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1. Introduction

In this paper we discuss the existence, non-existence and qualitative properties of
non-trivial radially symmetric solutions u, v to the following weakly coupled system
on the punctured space R

n\{0}:

−∆u = |x|a|v|p−2v,

−∆v = |x|b|u|q−2u.
(1.1)

Here n ≥ 2, a, b ∈ R, p, q > 1 belong to the weighted critical hyperbola

a+ n

p
+
b+ n

q
= n− 2, (1.2)
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and that satisfy the standard anticoercivity assumption
1
p

+
1
q
< 1. (1.3)

The Hénon–Lane–Emden system (1.1) is a largely studied problem. In the
autonomous case a = b = 0, Lions proved in [26] the existence of a solution u ∈
D2,q′

(Rn), v ∈ D2,p′
(Rn) to {−∆u = |v|p−2v,

−∆v = |u|q−2u,
(1.4)

under the assumptions n > n/p + n/q = n − 2 > 0. We quote also the paper [21]
by Hulshof–Van der Vorst, for additional qualitative properties of the pair u, v.

The role of the “critical hyperbola” was first pointed out by Mitidieri [27, 28]
for the autonomous case a = b = 0 (see also [35]). It turns out that (1.4) has no
positive, radial solutions u, v ∈ C2(Rn) if p, q are below the critical hyperbola. On
the other hand, Serrin and Zou used shooting methods in [36] to prove that (1.1)
admits infinitely many positive radial solutions u, v which tend to 0 as |x| → +∞,
provided that the pair p, q is on or above the critical hyperbola.

The Hénon–Lane–Emden conjecture has been raised in [34, 12] for a more general
class of higher-order system. It says in particular that there is no positive solution
for system (1.1) if p, q are under the critical hyperbola. Bidaut-Véron and Giacomini
have recently shown in [4] that if n ≥ 3, a, b > −2, then the system (1.1) admits a
positive classical radial solution u, v with u, v continuous at the origin if and only
if (p, q) is above or on the critical hyperbola. We recall that by [3, Proposition 2.1],
no solution to (1.1) is continuous at the origin if a ≤ −2 or b ≤ −2.

Remarkable results about the Hénon–Lane–Emden conjecture have been
recently obtained also in [8, 17, 18, 32, 33, 35, 37].

Finally, we recall that the weighted critical hyperbola enters in a natural way
in the context of the solvability of Hardy–Hénon type elliptic systems in bounded
domains, see, for instance, [16, 9] and the recent papers [5, 6].

In the present paper we first use variational methods to extend the Lions exis-
tence theorem to the non-autonomous case. Then we discuss non-existence results.
We always assume that (1.2) and (1.3) are satisfied. We limit ourselves to state
here some of our results, and we postpone more precise statements to Sec. 3.

Existence. If a �= −n and b �= −n, then (1.1) has a non-trivial radial solution u, v
such that ∫

Rn

|x|− a
p−1 |∆u|p′

dx <∞,

∫
Rn

|x|− b
q−1 |∆v|q′

dx <∞.

Moreover, it holds that

lim
|x|→∞

|x| b+n
q u(x) = lim

x→0
|x| b+n

q u(x) = lim
|x|→∞

|x| a+n
p v(x) = lim

x→0
|x| a+n

p v(x) = 0,

(1.5)

and u, v are both positive if and only if a > −n and b > −n.
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Non-existence. Let u, v be a solution to (1.1) on R
n\{0} and assume that

either



lim
|x|→∞

|x| b+n
q u(x), lim

|x|→∞
|x| a+n

p v(x) exist and that are finite, or

lim
x→0

|x| b+n
q u(x), lim

x→0
|x| a+n

p v(x) exist and that are finite.
(1.6)

If a ≤ −n or b ≤ −n and if u ≥ 0, v ≥ 0 then u ≡ v ≡ 0.
Let us briefly describe our approach. It has already been noticed for instance in

[3, 4, 8] that radial solutions to (1.1) are in one-to-one correspondence with trajec-
tories g, f of the Hamiltonian system

