Radially symmetric solutions
 to the Hénon-Lane-Emden system on the critical hyperbola

Roberta Musina
Dipartimento di Matematica ed Informatica, Università di Udine via delle Scienze, 206-33100 Udine, Italy
roberta.musina@uniud.it
K. Sreenadh
Department of Mathematics, Indian Institute of Technology Delhi
Hauz Khas, New Delhi 110016, India
sreenadh@maths.iitd.ac.in

Received 19 December 2012
Revised 23 June 2013
Accepted 26 June 2013
Published 26 September 2013

We use variational methods to study the existence of non-trivial and radially symmetric solutions to the Hénon-Lane-Emden system with weights, when the exponents involved lie on the "critical hyperbola". We also discuss qualitative properties of solutions and non-existence results.

Keywords: Weighted Lane-Emden system; critical hyperbola; Rellich inequality; Sobolev inequality; fourth-order ordinary differential equations; Hamiltonian systems.

Mathematics Subject Classification 2010: 35B09, 35B40, 35B33

1. Introduction

In this paper we discuss the existence, non-existence and qualitative properties of non-trivial radially symmetric solutions u, v to the following weakly coupled system on the punctured space $\mathbb{R}^{n} \backslash\{0\}$:

$$
\left\{\begin{array}{l}
-\Delta u=|x|^{a}|v|^{p-2} v \tag{1.1}\\
-\Delta v=|x|^{b}|u|^{q-2} u
\end{array}\right.
$$

Here $n \geq 2, a, b \in \mathbb{R}, p, q>1$ belong to the weighted critical hyperbola

$$
\begin{equation*}
\frac{a+n}{p}+\frac{b+n}{q}=n-2, \tag{1.2}
\end{equation*}
$$

and that satisfy the standard anticoercivity assumption

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}<1 \tag{1.3}
\end{equation*}
$$

The Hénon-Lane-Emden system (1.1) is a largely studied problem. In the autonomous case $a=b=0$, Lions proved in [26] the existence of a solution $u \in$ $\mathcal{D}^{2, q^{\prime}}\left(\mathbb{R}^{n}\right), v \in \mathcal{D}^{2, p^{\prime}}\left(\mathbb{R}^{n}\right)$ to

$$
\left\{\begin{array}{l}
-\Delta u=|v|^{p-2} v, \tag{1.4}\\
-\Delta v=|u|^{q-2} u,
\end{array}\right.
$$

under the assumptions $n>n / p+n / q=n-2>0$. We quote also the paper [21] by Hulshof-Van der Vorst, for additional qualitative properties of the pair u, v.

The role of the "critical hyperbola" was first pointed out by Mitidieri [27, 28] for the autonomous case $a=b=0$ (see also [35]). It turns out that (1.4) has no positive, radial solutions $u, v \in C^{2}\left(\mathbb{R}^{n}\right)$ if p, q are below the critical hyperbola. On the other hand, Serrin and Zou used shooting methods in [36] to prove that (1.1) admits infinitely many positive radial solutions u, v which tend to 0 as $|x| \rightarrow+\infty$, provided that the pair p, q is on or above the critical hyperbola.

The Hénon-Lane-Emden conjecture has been raised in [34, 12] for a more general class of higher-order system. It says in particular that there is no positive solution for system (1.1) if p, q are under the critical hyperbola. Bidaut-Véron and Giacomini have recently shown in [4] that if $n \geq 3, a, b>-2$, then the system (1.1) admits a positive classical radial solution u, v with u, v continuous at the origin if and only if (p, q) is above or on the critical hyperbola. We recall that by [3, Proposition 2.1], no solution to (1.1) is continuous at the origin if $a \leq-2$ or $b \leq-2$.

Remarkable results about the Hénon-Lane-Emden conjecture have been recently obtained also in $[8,17,18,32,33,35,37]$.

Finally, we recall that the weighted critical hyperbola enters in a natural way in the context of the solvability of Hardy-Hénon type elliptic systems in bounded domains, see, for instance, $[16,9]$ and the recent papers $[5,6]$.

In the present paper we first use variational methods to extend the Lions existence theorem to the non-autonomous case. Then we discuss non-existence results. We always assume that (1.2) and (1.3) are satisfied. We limit ourselves to state here some of our results, and we postpone more precise statements to Sec. 3 .

Existence. If $a \neq-n$ and $b \neq-n$, then (1.1) has a non-trivial radial solution u, v such that

$$
\int_{\mathbb{R}^{n}}|x|^{-\frac{a}{p-1}}|\Delta u|^{p^{\prime}} d x<\infty, \quad \int_{\mathbb{R}^{n}}|x|^{-\frac{b}{q-1}}|\Delta v|^{q^{\prime}} d x<\infty
$$

Moreover, it holds that

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{\frac{b+n}{q}} u(x)=\lim _{x \rightarrow 0}|x|^{\frac{b+n}{q}} u(x)=\lim _{|x| \rightarrow \infty}|x|^{\frac{a+n}{p}} v(x)=\lim _{x \rightarrow 0}|x|^{\frac{a+n}{p}} v(x)=0 \tag{1.5}
\end{equation*}
$$

and u, v are both positive if and only if $a>-n$ and $b>-n$.

Non-existence. Let u, v be a solution to (1.1) on $\mathbb{R}^{n} \backslash\{0\}$ and assume that either

$$
\left\{\begin{array}{lll}
\lim _{|x| \rightarrow \infty}|x|^{\frac{b+n}{q}} u(x), & \lim _{|x| \rightarrow \infty}|x|^{\frac{a+n}{p}} v(x) & \text { exist and that are finite, or } \tag{1.6}\\
\lim _{x \rightarrow 0}|x|^{\frac{b+n}{q}} u(x), & \lim _{x \rightarrow 0}|x|^{\frac{a+n}{p}} v(x) & \text { exist and that are finite. }
\end{array}\right.
$$

If $a \leq-n$ or $b \leq-n$ and if $u \geq 0, v \geq 0$ then $u \equiv v \equiv 0$.
Let us briefly describe our approach. It has already been noticed for instance in $[3,4,8]$ that radial solutions to (1.1) are in one-to-one correspondence with trajectories g, f of the Hamiltonian system

$$
\begin{cases}-g^{\prime \prime}+2 A g^{\prime}+\Gamma g=|f|^{p-2} f & \text { on } \mathbb{R}, \tag{1.7}\\ -f^{\prime \prime}-2 A f^{\prime}+\Gamma f=|g|^{q-2} g & \text { on } \mathbb{R}\end{cases}
$$

for suitable constants $A, \Gamma \in \mathbb{R}$ depending on the data. Notice that (1.7) includes the Schrödinger equation $-g^{\prime \prime}+\Gamma g=|g|^{p-2} g$, whose relevance with the Caffarelli-Kohn-Nirenberg inequality was pointed out by Catrina and Wang in [13]. For $p=2$ the system (1.7) reduces to the fourth-order ordinary differential equation

$$
\begin{equation*}
g^{\prime \prime \prime \prime}-2\left(2 A^{2}+\Gamma\right) g^{\prime \prime}+\Gamma^{2} g=|g|^{q-2} g, \tag{1.8}
\end{equation*}
$$

which is naturally related to second-order dilation invariant inequalities of RellichSobolev type, see [2]. Actually the system (1.7) and Eq. (1.8) have independent interest because of their applications. We shall not attempt to give a complete list of references. We cite for instance $[7,14,15,19,22-25]$ and references therein. In the monograph [31] one can find several applications and a rich bibliography on these topics.

