION OF THE TUMORIGENIC ROLE OF SEVERAL 
HYPOXIA GENE SIGNATURES IN CRC 

To include the contribution of hypoxia, we selected heterogeneous sets of published gene 

signatures associated with this biological process, to extend the knowledge about the role 

played by the TME in CRC tumorigenesis and metastasis, and additionally the potential 

influence exerted by HDACs IIa and MEF2 genes. The chosen hypoxia gene signatures (HGS) 

include different aspects associated with tumor hypoxia, from the metabolic adaptation to in 

vivo metastasis; we named “core” signature the union of the 20 most frequently occurring genes 

in 32 published signatures and 10 genes commonly included in 10 clinically-derived and 

validated hypoxia gene signatures (Lukovic et al., 2019). Secondly, we considered another 
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global signature resulting from an in silico meta-analysis on published microarray datasets, 

common to a wide range of cancer cell types (Lendahl et al., 2009). The last two signatures are 

associated with in vivo distant metastasis (Hu et al., 2009) or derived from transcriptomic data 

of CRC patients (Zou et al., 2019), respectively. We also considered for this analysis the union 

of all gene sets and the commonly intersecting genes, while the only gene in common between 

all the signatures appeared to be VEGF-A. 

Using again the median expression level of each gene belonging to the signatures as a proxy of 

the signature itself, the core signature appeared as the one most strongly associated with HIF1α 

expression, followed by the commonly intersecting genes; by contrast, curiously, VEGF-A and 

the CRC-derived signature are slightly negatively correlated with the hypoxia master regulator 

(Fig.6A). The expression level of the CRC specific signature significantly decreases during 

tumor progression, particularly from stage II onwards, while VEGF-A and the metastasis-

associated signature exhibit the opposite trend (Fig.6B). As expected, the latter is significantly 

up-regulated in patients with lymphovascular invasion and metastasis, and VEGF-A 

expression, too, is higher in the case of metastatic patients (Fig.6C).  
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Fig.6 (A) Scatterplots depicting the Spearman correlation between HIF1α and, from 

upper left to lower right, the core hypoxia signature, the commonly intersecting genes, 

the Zou signature and VEGF-A. (B) Boxplots showing, from left to right, the Zou 

signature, VEGF-A and the Hu signature gene expression levels stratified by CRC tumor 

stage (Kruskal-Wallis global test, P<0.05, Wilcoxon paired test, *P<0.05, **P<0.01). (C) 

Boxplots representing the gene expression levels of the Hu signature between CRC 

patients with or without lymphovascular invasion and metastasis (in this case also of 

VEGF-A) (M0 indicates absence of metastasis, M1 indicates presence of metastasis) 

(Wilcoxon paired test, P<0.05). 

 

Moreover, when considering the fraction of genome altered (FGA), almost all gene signatures, 

excluding the one by Lendahl, show a significant lower expression in patients with higher FGA; 

on the contrary, VEGF-A displays the opposite trend (Fig.7), a singular result considering that 

hypoxia is known to induce genome instability in cancer. 
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Fig.7 Boxplots representing the gene expression levels of the core hypoxia signature, the 

union of the gene sets, the commonly intersecting genes, Zou and Hu signatures, and 

VEGF-A in CRC patients with a high versus low fraction of genome altered (FGA) 

(Wilcoxon paired test, P<0.05). 

 

We then evaluated how patients’ survival is influenced by the high or low expression of the 

hypoxia signatures. Interestingly, the group of patients with high VEGF-A expression live 

(almost) significantly lower (P=0.05) and are also associated with significantly higher rates of 

recurrence or progression of the disease (Fig.8A). Instead, only when considering patients at 

early stages (I and II) the Lendahl signature and the union of all hypoxia-related genes appear 

as significant prognostic biomarkers, since the respective high expression groups are associated 

with both lower overall survival and disease/recurrence-free survival (Fig.8B-C). 
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Fig.8 Survival analysis showing the Kaplan-Meier plots of overall survival (left) and 

disease/progression-free survival (right) of CRC patients having high and low mRNA 

expression levels (RSEM) of VEGF-A (A), the Lendahl signature (B) and the union of 

all hypoxia signatures (C) (logrank test, P<0.05).  

 
 

Finally, we investigated the correlation between the HGS, the TME, HDACs IIa and MEF2 

TFs. From the heatmaps, it is possible to observe that in the case of the previously analyzed 

tumor microenvironment signatures, there is an overall positive correlation between the TME 
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populations and HIF1α, particularly strong in the case of the stromal component, the monocytic 

lineage and the neutrophils; by contrast, with VEGF-A the overall correlation is slightly 

negative and noteworthy, also between the stromal cell populations and the CRC-derived HGS. 

Moreover, the same signature is particularly negatively associated with HDACs IIa and MEF2 

transcriptional regulators, with the only exception being represented by MEF2B. From the same 

heatmap it is evident that both HDAC4 and HDAC5 appear negatively correlated with all the 

examined HGS; additionally, with HIF1α the most positive correlation is found for MEF2A 

and MEF2C, and among HDACs IIa with HDAC7 (Fig.9A-B). Stratifying for early and late 

tumor stages (Fig.9C), there is an increase in the correlation between MEF2C and HIF1α in the 

more advanced stages, while with respect to HDAC5 the correlation remains substantially 

negative. Interestingly, HDAC7 appears negatively associated with the CRC-derived hypoxia 

signature only at late stages, and overall, there is a slight increase in the correlation between 

HDACs IIa and MEF2 transcriptional regulators and the core hypoxia signature, with the 

exclusion of MEF2B, the lowest expressed in CRC patients among the MEF2 family, which is 

negatively associated with the global signatures, the commonly intersecting genes and also the 

union of all genes. These results pinpoint an important role of tumor hypoxia in CRC that in 

some cases, for example with VEGF-A and the union of all gene sets, significantly affects 

patients’ survival. Globally, the interaction between hypoxia, class IIa histone deacetylases and 

MEF2 deserves further investigation. 
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Fig.9 Heatmaps depicting the Spearman correlation coefficients calculated between the 

median mRNA expression levels (RSEM) of the hypoxia gene signatures and the TME 

signatures (A), the HDACs IIa and MEF2s genes in all CRC patients (B) and stratified in 

early (I and II) and late (III and IV) tumor stages (C). 
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3.2 HISTONE H3K27AC CHANGES IN THE SK-UT-1 LMS CELL LINE 

3.2.1 H3K27AC PATTERNS IN PROXIMITY OF HDACs IIA BINDING 

Histone acetylation changes reflect the differential binding of transcriptional regulators and, 

ultimately, induce variations in gene expression. Firstly, the raw counting of enriched peaks 

identified in the ChIP-seq experiments performed in the SK-UT-1 cell line (derived from a high 

grade uterine leiomyosarcoma) showed a predominance of HDAC4 binding regions (n=7732) 

with respect to HDAC9 (n=1257). A substantial proportion of HDAC9 peaks (n=1010) 

overlaps HDAC4’s by at least 1 bp, highlighting the presence of shared supervised networks 

(Fig.10A-B). Interestingly, when comparing the global normalized acetylation levels in each 

context, H3K27ac peaks signal rises expectedly in HDAC4 KO but decreases sharply in 

HDAC9 KO. This trend, however, is not observed when looking at H3K27ac peaks which fall 

within 5-10 kb from HDACs IIa binding sites; in this case, there is an increase of acetylation 

peaks, particularly steep for HDAC4 KO (Fig.10C). Using the ‘GREAT’ tool (from Bejerano 

Lab, Stanford University) to identify the genes close to the HDAC binding regions associated 

with a decrease of H3K27ac within 5 kb, it is clear that such regions are found mostly distally 

(more than 50 kb) from the TSS of said genes, either upstream or downstream (Fig.10D). This 

is naturally true also for HDAC4 and HDAC9 intersecting regions, but in this case about half 

(45%) of the regions do not appear associated with any gene (data not shown).  
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Fig.10 (A) Number of HDAC4 and HDAC9 enriched peaks in SK-UT-1 cells and (B) the 

number of HDAC4/9 peaks overlapping by at least 1 bp. (C) Comparison of the number 

of H3K27ac enriched peaks in WT versus HDAC4 KO conditions falling within 5-10 kb 

from HDAC4 binding. (D) Position, relative to the TSS of the closest annotated genes, of 

HDAC4 binding associated with a drop of H3K27ac within 5 kb.  

 

Moreover, among the HDAC4/9 common regions, there are n=253 HDAC4 peaks associated 

with a decrease of H3K27ac levels within 5 kb which show, as reported from ‘GREAT’ results 

page, a Gene Ontology (GO) enrichment relative to cellular component (used to describe the 

cellular compartment in which a gene product performs its function), for the Invadopodium 

membrane, a structure of the plasma membrane correlated with the prime stages of cancer cell 

invasion through the ECM (Table 4).  
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 H3K27ac KO enriched 
peaks within 5 kb 

Enriched 
peaks 

Genes GO 
enrichment 

HDAC4 ↑ 253 82 Invadopodium 
membrane 

 ↓ 14 16 - 

HDAC9 ↑ 117 63 Heart 
development 

 ↓ 119 65 Multicellular 
organism 
growth 

 

Table 4 Enriched HDAC4 and HDAC9 peaks after the knockout characterized by an 

increase or decrease of H3K27ac enriched peaks within 5 kb, the corresponding annotated 

genes and the Gene Ontology (GO) functional analysis enriched terms. 

As a step forward, we decided to restrict the intersection to only 1 bp (rather than 5 kb), to 

account for a mechanistically driven direct relationship between HDAC binding and H3K27ac 

variation. In the case of HDAC4, the binding peaks with an increase/decrease of H3K27ac 

within 1 bp comprise about half of those found within 5 kb. The ‘GREAT’ annotation of the 

different regions associated with an opposite acetylation trend showed a unique set of n=271 

genes, when accounting for their overlap. We chose to focus the attention on HDAC4 regions 

with a proximal decrease in H3K27ac peaks, as we never investigated this subcategory before. 

Among the set of 38 genes, we could quantify the overall and average acetylation ChIP signal 

from the sum of the associated H3K27ac peaks. In absolute terms, the peak intensities display 

a great variability among the genes, with DACH1, MZT1 and ZIC1 showing the greatest drop 

of acetylation in HDAC4 KO SK-UT-1 cells (Fig.11A). This is true also when examining the 

average H3K27ac peak intensities, although the genes exhibit less variability due to the 

different number of peaks per gene. Additionally, the distance of HDAC4 binding with respect 

to each gene’s TSS varies too, according to the results found by ‘GREAT’, up to a maximum 

distance set at 1 Mb; with respect to this, some genes display HDAC4 binding relatively close, 

such as ARID5B, MSRB3 and DPH6 (Fig.11B). ARID5B, MSRB3 and PDK4 also show a 
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MEF2 binding motif (Fig.11C). However, the exact mechanism responsible for the decrease of 

H3K27ac following the HDAC4 loss in LMS cells will require additional validation; given the 

very low catalytic activity of class IIa HDACs, however, it appears plausible to hypothesize 

that this class is also able to form coactivator complexes. 

 

Fig.11 (A) H3K27ac signal intensity for the 38 genes characterized by a decrease in 

H3K27ac enriched peaks within 1 bp from HDAC4 binding. (B) Distance of HDAC4 

binding from the TSS of the 38 genes. (C) Motif discovery performed using the PDK4 
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genomic coordinates with Trawler (https://trawler.erc.monash.edu.au/) and default options, 

showing the MEF2 binding motif. 

3.2.2 SUPPORTING EVIDENCE FOR A ROLE OF GJA1 (CONNEXIN43) 
IN LMS 

We decided to analyze some available microarray datasets (GSE132569; GSE94416) from SK-

UT-1 cells as a means of validating the previous findings; moreover, an evaluation of the gene 

expression profile in addition to clinical data was also performed in soft tissue sarcomas 

samples from TCGA for further confirmation. As a starting point, we focused on 26 genes 

selected based on the number of HDAC4 and H3K27ac associated peaks (at least two) and on 

the presence of a decreasing acetylation signal in HDAC4 KO. For all but one gene 

(NANOGP8, a retrogene) the expression data could be retrieved from the microarray datasets; 

twelve of them showed a significant log2 fold change, among which GJA1 (encoding 

Connexin-43) exhibited by far the stronger magnitude of repression in HDAC4 (and also 

HDAC9) KO cells (575-fold decrease), followed by CYP2J2 and NFIA. Gene expression was 

also evaluated in microarray data in the presence of MEF2 silencing through shRNA, showing 

in some cases opposing trends of expression in comparison to HDAC4 KO, although rarely 

statistically significant, except in the case of DACH1, strongly repressed after MEF2 shutdown 

and also counting the highest number of associated HDAC4 peaks (n=41) (Fig.12A). Then, we 

looked at the gene expression of these genes in TCGA clinical samples, analyzing the dataset 

“adult soft tissue sarcomas, TCGA (Cell, 2017)” from the TCGA Research Network (found at 

https://www.cbioportal.org/datasets), constituted of n=206 soft tissue sarcoma (STS) samples, 

including 80 leiomyosarcomas (LMS). As shown in Fig.12B, the expression of the twelve genes 

displays a degree of variability, with GJA1, PDK4 and NFIA having the highest expression in 

LMS patients.  

 

https://trawler.erc.monash.edu.au/
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Fig.12 (A) Log2 fold change of gene expression in microarray datasets (*P<0.05, *p-

value adjusted for multiple testing). (B) Gene expression level (RSEM log2) in TCGA 

LMS samples (Kruskal-Wallis global test, P<0.05). 

 

Concerning GJA1, its expression significantly rises with tumor aggressiveness (FNCLCC 

grading system) in STS but not specifically in LMS, presumably due to the limited sample size 

and loss of statistical power (Fig.13A); the expression of MZT1 and PREP also rise with tumor 

aggressiveness in LMS and STS patients, respectively (data not shown); by contrast, the PDK4 

gene expression significantly falls with an increase in both STS and LMS aggressiveness 

(Fig.13B, only LMS shown), and this is occurring also for MEIS2 and MSRB3, in STS and 

LMS patients respectively (data not shown). Furthermore, we compared the expression of 

GJA1 between tumor and matched normal tissue and, although the extremely limited sample 

size (n=2) does not allow to reach statistical significance, the expression in LMS is about 3 

times higher than normal tissue in the same patient (Fig.13C). Additionally, the high expression 

of GJA1 appears correlated with a poor prognosis (disease-free survival), in terms of a 

significantly higher occurrence of relapse or recurrence, both in STS and in the LMS subgroup, 

adopting the optimal cut-point approach and interrupting the K-M curves before the sample 

size becomes too small (Fig.13D-E).  
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Fig.13 (A) GJA1 mRNA expression (RSEM log2) in TCGA STS patients based on the 

FNCLCC histologic grade (Kruskal-Wallis global test, P<0.05, Wilcoxon paired test, 

*P<0.05). (B) PDK4 mRNA expression (RSEM log2) in TCGA LMS patients based on 

the FNCLCC histologic grade (Kruskal-Wallis global test, P<0.05, Wilcoxon paired test, 

***P<0.005). (C) Comparison of the GJA1 gene expression (RSEM) between tumoral 

and matched normal tissue (Wilcoxon paired test). (F) Survival analysis (disease-free 

survival) in STS (D) and LMS (E) TCGA patients having high and low mRNA expression 

levels (RSEM) of GJA1, adopting the optimal cut-point approach (logrank test, P<0.05).  