{−g′′ + 2Ag′ + Γg = |f |p−2f on R,

−f ′′ − 2Af ′ + Γf = |g|q−2g on R

(1.7)

for suitable constants A,Γ ∈ R depending on the data. Notice that (1.7) includes
the Schrödinger equation −g′′ + Γg = |g|p−2g, whose relevance with the Caffarelli–
Kohn–Nirenberg inequality was pointed out by Catrina and Wang in [13]. For p = 2
the system (1.7) reduces to the fourth-order ordinary differential equation

g′′′′ − 2(2A2 + Γ)g′′ + Γ2g = |g|q−2g, (1.8)

which is naturally related to second-order dilation invariant inequalities of Rellich–
Sobolev type, see [2]. Actually the system (1.7) and Eq. (1.8) have independent
interest because of their applications. We shall not attempt to give a complete list
of references. We cite for instance [7,14,15,19,22–25] and references therein. In the
monograph [31] one can find several applications and a rich bibliography on these
topics.

In Sec. 2 we use the results in [30] and variational methods to get the existence
of solutions g ∈ W 2,p′

(R), f ∈ W 2,q′
(R) to (1.7); cf. Theorem 2.1. Then we discuss

sign properties of solutions to (1.7) having certain behavior at −∞ and/or at +∞.
In Sec. 3 we obtain our main theorems about (1.1) as corollaries of our results
for (1.7).

In the Appendix we indicate a possible non-radial approach to (1.1).

Notation. For any integer n ≥ 2 we denote by ωn the (n−1)-dimensional measure
of the unit sphere S

n−1 in R
n.

Let q ∈ [1,+∞) and let ω be a non-negative measurable function on a domain
Ω ⊆ R

n, n ≥ 1. The weighted Lebesgue space Lq(Ω;ω(x)dx) is the space of mea-
surable maps u in Ω with finite norm (

∫
Ω
|u|qω(x)dx)1/q . For ω ≡ 1 we simply write

Lq(Ω). As usual, ‖ · ‖∞ is the L∞-norm.
For any function ϕ : R → R, the notation ϕ(±∞) = c means that there exists

lims→±∞ ϕ(s) = c.
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2. A 2 × 2 System of Ordinary Differential Equations

In this section we provide conditions for the existence of solutions to (1.7) vanishing
at ±∞ and for the non-existence of positive solutions having non-negative limits
at −∞ or at ∞. We start with an existence result.

Theorem 2.1. Let p, q ∈ (1,∞) A,Γ ∈ R be given, such that A2+Γ ≥ 0 and Γ �= 0.
Assume that (1.3) is satisfied. Then the system (1.7) has a non-trivial solution g, f
such that g ∈ W 2,p′

(R) and f ∈ W 2,q′
(R).

Proof. To simplify notations, we set

L+ϕ := −ϕ′′ + 2Aϕ′ + Γϕ, L−ϕ = −ϕ′′ − 2Aϕ′ + Γϕ.

Since A2 + Γ ≥ 0 and Γ �= 0, from [30, Proposition 5.2] we have that the infimum

Ip′,q(A,Γ) = inf
g∈W 2,p′

(R)
g �=0

∫
R

|L+g|p′
ds

(∫
R

|g|qdx
)p′/q

is achieved by some g ∈W 2,p′
(R) that solves∫

R

|L+g|p′−2L+gL+ψds =
∫

R

|g|q−2gψ ds for any ψ ∈ W 2,p′
(R).

Thus g ∈ W 2,p′
(R) is a weak solution to the following fourth-order ODE:

L−(|L+g|p′−2L+g) = |g|q−2g on R,

which is equivalent to the system (1.7), by defining f = −|L+g|p′−2L+g. Clearly,
g, f ∈ C2(R). Now we recall that ‖L− ·‖q′ is an equivalent norm in W 2,q′

(R) by [30,
Proposition 5.2]. Since g ∈ W 2,p′

(R) ↪→ Lq(R), we have L−f = |g|q−2g ∈ Lq′
(R),

and thus f ∈W 2,q′
(R).