In Sec. 2 we use the results in [30] and variational methods to get the existence of solutions $g \in W^{2, p^{\prime}}(\mathbb{R}), f \in W^{2, q^{\prime}}(\mathbb{R})$ to (1.7); cf. Theorem 2.1. Then we discuss sign properties of solutions to (1.7) having certain behavior at $-\infty$ and/or at $+\infty$. In Sec. 3 we obtain our main theorems about (1.1) as corollaries of our results for (1.7).

In the Appendix we indicate a possible non-radial approach to (1.1).
Notation. For any integer $n \geq 2$ we denote by ω_{n} the ($n-1$)-dimensional measure of the unit sphere \mathbb{S}^{n-1} in \mathbb{R}^{n}.

Let $q \in[1,+\infty)$ and let ω be a non-negative measurable function on a domain $\Omega \subseteq \mathbb{R}^{n}, n \geq 1$. The weighted Lebesgue space $L^{q}(\Omega ; \omega(x) d x)$ is the space of measurable maps u in Ω with finite norm $\left(\int_{\Omega}|u|^{q} \omega(x) d x\right)^{1 / q}$. For $\omega \equiv 1$ we simply write $L^{q}(\Omega)$. As usual, $\|\cdot\|_{\infty}$ is the L^{∞}-norm.

For any function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, the notation $\varphi(\pm \infty)=c$ means that there exists $\lim _{s \rightarrow \pm \infty} \varphi(s)=c$.

2. A 2×2 System of Ordinary Differential Equations

In this section we provide conditions for the existence of solutions to (1.7) vanishing at $\pm \infty$ and for the non-existence of positive solutions having non-negative limits at $-\infty$ or at ∞. We start with an existence result.

Theorem 2.1. Let $p, q \in(1, \infty) A, \Gamma \in \mathbb{R}$ be given, such that $A^{2}+\Gamma \geq 0$ and $\Gamma \neq 0$. Assume that (1.3) is satisfied. Then the system (1.7) has a non-trivial solution g, f such that $g \in W^{2, p^{\prime}}(\mathbb{R})$ and $f \in W^{2, q^{\prime}}(\mathbb{R})$.

Proof. To simplify notations, we set

$$
\mathcal{L}_{+} \varphi:=-\varphi^{\prime \prime}+2 A \varphi^{\prime}+\Gamma \varphi, \quad \mathcal{L}_{-} \varphi=-\varphi^{\prime \prime}-2 A \varphi^{\prime}+\Gamma \varphi .
$$

Since $A^{2}+\Gamma \geq 0$ and $\Gamma \neq 0$, from [30, Proposition 5.2] we have that the infimum

$$
I_{p^{\prime}, q}(A, \Gamma)=\inf _{\substack{g \in W^{2, p^{\prime}}(\mathbb{R}) \\ g \neq 0}} \frac{\int_{\mathbb{R}}\left|\mathcal{L}_{+} g\right|^{p^{\prime}} d s}{\left(\int_{\mathbb{R}}|g|^{q} d x\right)^{p^{\prime} / q}}
$$

is achieved by some $g \in W^{2, p^{\prime}}(\mathbb{R})$ that solves

$$
\int_{\mathbb{R}}\left|\mathcal{L}_{+} g\right|^{p^{\prime}-2} \mathcal{L}_{+} g \mathcal{L}_{+} \psi d s=\int_{\mathbb{R}}|g|^{q-2} g \psi d s \quad \text { for any } \psi \in W^{2, p^{\prime}}(\mathbb{R})
$$

Thus $g \in W^{2, p^{\prime}}(\mathbb{R})$ is a weak solution to the following fourth-order ODE:

$$
\mathcal{L}_{-}\left(\left|\mathcal{L}_{+} g\right|^{p^{\prime}-2} \mathcal{L}_{+} g\right)=|g|^{q-2} g \quad \text { on } \mathbb{R},
$$

which is equivalent to the system (1.7), by defining $f=-\left|\mathcal{L}_{+} g\right|^{p^{\prime}-2} \mathcal{L}_{+} g$. Clearly, $g, f \in C^{2}(\mathbb{R})$. Now we recall that $\left\|\mathcal{L}_{-} \cdot\right\|_{q^{\prime}}$ is an equivalent norm in $W^{2, q^{\prime}}(\mathbb{R})$ by [30, Proposition 5.2]. Since $g \in W^{2, p^{\prime}}(\mathbb{R}) \hookrightarrow L^{q}(\mathbb{R})$, we have $\mathcal{L}_{-} f=|g|^{q-2} g \in L^{q^{\prime}}(\mathbb{R})$, and thus $f \in W^{2, q^{\prime}}(\mathbb{R})$.

Remark 2.2. One could exchange g and f in the proof of Theorem 2.1 to find a solution \tilde{g}, \tilde{f}, such that $\tilde{f} \in W^{2, q^{\prime}}(\mathbb{R})$ achieves $I_{q^{\prime}, p}(-A, \Gamma)$ and $\tilde{g}=$ $-\left|\mathcal{L}_{-} \tilde{f}\right|^{p^{\prime}-2} \mathcal{L}_{-} \tilde{f}$. This argument does not lead to a multiplicity result for (1.7). To simplify notations we set $m=I_{p^{\prime}, q}(A, \Gamma)$ and $\tilde{m}=I_{q^{\prime}, p}(-A, \Gamma)$. Since $\left|\mathcal{L}_{-} f\right|^{q^{\prime}}=$ $|g|^{q},|f|^{p}=\left|\mathcal{L}_{+} g\right|^{p^{\prime}}$, and since g achieves m we find

$$
\tilde{m} \leq \frac{\int_{\mathbb{R}}\left|\mathcal{L}_{-} f\right|^{q^{\prime}} d s}{\left(\int_{\mathbb{R}}|f|^{p} d s\right)^{q^{\prime} / p}}=\frac{\int_{\mathbb{R}}|g|^{q} d s}{\left(\int_{\mathbb{R}}\left|\mathcal{L}_{+} g\right|^{p} d s\right)^{q^{\prime} / p}}=m^{\frac{p-q^{\prime}}{p} \frac{q}{q-p^{\prime}}},
$$

so that $\tilde{m}^{\frac{q-p^{\prime}}{q}} \leq m^{\frac{p-q^{\prime}}{p}}$. In a similar way we get the opposite inequality, and in particular $\tilde{m}^{\frac{q-p^{\prime}}{q}}=m^{\frac{p-q^{\prime}}{p}}$. Moreover, \tilde{f} achieves \tilde{m} and \tilde{g} achieves m.