 

Another interesting point, which can be linked to the pleiotropic actions of connexins, is the 

influence exerted by GJA1 (Cx43) to the tumor microenvironment (TME); in fact, the GJA1’s 

most co-expressed genes in vivo appear associated with functional terms related to the 

interaction with the extracellular matrix (ECM), like the Syndecan interaction. Finally, a high 

expression of GJA1 transcript is also associated with a greater leukocyte infiltration (i.e. 

leukocyte fraction) both in STS and LMS (Fig.14), pointing to a possible facilitating function 

played by Connexin-43, although the underlying mechanism remains to be elucidated. 

However, from the analysis of the RNA-seq data available from the TCGA STS dataset, the 

GJA1 transcript mRNA level appeared poorly correlated with both class IIa HDACs and MEF2 
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TFs, except for a weak-moderate negative correlation with MEF2A and MEF2D (data not 

shown), a result which is concordant with the microarray shMEF2 dataset previously reported. 

 

Fig.14 Boxplots showing the GJA1 mRNA expression (RSEM log2) in TCGA STS (left) 

and LMS (right) patients, based on the stratification in high versus low Leukocyte 

Fraction levels (Wilcoxon paired test, P<0.05). 

 

3.2.3 MAPPING THE GJA1 LOCUS 

As described in the previous results, we observed the occurrence of a region enriched in 

HDAC4 peaks in an interval between 600 and 800 kb from the GJA1’s TSS (Fig.15, extension 

of approximately 1 Mb downstream to the gene). Secondly, the diminishing of the H3K27ac 

signal happening in HDAC4 KO condition with respect to WT is also evident, both downstream 

to the gene and in proximity, confirming the previous data. Thirdly, there is also evidence of a 

moderate MEF2D binding around GJA1’s TSS, hinting at the presence of HDACs-bound 

MEF2, thus forming a complex capable of repressing GJA1 expression. To corroborate this 

hypothesis, a useful technique to determine in an unbiased manner the presence of distal 

genomic interactions is represented by Hi-C, an extension of 3C (chromosome conformation 

capture), which displays a contact matrix, in this case derived from the IMR-90 fibroblast cell 

line, which shows to some extent the presence of a chromatin loop connecting the distant 

genome locations, on one side the HDAC4 binding and the reduction of acetylation and on the 

other the locus of GJA1 with a putative MEF2D binding. Overall, GJA1 (Cx43) appears to be 

part of the network under the supervision of HDACs IIa, although with a long-range mechanism 

of regulation and also an unusual positive control evident after the decrease of histone H3K27ac 
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mark due to the absence of HDAC4 in LMS cells and supported also by the strong down-

regulation in microarray. Taken together, these data point to Cx43 as an interesting candidate 

player in LMS, albeit the interest in connexins is not something new given the complex roles 

in physiological conditions and in different tumors and their niche. 

 

 

Fig.15 Locus of the GJA1 gene with HDAC4, HDAC9, MEF2D, H3K27ac (WT), H3K27ac 

(HDAC4 KO) and eRNA tracks (retrieved from SlideBase (Human Enhancers Selector), data 
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from the FANTOM5 project). In addition, the Hi-C contact heatmap (derived from the IMR-

90 cell line) is shown above. Genomic coordinates: chromosome 6, 121314495-122269935. 

 

3.3 EFFECTS OF NKL54 TREATMENT IN SK-UT-1 LMS CELLS 

Recently, our laboratory started studying the effects of inhibiting the HDACs IIa-MEF2 axis 

through a series of small molecules, with the rationale of disrupting the repressive action 

exerted by histone deacetylases and reactivating the MEF2 differentiation transcriptional 

program, which could counteract the uncontrolled proliferation in soft tissue sarcomas. In 

particular, the class of pimeloylanilide o-aminoanilide (PAOA) derivatives emerged as the 

more promising in terms of inhibiting LMS cells proliferation in vitro: from the original 

compound BML210, originally characterized as a pan-HDAC inhibitor (Savickiene et al., 

2006), the corresponding fluorinated analog NKL54 was studied for its capability to bind the 

hydrophobic groove of MEF2. However, the mechanism of action of this compound needs to 

be re-assessed, as the previously reported displacement of the MEF2-HDACs IIa interaction 

has not been confirmed by our more recent results (Minisini, Di Giorgio et al., 2022).  

3.3.1 CHIP-SEQ ENRICHED PEAKS ANALYSIS FOLLOWING NKL54 
TREATMENT 

Chromatin was immunoprecipitated with HDAC4, HDAC9 and MEF2D antibodies, in addition 

to the H3K27ac mark, after NKL54 treatment. As observed also from in vitro experiments, 

NKL54 can trigger a change in the expression level of these factors; in fact, the number of 

enriched peaks dramatically increased for MEF2D (from 2214 to 7763) and diminished for 

HDAC4 (from 7732 to 2153) and, less significantly, also in the case of HDAC9 (from 1257 to 

570) (Fig.16A). Furthermore, the overall number of acetylation peaks increases, with 

approximately thirty-thousand additional H3K27ac enriched peaks identified after the 

treatment, likely indicating a more accessible chromatin status induced by the compound. 

Nonetheless, the pairwise intersection (at least 1 bp) of enriched peaks between untreated and 

treated conditions showed that a substantial part of H3K27ac marks are overlapping (57743). 

Similarly, only 500 and 201 HDAC4 and HDAC9 peaks, respectively, were unique for the 

NKL54 treatment condition, while 1653 and 369 were in common with the untreated condition. 

Regarding MEF2D, after the NKL54 treatment most peaks (n=6878) appear to be unique and 

only 885 overlapped WT peaks (Fig.15B).  
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Fig.16 (A) Comparison of the number of HDAC4, HDAC9 and MEF2D enriched peaks 

between untreated (WT) and NKL54 treatment conditions. (B) Venn diagrams showing, 

in untreated and NKL54-treated SK-UT-1 cells, the 1 bp overlap of enriched peaks for 

HDAC4, HDAC9 and MEF2D. 

 

Then, a quantitative genomic annotation of the enriched peaks was performed through the R 

package ‘ChIPseeker’. Proportionally, after NKL54 treatment there is a sharp decrease of distal 

binding by HDACs IIa, while the proximal binding is very poor and limitedly affected by the 

treatment, with the only exception of intronic binding for HDAC4 which appears reduced after 

the treatment (Fig.17A-B). In the case of MEF2D, the binding is more distributed across the 

genomic compartments and following the NKL54 treatment the binding pattern displays an 

opposite behavior compared to HDACs IIa, with an increased binding particularly at the 

promoter level but also distally (Fig.17C); however, this could be simply attributed to the 

variation of expression levels, particularly for HDACs IIa, as observed in vitro. In relation to 

acetylation, there is a slightly higher prevalence of H3K27ac marks both at the proximal and 

distal regions (Fig.17D).  
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Fig.17 Comparative genomic mapping through ChIPseeker of the HDAC4 (A), HDAC9 

(B), MEF2D (C) and H3K27ac (D) enriched peaks in untreated cells and following 

NKL54 treatment. 

 

In order to assess how the NKL54 treatment functionally affects the binding of class IIa HDACs 

and MEF2 TFs, the GO analysis of the peak-associated genes revealed an enrichment for 

histone H4K20 demethylase activity of HDAC4-associated genes after NKL54 treatment, in 

contrast with HDAC4 WT peaks which are mostly correlated with sequence-specific DNA 

binding of RNApol II-associated regulatory regions. On the contrary, no enriched terms were 

found for HDAC9-associated genes. Finally, the analysis of MEF2D peaks-associated genes, 

either WT or NKL54-treated, defined chromatin binding and, specifically for treated cells, 

protein kinase binding as enriched functional terms, with no significantly enriched terms related 

to regulatory sequence binding (Fig.18). 
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Fig.18 Gene Ontology (GO) enrichment analysis of ChIP-seq enriched peaks. The 

number of annotated genes is indicated in brackets. 

3.3.2 HISTONE ACETYLATION AND HDACs IIA AND MEF2 BINDING 
PATTERNS AROUND THE TSS 

With the aim to further dissect the available ChIP-seq data to discover how the histone 

acetylation and the binding of class IIa HDACs and MEF2s localize at the TSS, the ‘Deeptools’ 

suite was used to integrate and compare the raw ChIP-seq data as well as the enriched peaks, 

either at a whole-genome scale or in specific genomic regions of interest. To support the 

previous results regarding the overlap of the enriched peaks, and in order to extend this 

information to the raw ChIP-seq signal, the Spearman correlation between the reads coverage 

of H3K27ac marks in the untreated (WT) versus NKL54-treated conditions was calculated, 

showing a very strong correlation (ρ=0.93) of the two signals, highlighting an overall high 

similarity in reads coverage that could have been overlooked with an analysis restricted to 

enriched peaks alone. On the contrary, the MEF2D signal before treatment emerged as the most 

divergent in terms of a lower correlation with MEF2D after treatment (ρ=0.53) and also with 

the other conditions; this result may highlight the overall rearrangement of MEF2D binding 

across the genome as a consequence of NKL54 exposure. Similarly, the HDAC4 signal in both 

conditions (ρ=0.76) clustered separately, showing an overall lower Spearman correlation with 

the remaining samples. HDAC9, on the contrary, displayed a strong correlation between 
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untreated and treated samples (ρ=0.88), as well as with respect to H3K27ac reads coverage 

(Fig.19).  

 
Fig.19 Clustered correlogram representing the Spearman correlation coefficients 

calculated between the ChIP-seq raw signal of every sample for each condition (untreated 

(WT) vs NKL54-treated). 

 

Looking at the acetylation signal within 3 kb of the TSS of all the RefSeq curated genes, as 

well as that of the RNA-seq up- and down-regulated genes (Fig.20), a decrease of this histone 

mark in proximity of the TSS is quite evident, even if it must be admitted that, in the case of 

the up-regulated genes, the average signal is about halved compared to the down-regulated 

genes; nonetheless, for the former group of genes this trend is quite unexpected, due to the up-

regulation following the NKL54 treatment.  
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Fig.20 Heatmaps displaying the WT and NKL54-treated ChIP-seq H3K27ac raw signal 

within 3 kb from the TSS of all the annotated RefSeq genes (left), of the RNA-seq up-

regulated genes (mid) and of the down-regulated ones (right). 

 

Moreover, regarding HDAC4 binding proximally to the TSS of these gene sets, this HDAC 

binds preferentially the down-regulated genes and a quite small percentage of all genes 

(Fig.21A); however, the proximal binding is not significantly affected by the inhibitor, similarly 

to HDAC9 (data not shown), evidence that also emerged when evaluating the enriched peaks. 

Interestingly, NKL54 leads to a strong rise in MEF2D binding at the TSS, in particular 

increasing the fraction of bound RNA-seq down-regulated genes (Fig.21B). Among this subset, 

73 genes show a substantial increase (fold change > 2) in MEF2D signal at the TSS following 

NKL54 treatment, and these MEF2D binding events are newly formed; on the other hand, only 

limited class IIa HDACs binding (specifically HDAC4) is found in a window of 3 kb within 

the TSS. Only two out of these 73 genes displayed new MEF2D TSS binding and HDAC4 

proximal positioning following the treatment, namely GYS1 (glycogen synthase I) and SSU72 

(RNA polymerase II CTD phosphatase), the latter involved in chromatin regulation and RNA 

processing. 
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Fig.21 Heatmaps displaying the ChIP-seq HDAC4 (A) and MEF2D (B) raw signals around the 

TSS of all the annotated RefSeq genes (left), of the NKL54 RNA-seq up-regulated genes (mid) 

and of the down-regulated ones (right).  
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Finally, since our in vitro data demonstrated that NKL54 is able to trigger a change in the 

MEF2s and class IIa HDACs protein levels in LMS cells, the loci for these genes were 

visualized to compare the H3K27ac levels in untreated versus treated conditions. In the case of 

HDAC4 (Fig.22A), there is an enrichment of the H3K27ac mark 2 Mb upstream of the TSS, 

which gets reduced after NKL54 treatment; these data could highlight the presence of a distal 

regulatory mechanism mediated, for instance, by a super-enhancer (SE) that could be 

responsible for the decreasing levels of HDAC4 in LMS cells seen after NKL54 exposure. In 

the case of MEF2D (Fig.22B), the plot similarly depicts a slight down-modulation of the 

acetylation signal upon treatment in a large region mostly upstream to the TSS but extending 

also beyond the gene, despite its (modest) up-regulation in vitro at a later stage. Overall, NKL54 

exerts a generalized decrease of the H3K27ac histone mark at promoter regions, in contrast to 

the evidence of an increase of the corresponding enriched peaks which rise in every genomic 

district (both proximal and distal). On the other hand, the binding of class IIa HDACs at 

promoter regions is not strongly affected by the inhibitor, which on the contrary triggers 

MEF2D binding, particularly of the down-regulated genes, likely as a consequence of the 

NKL54 inhibitory activity on class IIa HDACs. 
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Fig.22 (A) Genomic locus of the HDAC4 gene showing the H3K27ac (WT) and H3K27ac 

(NKL54) tracks (scale 0-300), extending approximately 2 Mb upstream from its TSS (chr2: 

237048168-239451654). (B) Genomic locus of the MEF2D gene showing the H3K27ac (WT) 

and H3K27ac (NKL54) tracks (scale 0-400) (chr1: 155863727-157580840). 
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Discussion 
The present doctoral research project has been devoted to expanding the knowledge of class IIa 

HDACs functions in diverse tumoral contexts (CRC and LMS), with an emphasis on the 

traditional axis with the MEF2 transcriptional factors and, additionally, with the inclusion of 

the histone mark H3K27ac as a means of considering chromatin accessibility and, thus, the 

expression changes occurring to several putative target genes. Moreover, the interest in HDAC 

inhibitors, such as the small molecule NKL54, gained our attention as well: in fact, epigenetic 

drugs are becoming a promising therapeutic strategy in oncology and, in specific cases, they 

have been already clinically validated, as is the case for SAHA. 