Remark 2.2. One could exchange g and f in the proof of Theorem 2.1 to
find a solution g̃, f̃ , such that f̃ ∈ W 2,q′

(R) achieves Iq′,p(−A,Γ) and g̃ =
−|L−f̃ |p′−2L−f̃ . This argument does not lead to a multiplicity result for (1.7).
To simplify notations we set m = Ip′,q(A,Γ) and m̃ = Iq′,p(−A,Γ). Since |L−f |q′

=
|g|q, |f |p = |L+g|p′

, and since g achieves m we find

m̃ ≤

∫
R

|L−f |q′
ds

(∫
R

|f |pds
)q′/p

=

∫
R

|g|qds
(∫

R

|L+g|pds
)q′/p

= m
p−q′

p
q

q−p′ ,

so that m̃
q−p′

q ≤ m
p−q′

p . In a similar way we get the opposite inequality, and in

particular m̃
q−p′

q = m
p−q′

p . Moreover, f̃ achieves m̃ and g̃ achieves m.
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In order to study the qualitative properties of solutions to (1.7) we take advan-
tage of its Hamiltonian structure. Indeed, the system (1.7) is conservative, and any
solution g, f satisfies

E(g, f) := g′f ′ − Γgf +
1
q
|g|q +

1
p
|f |p = constant. (2.1)

Remark 2.3. Let g ∈W 2,p′
(R), f ∈W 2,q′

(R) be a solution to (1.7). By the well-
known facts about Sobolev spaces, the functions g, g′, f and f ′ are Hölder contin-
uous on R. Thus g, f ∈ C2(R). In addition g, g′, f and f ′ vanish at ±∞ and hence
(2.1) implies

g′f ′ − Γgf +
1
q
|g|q +

1
p
|f |p ≡ 0 on R. (2.2)

Remark 2.4. Problem (1.7) is equivalent to a (2×2)-dimensional first-order Hamil-
tonian system. For X = (x1, x2), Y = (y1, y2) ∈ R

2 we set

H(X,Y ) = y1y2 +A(x1y1 − x2y2) − (A2 + Γ)x1x2 +
1
q
|x1|q +

1
p
|x2|p.

Then a solution g, f solves (1.7) if and only if X = (g, f), Y = (f ′ + Af, g′ − Ag)
solve {

X ′ = ∂Y H(X,Y ),

Y ′ = −∂XH(X,Y ).
(2.3)

If Γ �= 0 and δ := pq − (p+ q) > 0, then ±(|Γ|p/δ, |Γ|−1+q/δΓ) are equilibrium
points for (2.3). Notice that a positive equilibrium exists if and only if Γ > 0.

From (2.1) we first infer the following a priori bound on trajectories having null
energy.

Proposition 2.5. Let g, f ∈ C2(R) be a solution to (1.7) such that g, g′, f and f ′

vanish at infinity. Then

‖g‖q−p′
∞ ≤ q

p′
|Γ|p′

, ‖f‖p−q′
∞ ≤ p

q′
|Γ|q′

.

In particular, if Γ = 0 then g = f ≡ 0.

Proof. Let s ∈ R be such that |g(s)| = ‖g‖∞. Then g′(s) = 0 and therefore from
(2.1) and since E(g, f) = 0 we get

1
q
‖g‖q

∞ +
1
p
|f(s)|p = Γf(s)‖g‖∞ ≤ |Γ|p′

p′
‖g‖p′

∞ +
1
p
|f(s)|p

by Young’s inequality. The desired a priori bound on g follows immediately. The
estimate on ‖f‖∞ can be obtained in a similar way.

In the remaining part of this section, we study the sign of solutions g, f to (1.7).
We distinguish the case Γ > 0 from the case when Γ is non-positive.
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Theorem 2.6. Let g, f ∈ C2(R) be a solution to (1.7), such that g and f vanish
at ±∞ together with their derivatives. If Γ > 0 then g ≡ f ≡ 0 or gf > 0 on R.

Proof. We start by noticing that the solution g, f satisfies (2.2). In a moment we
will prove the following.

Claim. g(s)f(s) �= 0 for any s ∈ R.

Assume that the claim is proved. Then both g and f have constant sign. The
function g has at least one critical point s. By (2.2), it holds that

−Γg(s)f(s) +
1
q
|g(s)|q +

1
p
|f(s)|p = 0.

Thus g(s)f(s) > 0, and therefore gf > 0 everywhere in R, which concludes the
proof of the theorem.