In order to study the qualitative properties of solutions to (1.7) we take advantage of its Hamiltonian structure. Indeed, the system (1.7) is conservative, and any solution g, f satisfies

$$
\begin{equation*}
E(g, f):=g^{\prime} f^{\prime}-\Gamma g f+\frac{1}{q}|g|^{q}+\frac{1}{p}|f|^{p}=\text { constant. } \tag{2.1}
\end{equation*}
$$

Remark 2.3. Let $g \in W^{2, p^{\prime}}(\mathbb{R}), f \in W^{2, q^{\prime}}(\mathbb{R})$ be a solution to (1.7). By the wellknown facts about Sobolev spaces, the functions g, g^{\prime}, f and f^{\prime} are Hölder continuous on \mathbb{R}. Thus $g, f \in C^{2}(\mathbb{R})$. In addition g, g^{\prime}, f and f^{\prime} vanish at $\pm \infty$ and hence (2.1) implies

$$
\begin{equation*}
g^{\prime} f^{\prime}-\Gamma g f+\frac{1}{q}|g|^{q}+\frac{1}{p}|f|^{p} \equiv 0 \quad \text { on } \mathbb{R} . \tag{2.2}
\end{equation*}
$$

Remark 2.4. Problem (1.7) is equivalent to a (2×2)-dimensional first-order Hamiltonian system. For $X=\left(x_{1}, x_{2}\right), Y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ we set

$$
H(X, Y)=y_{1} y_{2}+A\left(x_{1} y_{1}-x_{2} y_{2}\right)-\left(A^{2}+\Gamma\right) x_{1} x_{2}+\frac{1}{q}\left|x_{1}\right|^{q}+\frac{1}{p}\left|x_{2}\right|^{p}
$$

Then a solution g, f solves (1.7) if and only if $X=(g, f), Y=\left(f^{\prime}+A f, g^{\prime}-A g\right)$ solve

$$
\left\{\begin{array}{l}
X^{\prime}=\partial_{Y} H(X, Y) \tag{2.3}\\
Y^{\prime}=-\partial_{X} H(X, Y)
\end{array}\right.
$$

If $\Gamma \neq 0$ and $\delta:=p q-(p+q)>0$, then $\pm\left(|\Gamma|^{p / \delta},|\Gamma|^{-1+q / \delta} \Gamma\right)$ are equilibrium points for (2.3). Notice that a positive equilibrium exists if and only if $\Gamma>0$.

From (2.1) we first infer the following a priori bound on trajectories having null energy.

Proposition 2.5. Let $g, f \in C^{2}(\mathbb{R})$ be a solution to (1.7) such that g, g^{\prime}, f and f^{\prime} vanish at infinity. Then

$$
\|g\|_{\infty}^{q-p^{\prime}} \leq \frac{q}{p^{\prime}}|\Gamma|^{p^{\prime}}, \quad\|f\|_{\infty}^{p-q^{\prime}} \leq \frac{p}{q^{\prime}}|\Gamma|^{q^{\prime}}
$$

In particular, if $\Gamma=0$ then $g=f \equiv 0$.
Proof. Let $\bar{s} \in \mathbb{R}$ be such that $|g(\bar{s})|=\|g\|_{\infty}$. Then $g^{\prime}(\bar{s})=0$ and therefore from (2.1) and since $E(g, f)=0$ we get

$$
\frac{1}{q}\|g\|_{\infty}^{q}+\frac{1}{p}|f(\bar{s})|^{p}=\Gamma f(\bar{s})\|g\|_{\infty} \leq \frac{|\Gamma|^{p^{\prime}}}{p^{\prime}}\|g\|_{\infty}^{p^{\prime}}+\frac{1}{p}|f(\bar{s})|^{p}
$$

by Young's inequality. The desired a priori bound on g follows immediately. The estimate on $\|f\|_{\infty}$ can be obtained in a similar way.

In the remaining part of this section, we study the sign of solutions g, f to (1.7). We distinguish the case $\Gamma>0$ from the case when Γ is non-positive.

Theorem 2.6. Let $g, f \in C^{2}(\mathbb{R})$ be a solution to (1.7), such that g and f vanish at $\pm \infty$ together with their derivatives. If $\Gamma>0$ then $g \equiv f \equiv 0$ or $g f>0$ on \mathbb{R}.

Proof. We start by noticing that the solution g, f satisfies (2.2). In a moment we will prove the following.

Claim. $g(s) f(s) \neq 0$ for any $s \in \mathbb{R}$.
Assume that the claim is proved. Then both g and f have constant sign. The function g has at least one critical point \bar{s}. By (2.2), it holds that

$$
-\Gamma g(\bar{s}) f(\bar{s})+\frac{1}{q}|g(\bar{s})|^{q}+\frac{1}{p}|f(\bar{s})|^{p}=0 .
$$

Thus $g(\bar{s}) f(\bar{s})>0$, and therefore $g f>0$ everywhere in \mathbb{R}, which concludes the proof of the theorem.

It remains to prove the claim. Notice that from (2.2) the following facts follow:

$$
\begin{gather*}
\text { if } g^{\prime}(\xi) f^{\prime}(\xi)=0 \text { then } f(\xi)=g(\xi)=0 \text { or } f(\xi) g(\xi)>0 \tag{2.4}\\
\text { if } g(\xi) f(\xi)=0 \text { then } f(\xi)=g(\xi)=0=f^{\prime}(\xi) g^{\prime}(\xi) \text { or } f^{\prime}(\xi) g^{\prime}(\xi)<0 \tag{2.5}
\end{gather*}
$$

By contradiction, assume that g vanishes somewhere. Up to a change of sign and/or inversion $s \mapsto-s$, we can assume that g attains its negative minimum at some $s_{1} \in \mathbb{R}$ and that g reaches 0 in $\left(s_{1}, \infty\right)$. Let s_{2} be the first zero of g in $\left(s_{1}, \infty\right)$. Thus $g<0$ on $\left[s_{1}, s_{2}\right), f\left(s_{1}\right)<0$ by (2.4), and $g^{\prime}\left(s_{2}\right) \geq 0$. In addition,

$$
\begin{equation*}
\text { if } f^{\prime}(\bar{s})=0 \text { for some } \bar{s} \in\left[s_{1}, s_{2}\right) \text {, then } f(\bar{s})<0 \tag{2.6}
\end{equation*}
$$

because of (2.4). Now we prove that

$$
\begin{equation*}
g^{\prime}\left(s_{2}\right) f^{\prime}\left(s_{2}\right)=0, \quad f\left(s_{2}\right)=0, \quad f<0 \quad \text { on }\left[s_{1}, s_{2}\right) \tag{2.7}
\end{equation*}
$$