Regarding the investigation of class IIa HDACs and MEF2 TFs in colorectal cancer patients, 

very limited data are currently available, making this analysis pioneering. Admittedly, we could 

assess that the alteration of the HDACs IIa and MEF2s genes in the CRC samples from TCGA 

is rare, nonetheless their expression often rises with tumoral stage; in addition, for all these 

genes, a significant difference in expression levels exists between the normal colon tissue and 

matched tumoral tissue, with only HDAC7 displaying an increased expression in CRC, 

highlighting the fact that at least this HDAC member could exert a prominent role in this 

context, although not neglecting the fact that the down-regulation of the other HDACs and all 

MEF2s could also imply a biological effect. This is supported by the negative prognostic value 

associated with high HDAC7 expression in CRC patients and, furthermore, by not yet published 

in vitro data by our research group obtained from two CRC cell lines obtained from the same 

patient, in which HDAC7 expression appears thrice higher in the latter than the former and, 

moreover, its over-expression induces an increased proliferation rate in both cell lines. This 

evidence, together with a recent paper reporting the MEF2A potential contribution to CRC 

aggressiveness, points to the HDACs IIa-MEF2 axis as an interesting candidate for additional 

investigation in CRC pathogenesis. About the contribution of the TME to cancer progression 

and metastasis, which cannot be neglected anymore, through the analysis of the available gene 

signatures that are representative of the various cell populations constituting the tumor niche, 

we could delineate a more detailed picture of the patients’ genomic profile, from a relative 

quantification of the signatures’ abundance to the definition of their prognostic value. The 

fibroblasts signature was particularly interesting: its expression in CRC patients, in fact, 

indicates a relative enrichment of this stromal component in the CRC samples, likely in the 

form of cancer-associated fibroblasts (CAFs) and, secondly, it also appears to be a good 

prognostic biomarker which could serve for further validation. Lastly, together with the 
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endothelial cells signature, the former displayed a quite strong correlation with MEF2C, which 

itself appeared associated with lower overall survival. However, a study of the TME cannot be 

considered complete without the inclusion of the hypoxic phenotype as a crucial factor in 

determining the metastatic potential. Thus, different signatures were selected to reflect the 

underlying biological mechanisms contributing to building up a hypoxic environment (for 

instance the metabolic switch and the angiogenesis), in addition to signatures reflecting the in 

vivo metastatic process and, also, the specificity for the CRC transcriptomic fingerprint. These 

signatures appeared variably correlated with HIF1α, the master regulator of hypoxia, and 

noteworthy, VEGF-A in particular was negatively associated with HIF1α in CRC samples, 

while displaying a predictable increase in expression in patients with metastasis. Moreover, 

another evidence came from the observation that almost all the evaluated signatures, 

considering the median expression of their constituting genes, present an opposite trend 

compared to the fraction of genome altered, a parameter representing the degree of genome 

instability. All these results will deserve a biological assessment, to corroborate these 

bioinformatics associations, which are intrinsically correlative but can hardly lead to a causative 

relationship. On the other hand, the discovery of a prognostic significance for these signatures, 

as it is the case with VEGF-A for DFS or with the Lendhal signature for CRC patients at early 

stages, could provide a more direct clinical benefit to these patients, for example by predicting 

their disease outcome. Taken together, TCGA datasets offer a wide spectrum of analytic 

opportunities, which can ramp up from few genes to whole signatures composed of several 

gene panels; supported by in vitro data, this analysis has also highlighted a new, unreported 

role for HDACs IIa, and HDAC7 in particular, in colorectal cancer.  

Another fundamental research activity in which I was involved during my PhD consisted in 

analyzing ChIP-seq datasets generated from the SK-UT-1 cell line, derived from a high grade 

uterine leiomyosarcoma. As an important and frequently assessed histone mark, H3K27ac was 

included in the analyses as a focal point to infer the open chromatin status and, thus, the gene 

expression activation. Nonetheless, we chose to take a divergent approach focusing on those 

genomic regions associated with a drop of the acetylation levels following the depletion of 

HDAC4 or HDAC9, the most important HDACs IIa members in the context of LMS. In the 

examined datasets, these two HDACs differ substantially in the number of genome binding 

regions (in favor of HDAC4), even if a relatively large subset of these regions is in common. 

After the HDAC4 and HDAC9 knockout by means of the CRISPR-Cas9 technology, an 

increase in the number of H3K27ac peaks within 5-10 kb from the HDAC4/9 peaks could be 

observed; this evidence appears physiologic, as HDACs IIa are mostly found at co-repressor 



64 
 

complexes on the genome. Another characteristic emerged when mapping the peak-associated 

genes, that is the prevalence of distal binding (over 50 kb) of HDACs IIa from their TSS, either 

up-stream or down-stream, this confirming previously published data regarding the putative 

mechanism of action mediated by super-enhancer complexes, which postulates the existence of 

long-range interactions between the HDACs IIa complexes and more proximal regions. 

Restricting the analysis solely to the H3K27ac peaks overlapping HDAC4 binding aimed at 

establishing additional proof of the causative relationship between these two events. Indeed, a 

substantial proportion of acetylation events were found to localize within 1 bp from the HDAC4 

peaks, and the subsequent annotation retrieved a subset of 38 genes characterized by a proximal 

decrease in the number of TSS-associated H3K27ac peaks. The highest drop in the acetylation 

signal was observed for DACH1 (Dachshund family transcription factor-1), a TF implicated in 

organogenesis, in the inhibition of the TGF-beta signaling and, as it seems, also in periosteal 

osteogenic sarcoma. Given the availability of microarray data generated from the same cell 

line, harboring either the KO of HDAC4 or the silencing of MEF2, a validation was made 

possible to assess the in vitro expression level of the identified genes. The data from 

shMEF2A/D were not very consistent, although it highlighted DACH1 as the most repressed 

gene. On the contrary, out of the 26 identified genes satisfying the filtering conditions, 12 were 

found repressed at a statistically significant level in HDAC4 KO cells;  in particular, GJA1 is 

an interesting gene, somehow strongly repressed in HDAC4-depleted cells and coding for 

Connexin-43, one of the most important members of the connexin family, well-known for their 

structural function in forming gap junctions but also involved in several signaling circuits (e.g. 

the regulation of cell migration, the transcriptional repression and TGF-beta signaling, by 

interacting with tubulin). Connexins are either associated with improved or poor prognosis, 

depending on the tumor type. In this analysis, considering the SARC-TCGA dataset comprising 

80 LMS samples among more than 200 STS, we could confirm the bad prognostic potential of 

this gene, when highly expressed, in terms of DFS: in fact, its expression increases in higher 

grade STS samples. Another interesting finding is the three-fold up-regulation of GJA1 in LMS 

compared to the matched normal tissue, although this result would need an increase of the 

available samples to be definitive.  Furthermore, considering the importance of connexins in 

promoting heterotypic cell interactions in the tumor milieu, we could also observe a higher 

GJA1 expression in patients with increased levels of leukocyte infiltration, although this result 

may appear in contrast with the previous ones in terms of prognostic outcome. Finally, aiming 

at the evaluation of a putative distal regulatory mechanism mediated by class IIa HDACs, the 

Hi-C data confirmed the presence of a three-dimensional chromatin loop connecting the TSS 
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of the GJA1 gene with HDAC4 binding, evidence corroborated by the decreasing intensity of 

the H3K27ac signal in the same region after the KO of this HDACs IIa member.  

A major point of interest for our laboratory, furthermore, resides in targeting the class IIa 

HDAC-MEF2 axis in leiomyosarcoma to hamper its exacerbated proliferation, ultimately 

bringing to light an effective epigenetic cure for this rare and aggressive tumor. For this 

purpose, a series of small compounds have been tested, with a particular interest in the PAOA 

derivative NKL54. Recent data from our research group have demonstrated that this molecule 

displays a potent inhibitory effect on proliferation by inducing apoptosis of LMS cells; NKL54 

could also act as a HDAC inhibitor, although being ineffective in displacing the interaction 

between HDACs IIa and MEF2s. The ChIP-seq experiments revealed that NKL54 treatment at 

14 hours led to a substantial redistribution of the genome occupancy by these transcriptional 

regulators: the majority of HDAC4 binding was removed while MEF2D binding was greatly 

enhanced; the mechanism involved remains to be investigated and it is only partially explained 

by the induced variation in protein levels, which however occurs from a later time point. A 

distinction, however, must be made between the ChIP-seq continuous signal, represented by 

the raw reads coverage across the genome, and on the other hand the enriched peaks, derived 

from the former after the peak calling; this contraposition leads to two distinct analyses and, 

generally, the continuous signal provides a more realistic picture of the underlying biology. 

When looking at the genomic mapping of the enriched peaks, it appears that the NKL54 effect 

on the downsizing of class IIa HDACs peaks mostly happens at distal regions, with respect to 

the TSS of the annotated genes, while the binding of TSS-proximal regions is not affected but 

still remains quantitatively limited; by contrast, the inhibitor induces an overall increase of 

MEF2D positioning at virtually all genomic regions, most importantly at new promoters where 

it could act as a transcriptional activator thanks to the absence of the repressive influence of 

class IIa HDACs. Looking at the distribution of the ChIP-seq signal following NKL54 

treatment, MEF2D binding particularly increases at the TSS of the RNA-seq down-regulated 

genes, while a relatively small subset of these genes appears to be bound by class IIa HDACs. 

With regard to the H3K27ac mark, after the treatment there is a surge in enriched peaks (more 

than thirty-thousand) which are equally distributed among proximal, intronic and distal 

intergenic regions, showing however a substantial overlap with the WT condition; nonetheless, 

in proximity of the TSS the histone mark visibly decreases after the treatment, an unexpected 

result particularly for the RNA-seq up-regulated genes, although the acetylation signal is visibly 

lower in this group of genes, implying that the genes up-regulated by the inhibitor are generally 

weakly expressed in comparison to the down-regulated genes. Overall, NKL54 may represent 
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a promising small molecule with therapeutic potential in LMS; such a benefit could derive from 

the inhibition of class IIa HDACs and the overall enhancement of MEF2 transcriptional 

activity, although the underlying biological mechanism appears still unclear. In conclusion, the 

data presented in this doctoral thesis may help expanding the horizon about the oncogenic 

potential of the class IIa HDAC-MEF2 axis in two different tumoral contexts, CRC and LMS, 

also considering the contribution given by the tumor microenvironment, pointing towards a 

better understanding of epigenetic-driven carcinogenesis.  
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Material and Methods 

5.1 RSTUDIO AND R PACKAGES 

RStudio is an Integrated Development Environment (IDE) for R, a programming language for 

statistical computing and graphics, widely used in the scientific community. The RStudio 

version used was 1.4.1106 (RStudio Team, 2020), while different versions of R have been used, 

from 3.5.1 to 4.1.0 (R Core Team, 2021). 

Depending on the task, different R packages were used; for survival analysis, the packages 

“survival” (v. 3.2.11, Therneau, 2021) and “survminer” (v. 0.4.9, Kassambara et al., 2021) were 

applied. For ChIP-seq peak annotation, “ChIPseeker” (v. 1.28.3, Yu G, Wang L, He Q, 2015) 

was used, while for the visualization of ChIP signal “Gviz” (v. 1.36.1, Hahne and Ivanek, 

2016). For TCGA data query and download from cBioPortal, “cgdsr” (v. 1.3.0, Jacobsen and 

Luna, 2019) was applied. For the retrieval of genomic data from Ensembl, biomaRt was used 

(v. 2.48.0, Durinck et al., 2009). To manipulate data, the main packages used have been “tidyr” 

(v. 1.1.3, Wickham et al., 2019), “reshape2” (v. 1.4.4, Wickham, 2007) and “magrittr” (v. 2.0.1, 

Milton Bache et al., 2020). For the generation of most plots, the packages “ggplot2” (v. 3.3.3, 

Wickham, 2016), ”ggpubr” (v. 0.4.0, Kassambara, 2020), “ggcorrplot” (v. 0.1.3, Kassambara, 

2019) and “gplots” (v. 3.1.1, Warnes et al., 2015) were exploited. 

5.7 STATISTICAL ANALYSIS 

The examined sample populations were not normally distributed: for this reason, and in order 

to reach a greater robustness in the presence of outliers, non-parametric statistical tests were 

applied. For the survival analysis, the log-rank test was used to assess a statistically significant 

difference in the outcome between two Kaplan-Meier curves (P<0.05). The difference between 

two populations’ means was calculated with the Wilcoxon paired test (P<0.05), while with 

more than two samples the Kruskal-Wallis test was used (P<0.05). For correlation analyses, the 

Spearman coefficient was calculated. 

5.4 ACCESSING TCGA DATA THROUGH CBIOPORTAL 

cBioPortal is an integrated public platform for accessing, analyzing, and downloading large 

cancer genomics data, initially developed at the Memorial Sloan Kettering Cancer Center, and 

currently maintained by a multi-institutional team. This portal includes all the major cancer 

types grouped by organ/tissue of origin, and for each cancer type multiple datasets are available 
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in addition to PanCancer studies, providing data about genetic alterations, gene expression data 

and clinical information. The user can choose the study, the kind of information to take in 

account and additionally insert gene/s of interest. Data were last accessed in February 2021, 

downloading data from the following studies: colorectal adenocarcinoma (TCGA, Firehose 

Legacy) and adult soft tissue sarcomas (TCGA, Cell 2017). 

5.2 SURVIVAL ANALYSIS, HAZARD RATIO AND MULTIVARIATE 
ANALYSIS 

Statistics is an essential component of medicine, allowing researchers to reach sound 

conclusions about their data; survival analysis, which is regarded as part of inferential statistics, 

has many applications not limited to the biosciences, but most of its value derives from its 

extensive use in cancer clinical trials, a medical field which has greatly contributed to design 

and develop survival methods. These are based on few key concepts: the occurrence of an initial 

event, which can be represented by the diagnosis of a disease or a surgical intervention, 

followed by a subsequent, often undesired event which can be disease recurrence/progression 

or death; the time passing between these two events is commonly referred as event-free time. 

However, not every subject in the study will face the second event: these non-happening events 

are defined as ‘censored’ and, correspondingly, the survival time as ‘censored survival time’. 

The Kaplan-Meier (K-M) method is used for computing the survival probability and designing 

the homonym survival curve; a typical statistics summary is embodied by the median survival 

time, representing the time at which half of the subjects present a lower survival time and the 

other half a higher one. The statistical comparison between two or more K-M curves is 

performed mostly through the log-rank test, a statistical test which has the advantage of 

considering the entire follow-up period by testing the null hypothesis of the absence of 

differences between the groups regarding the probability of an event (for instance death) at any 

time point, basing this calculation on every time an event occurs. However, this approach can’t 

provide an estimate of the size of the difference between the groups or a confidence interval, 

hence requiring an additional type of analysis, the Hazard ratio, that includes the Cox 

proportional hazards model (Bland and Altman, 2004). The Hazard ratio (HR) was specifically 

developed for survival analysis and represents an additional metric which quantifies the relative 

risk of an event between two groups (Machin et al., 2006). Survival analysis may be performed 

using several different variables, either categorical or continuous; for example, based on the 

tumor stage classification, patients display varying clinical outcomes with later stages generally 

associated with a lower survival time compared to the first stage. In the case of continuous 
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variables, like the gene expression level of a particular gene, patients can be stratified based on 

the median or percentile expression cut-offs, allowing the definition of a clinical prognostic 

predictor. In some cases, the optimal cut-point approach was used, which consists in finding 

and reporting the optimal cutoff at which there is the most significant (log-rank test) 

stratification of patient groups. The independence of the predictor can additionally be assessed 

through a multivariate analysis, like the Cox regression analysis, applied when there are 

multiple potentially interacting covariates, especially continuous variables (Wiesweg, 2021). A 

stepwise selection (backward elimination) was applied to the multivariate analysis, which 

consists in starting from the inclusion of all covariates in the model, then gradually removing 

the non-significant ones to maintain only the most informative covariates. 