It remains to prove the claim. Notice that from (2.2) the following facts follow:

if g′(ξ)f ′(ξ) = 0 then f(ξ) = g(ξ) = 0 or f(ξ)g(ξ) > 0, (2.4)

if g(ξ)f(ξ) = 0 then f(ξ) = g(ξ) = 0 = f ′(ξ)g′(ξ) or f ′(ξ)g′(ξ) < 0. (2.5)

By contradiction, assume that g vanishes somewhere. Up to a change of sign and/or
inversion s 
→ −s, we can assume that g attains its negative minimum at some
s1 ∈ R and that g reaches 0 in (s1,∞). Let s2 be the first zero of g in (s1,∞). Thus
g < 0 on [s1, s2), f(s1) < 0 by (2.4), and g′(s2) ≥ 0. In addition,

if f ′(s̄) = 0 for some s̄ ∈ [s1, s2), then f(s̄) < 0, (2.6)

because of (2.4). Now we prove that

g′(s2)f ′(s2) = 0, f(s2) = 0, f < 0 on [s1, s2). (2.7)

If g′(s2) = 0 then (2.7) readily follows from (2.4) and (2.6). If g′(s2) > 0 and
f ′(s2) = f(s2) = 0 then (2.6) immediately implies (2.7). In view of (2.5), to conclude
the proof of (2.7) we only have to exclude that g′(s2) > 0 > f ′(s2). We argue by
contradiction. If f ′(s2) < 0 then f(s2) < 0 by (2.6). Since g is increasing in a
neighborhood of s2 and since g decays at infinity, there is a point s3 > s2 such that
g′(s3) = 0 and g > 0 on (s2, s3]. But then f(s3) > 0 by (2.4). Since f(s2), f ′(s2)
are negative, we infer that f has a minimum s4 ∈ (s2, s3), with f(s4) < 0. But then
g(s4) < 0 by (2.4), which is impossible. Thus (2.7) is proved.

In conclusion, we have that the trajectory g, f solves the system


g′′ − 2Ag′ − Γg = −|f |p−2f ≥ 0 in (s1, s2),

f ′′ + 2Af ′ − Γf = −|g|q−2g ≥ 0 in (s1, s2),

g, f < 0 in (s1, s2),

g(s2) = f(s2) = g′(s2) = f ′(s2) = 0,

which contradicts the Hopf boundary point lemma. The claim and the theorem are
completely proved.
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The condition Γ > 0 is also necessary to have the existence of positive solutions
vanishing at ±∞. In view of Remark 2.3, the next proposition applies in particular
to solutions g ∈W 2,p′

(R), f ∈W 2,q′
(R).

Proposition 2.7. Let g, f ∈ C2(R) be a solution to (1.7), such that g and f vanish
at ±∞ together with their derivatives. If Γ ≤ 0 and gf ≥ 0 on R then g ≡ f ≡ 0.

Proof. The trajectory g, f has null energy, that is, (2.2) holds. In particular, at
any critical point s̄ of g one has that |Γ|g(s̄)f(s̄) + 1

q |g(s̄)|q + 1
p |f(s̄)|p = 0. Thus

both g and f vanish at s̄. In particular, min g = max g = 0, and the conclusion
follows.

We conclude this section with two more non-existence results in case Γ ≤ 0.

Theorem 2.8. Assume that the solution g, f ∈ C2(R) solves (1.7) for some A ∈ R,
Γ ≤ 0 and p, q satisfying (1.3). In addition, assume that

g(−∞) = cg ∈ [0,∞), f(−∞) = cf ∈ [0,∞), g ≥ 0 and f ≥ 0 on R.

Then g ≡ f ≡ 0.

Proof. First of all we notice that g, f cannot be a non-trivial pair of constant
functions by Remark 2.4.

The function h := −f ′−2Af is increasing in R, as h′ = g(s)q−1 −Γf ≥ 0. Thus
it has a limit as s→ −∞. Hence, also f ′ has a limit as s→ −∞. Clearly

f ′(−∞) = 0, (2.8)

and therefore from (1.7) we also get

−f ′′(−∞) = −Γcf + cq−1
g ≥ 0. (2.9)

In a similar way we get

g′(−∞) = 0, −g′′(∞) = −Γcg + cp−1
f ≥ 0. (2.10)

In particular, from (2.1) and (2.8), (2.10) we infer that

g′f ′ − Γgf +
1
q
|g|q +

1
p
|f |p = −Γcgcf +

1
q
cqg +

1
p
cpf on R.

Claim 1. If cg = cf = 0 then g ≡ f ≡ 0.