If $g^{\prime}\left(s_{2}\right)=0$ then (2.7) readily follows from (2.4) and (2.6). If $g^{\prime}\left(s_{2}\right)>0$ and $f^{\prime}\left(s_{2}\right)=f\left(s_{2}\right)=0$ then (2.6) immediately implies (2.7). In view of (2.5), to conclude the proof of (2.7) we only have to exclude that $g^{\prime}\left(s_{2}\right)>0>f^{\prime}\left(s_{2}\right)$. We argue by contradiction. If $f^{\prime}\left(s_{2}\right)<0$ then $f\left(s_{2}\right)<0$ by (2.6). Since g is increasing in a neighborhood of s_{2} and since g decays at infinity, there is a point $s_{3}>s_{2}$ such that $g^{\prime}\left(s_{3}\right)=0$ and $g>0$ on $\left(s_{2}, s_{3}\right]$. But then $f\left(s_{3}\right)>0$ by (2.4). Since $f\left(s_{2}\right), f^{\prime}\left(s_{2}\right)$ are negative, we infer that f has a minimum $s_{4} \in\left(s_{2}, s_{3}\right)$, with $f\left(s_{4}\right)<0$. But then $g\left(s_{4}\right)<0$ by (2.4), which is impossible. Thus (2.7) is proved.

In conclusion, we have that the trajectory g, f solves the system

$$
\begin{cases}g^{\prime \prime}-2 A g^{\prime}-\Gamma g=-|f|^{p-2} f \geq 0 & \text { in }\left(s_{1}, s_{2}\right) \\ f^{\prime \prime}+2 A f^{\prime}-\Gamma f=-|g|^{q-2} g \geq 0 & \text { in }\left(s_{1}, s_{2}\right) \\ g, f<0 & \text { in }\left(s_{1}, s_{2}\right) \\ g\left(s_{2}\right)=f\left(s_{2}\right)=g^{\prime}\left(s_{2}\right)=f^{\prime}\left(s_{2}\right)=0, & \end{cases}
$$

which contradicts the Hopf boundary point lemma. The claim and the theorem are completely proved.

The condition $\Gamma>0$ is also necessary to have the existence of positive solutions vanishing at $\pm \infty$. In view of Remark 2.3, the next proposition applies in particular to solutions $g \in W^{2, p^{\prime}}(\mathbb{R}), f \in W^{2, q^{\prime}}(\mathbb{R})$.

Proposition 2.7. Let $g, f \in C^{2}(\mathbb{R})$ be a solution to (1.7), such that g and f vanish at $\pm \infty$ together with their derivatives. If $\Gamma \leq 0$ and $g f \geq 0$ on \mathbb{R} then $g \equiv f \equiv 0$.

Proof. The trajectory g, f has null energy, that is, (2.2) holds. In particular, at any critical point \bar{s} of g one has that $|\Gamma| g(\bar{s}) f(\bar{s})+\frac{1}{q}|g(\bar{s})|^{q}+\frac{1}{p}|f(\bar{s})|^{p}=0$. Thus both g and f vanish at \bar{s}. In particular, $\min g=\max g=0$, and the conclusion follows.

We conclude this section with two more non-existence results in case $\Gamma \leq 0$.
Theorem 2.8. Assume that the solution $g, f \in C^{2}(\mathbb{R})$ solves (1.7) for some $A \in \mathbb{R}$, $\Gamma \leq 0$ and p, q satisfying (1.3). In addition, assume that
$g(-\infty)=c_{g} \in[0, \infty), \quad f(-\infty)=c_{f} \in[0, \infty), \quad g \geq 0$ and $f \geq 0 \quad$ on \mathbb{R}.
Then $g \equiv f \equiv 0$.
Proof. First of all we notice that g, f cannot be a non-trivial pair of constant functions by Remark 2.4.

The function $h:=-f^{\prime}-2 A f$ is increasing in \mathbb{R}, as $h^{\prime}=g(s)^{q-1}-\Gamma f \geq 0$. Thus it has a limit as $s \rightarrow-\infty$. Hence, also f^{\prime} has a limit as $s \rightarrow-\infty$. Clearly

$$
\begin{equation*}
f^{\prime}(-\infty)=0, \tag{2.8}
\end{equation*}
$$

and therefore from (1.7) we also get

$$
\begin{equation*}
-f^{\prime \prime}(-\infty)=-\Gamma c_{f}+c_{g}^{q-1} \geq 0 \tag{2.9}
\end{equation*}
$$

In a similar way we get

$$
\begin{equation*}
g^{\prime}(-\infty)=0, \quad-g^{\prime \prime}(\infty)=-\Gamma c_{g}+c_{f}^{p-1} \geq 0 \tag{2.10}
\end{equation*}
$$

In particular, from (2.1) and (2.8), (2.10) we infer that

$$
g^{\prime} f^{\prime}-\Gamma g f+\frac{1}{q}|g|^{q}+\frac{1}{p}|f|^{p}=-\Gamma c_{g} c_{f}+\frac{1}{q} c_{g}^{q}+\frac{1}{p} c_{f}^{p} \quad \text { on } \mathbb{R} .
$$

Claim 1. If $c_{g}=c_{f}=0$ then $g \equiv f \equiv 0$.
To prove the claim, we notice that the trajectory g, f satisfies (2.2). If we assume by contradiction that g or f do not vanish identically, then there exists $s_{0} \in \mathbb{R}$ such that $g^{\prime}\left(s_{0}\right) f^{\prime}\left(s_{0}\right)<0$. To fix ideas, assume that $f^{\prime}\left(s_{0}\right)<0$. Since $f \geq 0$ and $f(s) \rightarrow 0$ as $s \rightarrow-\infty$, it means that f must have a positive local maximum $s_{1}<s_{0}$. At the point s_{1} the conservation law (2.2) gives $-\Gamma g\left(s_{1}\right) f\left(s_{1}\right)+\frac{1}{q}\left|g\left(s_{1}\right)\right|^{q}+\frac{1}{p}\left|f\left(s_{1}\right)\right|^{p}=0$, which contradicts $f\left(s_{1}\right)>0$. The claim is proved.

Claim 2. If $A \leq 0$ then $\Gamma c_{f}=0$ and $c_{g}=0$.