5.3 LINUX COMMAND LINE PROGRAMS 

The Linux distribution ‘Ubuntu’ was used, either in a virtual machine (VirtualBox) in Windows 

64-bit (Ubuntu 18.04.4) or as a full Operating System (OS) in a desktop workstation (Ubuntu 

20.04.2). For Python packages and environment management Conda (v. 4.8.3, 

https://docs.conda.io/projects/conda/en/latest/, Anon, 2020) was used. For the quality control 

of raw reads from next-generation sequencing, the FastQC (v 0.11.9, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, Andrews et al., 2010) tool was 

applied in Windows. For genome indexing and read alignment to the human genome 

(GRCh38), bowtie2 (v. 2.2.5, http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, 

Langmead and Salzberg, 2012) was used, while for BAM conversion, indexing and sorting 

samtools, respectively with the ‘view’, ‘index’ and ‘sort’ functions (v. 1.9, 

http://samtools.sourceforge.net/, Li H. et al., 2009) were applied. The peak calling was 

performed with MACS2 function ‘callpeak’ and default settings (v. 2.1.4, 

https://github.com/macs3-project/MACS, Zhang et al., 2008). Genomics analysis and 

manipulation of BED files was done with bedtools (v. 2.29.2 and 

2.30.0,https://bedtools.readthedocs.io/en/latest/, Quinlan and Hall, 2010), in particular using 

the commands ‘intersect’, ‘window’, ‘merge’, ‘getfasta’, ’bamtobed’. The integrative analysis 

and visualization of ChIP-seq data was finally performed using the DeepTools suite (v. 3.5.1, 

https://deeptools.readthedocs.io/en/develop/, Ramírez et al., 2016), using the ‘bamCoverage’, 

‘multiBAMSummary’, ‘multiBigwigSummary’, ‘plotCorrelation’, ‘computeMatrix’ 

(reference-point) and ‘plotHeatmap’ commands. 

https://docs.conda.io/projects/conda/en/latest/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/
https://github.com/macs3-project/MACS
https://bedtools.readthedocs.io/en/latest/
https://deeptools.readthedocs.io/en/develop/
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5.6 THE ‘GREAT’ TOOL FOR CHIP-SEQ PEAK ANNOTATION 

“Genomic Regions Enrichment of Annotations Tool” (GREAT, v. 4.0.4, 

http://great.stanford.edu/public/html/, McLean et al., 2010) was developed at the Stanford 

University (Bejerano lab), initially with the purpose of annotating the biological function of 

non-coding regions and cis-regulatory regions. More generally, a set of genomic regions, e.g. 

the binding regions resulting from the peak calling of a ChIP-seq dataset, can be used as input. 

GREAT associates both proximal and distal genomic regions to the putative closest genes, also 

attributing a functional annotation derived from diverse ontologies (primarily GO), providing 

the corresponding statistical enrichment. The plots and the list of associated genes (with the 

computed distance) can be downloaded for additional analysis. For this thesis, the GRCh38 

genome assembly was used with default options: “Basal plus extension” with proximal 

distances of 5 kb upstream and 1 kb downstream from TSS (basal regulatory domain) and 

extended to the nearest gene regulatory domain but no more than 1 Mb in both directions for 

distal association. The assembly used was “Human: GRCh38 (UCSC hg38, Dec. 2013)” and 

the whole genome as background. The queried functional databases were Gene Ontology 

(Biological process, Cellular component, Molecular function), Human phenotype and Mouse 

phenotype. 

5.5 FUNCTIONAL ENRICHMENT ANALYSIS WITH CLUEGO, A 
CYTOSCAPE APP 

Cytoscape (v. 3.8.2, Shannon et al., 2003) is an open-source Java-based software for the 

visualization and annotation of complex networks, initially developed for biological research 

but later extended to other research fields. The functionality of Cytoscape is greatly expanded 

by the apps, formerly known as plugins, which provide additional features. For this thesis, the 

ClueGO app (v. 2.5.8, Mlecnik and Bindea, 2009) was used for the functional annotation of 

gene sets. In ClueGO, the following databases were queried: Gene Ontology (biological 

process, cellular component, molecular function, ImmuneSystemProcess), KEGG, 

REACTOME (Pathways and Reactions), WikiPathways and Clinvar. Only pathways with p-

value<0.05 were retained. The option “GO term fusion” was also applied, meaning that if many 

associated terms occurred for each gene, ClueGO would automatically level up in the 

hierarchical cluster in order to simplify the analysis results. Regarding the statistical methods, 

the two-sided hypergeometric test was used with Bonferroni step-down correction for multiple 

testing. 

http://great.stanford.edu/public/html/
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ABSTRACT

In leiomyosarcoma class IIa HDACs (histone deacety-
lases) bind MEF2 and convert these transcription
factors into repressors to sustain proliferation. Dis-
ruption of this complex with small molecules should
antagonize cancer growth. NKL54, a PAOA (pimeloy-
lanilide o-aminoanilide) derivative, binds a hydropho-
bic groove of MEF2, which is used as a docking site
by class IIa HDACs. However, NKL54 could also act
as HDAC inhibitor (HDACI). Therefore, it is unclear
which activity is predominant. Here, we show that
NKL54 and similar derivatives are unable to release
MEF2 from binding to class IIa HDACs. Comparative
transcriptomic analysis classifies these molecules
as HDACIs strongly related to SAHA/vorinostat. Low
expressed genes are upregulated by HDACIs, while
abundant genes are repressed. This transcriptional
resetting correlates with a reorganization of H3K27
acetylation around the transcription start site (TSS).
Among the upregulated genes there are several BH3-
only family members, thus explaining the induction
of apoptosis. Moreover, NKL54 triggers the upregu-
lation of MEF2 and the downregulation of class IIa

HDACs. NKL54 also increases the binding of MEF2D
to promoters of genes that are upregulated after
treatment. In summary, although NKL54 cannot out-
compete MEF2 from binding to class IIa HDACs,
it supports MEF2-dependent transcription through
several actions, including potentiation of chromatin
binding.

INTRODUCTION

The MEF2 family of transcription factors (TFs) includes
four paralogues MEF2A, B, C and D that regulate differ-
entiation and important adaptive responses. They coordi-
nate the expression of a rather large number of genes in
a context- and partner-dependent manner (1). Dysregula-
tions of these TFs have been documented in various dis-
eases (1–5). The involvement of MEF2s in various patho-
logical contexts makes them attractive candidates for novel
therapeutic approaches aimed at restarting a dysregulated
transcriptional program. MEF2 proteins are characterized
by the presence of the highly conserved MADS and MEF2
domains in the N-terminal region. These domains are es-
sential for DNA binding, dimerization and interaction with
other partners. In contrast, the C-terminal region is much
less conserved and is involved in transcriptional activation
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(1). A hydrophobic groove within the MADS/MEF2 do-
main contains the binding site for amphipathic �-helices
present in some MEF2 partners. Transcriptional repressors,
such as class IIa HDACs or Cabin1, as well as activators, for
example the histone acetyltransferase p300, bind MEF2 via
this mechanism (6,7). A �-sheet organizes the floor of this
deep hydrophobic groove, while two helices form the rim
(6). In HDAC9, the hydrophobic side of the amphipathic
�-helix consisting of Val143, Leu147, Phe150 and Leu151
fits precisely into the hydrophobic groove of MEF2B (8).
Similarly, the co-repressor Cabin1 adopts an amphipathic
�-helix to bind this hydrophobic groove, forming a triple-
helical interaction (6).

The possibility of affecting the transcriptional activity of
MEF2 by small molecules that can bind this hydrophobic
groove has been exploited in the past (9). A virtual screen
identified a series of small molecules belonging to the class
of PAOA (pimeloylanilide-o aminoanilides). Starting from
the original compound BML-210 ((N-(2-aminophenyl)-N′
phenyloctanol diamine), which was initially identified as a
pan-HDACs inhibitor (10), several analogous compounds
with improved solubility were characterized (11).

The MEF2–HDAC axis is frequently circuited in
leiomyosarcoma (LMS) a rare group of soft tissue sarco-
mas (STS), highly aggressive and with few therapeutic op-
tions (11–14). In this manuscript, we have investigated the
possibility to block LMS proliferation, by targeting the in-
teraction of MEF2 with class IIa HDACs, using PAOA
derivatives. We found that PAOA derivatives are potent in-
hibitors of LMS cell proliferation, however, they are unable
to disrupt the binding between MEF2 and class IIa HDACs.
Conversely, PAOA derivatives appear to act mainly as in-
hibitors of zinc-dependent class I HDACs.

MATERIALS AND METHODS

Antibodies and chemicals

The primary antibodies used were anti: MEF2D (BD
Bioscience); MEF2A (C-21), (Santa Cruz Biotechnol-
ogy); MEF2C (15); Actin (Sigma-Aldrich); HDAC4 (16);
HDAC5 (17); HDAC7 (18); HDAC9 (19); H3K27ac
(ab4729) and H3K9ac (ab4441) (Abcam); Histone H3
(H0164, Sigma-Aldrich) HDAC3 (PA5-29026, Invitro-
gen). The following chemicals were used: SAHA (Cay-
man Chemicals); TMP195 (MedChemExpress), BML-
210 (Sigma-Aldrich). The PAOA derivatives MC2983,
MC2984, MC2985 and MC2991 were synthetized. All new
compounds had spectral (1H NMR, ESI-MS) data in agree-
ment with the structure. Full details of the syntheses will
be reported elsewhere. NKL54 (N-(2-aminophenyl)-N’-[3-
(trifluoromethyl)phenyl]heptanediamide) was synthesized
by SIA Chemspace (Riga, Latvia).

Cell cultures and cytofluorimetric analysis

Leiomyosarcomas cells (LMS), SK-UT-1, SK-LMS-1 and
DMR were grown as previously described (19). For PI stain-
ing, cells were collected and resuspended in 0.1 ml of 10
�g/ml propidium iodide (PI) (Sigma-Aldrich), in PBS and
incubated for 10 min at RT. After washes, cells were fixed
with 1% formaldehyde (Sigma-Aldrich) and treated with

10 �g/ml RNase A. Fluorescence was determined with a
FACScan™ (Beckman Dickinson) and with Countess II FL
automated cell counter (Invitrogen).

Immunoblotting

Cell lysates, after SDS-PAGE and immunoblotting on ni-
trocellulose (Whatman), were incubated with primary an-
tibodies. HPR-conjugated secondary antibodies were ob-
tained from Sigma-Aldrich and blots were developed with
Super Signal West Dura (Thermo Scientific). For antibod-
ies stripping, blots were incubated for 10min with Restore
PLUS Western Blot Stripping Buffer (Thermo Scientific).

Caspase and resazurin reduction assays

The caspase activity was evaluated using the Apo-ONE
caspase-3/7 homogeneous assay (Promega). Cells grown in
96-well plates were treated with the different insults and
tested for caspase activity as recommended by the vendor.
Resazurin assay was done as already described (20). Briefly,
cells were incubated for 150 min. at 37◦C with resazurin so-
lution (0.15 mg/ml) (Sigma-Aldrich). The product of reduc-
tion was quantified by using the PerkinElmer EnSpire 2300
Multilabel Reader.

Molecular modelling

Three-dimensional atomic coordinates of crystallized
MEF2A in complex with DNA and BML-210 were re-
trieved from the protein data bank using accession code
3MU6. The structure was subjected to a cleaning procedure
eliminating all water and non-protein atoms/molecules.
During the complex cleaning the hydrogen positions
were optimized by means of a single point minimization
using the default settings available in UCSF Chimera
(version 1.14) (21) using the AmberF14SB force field
(22). The cleaned minimized complex was then separated
into lock (protein + DNA) and key (BML-210) for the
subsequent docking assessment procedure. Smina and
Plants programs (23,24) implemented in the Py-Docking
web app of 3d-qsar.com portal (2019) were assessed for
docking suitability. Experimental conformation re-docking
(ECRD) and random conformation re-docking (RCRD)
procedures (25–27) indicated the Plants/PLP combination
as the best performing. For all docking the program default
setting were maintained with an extended docking space
of 4 Å (extended grid for Smina and extended radius for
Plants). Only the lowest energy conformation was consid-
ered for the RMSD evaluation. In the case of Smina the
docked conformations were also re-scored by the internal
minimization available features.

HDAC assay

Lysine deacetylase assay was carry-out using the HDAC-
Glo I/II assay kit (Promega), following manufacturer
specifications. Briefly, native lysates were generated from
1.0 × 105 SK-UT-1 cells, previously incubated for 4 h with
HDAC inhibitors. The luminescence was quantified by us-
ing the Modulus II microplate multimode reader (Turner
Biosystem).
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For the in vitro enzyme activity assays, recombinant
HDAC4 and 8 were produced as described previously (28).
The other HDAC isoenzymes were purchased from BPS
Bioscience. To determine the inhibitory effect of com-
pounds on HDACs, 1 nM of the respective HDAC isozyme
was incubated with a serial dilution of the compounds for
30 min at 30◦C in the assay buffer (25 mM Tris–HCl, pH
8.0, 75 mM KCl, 0.001% v/v Pluronic F-127). The cat-
alytic reaction was carried out by the addition of 50 �M
of the substrate Boc-Lys(Ac)-AMC for HDACs 1, 2, 3,
and 6 or 20 �M of the substrate Boc-Lys(trifluoracetyl)-
AMC for HDACs 4 and 8 followed by an incubation for
60 min at 30◦C. The reaction was stopped by adding 40 �M
SAHA for HDACs 1, 2, 3 and 6 or 20 �M SATFMK for
HDACs 4 and 8. The deacetylated substrate was converted
into the fluorescent product AMC by the addition of 0.5
mg/ml trypsin. The release of the AMC was followed in
a microplate reader (excitation: 360 nm, emission: 460 nm;
PHERAstar FS, BMG LABTECH) and then correlated to
enzyme activity. All obtained dose–response curves were fit-
ted to a four parameter fit model provided by Prism 6 yield-
ing the IC50-value

Protein expression and purification

MEF2A (1–92) and MEF2D (1–95) were cloned into
pRham and pETite vectors (Lucigen), respectively. Both
proteins were expressed using Escherichia coli T7 SHuf-
fle cells (NEB) and growth in Terrific Broth (TB) me-
dia. Expression of MEF2A and MEF2D was induced
at OD600 = 0.8 by adding 0.2% (w/v) rhamnose and
1 mM isopropyl-�-D-1thiogalactopyranoside (IPTG), re-
spectively. Induced cells were maintained at 28◦C overnight.
Cell pellets were resuspended in lysis buffer (10 mM HEPES
pH 7.7, 30 mM NaCl, 0.5 mM EDTA, 0.5 mM DTT) and
processed by French press. Both MEF2A and MEF2D pro-
teins were purified via ion exchange chromatography using
20 ml of SP-Sepharose resin (GE Healthcare) equilibrated
with 10 mM HEPES, pH 7.7. Elution was achieved by ap-
plying a 0–2 M (NH4)2SO4 linear gradient. Eluted fractions
were collected and further purified using a HiPrep Butyl
FF 16/10 column (GE Healthcare) equilibrated with 10
mM HEPES pH 7.7, 2 M (NH4)2SO4, 0.5 mM EDTA, 0.5
mM DTT. Elution was performed by applying a 2–0 M salt
gradient. Purest fractions were collected and loaded on a
HiLoad Superdex 75 16/60 column (GE Healthcare), equi-
librated with storage buffer 10 mM HEPES pH 7.7, 200
mM NaCl, 0.5 mM EDTA, 0.5 mM DTT, 10% v/v glyc-
erol). Both proteins were concentrated to 66 �M, aliquoted
and stored at −80◦C.