To prove the claim, we notice that the trajectory g, f satisfies (2.2). If we assume
by contradiction that g or f do not vanish identically, then there exists s0 ∈ R such
that g′(s0)f ′(s0) < 0. To fix ideas, assume that f ′(s0) < 0. Since f ≥ 0 and f(s) → 0
as s → −∞, it means that f must have a positive local maximum s1 < s0. At the
point s1 the conservation law (2.2) gives −Γg(s1)f(s1) + 1

q |g(s1)|q + 1
p |f(s1)|p = 0,

which contradicts f(s1) > 0. The claim is proved.

Claim 2. If A ≤ 0 then Γcf = 0 and cg = 0.

1350030-7



3rd Reading

May 14, 2014 15:27 WSPC/S0219-1997 152-CCM 1350030

R. Musina & K. Sreenadh

By contradiction, assume that −Γcf +cq−1
g > 0. Then the function f is strictly con-

cave and decreasing in a neighborhood of −∞ by (2.9) and (2.8). Thus in particular
cf > 0, and therefore form the conservation law we get

g′f ′ − Γgf +
1
q
|g|q +

1
p
|f |p ≥ 1

p
cpf > 0 on R. (2.11)

Since f is bounded from below, it cannot be strictly concave on R. We claim that f
can never be locally convex. Assume that there exists s0 ∈ R such that f ′′(s0) > 0.
Then from (1.7) we have that −2Af ′(s0) > −Γf(s0) + g(s0)q−1 ≥ 0. Thus, A < 0
and f ′(s0) > 0. Since f ′(s) < 0 for s � 0, then the function f must have a local
minimum s1 ∈ (−∞, s0). Thus f ′(s1) = 0 and f ′′(s1) ≥ 0. But then

0 ≥ −f ′′(s1) = −Γf(s1) + g(s1)q−1 ≥ 0,

which implies Γf(s1) = g(s1) = 0. In particular, g′(s1) = 0, and g′′(s1) ≥ 0, since
s1 is a minimum for g thanks to the assumption that g ≥ 0. Thus, (1.7) gives
0 ≥ −g′′(s1) = f(s1)p−1 ≥ 0. Thus f(s1) = 0, contradicting (2.11).

We have proved that f ′′ ≤ 0 on R. Thus there exists s0 ∈ R such that f is a
non-negative constant on [s0,∞). But then from (1.7) we infer that f ≡ g ≡ 0 on
[s0,∞), as Γ ≤ 0. We have reached again a contradiction with (2.11), and the claim
is proved.

Claim 3. If A ≥ 0 then Γcg = 0 and cf = 0.

It is sufficient to exchange the roles of g and f , and argue as in Claim 2.
Now we are in position to conclude the proof. By Claim 1, we only have to show

that cg = cf = 0. Thus we are done if A = 0, thanks to Claims 2 and 3. We have
to study the case

A < 0, Γ = cg = 0 (2.12)

and the case A > 0, Γ = 0 = cf that can be handled in a similar way. Assume that
(2.12) holds. Since g solves −g′′ + 2Ag′ = fp−1 ≥ 0, then the function −g′ + 2Ag
is non-decreasing on R. Hence −g′ + 2Ag ≥ 0 by (2.10) and since cg = 0. Thus
g′ ≤ 2Ag ≤ 0 on R, that is, g ≡ 0, because it is non-increasing and non-negative.
The proof is complete.

Since the system (1.7) is invariant with respect to inversion s 
→ −s, then clearly
the next result holds as well.

Theorem 2.9. Assume that the pair g, f ∈ C2(R) solves (1.7) for some A ∈ R,

Γ ≤ 0 and p, q satisfying (1.3). In addition, assume that

g(∞) = cg ∈ [0,∞), f(∞) = cf ∈ [0,∞), g ≥ 0 and f ≥ 0 on R.

Then g ≡ f ≡ 0.
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We conclude this section with a result that holds in case p = 2 < q.

Theorem 2.10. Let q ∈ (2,∞) and assume that A2 + Γ ≥ 0, Γ �= 0. Up to
translations in R, composition with the inversion s 
→ −s and change of sign, the
system {−g′′ + 2Ag′ + Γg = f on R,

−f ′′ − 2Af ′ + Γf = |g|q−2g on R

has a unique non-trivial solution (g, f) such that g ∈ H2(R) and f ∈ W 2,q′
(R).

Moreover, g is even, positive and strictly decreasing on (0,∞), and f is positive if
and only if Γ > 0.