By contradiction, assume that $-\Gamma c_{f}+c_{g}^{q-1}>0$. Then the function f is strictly concave and decreasing in a neighborhood of $-\infty$ by (2.9) and (2.8). Thus in particular $c_{f}>0$, and therefore form the conservation law we get

$$
\begin{equation*}
g^{\prime} f^{\prime}-\Gamma g f+\frac{1}{q}|g|^{q}+\frac{1}{p}|f|^{p} \geq \frac{1}{p} c_{f}^{p}>0 \quad \text { on } \mathbb{R} . \tag{2.11}
\end{equation*}
$$

Since f is bounded from below, it cannot be strictly concave on \mathbb{R}. We claim that f can never be locally convex. Assume that there exists $s_{0} \in \mathbb{R}$ such that $f^{\prime \prime}\left(s_{0}\right)>0$. Then from (1.7) we have that $-2 A f^{\prime}\left(s_{0}\right)>-\Gamma f\left(s_{0}\right)+g\left(s_{0}\right)^{q-1} \geq 0$. Thus, $A<0$ and $f^{\prime}\left(s_{0}\right)>0$. Since $f^{\prime}(s)<0$ for $s \ll 0$, then the function f must have a local minimum $s_{1} \in\left(-\infty, s_{0}\right)$. Thus $f^{\prime}\left(s_{1}\right)=0$ and $f^{\prime \prime}\left(s_{1}\right) \geq 0$. But then

$$
0 \geq-f^{\prime \prime}\left(s_{1}\right)=-\Gamma f\left(s_{1}\right)+g\left(s_{1}\right)^{q-1} \geq 0
$$

which implies $\Gamma f\left(s_{1}\right)=g\left(s_{1}\right)=0$. In particular, $g^{\prime}\left(s_{1}\right)=0$, and $g^{\prime \prime}\left(s_{1}\right) \geq 0$, since s_{1} is a minimum for g thanks to the assumption that $g \geq 0$. Thus, (1.7) gives $0 \geq-g^{\prime \prime}\left(s_{1}\right)=f\left(s_{1}\right)^{p-1} \geq 0$. Thus $f\left(s_{1}\right)=0$, contradicting (2.11).

We have proved that $f^{\prime \prime} \leq 0$ on \mathbb{R}. Thus there exists $s_{0} \in \mathbb{R}$ such that f is a non-negative constant on $\left[s_{0}, \infty\right)$. But then from (1.7) we infer that $f \equiv g \equiv 0$ on $\left[s_{0}, \infty\right)$, as $\Gamma \leq 0$. We have reached again a contradiction with (2.11), and the claim is proved.

Claim 3. If $A \geq 0$ then $\Gamma c_{g}=0$ and $c_{f}=0$.
It is sufficient to exchange the roles of g and f, and argue as in Claim 2.
Now we are in position to conclude the proof. By Claim 1, we only have to show that $c_{g}=c_{f}=0$. Thus we are done if $A=0$, thanks to Claims 2 and 3. We have to study the case

$$
\begin{equation*}
A<0, \quad \Gamma=c_{g}=0 \tag{2.12}
\end{equation*}
$$

and the case $A>0, \Gamma=0=c_{f}$ that can be handled in a similar way. Assume that (2.12) holds. Since g solves $-g^{\prime \prime}+2 A g^{\prime}=f^{p-1} \geq 0$, then the function $-g^{\prime}+2 A g$ is non-decreasing on \mathbb{R}. Hence $-g^{\prime}+2 A g \geq 0$ by (2.10) and since $c_{g}=0$. Thus $g^{\prime} \leq 2 A g \leq 0$ on \mathbb{R}, that is, $g \equiv 0$, because it is non-increasing and non-negative. The proof is complete.

Since the system (1.7) is invariant with respect to inversion $s \mapsto-s$, then clearly the next result holds as well.

Theorem 2.9. Assume that the pair $g, f \in C^{2}(\mathbb{R})$ solves (1.7) for some $A \in \mathbb{R}$, $\Gamma \leq 0$ and p, q satisfying (1.3). In addition, assume that

$$
g(\infty)=c_{g} \in[0, \infty), \quad f(\infty)=c_{f} \in[0, \infty), \quad g \geq 0 \text { and } f \geq 0 \quad \text { on } \mathbb{R}
$$

Then $g \equiv f \equiv 0$.

We conclude this section with a result that holds in case $p=2<q$.
Theorem 2.10. Let $q \in(2, \infty)$ and assume that $A^{2}+\Gamma \geq 0, \Gamma \neq 0$. Up to translations in \mathbb{R}, composition with the inversion $s \mapsto-s$ and change of sign, the system

$$
\begin{cases}-g^{\prime \prime}+2 A g^{\prime}+\Gamma g=f & \text { on } \mathbb{R} \\ -f^{\prime \prime}-2 A f^{\prime}+\Gamma f=|g|^{q-2} g & \text { on } \mathbb{R}\end{cases}
$$

has a unique non-trivial solution (g, f) such that $g \in H^{2}(\mathbb{R})$ and $f \in W^{2, q^{\prime}}(\mathbb{R})$. Moreover, g is even, positive and strictly decreasing on $(0, \infty)$, and f is positive if and only if $\Gamma>0$.

Proof. Existence is given by Theorem 2.1. Notice that g is smooth and solves

$$
\begin{equation*}
g^{\prime \prime \prime \prime}-2\left(2 A^{2}+\Gamma\right) g^{\prime \prime}+\Gamma^{2} g=|g|^{q-2} g \tag{2.13}
\end{equation*}
$$

On the other hand, since $\left(2 A^{2}+\Gamma\right)^{2} \geq \Gamma^{2}$, then Theorem 2.2 in [2] implies that (2.13) has a unique solution g (up to the above transforms), which can be taken to be positive, even and strictly decreasing on $(0, \infty)$. The uniqueness of f is immediate. The last statement concerning the sign of f follows by Theorem 2.6 and Proposition 2.7.

Remark 2.11. Clearly, f is even if and only if $A=0$.

3. The Hénon-Lane-Emden System

In this section we provide conditions for the existence of solutions to (1.1) in suitable energy spaces and for the non-existence of positive solutions having certain behavior at 0 or at ∞.

We start by introducing some weighted Sobolev spaces. Let $\theta \in(1, \infty)$ and $\alpha \in \mathbb{R}$ be given, such that $\alpha \notin\{2 \theta-n, n p-n\}$. Then we can use the results in [30] to define the Banach space $\mathcal{D}_{\mathrm{r}}^{2, \theta}\left(\mathbb{R}^{n} ;|x|^{\alpha} d x\right)$ as the completion of radial functions in $C_{c}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with respect to the norm

$$
\|u\|_{\alpha}=\left(\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x\right)^{1 / \theta}
$$

To any pair of radial functions $u, v \in C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, we associate the pair $g, f \in$ $C^{2}(\mathbb{R})$ defined by

$$
\begin{equation*}
u(x)=|x|^{-\lambda_{1}} g(-\log |x|), \quad v(x)=|x|^{-\lambda_{2}} f(-\log |x|) \tag{3.1}
\end{equation*}
$$

where

$$
\lambda_{1}=\frac{b+n}{q}, \quad \lambda_{2}=\frac{a+n}{p} .
$$

We will always assume that (p, q) belongs to the critical hyperbola in (1.2), that is, $\lambda_{1}+\lambda_{2}=n-2$.