Chemical synthesis of peptides

Peptides pHDAC4 (aa 170–183; AcNH-GSGEVK
MKLQEFVLNKK-CONH2) and F-pHDAC4 (aa
170–183, fluorescein-GSGEVKMKLQEFVLNKK-
CONH2) were synthesized by standard Fmoc (9-
fluorenylmethoxycarbonyl) solid-phase peptide syn-
thesis (SPPS). Fmoc-protected amino acids, PyBOP,
5(6)-carboxyfluorescein, acetic anhydride, anisole,
dichloromethane (DCM) and N,N-dimethylformamide

(DMF) and Rink Amide MBHA resin (100–200 mesh,
loading 0.4–0.9 mmol g−1 resin, 0.01 mmol scale) were
purchased from Novabiochem. Acetonitrile (ACN), formic
acid, N-methylmorpholine (NMM), octanedithiol (ODT),
piperidine, trifluoroacetic acid (TFA) and thioanisole
were purchased from Sigma-Aldrich. N-methylpirrolidone
(NMP) was purchased from VWR. All chemicals were
used as received without further purification. Peptides
were prepared using a MultiPep RSi peptide synthesiser
(Intavis). Fmoc groups were removed using a 20% v/v
solution of piperidine in DMF (180 �l × 2). Amino acid
coupling was carried out twice for each Fmoc-amino
acid (7.5 eq., 0.5 M solution in DMF). Final acetylation
capping was performed using a 5% (v/v) solution of
acetic anhydride in DMF. DCM washes (0.3 ml × 5)
were performed at the end of synthetic process. NMP
was used as cosolvent in the peptide synthesis. A 4 M
NMM solution in DMF was added as weak base for
Fmoc deprotection. The final peptides were deprotected
(side-chain protected groups) and cleaved from the resin
using a TFA/thioanisole/H2O/anisole/ODT mixture
(90/2.5/2.5/2.5/2.5% v/v) for 3 h at room temperature.
The resin was removed by filtration under vacuum and the
peptides were precipitated with cold diethyl ether (50 ml).
The precipitated peptides were resuspended in diethyl ether
(30 ml × 2) and centrifuged (3 times). Finally, the pep-
tides were dissolved in H2O:ACN (1:1), freeze-dried and
lyophilized. Crude peptides were dissolved in DMSO and
purified by preparative reversed-phase high performance
liquid chromatography (RP-HPLC) on a Waters Delta
Prep LC 4000 System equipped with Waters 2489 dual
� absorbance detector and with both Waters 600 pump,
PrepLC Controller (Waters) and a C18 SymmetryPrep
(Waters) functionalized silica column (7 �m, 19 mm × 150
mm). At a flow rate of 20 ml min−1, a linear gradient
(10% to 50% in 35 min) was applied with a mobile phase
composed of eluant A (99.9% v/v H2O, 0.1% v/v TFA) and
eluant B (99.9% v/v ACN and 0.1% v/v TFA). The purified
peptides were freeze-dried. The purity and molecular
mass of the peptides was assessed by LC-ESI as described
below. Concentrations of peptides were determined by UV
spectrophotometry.

Mass spectrometric analysis

The molecular mass of each peptide was determined by
electrospray ionisation mass spectrometry (ESI–MS) per-
formed on a single quadrupole liquid chromatograph
InfinityLab LC/MSD mass spectrometer (InfinityLab
LC/MSD, Agilent) coupled to a 1260 Infinity II LC system,
Agilent). The reversed-phase HPLC column was a Nucle-
osil 100-5 C18 Macherey-Nagel (5 �m, 125 mm × 4 mm).
The system operated with the standard ESI source and in
the positive ionisation mode. For mass spectrometric analy-
sis, the samples were mixed with 50% (v/v) ACN, 50% (v/v)
H2O. Peptides were run at a flow rate of 1 ml min−1 with a
linear gradient of solvent B over 15 min (A: 99.9% v/v H2O
and 0.1% v/v formic acid; B: 99.9% v/v ACN and 0.1% v/v
formic acid). Data were acquired, processed and analysed
using Agilent OpenLAB CDS (Agilent Technologies) and
MestReNova (Mestrelab Research S.L.) software.
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Fluorescence polarization binding assay

Fluorescence polarization (FP) values were determined us-
ing the Equation (1), where S is the fluorescence intensity
of emitted light parallel to excitation, P is the fluorescence
intensity of emitted light perpendicular to excitation, and G
is the correction factor that correct for instrument bias.

F P = 1000 (1)

The G factor was experimentally determined using the
probe alone.

Fluorescence polarization assays, direct binding

Proteins were diluted in 10 mM HEPES, 200 mM NaCl,
1 mM DTT, 1 mM EDTA, pH 7.7 at final concentrations
ranging from 0.5 to 300 �M. Titration assays were per-
formed using fluorescently labelled peptide F-pHDAC4 at
a final concentration of 0.26 �M. Each mixture (100�l)
was transferred into black 96-well microplates (Optiplate,
PerkinElmer) and incubated at room temperature for 1 h.
Polarization signals were recorded at 25◦C using an EnVi-
sion Multlabel Plate Reader (PerkinElmer) with an excita-
tion filter at 480 nm, an emission filter at 535 nm and a 505
nm dichroic mirror. Orbital shaking (200 rpm for 0.1 s) was
applied. The average fluorescence polarization values of at
least three independent experiments were plotted as a func-
tion of MEF2A or MEF2D concentration. Equilibrium dis-
sociation constants (KD) were determined by non-linear re-
gression analyses of polarization (FP) versus the total pro-
tein concentration (PT) using Equation (2):

F = FL +
(

FLP − FL

2LT

)
(LT + PT + KD

−
√

(LT + PT + KD)2 − 4LT PT (2)

where F is the measured average fluorescence polarization,
FL is the fluorescence polarization of free labelled pep-
tide, FLP is the maximum fluorescence polarization of the
peptide–protein complex and LT represents the total la-
belled peptide concentration.

Fluorescence polarization assays, competition

Protein binding by different compounds was measured by
incubating different concentrations of each ligand (5-fold
dilutions, ranging from 10 to 250 �M) with 0.26 �M F-
pHDAC4 and 20 �M of MEF2A or MEF2D. Unlabelled
pHDAC4 peptide (3-fold dilutions ranging from 1 to 100
�M) was used as positive control. Each mixture (100 �l)
containing 10 mM HEPES, 200 mM NaCl, 1 mM DTT, 1
mM EDTA, pH 7.7, 0.26 �M F-pHDAC4, 20 �M of pro-
tein and the ligand of interest was transferred into black 96-
well microplates (Optiplate, PerkinElmer) and incubated at
room temperature for 1 and 24 h. Controls samples without
proteins and without ligands were also prepared to estimate
fluorescence of displaced and bound probe, respectively.
Polarization signals were recorded at 25◦C using an En-
Vision Multlabel Plate Reader (PerkinElmer) as described
above. The average fluorescence polarization values of at

least three independent experiments were plotted as a func-
tion of ligand concentration. Equation (3) was applied to
determine the half-maximal inhibitory concentration (IC50)
of each molecule:

F = FL + (FLP − FL)

1 + I
IC50

(3)

where F is the measured average fluorescence polarization,
FL is the fluorescence polarization of free labelled pep-
tide, FLP is the maximum fluorescence polarization of the
peptide–protein complex and I is the concentration of the
compound. Finally, the inhibition constants (Ki) were cal-
culated using Equation (4):

Ki = IC50

1 + LT
KD

(4)

where LT is the concentration of the labelled peptide and
KD is the dissociation constant of the labelled peptide F-
pHDAC4 for MEF2A or MEF2D. All fluorescence polar-
ization data were analysed using GraphPad Prism software.

Glutathione S-transferase (GST) pulldown and co-
immunoprecipitations

GST-MEF2D (1–190) was produced in BL21-DE3 compe-
tent cells as previously explained (15) and used as a bait.
NIH-3T3 HDAC4/TM cells were lysed with a hypertonic
buffer (25 mM Tris–HCl pH 7.5, 100 mM NaCl, 50 mM
KCl, 5 mM MgCl2, 0.5% NP40, glycerol 10%, PIC 100×,
PMSF 100×) Lysates were next incubated with 2 �g of
GST-MEF2D and with HDAC inhibitors for 3 h at 4◦C. For
co-immunoprecipitation experiments, cells were lysed in a
hypotonic buffer (20 mM Tris–HCl, pH 7.5; 2 mM EDTA;
10 mM MgCl2; 10 mM KCl; and 1% Triton X-100) supple-
mented with protease inhibitors. For each immunoprecipi-
tation 1.5 �g of HDAC4 antibody or IgGs were used.

RNA extraction and quantitative qRT-PCR

Cells were lysed using Tri-Reagent (Molecular Research
Center). 1.0�g of total RNA was retro-transcribed by using
100 units of M-MLV Reverse transcriptase (Life Technolo-
gies) in the presence of 1.6 �M oligo(dT) and 4�M Random
hexamers (Euroclone). qRT-PCRs were performed using
SYBR green technology (KAPA Biosystems). Data were
analyzed by comparative threshold cycle (delta delta Ct
��Ct) using HPRT and GAPDH as normalizer. The list of
the primers used for qRT-PCR and ChIP-qPCR was previ-
ously published (19).

RNA-seq analysis

SK-UT-1 cells were lysed using Tri Reagent (Molec-
ular Research Center). Total RNA was treated with
DNAse I (NEB) and purified with RNA Clean & Con-
centrator (Zymo Research). RNA-seq library prepara-
tion and sequencing were performed at BMR-Genomics
(Padua, Italy) following Illumina specifications. Quality
control for raw sequencing reads was performed with pro-
grams FastQC (v0.11.9) (www.bioinformatics.babraham.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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ac.uk/projects/fastqc/) and MultiQC (v1.09) (29). Tran-
script quantification was conducted with Salmon (v1.4.0)
(30) on human transcriptome GRCh38 Ensembl version
100 (gene set patch level 13). Transcript quantifications were
imported into R (v4.0.3) running Bioconductor (v3.11)
for downstream analysis with tximeta (v1.6.3) (31) and
summarized at the gene level. Principal component anal-
ysis was carried out with the plotPCA function from the
DESeq2 package (v1.28.1) (32). Genes with a raw counts
mean <64 between each condition replicates were removed
from the analysis. Differential expression analysis was per-
formed using DESeq2 with Wald test for significance.
We adjusted for multiple hypothesis testing by employ-
ing Benjamini-Hochberg correction at a false discovery
rate (FDR) of 0.05. Genes reported significantly by DE-
Seq2 with an absolute fold change >2 were considered as
differentially expressed. Genes were annotated with pack-
age AnnotationHub (v2.20.2) utilizing Ensembl annotation
100 data.

Normalization within differential expression analysis was
run on the full dataset, including three samples treated with
a derivative of NKL54 lacking the trifluoromethyl group
(NKL22) (9). As only one time point was available for this
inhibitor, NKL22 treatment was excluded from the down-
stream analyses. Plots were generated with ggplot2 (v3.3.3).
Venn diagrams were created with VennDiagram (v1.6.20) or
with the Venn diagram tool by the bioinformatics and evo-
lutionary genomics group at VIB/Ghent University (http:
//bioinformatics.psb.ugent.be/webtools/Venn/). Functional
annotation was performed on KEGG, Reactome slimGO
and Gene Ontology databases with ClusterProfiler (v3.16.1)
and ReactomePA (v1.32.0), respectively (19,33). GO term
and pathway analysis results are reported at an FDR of
0.05.

ChIP, library construction and ChIP-seq data analysis

Chromatin was obtained from SK-UT-1 cells, 14 h after
DMSO or NKL54 (5�M) treatment and immunoprecip-
itated with 2 �g of anti-H3K27ac, 3 �g of anti-MEF2D
antibody, 4 �g of anti-HDAC4 or anti-HDAC9 antibod-
ies or control IgG, as previously described (34). Three in-
dependent biological replicates were pulled according to
BLUEPRINT requirements and 5 ng of total DNA were
used to prepare ChIP-seq libraries, according to TruSeq
ChIP Sample Preparation guide (Illumina). Libraries were
sequenced on the Illumina HiSeq 2000 sequencer. The
ShortRead R/Bioconductor package was used to evaluate
the quality of sequencing reads and Bowtie 2 was used to
align them to NCBI GRCh38 human genome reference.
Peak calling and gene annotations were performed as previ-
ously described (19). ChIP-seq replicates were compared us-
ing the Irreproducibility Discovery Rate (IDR) framework
(35), with the MACS2 narrow peaks as input and apply-
ing the following settings: –input-file-type narrowPeak, –
rank signal.value, –output-file-type narrowPeak. The IDR
reported peaks were used for further processing. Gplots,
BiomaRt, and Gviz R/Bioconductor packages and the
DeepTools suite were used to generate peak heatmaps and
for the visualization of genomic loci. DeepTools was also
used for generating the correlogram showing the genome-

wide Spearman correlation between the ChIP-seq replicates
(average scores per genomic bin (10kb)).

Statistics

For experimental data Student t-test was employed. Mann–
Whitney test was applied when normality could not be
assumed. We chose P < 0.05 as the statistical limit of
significance. For comparisons between more than 2 sam-
ples, the Anova test was applied coupled to Kruskal–Wallis
and Dunn’s Multiple Comparison Test. We marked with *
P < 0.05, ** P < 0.01, *** P < 0.001. Unless otherwise in-
dicated, all the data in the figures were represented as arith-
metic means ± the standard deviations from at least three
independent experiments.

RESULTS

NKL54 induces cell death by apoptosis in LMS cells

LMS is a rare and aggressive tumor that has some smooth
muscle features and accounts for ∼10% of adult STS
(12,13). The therapeutic outlook for advanced LMS has not
improved over the past decades, thus new approaches are
urgently needed. The MEF2/Class IIa HDACs axis is dys-
regulated in a constant percentage of LMS. Furthermore,
genetic ablation of this axis results in impaired cell growth
with induction of cell death (19,36). These properties make
this axis a promising therapeutic target for the treatment of
LMS. For these reasons, we investigated previously char-
acterized small molecules inhibitors of MEF2 class IIa
HDACs interaction (BML-210 and NKL54) (9), for their
ability to affect proliferation of LMS cells. BML-210 and
NKL54 are pimelic diphenylamides belonging to the benza-
mide group. These compounds were initially identified and
characterized as selective class I HDACs inhibitors (37).

BML-210 and NKL54 were compared for their ability to
suppress LMS cell proliferation with the class IIa-selective
HDAC inhibitor TMP195 and the pan-HDAC inhibitor
SAHA (suberoylanilide hydroxamic acid), a zinc-chelator
(Supplementary Figure S1A) (38,39). Two different LMS
cell lines DMR and SK-UT-1 were used. SAHA showed the
strongest antiproliferative activity with an IC50 of 2.7 �M
in both cell lines (Supplementary Figure S1B/C). TMP195
only slightly affected the proliferation of LMS cells with an
IC50 of 50 �M. NKL54 was more potent than BML-210 in
both cell lines with an IC50 of 7.9 and 10.4 �M compared to
the values of 20.2 and 18.3 �M of BML-210 (Supplemen-
tary Figure 1B/C). Next, we examined the induction of cell
death. We chose NKL54 for its stronger antiproliferative ac-
tivity compared to BML-210, and cell death was assessed by
propidium iodide positivity and caspase activity using the
DEVDase assay. Since the knock-out of HDAC9 in SK-UT-
1 cells increases FAS expression and susceptibility to cell
death, we evaluated the contribution of the extrinsic apop-
totic pathway in NKL54-induced cell death. LMS cells ex-
pressing the inhibitor of DISC-activation FLIPs (the short
isoform of CFLAR/FLIP) were used (40). Dose-dependent
studies showed that NKL54 induces cell death in LMS cells,
in part via the extrinsic pathway (Supplementary Figure
1D). Caspase activation demonstrates induction of apopto-
sis and dependence on the extrinsic pathway (Supplemen-

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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tary Figure 1E). Finally, NKL54 treatment increased FAS
mRNA levels in LMS cells (Supplementary Figure 1F). In
conclusion, NKL54 can induce apoptosis in LMS cells. This
cell death response is characterized by the upregulation of
FAS, as was also observed in cells null for HDAC9 (19).