Proof. Existence is given by Theorem 2.1. Notice that g is smooth and solves

g′′′′ − 2(2A2 + Γ)g′′ + Γ2g = |g|q−2g. (2.13)

On the other hand, since (2A2 + Γ)2 ≥ Γ2, then Theorem 2.2 in [2] implies that
(2.13) has a unique solution g (up to the above transforms), which can be taken to
be positive, even and strictly decreasing on (0,∞). The uniqueness of f is imme-
diate. The last statement concerning the sign of f follows by Theorem 2.6 and
Proposition 2.7.

Remark 2.11. Clearly, f is even if and only if A = 0.

3. The Hénon–Lane–Emden System

In this section we provide conditions for the existence of solutions to (1.1) in suitable
energy spaces and for the non-existence of positive solutions having certain behavior
at 0 or at ∞.

We start by introducing some weighted Sobolev spaces. Let θ ∈ (1,∞) and
α ∈ R be given, such that α /∈ {2θ−n, np−n}. Then we can use the results in [30]
to define the Banach space D2,θ

r (Rn; |x|αdx) as the completion of radial functions
in C2

c (Rn\{0}) with respect to the norm

‖u‖α =
(∫

Rn

|x|α|∆u|θ dx
)1/θ

.

To any pair of radial functions u, v ∈ C2(Rn\{0}), we associate the pair g, f ∈
C2(R) defined by

u(x) = |x|−λ1 g(−log|x|), v(x) = |x|−λ2 f(−log|x|), (3.1)

where

λ1 =
b+ n

q
, λ2 =

a+ n

p
.

We will always assume that (p, q) belongs to the critical hyperbola in (1.2), that is,
λ1 + λ2 = n− 2.
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We introduce also the constants

Γ =
n+ a

p

n+ b

q
= λ1λ2, A =

n− 2
2

− λ1 = − n− 2
2

+ λ2. (3.2)

Notice that

A2 + Γ =
(
n− 2

2

)2

≥ 0.

A direct computation shows that a radial pair u, v solves (1.1) on R
n\{0} if and

only if the trajectory g, f solves (1.7) with Γ, A given by (3.2). Thanks to the results
in previous section we first get the next existence theorem.

Theorem 3.1. Let n ≥ 2, a, b ∈ R\{−n} and p, q > 1. Assume that (1.3) and (1.2)
are satisfied. Then the Hénon–Lane–Emden system (1.1) has a radially symmetric
solution

u ∈ D2,p′
r (Rn; |x|− a

p−1 dx), v ∈ D2,q′
r (Rn; |x|− b

q−1 dx). (3.3)

Moreover, u, v satisfies (1.5).

Proof. Define Γ, A as in (3.2), and notice that Γ �= 0, and A2 + Γ ≥ 0. By
Theorem 2.1, we see that there exist f ∈ W 2,p′

(R) and g ∈ W 2,q′
(R) satisfying

(1.7). Now using the Emden–Fowler transformation in (3.1) and the results in [30],
we get a pair u, v that satisfies (3.3) and solves (1.1). The conclusion readily follows
from |x| b+n

q u(x) = g(− log |x|), |x| a+n
p v(x) = f(− log |x|) and the fact that g and f

vanish at ±∞.

Theorem 3.2. Let n ≥ 2, a, b ∈ R and p, q > 1. Assume that (1.3) and (1.2)
are satisfied. Let u, v ∈ C2(Rn\{0}) be a radially symmetric solution to (1.1) on
R

n\{0}.
(i) If a > −n, b > −n and if a solution u, v satisfies (1.5), then u ≡ v ≡ 0 or

uv > 0 on R.
(ii) Assume that (1.6) holds. If a ≤ −n or b ≤ −n and if u ≥ 0, v ≥ 0 then

u ≡ v ≡ 0.

Proof. Define A,Γ and use the Emden–Fowler transform (u, v) 
→ (g, f) as before.
Notice that Γ > 0 in case (i) and Γ ≤ 0 in case (ii). Then apply Theorem 2.8 and
Theorem 2.6.

In the next corollary we emphasize the impact of Theorem 3.2 in case n = 2,
when Theorem 3.1 gives existence on the critical hyperbola whenever a, b �= −2.