We introduce also the constants

$$
\begin{equation*}
\Gamma=\frac{n+a}{p} \frac{n+b}{q}=\lambda_{1} \lambda_{2}, \quad A=\frac{n-2}{2}-\lambda_{1}=-\frac{n-2}{2}+\lambda_{2} . \tag{3.2}
\end{equation*}
$$

Notice that

$$
A^{2}+\Gamma=\left(\frac{n-2}{2}\right)^{2} \geq 0
$$

A direct computation shows that a radial pair u, v solves (1.1) on $\mathbb{R}^{n} \backslash\{0\}$ if and only if the trajectory g, f solves (1.7) with Γ, A given by (3.2). Thanks to the results in previous section we first get the next existence theorem.

Theorem 3.1. Let $n \geq 2, a, b \in \mathbb{R} \backslash\{-n\}$ and $p, q>1$. Assume that (1.3) and (1.2) are satisfied. Then the Hénon-Lane-Emden system (1.1) has a radially symmetric solution

$$
\begin{equation*}
u \in \mathcal{D}_{\mathrm{r}}^{2, p^{\prime}}\left(\mathbb{R}^{n} ;|x|^{-\frac{a}{p-1}} d x\right), \quad v \in \mathcal{D}_{\mathrm{r}}^{2, q^{\prime}}\left(\mathbb{R}^{n} ;|x|^{-\frac{b}{q-1}} d x\right) \tag{3.3}
\end{equation*}
$$

Moreover, u, v satisfies (1.5).

Proof. Define Γ, A as in (3.2), and notice that $\Gamma \neq 0$, and $A^{2}+\Gamma \geq 0$. By Theorem 2.1, we see that there exist $f \in W^{2, p^{\prime}}(\mathbb{R})$ and $g \in W^{2, q^{\prime}}(\mathbb{R})$ satisfying (1.7). Now using the Emden-Fowler transformation in (3.1) and the results in [30], we get a pair u, v that satisfies (3.3) and solves (1.1). The conclusion readily follows from $|x|^{\frac{b+n}{q}} u(x)=g(-\log |x|),|x|^{\frac{a+n}{p}} v(x)=f(-\log |x|)$ and the fact that g and f vanish at $\pm \infty$.

Theorem 3.2. Let $n \geq 2, a, b \in \mathbb{R}$ and $p, q>1$. Assume that (1.3) and (1.2) are satisfied. Let $u, v \in C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be a radially symmetric solution to (1.1) on $\mathbb{R}^{n} \backslash\{0\}$.
(i) If $a>-n, b>-n$ and if a solution u, v satisfies (1.5), then $u \equiv v \equiv 0$ or $u v>0$ on \mathbb{R}.
(ii) Assume that (1.6) holds. If $a \leq-n$ or $b \leq-n$ and if $u \geq 0, v \geq 0$ then $u \equiv v \equiv 0$.

Proof. Define A, Γ and use the Emden-Fowler transform $(u, v) \mapsto(g, f)$ as before. Notice that $\Gamma>0$ in case (i) and $\Gamma \leq 0$ in case (ii). Then apply Theorem 2.8 and Theorem 2.6.

In the next corollary we emphasize the impact of Theorem 3.2 in case $n=2$, when Theorem 3.1 gives existence on the critical hyperbola whenever $a, b \neq-2$.

Corollary 3.3. Let $n=2$ and $p, q>1$. Assume that (1.3) and (1.2) are satisfied, and in addition assume that $a, b \neq-2$. Let $u, v \in C^{2}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ be a radially symmetric and non-negative solution to (1.1) satisfying (1.6). Then $u \equiv v \equiv 0$.

In Theorem 3.2 we saw that the sign of Γ affects the sign of the product $u v$. However, at least in case $p=2$, the function u never changes sign, also in case $\Gamma<0$. The next result for problem

$$
\left\{\begin{array}{l}
-\Delta u=|x|^{a} v \tag{3.4}\\
-\Delta v=|x|^{b}|u|^{q-2} u
\end{array}\right.
$$

is an immediate consequence to Theorem 2.10.
Theorem 3.4. Let $n \geq 2, a, b \in \mathbb{R}$ and $q>1$. Assume that $a, b \neq-n$, and

$$
\frac{a+n}{2}+\frac{b+n}{q}=n-2
$$

is satisfied. Up to dilations, compositions with the Kelvin transform and change of sign, problem (3.4) has a unique non-trivial radial solution $u \in \mathcal{D}_{\mathrm{r}}^{2,2}\left(\mathbb{R}^{n} ;|x|^{-a} d x\right)$, $v \in \mathcal{D}_{\mathrm{r}}^{2, q^{\prime}}\left(\mathbb{R}^{n} ;|x|^{-\frac{b}{q-1}} d x\right)$. Moreover, u is positive, and v is positive if and only if $a, b>-n$.

Appendix. A Non-Radial Approach

Following [39, 9], we notice that (1.1) is formally equivalent to the fourth-order equation

$$
\begin{equation*}
\Delta\left(|x|^{\alpha}|\Delta u|^{\theta-2} \Delta u\right)=|x|^{b}|u|^{q-2} u \tag{A.1}
\end{equation*}
$$

where $\theta=p^{\prime}=\frac{p}{p-1}$ and $\alpha=-\frac{a}{p-1}$. Equation (A.1) is variational. In particular, its non-trivial solutions can be found as critical points for the functional

$$
u \mapsto \frac{\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x}{\left(\int_{\mathbb{R}^{n}}|x|^{b}|u|^{q} d x\right)^{\theta / q}}
$$

on a suitable function space. Let us introduce the weighted Rellich constant

$$
\begin{equation*}
\mu_{\theta}(\alpha):=\inf _{\substack{u \in C_{c}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right) \\ u=u(|x|), u \neq 0}} \frac{\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x}{\int_{\mathbb{R}^{n}}|x|^{\alpha-2 \theta}|u|^{\theta} d x} . \tag{A.2}
\end{equation*}
$$

The best constant $\mu_{\theta}(\alpha)$ is explicitly known in few cases. We define Γ as in (3.2) and we notice that

$$
\begin{equation*}
\Gamma=\left(\frac{n+\alpha}{\theta}-2\right)\left(n-\frac{n+\alpha}{\theta}\right) \tag{A.3}
\end{equation*}
$$

if (1.2) is satisfied. The value of $\mu_{2}(\alpha)($ case $\theta=2)$ is known from [20, 11]:

$$
\mu_{2}(\alpha)=\min _{k \in \mathbb{N} \cup\{0\}}|\Gamma+k(n-2+k)|^{2} .
$$

For general $\theta>1$, Mitidieri proved in [29] that $\mu_{\theta}(\alpha)=|\Gamma|^{\theta}$, provided that $\Gamma \geq 0$.