Identification and characterization of new PAOA derivatives

To identify new compounds with improved ability to disrupt
the interaction between MEF2 and class IIa HDACs, we
synthesized a series of small molecules resembling NKL54
structure (MC2983, MC2984, MC2985 and MC2991), as
shown in Figure 1A. MC2983 and MC2991, which present
the amide group in an inverted position, should be less effi-
cient as zinc chelators, but still able to interact with MEF2s
similarly to the other compounds.

To confirm this hypothesis, a virtual screening was per-
formed using the structure of MEF2A. The binding affin-
ity of the different compounds to the hydrophobic groove
of MEF2s was compared. For this purpose, the program
PLANTS with the PLP scoring function was used (41).
Docking energy analysis indicates that the new compounds
should be able to interact with the hydrophobic groove of
MEF2 with similar potency to NKL54 (Figure 1A and Sup-
plementary Table S1). Indeed, NKL54 is estimated to be
the most potent with a docking energy of −81.43 Kcal/mol.
Among the four new compounds, MC2983 is predicted to
be the most active, with a docking energy (−80.25 kcal/mol)
slightly lower than that of NKL54. Interestingly, MC2991,
the compound most divergent to the reference BML-210,
is estimated to be the least potent of the series. In fact,
MC2991 is the only compound that shows a docked confor-
mation that does not fit the hydrophobic groove of MEF2
(Figure 1B and Supplementary Figure S2A).

Next, the different compounds were tested for cell death
induction. Three different LMS cell lines were used: SK-
UT-1, DMR and SK-LMS-1. SAHA is the reference for
a pan-HDAC inhibitor and zinc chelator. The results were
comparable in the three cell lines, with SK-LMS-1 cells
showing some resistance to cell death, as observed previ-
ously (14). Compounds MC2983 and MC2991, which are
structurally related to NKL54 but should not act as zinc
chelators, were significantly much less effective in inducing
cell death (Figure 1C–E).

The different ability of the tested compounds to inhibit
class I and IIb HDACs was confirmed in vivo. Apart from
MC2985, which inhibits lysine deacetylase activities only
at high concentrations, all compounds capable of inducing
cell death also inhibited KDACs (Figure 1F). As expected,
MC2983 and MC2991 were inactive in this assay. SAHA
and TMP195 were used as positive and negative controls,
respectively.

To confirm the ability of NKL54, MC2984 and MC2985
to act as epigenetic drugs, we examined the levels of histone
H3 lysine 9 acetylation (H3K9ac) by immunoblot. SAHA
triggered an increase in H3K9 acetylation within 15 min
of treatment (Figure 1G). NKL54 and MC2984 also in-
creased H3K9 acetylation, albeit with lower efficiency, com-
pared with SAHA. The increase in H3K9ac in response to
MC2985 treatment was very small, almost undetectable. All
these compounds and BML-210 also increased H3K27ac

levels with similar kinetics and potency as for H3K9ac
(Supplementary Figure S2B). Overall, the modulation of
H3K9ac and of H3K27ac levels in response to the differ-
ent compounds confirms the inhibitory potency observed
with the KDAC assay in vivo. Finally, we compared the in
vitro inhibitory activity of SAHA and of PAOA derivatives
against different purified HDACs (NKL54 was chosen as
an example). The inhibitory activity of NKL54 was specific
to HDAC1/2/3 (Figure 1H). SAHA confirmed the broader
effect by inhibiting HDAC1/2/3/6 and with lower potency
also HDAC8 (Figure 1I). IC50s are shown in Supplemen-
tary Table S2. Curiously, NKL54 can inhibit HDAC4 at
high concentrations (IC50 35�M), possibly due to the tri-
fluoro group (42).

The PAOA derivatives do not unleash the interaction between
MEF2 and class IIa HDACs

We have shown that the PAOA derivatives, that induce cell
death in LMS cells, can act as HDAC inhibitors. However,
the same derivatives could also affect the action of MEF2
by binding its hydrophobic groove and abolishing the in-
hibitory influence of class IIa HDACs. To verify the possi-
ble dual action of these compounds, we set up an in vitro
fluorescence polarization assay (FP). By using a fluorescent
labelled HDAC4-derived peptide (F-pHDAC4), capable of
binding the hydrophobic groove of MEF2, we could as-
sess the ability of the different compounds to unleash the
interaction between MEF2 and class IIa HDACs. Recom-
binant MEF2A and MEF2D were produced and purified
to homogeneity. First, the ability of the fluorescent labelled
HDAC4-derived peptide (F-pHDAC4) to bind the MEF2
proteins was tested using a direct FP binding assay. MEF2A
and MEF2D show similar affinity for pHDAC4 with a KD
of 16–17 �M (Figure 2A and B). Next, a FP competition
assay was used to assess the ability of the different com-
pounds to disrupt the interaction between MEF2A with F-
pHDAC4 (Figure 2C). The same assay was performed with
MEF2D (Figure 2D). We used an unlabelled HDAC4 pep-
tide (pHDAC4) as a positive control. Although the affinity
of the F-pHDAC4 probe does not allow to accurately assign
compounds with binding affinity below 16�M, none of the
tested PAOA derivatives was able to displace F-pHDAC4
from MEF2A or MEF2D, even when tested at concentra-
tions ten times higher (250�M) the affinity of the probe. In
contrast, pHDAC4 efficiently competed with F-pHDAC4
for MEF2A or MEF2D binding, and pHDAC4 released
F-pHDAC4 within 1 h, indicating that binding was dy-
namic. We also investigated whether the PAOA derivatives
could compete with F-pHADC4 during prolonged incuba-
tion times. However, longer incubation (24 h) did not dis-
rupt the interaction between MEF2A or MEF2D with F-
pHADC4 (Figure 2E and F). The inability of these com-
pounds to compete for the binding of MEF2 with class
IIa HDACs was also verified by a GST pull-down assay
with recombinant MEF2D and HDAC4-GFP. Recombi-
nant GST-MEF2D (2 �g) was incubated with cell lysates
from NIH3T3 cells overexpressing HDAC4 with mutations
in the 14–3–3 binding sites. This mutant cannot be phos-
phorylated and exported from the nucleus, increasing the
pool of HDAC4 available for MEF2D binding (Figure 3A
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Figure 1. Characterization of new PAOA derivatives for mechanisms of action and anti-proliferative activities in LMS cells. (A) Characteristic and chemical
structures of different PAOA derivatives used in this study in comparison with BML-210 and NKL54. The IC50 in SK-UT-1 cells is show as well as the
Plants/PLP docking energies for the compound assayed in this study. The Tanimoto coefficient is reported for all the compounds versus the reference BML-
210. *Energy calculated on the re-docked ligand extracted from the 3MU6 complex available from PDB. **Tanimoto similarity index calculated with radius
2 circular Morgan fingerprints (73) in a python script (74) using the RDKit library (75). (B) BML-210, NKL54, (MC2983, MC2984, MC2985 and MC2991
docked conformations in the MEF2A (pdb entry code 3MU6) hydrophobic groove. Plants/PLP combination as implemented in 3d-qsar.com was used
to dock the compounds. Lowest energy docked conformations were imported in UCSF Chimera along with the cleaned minimized MEF2A protein and
co-crystallized BML-210, for binding mode inspection and comparison. (C) Analysis of cell death in SK-UT-1 cells as percentage of PI positive cells treated
with the indicated compounds. Cell death was scored after 48 h from treatments. Data are from three independent experiments, + S.D. (D) Analysis of
cell death in DMR cells as percentage of PI positive cells treated with the indicated compounds. Cell death was scored after 48 h from treatments. Data
are from three independent experiments, + S.D. (E) Analysis of cell death in SK-LMS-1 cells as percentage of PI positive cells treated with the indicated
compounds. Cell death was scored after 48 h from treatments. Data are from 3 independent experiments, + S.D. (F) Lys-deacetylase activity as measured
from SK-UT-1 cells treated with increasing concentrations of the indicated compounds [1, 5, 10 �M]. Data are from three independent experiments, +
S.D. (G) Immunoblotting analysis of H3K9 acetylation levels in SK-UT-1 cells treated with SAHA [2.5 �M], NKL54, MC2984 and MC2985 [5�M] for
the indicated minutes. (H) Dose response curves of NKL54 against a panel of indicated HDAC isozymes using standard enzyme activity assays. (I) Dose
response curves of SAHA against a panel of indicated HDAC isozymes using standard enzyme activity assays.
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Figure 2. NKL54 does not compete for the binding between MEF2 and class IIa HDACs. (A) MEF2A binding curve (0.5–300 �M) titrated to fluorescently
labelled peptide F-pHDAC4 (0.26 �M). The average fluorescence polarization values of at least three independent experiments ± SD were plotted as a
function of ligand concentration. (B) MEF2D binding curve. Experiments were performed as in panel A. (C) Protein binding by the indicated compounds
was measured by incubating different concentrations of each ligand (5-fold dilutions, ranging from 10 to 250 �M) with 0.26 �M F-pHDAC4 and 20 �M
of MEF2A. Unlabelled pHDAC4 peptide (3-fold dilutions ranging from 1 to 100 �M) was used as positive control. Titrations were performed at room
temperature for 1 h as indicated. The average fluorescence polarization values of at least 3 independent experiments ± SD were plotted as a function of
ligand concentration. (D) MEF2D binding by the indicated compounds as performed in panel C. (E) MEF2A binding by the indicated compounds as
performed in panel C, with titrations measured at 24 h. (F) MEF2A binding by the indicated compounds as performed in panel E.

and Supplementary Figure S2C). Finally, immunofluores-
cence analysis confirmed that PAOA derivatives cannot in-
terfere with the ability of MEF2D to cause nuclear accumu-
lation of HDAC4 (Supplementary Figure S3).

NKL54 and SAHA influence the expression levels of MEF2D
and HDAC7

Pan-HDAC inhibitors such as hydroxamates (TSA or
SAHA) and benzamides (entinostat and mocetinostat) af-
fect the stability of HDAC7 (43). Consequently, these com-
pounds might indirectly upregulate MEF2-dependent tran-
scription by reducing the expression of class IIa HDACs.

To verify this hypothesis, we analyzed the expression lev-
els of the different members of the class IIa HDACs family
in SK-UT-1 cells in response to treatment with SAHA or
NKL54. NKL54 was chosen as a prototype for the different
PAOA derivatives. We also analyzed the levels of MEF2A
and MEF2D, which are the two major MEF2 family mem-
bers expressed in this cell line. Figure 3B shows that HDAC7
is downregulated starting 12 h after addition of SAHA.
Similarly, NKL54 triggers the downregulation of HDAC7.
HDAC4 and HDAC9 are also downregulated at later time
points (starting from 24 h), but only in NKL54-treated cells.
In contrast, MEF2D expression levels were increased after
treatment with the two HDACIs. These results were con-
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Figure 3. Regulation of MEF2-class IIa HDACs axis by PAOA-derivatives. (A) GST pull-down assay, using recombinant MEF2D (1–190) or GST as
control. Purified GST or GST-MEF2D recombinant proteins (2 �g) were incubated with cellular lysates obtained from NIH3T3 cells overexpressing
HDAC4 mutated in 14–3–3 binding sites. Two different concentrations [14 and 42 �M] were used. Immunoblots were performed to visualize HDAC4 or
recombinant GST. (B) SK-UT-1 cells were treated for the indicated times with NKL54 [5 �M] or SAHA [2.5 �M]. Cellular lysates were generated and
immunoblot performed using the indicated antibodies. Actin and Histone 3 (H3) were used as loading control. (C) Lysates from SK-UT-1 cells treated for
12 h with DMSO or with SAHA [2.5 �M] or NKL54 [5�M] MEF2D-HDAC4 complexes were immunoprecipitated with antibodies against HDAC4 or
USP33, as a control. Immunoblotting using an anti-MEF2D antibody was next used for the detection of the MEF2-HDAC4 complexes. Asterisks point
to IGs.

firmed by a second immunoblot analysis and relative densit-
ometric evaluations (Supplementary Figure S4A/B). When
used at high concentrations, MC2984 and MC2985 also up-
regulated MEF2D expression and reduced HDAC7 levels
(Supplementary Figure S2D).

This detailed characterization allowed us to select the
best time point to verify the ineffectiveness of NKL54 in re-
leasing the binding between MEF2D and HDAC4 in vivo as
well. SK-UT-1 cells were treated with NKL54 or SAHA, as
control, and 12 h later cellular extracts were generated and
subjected to co-immunoprecipitation with an anti-HDAC4
antibody (Figure 3C Supplementary Figure S2C). This time
point was chosen to preclude excessive variation in protein
concentrations of the two targets. Consistent with the in
vitro studies, NKL54 was ineffective in releasing MEF2D
from HDAC4 binding in vivo.

Transcriptome remodelling as elicited by different HDAC in-
hibitors

To better classify the different HDACIs, the induced tran-
scriptional changes were mapped by RNA-seq. A sin-
gle concentration of the different compounds (2,5�M for
SAHA and 5�M for all PAOA-derivatives), triggering mod-
erate and comparable percentages of cell death at 36 h was
used. Percentages of cell death were: 23.2%± 1.92 for
SAHA, 21.4% ± 3.44 for MC2984, 27.0% ± 4.0 for MC2985
and 39.00% ± 2,44 for NKL54. In untreated cells the
percentage of cell death was 7.00%± 2.24. We also used

TMP195 (5 �M) a poor inducer of cell death (13.0% ±
1.0). RNA was isolated at 6 h, to map early changes, and
after 24 h from treatments, to investigate delayed modula-
tions in gene expression. The PCA (principal component
analysis) shows the high reproducibility of the three biolog-
ical replicates analyzed (Figure 4A). TMP195 induced few
modifications in the transcriptome. Twenty four hours of
treatment with MC2984 elicited modifications of the tran-
scriptome like the early responses to SAHA and NKL54
treatments, thus suggesting a similar but delayed effect of
this PAOA-derivatives. Finally, later changes in gene expres-
sion more manifestly separate NKL54 from SAHA (Figure
4A). The top upregulated and downregulated genes for each
treatment are listed in Supplementary Tables S3 and S4.

To further validate these observations, we compared
genes upregulated and downregulated in response to the dif-
ferent compounds using SAHA as a reference. Venn dia-
grams show that 66.8% of genes regulated at 6 h by NKL54
are shared with SAHA (Supplementary Figure S5). After 24
h 82.5% of genes modulated by SAHA were similarly modu-
lated by NKL54. In parallel, the number of NKL54 specific
genes increased up to 41.3%. Only 19.4% of genes (n = 184)
were specific for MC2984 at 6 h, a percentage that decreased
to 13.7% after 24 h of treatment (n = 246). MC2985 mod-
ulated very few genes at both 6 and 24 h (n = 218 and 317,
respectively), of which only 4.6% (6 h) and 9.5% (24 h) are
specific. TMP195 showed the most divergent profile respect
to SAHA with only 48.4% of genes in common at 6 h. In-
terestingly, this percentage increased up to 60,5% after 24
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Figure 4. Comparative transcriptomic analysis in response to the different HDACIs. (A) PCA analysis performed on the expression profiles of the in-
dicated treatments at shown times in SK-UT-1 cells. (B) Venn diagrams showing the number of transcripts commonly and differentially upregulated or
downregulated between the different HDACIs at the indicated hours. (C) Percentage of genes upregulated or downregulated by the different HDACIs
at 6 h (early genes) at both 6 and 24 h (maintained genes) and at 24 h (late genes). (D) Bar plots of the ClusterProfiler-ReactomePA most significantly
enriched functional terms according to the GO: Biological Process, GO: Molecular Function, Reactome or KEGG databases. The analysis was performed
for the indicated groups of signatures, retaining the top terms for each functional database. Numbers to the right of the bars represent the percentage of
significantly enriched genes found within each category.
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h of treatment, thus indicating common adaptive responses
(Supplementary Figure S5).