Corollary 3.3. Let n = 2 and p, q > 1. Assume that (1.3) and (1.2) are satisfied,
and in addition assume that a, b �= −2. Let u, v ∈ C2(R2\{0}) be a radially sym-
metric and non-negative solution to (1.1) satisfying (1.6). Then u ≡ v ≡ 0.
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In Theorem 3.2 we saw that the sign of Γ affects the sign of the product uv.
However, at least in case p = 2, the function u never changes sign, also in case
Γ < 0. The next result for problem{−∆u = |x|av,

−∆v = |x|b|u|q−2u
(3.4)

is an immediate consequence to Theorem 2.10.

Theorem 3.4. Let n ≥ 2, a, b ∈ R and q > 1. Assume that a, b �= −n, and

a+ n

2
+
b+ n

q
= n− 2

is satisfied. Up to dilations, compositions with the Kelvin transform and change of
sign, problem (3.4) has a unique non-trivial radial solution u ∈ D2,2

r (Rn; |x|−adx),
v ∈ D2,q′

r (Rn; |x|− b
q−1 dx). Moreover, u is positive, and v is positive if and only if

a, b > −n.

Appendix. A Non-Radial Approach

Following [39, 9], we notice that (1.1) is formally equivalent to the fourth-order
equation

∆(|x|α|∆u|θ−2∆u) = |x|b|u|q−2u, (A.1)

where θ = p′ = p
p−1 and α = − a

p−1 . Equation (A.1) is variational. In particular, its
non-trivial solutions can be found as critical points for the functional

u 
→

∫
Rn

|x|α|∆u|θdx
(∫

Rn

|x|b|u|qdx
)θ/q

on a suitable function space. Let us introduce the weighted Rellich constant

µθ(α) := inf
u∈C2

c (Rn\{0})
u=u(|x|),u�=0

∫
Rn

|x|α|∆u|θdx∫
Rn

|x|α−2θ|u|θdx
. (A.2)

The best constant µθ(α) is explicitly known in few cases. We define Γ as in (3.2)
and we notice that

Γ =
(
n+ α

θ
− 2

) (
n− n+ α

θ

)
(A.3)

if (1.2) is satisfied. The value of µ2(α) (case θ = 2) is known from [20, 11]:

µ2(α) = min
k∈N∪{0}

|Γ + k(n− 2 + k)|2.

For general θ > 1, Mitidieri proved in [29] that µθ(α) = |Γ|θ, provided that Γ ≥ 0.
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From now on, we assume that µθ(α) > 0. Then we can define the space
D2,θ(Rn; |x|αdx) as the closure of functions in C2

c (Rn\{0}) with respect to the
norm

‖u‖θ =
∫

Rn

|x|α|∆u|θdx.

Lemma A.1. Let θ > 1, α ∈ R be given, such that µθ(α) > 0. Let q ≥ θ and
assume that q ≤ θ∗∗ := θn

n−2θ if n > 2θ. Then there exists a constant c > 0 such
that ∫

Rn

|x|α|∆u|θ dx

≥ c

(∫
Rn

|x|−n+q n−2θ+α
θ |u|qdx

)θ/q

for any u ∈ D2,θ(Rn; |x|αdx).

Proof. If n > 2θ the conclusion readily follows via interpolation with the Sobolev
inequality. For a proof in lower dimensions, we use the Emden–Fowler transform
T : C2

c (Rn\{0})→ ∈ C2
c (R × S

n−1), T : u 
→ g defined via

u(x) = |x| 2θ−n−α
θ g

(
−log|x|, x|x|

)
.

We denote by ∆σ the Laplace–Beltrami operator on S
n−1 and by g′′, g′ the deriva-

tives of g = g(s, σ) with respect to s ∈ R. By direct computation one has that∫
Rn

|x|α|∆u|θdx =
∫

R

∫
Sn−1

|∆σg + g′′ − 2Ag′ − Γg|θdsdσ,
∫

Rn

|x|α−2θ|u|θdx =
∫

R

∫
Sn−1

|g|θdsdσ,

where Γ is given by (A.3) and A = 2(θ−α)+n(θ−2)
2θ . Thus, using the assumption

µθ(α) > 0, one proves that

‖g‖θ :=
∫

R

∫
Sn−1

|∆σg + g′′ − 2Ag′ − Γg|θdsdσ

is an equivalent norm on W 2,θ(R × S
n−1). Therefore, T can be regarded as an

isometry between Banach spaces, and the conclusion readily follows by using the
Sobolev embedding W 2,θ(R × S

n−1) ↪→ Lq(R × S
n−1).