From now on, we assume that $\mu_{\theta}(\alpha)>0$. Then we can define the space $\mathcal{D}^{2, \theta}\left(\mathbb{R}^{n} ;|x|^{\alpha} d x\right)$ as the closure of functions in $C_{c}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with respect to the norm

$$
\|u\|^{\theta}=\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x
$$

Lemma A.1. Let $\theta>1, \alpha \in \mathbb{R}$ be given, such that $\mu_{\theta}(\alpha)>0$. Let $q \geq \theta$ and assume that $q \leq \theta^{* *}:=\frac{\theta n}{n-2 \theta}$ if $n>2 \theta$. Then there exists a constant $c>0$ such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x \\
& \quad \geq c\left(\int_{\mathbb{R}^{n}}|x|^{-n+q \frac{n-2 \theta+\alpha}{\theta}}|u|^{q} d x\right)^{\theta / q} \quad \text { for any } u \in \mathcal{D}^{2, \theta}\left(\mathbb{R}^{n} ;|x|^{\alpha} d x\right)
\end{aligned}
$$

Proof. If $n>2 \theta$ the conclusion readily follows via interpolation with the Sobolev inequality. For a proof in lower dimensions, we use the Emden-Fowler transform $T: C_{c}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \in C_{c}^{2}\left(\mathbb{R} \times \mathbb{S}^{n-1}\right), T: u \mapsto g$ defined via

$$
u(x)=|x|^{\frac{2 \theta-n-\alpha}{\theta}} g\left(-\log |x|, \frac{x}{|x|}\right)
$$

We denote by Δ_{σ} the Laplace-Beltrami operator on \mathbb{S}^{n-1} and by $g^{\prime \prime}, g^{\prime}$ the derivatives of $g=g(s, \sigma)$ with respect to $s \in \mathbb{R}$. By direct computation one has that

$$
\begin{gathered}
\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x=\int_{\mathbb{R}} \int_{\mathbb{S}^{n-1}}\left|\Delta_{\sigma} g+g^{\prime \prime}-2 A g^{\prime}-\Gamma g\right|^{\theta} d s d \sigma \\
\int_{\mathbb{R}^{n}}|x|^{\alpha-2 \theta}|u|^{\theta} d x=\int_{\mathbb{R}} \int_{\mathbb{S}^{n-1}}|g|^{\theta} d s d \sigma
\end{gathered}
$$

where Γ is given by (A.3) and $A=\frac{2(\theta-\alpha)+n(\theta-2)}{2 \theta}$. Thus, using the assumption $\mu_{\theta}(\alpha)>0$, one proves that

$$
\|g\|^{\theta}:=\int_{\mathbb{R}} \int_{\mathbb{S}^{n}-1}\left|\Delta_{\sigma} g+g^{\prime \prime}-2 A g^{\prime}-\Gamma g\right|^{\theta} d s d \sigma
$$

is an equivalent norm on $W^{2, \theta}\left(\mathbb{R} \times \mathbb{S}^{n-1}\right)$. Therefore, T can be regarded as an isometry between Banach spaces, and the conclusion readily follows by using the Sobolev embedding $W^{2, \theta}\left(\mathbb{R} \times \mathbb{S}^{n-1}\right) \hookrightarrow L^{q}\left(\mathbb{R} \times \mathbb{S}^{n-1}\right)$.

Under the assumptions in Lemma A.1, we have that the infimum

$$
S_{\theta, q}(\alpha):=\inf _{\substack{u \in \mathcal{D}^{2, \theta}\left(\mathbb{R}^{n} ;|x|^{\alpha} d x\right) \\ u \neq 0}} \frac{\int_{\mathbb{R}^{n}}|x|^{\alpha}|\Delta u|^{\theta} d x}{\left(\int_{\mathbb{R}^{n}}|x|^{-n+q \frac{n-2 \theta+\alpha}{\theta}}|u|^{q} d x\right)^{\theta / q}}
$$

is positive. Notice that for $n>2 \theta, \alpha=0$ and $q=\theta^{* *}$ we have that

$$
S_{\theta, \theta^{* *}}(0)=S^{* *}(\theta):=\inf _{\substack{u \in \mathcal{D}^{2, \theta}\left(\mathbb{R}^{n}\right) \\ u \neq 0}} \frac{\int_{\mathbb{R}^{n}}|\Delta u|^{\theta} d x}{\left(\int_{\mathbb{R}^{n}}|u|^{\theta^{* *}} d x\right)^{\theta / \theta^{* * *}}}
$$

which is the best constant in the Sobolev embedding $\mathcal{D}^{2, \theta}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{\theta^{* *}}\left(\mathbb{R}^{n}\right)$, see $[1,38]$. The next existence results can be proved, for instance, by using the techniques in [11] (proof of Theorem 1.2). We omit the details.

Theorem A.2. Let $\theta>1, \alpha \in \mathbb{R}$ be given, in such a way that the infimum in (A.2) is positive. Let $q>\theta$.
(i) Assume that $n \geq 3$ and $q<\theta^{* *}$ if $n>2 \theta$. Then $S_{\theta, q}(\alpha)$ is achieved.
(ii) If $n>2 \theta$ and $S_{\theta, \theta^{* * *}}(\alpha)<S^{* *}(\theta)$ then $S_{\theta, \theta^{* *}}(\alpha)$ is achieved.

Remark A.3. Thanks to the results in [29] we know that $\mu_{\theta}(\alpha)=|\Gamma|^{\theta}>0$, whenever $\Gamma>0$. We suspect that in this case the infimum $S_{\theta, q}(\alpha)$ is always achieved by radial functions. We leave this as an open problem.

From Theorem A. 2 one can easily infer sufficient conditions for the existence of (minimal energy) solutions to the Hénon-Lane-Emden system (1.1), whenever $\mu_{p^{\prime}}(\alpha)>0$. More can be said when $p=2$. From [20, 11] we know that $\mu_{2}(-a)>0$ if and only if $-\Gamma$ is not an eigenvalue of the Laplace-Beltrami operator on the sphere, where now

$$
\Gamma=\left(\frac{n+a}{2}\right)\left(\frac{n+b}{q}\right), \quad \frac{a+n}{2}+\frac{b+n}{q}=n-2 .
$$

From now on we assume that

$$
\begin{equation*}
-\left(\frac{n+a}{2}\right)\left(\frac{n+b}{q}\right) \neq k(n-2+k) \text { for any integer } k \geq 0 \tag{A.4}
\end{equation*}
$$

By ground state solutions to (3.4) we mean solutions u, v such that u achieves the infimum

$$
\inf _{\substack{u \in \mathcal{D}^{2,2}\left(\mathbb{R}^{n} ;|x|^{-a} \\ u \neq 0\right.}} \frac{\int_{\mathbb{R}^{n}}|x|^{-a}|\Delta u|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|x|^{b}|u|^{q} d s\right)^{2 / q}}
$$

For convenience of the reader we summarize here the main results for (3.4) that can be obtained as immediate corollaries of the results in [10].