SAHA, NKL54 and MC2984 upregulated a larger num-
ber of genes compared to TMP195 and MC2985 (Figure
4B and Supplementary Figures S5 and S6A). For SAHA
and NKL54 the effect on gene transcription was rather
stable through the time, with respectively 64, and 61% of
genes upregulated at both time points (Figure 4C). There
are also genes which expression was upregulated at 24 h
but not at 6 h. The percentage of these genes was lower
for SAHA (22.6%) and TMP195 (26.4%), intermediate for
NKL54 (33.6%) and greater for MC2984 and MC2985 (42
and 45%, respectively). These different delayed responses
could reflect different kinetics/modifications of the com-
pounds or different adaptive responses engaged. Among the
early DEGs (differentially expressed genes), the downregu-
lated genes were a minor fraction (Supplementary Figure
S6): 13.6% (NKL54), 2.8% (MC2984), 1.5% (MC2985) and
25% (SAHA).

Again, the response to TMP195 was highly divergent,
with 45.9% of DEGs that were downregulated. Interest-
ingly, in all treatments, the down-regulated genes were mod-
ulated in higher percentages at 24 h (Figure 4C and Supple-
mentary Figure S6B). This feature is particularly evident for
the PAOA derivatives. Here, the few overlaps observed be-
tween 6 and 24 h suggest that many genes downregulated
at later time points may be indirect targets of these com-
pounds.

Common biological responses modulated by the different
HDACIs

The above analysis has shown that the various inhibitors
trigger both common and specific transcriptional modu-
lations. To define the respective cellular responses, we se-
lected both compound-specific DEGs and DEGs common
among different compounds. Common genes were grouped
into three distinct categories: (i) the SAHA-PAOA signa-
ture, which includes genes regulated by SAHA and also by
at least one PAOA derivative; (ii) the PAOA signature, which
includes genes regulated by at least two different PAOA
derivatives; and finally, (iii) the TMP195-HDACIs signa-
ture, which includes genes regulated by TMP195 and also
by at least SAHA or a PAOA derivative. Gene signatures
were also analyzed in terms of temporal regulation (Sup-
plementary Figure S7A and B). The early response includes
genes regulated at 6 but not at 24 h of treatments. The main-
tained response includes genes regulated at both 6 and 24 h
Finally, the late response includes genes that are regulated
at 24 h, but not at 6 h.

We used ClusterProfiler (33) and ReactomePA (44) to
understand the functions of genes that are regulated un-
der the different treatments. First, we evaluated upregu-
lated genes. The top category of genes that are upreg-
ulated by all inhibitors is related to microtubules-based
movements and represents a late response (Figure 4D and
Supplementary Table S3). For the SAHA-PAOA signature,
neuronal system, axon guidance, and axonogenesis are the
most significant results. Since these genes belong to the
maintained category, this response might reflect the sta-

ble release of a cell-lineage specific inhibitory influence of
HDACs. These gene categories are also dominant for the
PAOA signature. For both the SAHA-PAOA and PAOA
signatures, early and late responses are less clearly defined
and include both metabolic and differentiative responses.
The TMP195-HDACIs signature is characterized by the
chemokine activity/rheumatoid arthritis categories which
included the late-responding genes (Figure 4D and Supple-
mentary Table S5).

We also examined cellular responses that were switched
off after HDACIs treatment. As expected from the general
trends of downregulation (Supplementary Figure S7B), the
most significant enrichments were found within the late re-
sponses. Interestingly, in the SAHA-PAOA and PAOA sig-
nature the most enriched categories were found in the con-
text of chromatin organization (HAT acetylate histones,
DNA packaging, Nucleosome assembly, DNA conforma-
tion change) possibly reflecting a compensatory response
triggered by changes in chromatin dynamics, because of
HDACs inhibition (Supplementary Figure S7C and Sup-
plementary Table S6). Another, highly enriched downreg-
ulated category is M phase, a plausible consequence of cell-
cycle arrest. As observed above for the upregulated genes,
the TMP195-HDACIs categories show again specific fea-
tures with an impact on the microenvironment. Indeed, the
ECM genes are among the most highly enriched (Supple-
mentary Figure S7C and Supplementary Table S6).

Specific biological responses engaged by the different
HDACIs

Compound-specific DEGs represent a small percentage of
regulated genes (Figure 4B). As described above for com-
mon DEGs, these signatures were analyzed in relation to
the timing of regulation by dividing the DEGs into early,
maintained, and late. Among the upregulated genes, sig-
nificant categories were found for NKL54, SAHA, and
TMP195 (Supplementary Figure S8A, Supplementary Ta-
ble S7). The biological processes diverge greatly among
the three compounds. SAHA derepresses genes related to
cilia/flagellar organization and dynamics (cilium assembly
organization, intraflagellar motility) as maintained and late
response. NKL54 affects extracellular matrix dynamics, dif-
ferentiation and metabolism as an early, maintained and
late response. TMP195 shows early activation of chemokine
expression and inflammatory responses that are later in-
duced by the other HDACIs (Figure 4D). These selective
influences on gene expression are indicative of the exis-
tence of distinct complexes containing class I or class IIa
HDACs.

Among the down-regulated genes, again NKL54,
SAHA and TMP195 achieve the most significant enrich-
ments (Supplementary Figure S8B, Supplementary Table
S8). Genes involved in the maintenance of chromatin
homeostasis are strongly repressed by both SAHA and
NKL54, as observed above for some common signatures. In
addition, NKL54 significantly represses cell cycle-related
genes. TMP195 shows a differential effect on the ECM,
the microenvironment as an early response and, both as
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an early and late response, on some genes controlling
differentiating responses.

SAHA and PAOA derivatives boost the expression of BH3-
only BCL2 family members

Induction of cell death by apoptosis characterizes the
response to SAHA and PAOA-derivatives. BCL2 family
members are master regulators of apoptosis, through con-
trol of mitochondrial outer membrane permeabilization
(45). Frequently cell death signalling pathways control the
expression of BCL-2 family members. All of the differ-
ent compounds that trigger cell death in LMS affect ex-
pression of a group of BH3-only members. mRNA levels
of BMF, BIK and HRK are dramatically increased in re-
sponse to SAHA and PAOA (although MC2985 was less
potent) (Figure 5A). BBC3/PUMA and BCL2L11/BIM,
other BH3-only members, are less upregulated. TMP195,
which is a very weak inducer of cell death only modestly and
transiently increases HRK and PMAP1/NOXA mRNA
levels.

SAHA and PAOA derivatives modulate the expression of
members of the MEF2-HDAC axis

NKL54 and SAHA could indirectly affect the MEF2-
HDAC axis by modulating the levels of MEF2 and
HDAC family members (Figure 3B). Analysis of RNA-seq
data showed that HDAC5 mRNA is slightly upregulated,
whereas HDAC7 and HDAC9 are down-regulated (Fig-
ure 5B). Importantly, NKL54 exerts a persistent effect on
HDAC9, whereas SAHA only transiently downregulates it.
Accordingly, HDAC9 protein levels are significantly down-
regulated only in cells treated with NKL54 (Figure 3B). All
other compounds only moderately affect the expression of
class IIa HDACs.

When class IIa HDACs are generally downregulated in
response to SAHA and NKL54, MEF2 family members
are upregulated, particularly MEF2B and MEF2C (Fig-
ure 5B and C). The expression of other HDACs is only
slightly affected by the investigated compounds. SAHA and
the PAOA derivatives (NKL54 and MC2984) upregulate the
mRNA levels of HDAC11, HDAC3, and to some extent
HDAC1 (Figure 5D). To understand the impact of these
regulations on the transcriptional activity of the MEF2-
HDAC axis, we evaluated the TPM (transcript per million)
measure for each family member. HDAC9 and HDAC7
yield the most highly expressed family members in SK-UT-
1 cells (Figure 5E). Therefore, their down-regulation could
strongly affect the total pool of class IIa HDACs avail-
able for suppression of MEF2 transcription. On the other
hand, although MEF2C is strongly upregulated by SAHA,
NKL54 and MC2984, because it is expressed at very low
levels in SK-UT-1 cells, its impact on the overall MEF2
transcriptional output might be minimal (Figure 5C and F).
In contrast, MEF2D is the most expressed paralog in this
cell line (Figure 5C), and although it is much less upreg-
ulated compared with MEF2C, it could strongly influence
the transcriptional landscape, as confirmed by the consis-
tent increased protein levels (Figure 3B).

The expression of several lysine-acetyltransferases (KATs) is
downregulated after inhibition of HDACs

A prominent response to HDACIs is the downregulation
of genes encoding components of the KAT complexes, an
evolutionary adaptive mechanism for buffering HDACs in-
hibition (46). Therefore, we examined the expression levels
of various KATs in response to the treatments (47). With
few exceptions, SAHA/NKL54/MC2984 trigger downreg-
ulation of several KATs. MC2985 and TMP195 are much
less effective and, curiously, both promote downregulation
of KAT2B (Figure 5G). In general, there is a strong cor-
relation between the ability of the various compounds to
increase histone acetylation and the repression of KAT ex-
pression.

NKL54 and the regulation of the MEF2-HDAC axis

NKL54 is not efficient in impeding the binding between
MEF2 and class IIa HDACs, but could indirectly sustain
MEF2-dependent transcription, through its influence on
class IIa HDACs and MEF2D levels. MEF2A and MEF2D
are the two major paralogs expressed in SK-UT-1 cells.
Hence, we compared genes that were up and downregulated
after silencing of these two MEF2 family members, that we
defined previously (35), with genes that were modulated by
the HDACIs under study. This comparison aimed to pro-
vide insight into the ability of NKL54 to affect the MEF2-
HDAC axis. It is important to emphasize that in SK-UT-1
cells MEF2 act as transcriptional repressors at some loci
and as transcriptional activators at others (35). Taking this
into account, genes upregulated after treatment with the dif-
ferent compounds should be compared with genes upregu-
lated after MEF2A/D silencing (abrogation of repression),
and with genes repressed after MEF2A/D silencing (Figure
6A). In this last condition, the increased expression in re-
sponse to HDACIs may depend on the augmented MEF2D
levels. Certainly, the contribution of other TFs whose activ-
ities may be modulated by the different HDACIs cannot be
excluded.

Venn analysis shows that MEF2-regulated genes have the
best overlap with NKL54-regulated genes (Figure 6B and
Supplementary Figure S9A). 29,1% of genes upregulated,
and 19,3% of genes downregulated after MEF2A/D silenc-
ing are upregulated in response to NKL54. The other PAOA
derivative (MC2984) is the second-best compound. 22,2%
of up and 17,9% of downregulated genes after MEF2A/D
silencing are upregulated by MC2984. Next, we examined
the percentage of overlap between the genes regulated by the
different compounds and the MEF2A/D signatures (Fig-
ure 6C and Supplementary Figure S9B). In this case, the
best result was obtained for TMP195 with 17.4% identity
among the up-regulated genes and only 2.5% among the
down-regulated genes. This result is another confirmation
of the existence of repressive MEF2 complexes in SK -UT-
1 cells (35). In summary, this analysis shows that a small
percentage of genes upregulated by NKL54, which has the
broadest effect among the HDACIs tested, are under the
regulation of MEF2A/D. In contrast, TMP195 has limited
effects on overall gene expression, but a certain percentage
of genes upregulated by this class IIa inhibitor are targets of
the MEF2-HDAC axis. GSEA was applied to confirm these
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Figure 5. Influence of the different HDACIs on the expression levels of BCL2 family members, of the MEF2-HDAC axis and on KATs. (A) Heat-map
reporting the expression levels (log2 fold change relative to untreated cells) of the indicated BCL2 family members in response to the different HDACIs as
indicated. (B) Like panel A, instead showing MEF2-HDAC axis components. (C) SK-UT-1 cells were treated for the indicated times with NKL54 [5�M].
Cellular lysates were generated and immunoblot performed using the anti-MEF2C antibody. Actin was used as loading control. (D) Heat-map reporting
the expression levels (log2 fold change relative to untreated cells) of class I/IIb/III/IV HDACs family members in response to the different HDACIs as
indicated. (E) Heat-map reporting the expression levels (log2 fold change relative to untreated cells) of different KATs in response to the different HDACIs
as indicated. (F) Class IIa HDAC family members expression in SK-UT-1 cells treated or not with SAHA and NKL54 for the indicated times. Expression
values are shown in TPM (transcripts per million) calculated from a gene model where isoforms were collapsed to a single gene. (G) Like panel F, instead
showing MEF2 family members.

results. Again, the PAOA derivatives (NKL54 and MC2984)
achieved the best enrichments compared with MEF2A/D
signatures (Figure 6D).

From a therapeutic perspective, it is important to un-
derstand whether reactivation of the MEF2A/D signature
could be beneficial for LMS patients. Therefore, we in-
vestigated whether genes co-regulated by MEF2A/D and
NKL54 might be important for LMS aggressiveness. We
selected genes modulated by MEF2A/D and upregulated
in LMS cells after NKL54 treatment. From this signature,
which includes 123 genes, we selected genes that were up-
regulated in at least 10% of patients (Figure 6E, n = 10). We
defined this group of genes as the MEF2-NKL54 signature.
Interestingly, the BH3-only member PMAIP1/NOXA is in-
cluded in this signature. Figure 6F shows that patients char-
acterized by high expression of genes of the MEF2-NKL54
signature have a better prognosis.