Under the assumptions in Lemma A.1, we have that the infimum

Sθ,q(α) := inf
u∈D2,θ(Rn;|x|αdx)

u�=0

∫
Rn

|x|α|∆u|θdx
(∫

Rn

|x|−n+q n−2θ+α
θ |u|qdx

)θ/q
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is positive. Notice that for n > 2θ, α = 0 and q = θ∗∗ we have that

Sθ,θ∗∗(0) = S∗∗(θ) := inf
u∈D2,θ(Rn)

u�=0

∫
Rn

|∆u|θdx
(∫

Rn

|u|θ∗∗
dx

)θ/θ∗∗ ,

which is the best constant in the Sobolev embedding D2,θ(Rn) ↪→ Lθ∗∗
(Rn), see

[1,38]. The next existence results can be proved, for instance, by using the techniques
in [11] (proof of Theorem 1.2). We omit the details.

Theorem A.2. Let θ > 1, α ∈ R be given, in such a way that the infimum in (A.2)
is positive. Let q > θ.

(i) Assume that n ≥ 3 and q < θ∗∗ if n > 2θ. Then Sθ,q(α) is achieved.
(ii) If n > 2θ and Sθ,θ∗∗(α) < S∗∗(θ) then Sθ,θ∗∗(α) is achieved.

Remark A.3. Thanks to the results in [29] we know that µθ(α) = |Γ|θ > 0,
whenever Γ > 0. We suspect that in this case the infimum Sθ,q(α) is always achieved
by radial functions. We leave this as an open problem.

From Theorem A.2 one can easily infer sufficient conditions for the existence
of (minimal energy) solutions to the Hénon–Lane–Emden system (1.1), whenever
µp′(α) > 0. More can be said when p = 2. From [20, 11] we know that µ2(−a) > 0 if
and only if −Γ is not an eigenvalue of the Laplace–Beltrami operator on the sphere,
where now

Γ =
(
n+ a

2

) (
n+ b

q

)
,

a+ n

2
+
b+ n

q
= n− 2.

From now on we assume that

−
(
n+ a

2

) (
n+ b

q

)
�= k(n− 2 + k) for any integer k ≥ 0. (A.4)

By ground state solutions to (3.4) we mean solutions u, v such that u achieves the
infimum

inf
u∈D2,2(Rn;|x|−adx)

u�=0

∫
Rn

|x|−a|∆u|2dx
(∫

Rn

|x|b|u|qds
)2/q

.

For convenience of the reader we summarize here the main results for (3.4) that
can be obtained as immediate corollaries of the results in [10].

Theorem A.4. Let q > 2 and assume that q < 2∗∗ := 2n
n−4 if n ≥ 5.

(i) If (A.4) holds, then (3.4) has a ground state solution u, v.
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(ii) For every q > 2 and for every integer k ≥ 1 there exists δ > 0 such that if

0 < |Γ + k(n− 2 + k)| < δ

then u is not radially symmetric. Thus problem (1.1) has at least two distinct
weak solutions.

(iii) If |Γ| > n−1
q−2 (1+

√
q − 1) then u is not radially symmetric. Thus problem (1.1)

has at least two distinct weak solutions.
(iv) Assume that −Γ > n−1

2 . Then there exists qα > 2 such that no ground state
solution to (3.4) can be positive.

In the limiting case n ≥ 5 and q = 2∗∗ the problem is more difficult. We limit
ourselves to point out some corollaries to the results in [10] in case n ≥ 6.

Theorem A.5. Assume n ≥ 6 and that (A.4) is satisfied. If in addition |a+2| > 2,
then the problem {−∆u = |x|av on R

n

−∆v = |x|b|u| 8
n−4u on R

n
(A.5)

has a ground state solution u, v. Moreover, the conclusions (ii)–(iv) in Theorem A.4
still hold. In particular, (A.5) has a radial and a non-radial weak solutions.
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elliptic systems, Calc. Var. Partial Differential Equations 38 (2010) 111–133.

[10] P. Caldiroli and R. Musina, Caffarelli–Kohn–Nirenberg type inequalities for the
weighted biharmonic operator in cones, Milan J. Math. 79 (2011) 657–687.

1350030-14



3rd Reading

May 14, 2014 15:27 WSPC/S0219-1997 152-CCM 1350030

Radially symmetric solutions to the Hénon–Lane–Emden system
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[32] Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy–Hénon elliptic
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