Theorem A.4. Let $q>2$ and assume that $q<2^{* *}:=\frac{2 n}{n-4}$ if $n \geq 5$.
(i) If (A.4) holds, then (3.4) has a ground state solution \bar{u}, \bar{v}.
(ii) For every $q>2$ and for every integer $k \geq 1$ there exists $\delta>0$ such that if

$$
0<|\Gamma+k(n-2+k)|<\delta
$$

then \bar{u} is not radially symmetric. Thus problem (1.1) has at least two distinct weak solutions.
(iii) If $|\Gamma|>\frac{n-1}{q-2}(1+\sqrt{q-1})$ then \bar{u} is not radially symmetric. Thus problem (1.1) has at least two distinct weak solutions.
(iv) Assume that $-\Gamma>\frac{n-1}{2}$. Then there exists $q_{\alpha}>2$ such that no ground state solution to (3.4) can be positive.

In the limiting case $n \geq 5$ and $q=2^{* *}$ the problem is more difficult. We limit ourselves to point out some corollaries to the results in [10] in case $n \geq 6$.

Theorem A.5. Assume $n \geq 6$ and that (A.4) is satisfied. If in addition $|a+2|>2$, then the problem

$$
\begin{cases}-\Delta u=|x|^{a} v & \tag{A.5}\\ \text { on } \mathbb{R}^{n} \\ -\Delta v=|x|^{b}|u|^{\frac{8}{n-4}} u & \\ \text { on } \mathbb{R}^{n}\end{cases}
$$

has a ground state solution \bar{u}, \bar{v}. Moreover, the conclusions (ii)-(iv) in Theorem A. 4 still hold. In particular, (A.5) has a radial and a non-radial weak solutions.

References

[1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976) 573-598.
[2] M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal. 75 (2012) 3836-3848.
[3] M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Ration. Mech. Anal. 107 (1989) 293-324.
[4] M. F. Bidaut-Véron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems, Adv. Differential Equations 15 (2010) 1033-1082.
[5] D. Bonheure, E. Moreira dos Santos and M. Ramos, Ground state and non-ground state solutions of some strongly coupled elliptic systems, Trans. Amer. Math. Soc. 364 (2012) 447-491.
[6] \qquad , Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems, J. Funct. Anal. 264 (2013) 62-96.
[7] B. Buffoni, Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods, Nonlinear Anal. 26 (1996) 443-462.
[8] J. Busca and R. Manasevich, A Liouville-type theorem for Emden system, Indiana Univ. Math. J. 51 (2002) 37-51.
[9] M. Calanchi and B. Ruf, Radial and non-radial solutions for Hénon-Hardy type elliptic systems, Calc. Var. Partial Differential Equations 38 (2010) 111-133.
[10] P. Caldiroli and R. Musina, Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math. 79 (2011) 657-687.
[11] , Rellich inequalities with weights, Calc. Var. Partial Differential Equations 45 (2012) 147-164.
[12] G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math. 76 (2008) 27-67.
[13] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001) 229-258.
[14] A. R. Champneys and J. F. Toland, Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems, Nonlinearity 6 (1993) 665-721.
[15] Y. Chen and P. J. McKenna, Travelling waves in a nonlinearly suspended beam: Some computational results and four open questions, Philos. Trans. R. Soc. Lond. Ser. A 355 (1997) 2175-2184.
[16] D. G. de Figueiredo, I. Peral and J. D. Rossi, The critical hyperbola for a Hamiltonian system with weights, Ann. Mat. Pura Appl. (4) 187 (2008) 531-545.
[17] M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems, Adv. Nonlinear Stud. 12 (2012) 1-17.
[18] M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture, preprint (2011); arXiv:1107.5611v2.
[19] F. Gazzola and H. C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann. 334 (2006) 905-936.
[20] N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann. 349 (2011) 1-57.
[21] J. Hulshof and R. C. A. M. Van der Vorst, Asymptotic behavior of ground states, Proc. Amer. Math. Soc. 124 (1996) 2423-2431.
[22] G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. London A 425 (1989) 245-267.
[23] G. W. Hunt and E. Lucerna Neto, Localized buckling in long axially-loaded cylindrical shells, J. Mech. Phys. Solids 39 (1991) 881-894.
[24] G. W. Hunt and M. K. Wadee, Comparative Lagrangian formulations for localized buckling, Proc. R. Soc. London A 434 (1991) 485-502.
[25] M. Lazzo and P. G. Schmidt, Oscillatory radial solutions for subcritical biharmonic equations, J. Differential Equations 247 (2009) 1479-1504.
[26] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam. 1 (1985) 145-201.
[27] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993) 125-151.
[28] , Nonexistence of positive solutions of semilinear elliptic systems in \mathbf{R}^{N}, Differential Integral Equations 9 (1996) 465-479.
[29] _ A simple approach to Hardy inequalities, Math. Notes 67 (2000) 479-486; translation from Mat. Zametki 67 (2000) 563-572.
[30] R. Musina, Weighted Sobolev spaces of radially symmetric functions, to appear in Ann. Mat. Pura Appl. (2013), doi:10.1007/s10231-013-0348-4.
[31] L. A. Peletier and W. C. Troy, Spatial Patterns, Progress in Nonlinear Differential Equations and their Applications, Vol. 45 (Birkhäuser, Boston, MA, 2001).
[32] Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems, Adv. Differential Equations 17 (2012) 605-634.
[33] P. Polácicik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I: Elliptic systems, Duke Math. J. 139 (2007) 555-579.
[34] J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, in A Tribute to Ilya Bakelman, Discourses in Mathematics and Its Applications, No. 3 (Texas A \& M University Press, College Station, TX, 1993), pp. 55-68.
[35] \qquad , Non-existence of positive solutions of Hénon-Lane-Emden systems, Differential Integral Equations 9 (1996) 635-653.
[36] , Existence of positive solutions of the Hénon-Lane-Emden system, Atti Semin. Mat. Fis. Univ. Modena 46 (1998) 369-380.
[37] P. Souplet, The proof of the Hénon-Lane-Emden conjecture in four space dimensions, Adv. Math. 221 (2009) 1409-1427.
[38] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372.
[39] X. J. Wang, Sharp constant in a Sobolev inequality, Nonlinear Anal. 20 (1993) 261-268.