NKL54-induced changes in H3K27ac genomic distribution

To better characterize the effect of NKL54 at the genomic
level and its influence on gene expression, we examined
the genomic distribution of H3K27ac by performing ChIP-
seq. Two distinct sequencing experiments were done, each
pooling at least two distinct biological replicates. We se-
lected 14 h after treatment to limit the effect of NKL54
on the levels of class IIa HDACs. A Pearson’s correlation
coefficient (PCC) test on the two sequencing experiments
was performed to assess the reproducibility of each ChIP-
seq (48). The results were represented as a heatmap and
show a very high reproducibility (Supplementary Figure
S10). Treatment with NKL54 resulted in a higher number
of IDR-defined H3K27ac peaks (n = 72 765) compared to
control (n = 64 232). These peaks were particularly abun-
dant in promoter regions near TSS and at distal intergenic
regions (Figure 7A).
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Figure 6. The impact of the different HDACIs on the MEF2 transcriptional activity. (A) Scheme comparing the effect of MEF2A/D silencing and HDACIs
treatments on genes regulated by MEF2. (B) Percentage of identity among genes up or downregulated after MEF2A or MEF2D silencing and genes up
or downregulated after treatments with the different HDACIs. (C) Percentage of identity among genes up or downregulated after treatments with the
different HDACIs and genes up or downregulated after MEF2A or MEF2D silencing. (D) GSEA results displayed as the NES and the p value obtained by
interrogating the transcriptome of MEF2A/D knocked-down SK-UT-1 cells with the transcriptomes of the same cells treated with the different HDACIs.
(E) Oncoprint of mRNA expression variations for the indicated genes defined as MEF2-NKL54 signature. Data were obtained from the TCGA database
and include RNAseq data of 100 patients with LMS. The heatmap shows the expression levels (z-score normalized log2 (FPKM) values) relative to diploid
samples and was generated through cBioPortal (http://www.cbioportal.org). The percentages refer to the number of patients with z-score >2. (F) Kaplan–
Meier plot showing the survival in percent of patients having expression of the ‘MEF2-NKL54’ gene signature (panel E) with at least one member with
z-score >2 with respect to diploid samples, as represented by Kaplan–Meier plot. The graph was generated through cBioPortal (http://www.cbioportal.org).

http://www.cbioportal.org
http://www.cbioportal.org
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Figure 7. Variation of H3K27ac distribution at the genomic level. (A) Genomic distribution of the H3K27ac-enriched IDR-defined peaks identified by
MACS2 in SK-UT-1 cells treated (n = 72 765) or untreated (n = 64 232) for 14 h with 5 �M NKL54. (B) As in panel A, with values represented as
percentages. (C) H3K27ac ratio between NKL54 treated and untreated cells within ±3 kb from TSS. ChIP-seq data are from experiment 1. Genes not-
regulated by NKL54 were selected based on having the lowest combined gene expression variations at 6 and 24 h from treatment. The boxes indicate the
interquartile range with the center line representing the median value. The outliers are plotted as dots. (D) As in panel C, with H3K27ac ratio between
NKL54 treated and untreated cells calculated within ±30 kb from TSS. (E) Overall acetylation level in the ± 3kb region centered on gene TSS of the
indicated gene categories in presence or absence of NKL54. Boxes plotted as in panel C. (F) As in panel E with overall acetylation level measured within
a ±30 kb region centered on gene TSS of the indicated gene categories in presence or not of NKL54. (G) TPM values are shown after treatment or not
with NKL54 for the respective times. TPM measure was calculated from a gene model where isoforms were collapsed into a single gene. Significances were
tested using the Mann–Whitney U test.
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Experiments were done 14 h after treatment to limit the
effect of NKL54 on the levels of class IIa HDACs. Treat-
ment with NKL54 resulted in a higher number of H3K27ac
peaks (n = 110 900) compared to control (n = 83 419). These
peaks were particularly abundant in promoter regions near
TSS and at distal intergenic regions (Figure 7A). HDACIs
increased the number of enriched peaks in all genomic re-
gions, with a slightly higher percentage in promoter regions
within 1–3 kb from TSS (Figure 7B). Next, we focused the
analysis on genes regulated by NKL54. For reference, we
selected 2000 genes whose expression was not regulated by
NKL54. Genes upregulated in response to NKL54 show
an increase in H3K27ac around TSS (±3 kb) compared
to those not regulated. In contrast, NKL54-downregulated
genes show a reduction in H3K27ac levels (Figure 7C and
Supplementary Figure S11A). When the analysis was per-
formed on a larger region from TSS (±30 kb), the cor-
relations between variations in H3K27ac levels and tran-
scriptional response to NKL54 treatment were even more
pronounced (Figure 7D and Supplementary Figure S11B).
Analysis of absolute H3K27ac levels shows that genes that
are upregulated in response to NKL54 are characterized by
lower H3K27ac signals, whereas genes that are downregu-
lated after NKL54 treatment, exhibit higher acetylation lev-
els within a 3kb as well as 30kb around TSS (Figures 7E, F
and Supplementary Figure S11C, D).

To confirm this observation, we compared the TPM of
genes up and downregulated in response to NKL54. Genes
that were not regulated by the inhibitors served as reference.
Figure 7G demonstrates that genes upregulated by NKL54
are expressed at low levels, whereas downregulated genes
are highly expressed genes. Similar behaviors can be ob-
served for SAHA, for MC2984 after 24 h of treatment and
in MC2985, but only after 6 h. TMP195 does not show these
differential effects, which further corroborates its distance
from the ‘classical’ HDACIs (Supplementary Figure S12).

In summary, NKL54 promotes the transcription of
weakly expressed genes and antagonizes the expression of
highly expressed genes, and these effects correlate with
sculpting of the H3K27ac epigenome around the TSS.

NKL54 modifies the genomic distribution of MEF2D,
HDAC4 and HDAC9

Having shown that NKL54 and other PAOA derivatives can
to some extent affect the MEF2-dependent genetic program
in LMS, we investigated the influence of NKL54 on the ge-
nomic activities of MEF2. We performed MEF2D ChIP-
seq using chromatin isolated from SK-UT-1 cells treated
with NKL54 for 14 h (Supplementary Figure S10). Under
both conditions, a high percentage of MEF2D peaks co-
localize with H3K27ac peaks in the presence of NKL54
(Supplementary Figure S13A and B).

To also evaluate changes in chromatin binding of class
IIa HDACs, ChIP-seq experiments were performed for
HDAC4 and HDAC9 under the same conditions (Sup-
plementary Figure S10). We observed that HDAC4 and
HDAC9 show similar behavior in terms of genome bind-
ing. NKL54 causes a reduction in the binding of HDAC4
and HDAC9, especially in the intergenic regions. Instead,
their binding to promoters is conserved (Figure 8A and B).

In contrast, NKL54 causes a dramatic increase in MEF2D
binding to several genomic regions and especially to pro-
moters (Figure 8A and B). These new NKL54-enhanced
MEF2D-chromatin interactions are often located at new
genomic regions (nearly 90% of the enriched peaks are
new) (Figure 8C ‘new’), whereas 40% of MEF2D peaks
in untreated cells are conserved in NKL54-treated cells
(Figure 8C ‘conserved’). Importantly, in these new re-
gions, MEF2D is frequently recruited in the absence of
HDAC4 or of HDAC9 (Figure 8D). In contrast, in 33,4%
of MEF2D peaks conserved between untreated and treated
cells, HDAC4 is present and HDAC9 is found in approxi-
mately 20% of these regions. Therefore, NKL54 promotes
the binding of MEF2D to numerous and novel genomic re-
gions and within these regions it should act as a transcrip-
tional activator as HDAC4 and HDAC9 are not recruited.

Interestingly, enriched MEF2D peaks are found in the
promoter of 90 genes upregulated by NKL54. To further
support this observation, we compared the effect of NKL54
on the genomic binding of MEF2D to the promoters of
these 90 genes with respect to the 2000 genes that show no
variation in their expression (Figure 8E and Supplemen-
tary Figure S13C). MEF2D binding is strongly increased
by NKL54 at the promoter regions of the 90 upregulated
genes, whereas the effect is much smaller/absent at the pro-
moters of the not-regulated genes. Two different loci (ER-
RFI1 and IER3) encoding genes regulated by MEF2D and
by NKL54 are a good example of these changes. In ER-
RFI1, NKL54 triggers MEF2D to bind to a large genomic
region in the absence of HDAC4 and of HDAC9. Instead,
at the IER3 locus, NKL54 promotes binding of MEF2D
as well as of HDAC4 and, to a smaller extent, of HDAC9
(Figure 8F and Supplementary Figure S14A). This observa-
tion further suggests that NKL54 cannot affect binding be-
tween MEF2 and class IIa HDACs in vivo. Interestingly, in
another region near the locus, binding of both HDAC4 and
HDAC9 can be detected, and this binding is independent
from MEF2D and NKL54 (Figure 8F and Supplementary
Figure S14A, highlighted in green). Two other examples of
loci whose expression is upregulated by NKL54 treatment
and characterized by the appearance of MEF2D binding
after NKL54 treatment are CXCL1 and CXCL2 (Supple-
mentary Figure S14B).

DISCUSSION

The availability of small compounds that induce chromatin
remodelling in neoplastic cells is a promising anticancer
strategy. The development of small molecules that alter
protein-protein interactions is a challenging but also a new
and growing area of drug discovery. Here, we have inves-
tigated and characterized the possibility of disrupting the
interaction between MEF2 and class IIa HDACs. The orig-
inal idea was to target the surface of the interaction be-
tween MEF2 and these epigenetic repressors in LMS. How-
ever, because the MEF2-HDAC axis is also perturbed in
other cancers, our study may have much broader implica-
tions (1,17).

The prototype molecule was the PAOA derivative
NKL54 (9). Molecular modelling confirmed that NKL54
should be able to fit into the hydrophobic groove of
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Figure 8. NKL54 exerts a profound influence on the genomic binding of MEF2D, HDAC4 and HDAC9. (A) Genomic distribution of HDAC4, HDAC9
and MEF2D-enriched IDR-defined peaks identified by MACS2 in SK-UT-1 cells treated (n = 1770, 393 and 4723) or untreated (n = 6109, 891 and 1496)
for 14 h with 5 �M NKL54. (B) As in panel A, with values represented as percentage. (C) Proximity, expressed as percentage of the overall ChIP-seq
enriched peaks, between the MEF2D enriched peaks identified in SK-UT-1 cells treated with NKL54 and those found in untreated cells. We defined as
‘Conserved’ the overlapping peaks between cells treated and untreated with NKL54, whereas ‘Changed’ are peaks found only in untreated cells and ‘New’
are peaks found only in NKL54-treated cells. (D) Proximity to MEF2D peaks, expressed as percentage, of HDAC4 and HDAC9 ChIP-seq enriched peaks
in SK-UT-1 cells treated or untreated with NKL54. MEF2D peaks are defined by the categories showed in panel C. The maximum distance to define
overlapping peaks (Conserved) is 1 kb. (E) Heat-maps of the MEF2D signal distribution in (left) a region of ±3 kb around the TSS of 90 genes upregulated
by NKL54 treatment and showing the appearance of NKL54 de novo MEF2D peaks, and (right) around the TSS of 2000 genes not regulated by NKL54
treatment, as indicated. MEF2D signals are compared between untreated and NKL54 treated cells. ChIP-seq data are from experiment 1. (F) Detailed
view of the MEF2D, HDAC4 and HDAC9 tracks at two representative loci (ERRFI1 and IER3), upregulated by NKL54 and showing de novo MEF2D
peaks. Gene structure and chromosomal location are shown.
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MEF2. Unfortunately, our in vitro and in vivo studies show
that NKL54 could not compete with the binding between
HDAC4 and MEF2A/D, although the binding, at least in
vitro, is dynamic. Several hypotheses can be formulated.
Structural deficiencies in mimicking �-helix distribution,
limited contact sites within the hydrophobic groove, or fail-
ure to release the hot-spots of protein-protein interactions
may explain the inability of NKL54 to act as an orthosteric
inhibitor of MEF2-HDACs interactions (49,50). MC2984
and MC2985, predicted by molecular modelling to interact
with MEF2 similarly to NKL54, are also unable to com-
pete with HDAC4 peptide binding. Importantly, only com-
pounds that inhibit KDACs and increase histone acetyla-
tion can induce LMS cell death.

The persistence of HDAC inhibitory activity in these
PAOA derivatives was confirmed by comparative transcrip-
tomic analysis. Although these compounds, unlike SAHA,
do not inhibit HDAC6 and HDAC8, the DEGs are largely
overlapping with those found for SAHA. Thus, in SK-UT-1
cells, inhibition of HDAC1/HDAC2/HDAC3 causes most
transcriptional adjustments and is sufficient to trigger cell
death. A group of pro-apoptotic BCL2 members belonging
to the BH3-only subfamily are upregulated by SAHA and
PAOA derivatives, providing a link between HDAC1/2/3
inhibition and their upregulation. The expression of BIM,
BMF and HRK is strongly upregulated as an early re-
sponse and high levels are maintained throughout. Simi-
larly, BCL2L11/BIM and BBC3/PUMA are upregulated,
although less strongly. All these BH3-only members are up-
regulated by different HDACIs in different cancer models
(51–55).

In general, upregulated genes are expressed at low lev-
els in untreated cells, whereas downregulated genes are
abundantly expressed. Moreover, the downregulated genes
characterize the late response to HDACIs. This repressive
wave may represent an adaptation to the unscheduled tran-
scriptional reprogramming. The downregulation of several
KATs can also be seen in this context (46,56,57).

The repressive effect of HDACIs on highly transcribed
genes may be due to different mechanisms. HDACs may
limit acetylation in the gene body and intergenic regions
(58,59). This action optimizes recruitment of BRD4, a
key elongation factor at promoters and enhancers (59).
HDACIs can block elongation of RNA polymerase II
and increase pausing of RNAPII at enhancers and super-
enhancers (60). At super-enhancers, HDACIs can also
cause excessive H3K27ac spreading, an effect that al-
ters normal chromosomal looping (61). Erosion of super-
enhancers boundaries, because of H3K27ac spreading, may
also be responsible for downregulation of highly expressed
genes.

Among PAOA derivatives, NKL54 and MC2984 show
few differences. In general, NKL54 is more potent and mod-
ulates more genes, especially those that are downregulated.
The mechanism through which, the trifluoro group can
cause such differences deserves further investigation. Curi-
ously, but expected (39,62), high concentrations of NKL54
can inhibit HDAC4 in vitro.

Neural differentiation represents the most enriched
DEGs category in response to SAHA and PAOA. Interest-

ingly, gene programs related to neural differentiation have
also been activated in other cell lines: synovial sarcoma cells,
human embryonic stem cells, and malignant rhabdoid tu-
mor cells, in response to structurally unrelated HDACIs
(54,63). They may represent a genetic program silenced by
HDACs in non-neuronal cells and reactivated in the pres-
ence of the inhibitors.

Only few genes are modulated by MC2985. This com-
pound is a very weak HDAC inhibitor but has strong
pro-death activity. Therefore, it is plausible that MC2985
has additional targets, possibly through the action of its
2(alkylthio)-4-phenyl-pirimidine group.

TMP195 is a class IIa specific inhibitor. In LMS cells,
it shows a weak anti-proliferative effect. In contrast, dele-
tion of HDAC4 and of HDAC9 strongly affects cell survival
and proliferation (19,36). The role of these epigenetic reg-
ulators, as scaffolds for the assembly of multiprotein com-
plexes, may explain this discrepancy (64,65). Catalytic do-
main targeting may not be sufficient to knock down all class
IIa activities. Approximately 50% of the genes modulated by
TMP195 are also modulated by class I HDAC inhibitors.
This overlap is not surprising because class IIa enzymes
coordinate the activity of the NCOR1-NCORII-HDAC3
complex via the deacetylase domain (66).

We have shown that HDACIs and NKL54 particularly,
can affect MEF2 transcriptional activity. First, HDAC7 (at
earlier times) and, HDAC4 and HDAC9 (later) are down-
regulated. Second, MEF2C and MEF2D are upregulated.
These changes could contribute to convert MEF2 com-
plexes dedicated to repression into transcriptional activa-
tors. Indeed, approximately 30% of genes under MEF2 reg-
ulation are also upregulated by NKL54. Consistent with
our observations, BML-210 can promote the activation of
MEF2-dependent memory-related genes and the increase
of synaptic markers in the hippocampus of a mouse model
of Huntington’s disease (67).

ChIP-seq experiments have revealed a global increase in
MEF2D genome occupancy in response to NKL54. In-
creased recruitment of TFs to regulatory regions in re-
sponse to HDACIs has been reported for PU.I (68). In the
case of MEF2D, further studies will be necessary to clar-
ify the effect of NKL54 on MEF2D genome occupancy.
The creation of new and more accessible chromatin regions
could be evoked (69), but a direct effect on MEF2D acety-
lation status and potentiation of its DNA-binding activ-
ity cannot be excluded. Indeed, it has been reported that
HDAC3 can bind and deacetylate MEF2D (70–72).

In conclusion, upregulation of the MEF2 transcriptional
program may be beneficial for LMS patients, as evidenced
by the better prognosis when the MEF2-NKL54 signature
is expressed at higher levels. Targeting the interaction be-
tween MEF2 and class IIa HDACs is still an open challenge.
Our results further stimulate the search for new compounds
capable of reactivating MEF2-dependent transcription.
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