
07 May 2024

Università degli studi di Udine

Original

Proper strong-Fibonacci games

Publisher:

Published
DOI:10.1007/s10203-018-0212-5

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1143793 since 2021-03-12T10:19:38Z



Decisions in Economics and Finance
 

Proper strong-Fibonacci games
--Manuscript Draft--

 
Manuscript Number: DEAF-D-16-00068R1

Full Title: Proper strong-Fibonacci games

Article Type: Original research

Corresponding Author: Laura Ziani, Ph.D.
Universita degli Studi di Udine
Udine, Italy ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universita degli Studi di Udine

Corresponding Author's Secondary
Institution:

First Author: Laura Ziani, Ph.D.

First Author Secondary Information:

Order of Authors: Laura Ziani, Ph.D.

Flavio Pressacco

Order of Authors Secondary Information:

Funding Information:

Abstract: We define proper strong-Fibonacci (PSF) games the subset of
proper homogeneous weighted majority games whose minimal
homogeneous representation exhibits the following strong
connection with Fibonacci numbers: the increasing sequence of
type weights and winning quota is a string of consecutive
Fibonacci numbers. A simple characterization of the PSF games
is given in terms of their profile. This opens the way to a
straightforward formula which gives the number $\Psi(t)$ of
such games as a function of $t$, number of non-dummy players'
types. Moreover, it turns out that the growth rate of $\Psi(t)$ is exponential; precisely,
the ratio between the number of the PSF games for two consecutive $t$ values of the
same parity, $\Psi(t+2)/\Psi(t)$, converges toward the golden ratio $\Phi$.

Response to Reviewers: 'see attachment'

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Decisions in Economics and Finance manuscript No.
(will be inserted by the editor)

Proper strong-Fibonacci games

Flavio Pressacco · Laura Ziani

Received: date / Accepted: date

Reply to reviewer n. 1

1. As the paper is concerned with enumeration results one should mentioned
the known results for weighted majority games and homogeneous games in
the introduction in order to justify the analysis of a rather special subclass
(which I indeed find interesting).
Reply. In the introduction we devoted a specific indent (the third one) to a
recall of the most important enumeration results concerning homogeneous
weighted majority games and some more general results regarding complete
simple games.

2. Several umlauts are missing in the spelling of names like Rosenmüller or
Sudhölter at many places.
Reply. Done.

3. At several places you talk of types of players or classes of players. However,
the respective meaning is different. The three classes step, sum, and dummy
for homogeneous games are different from the concept of equivalence classes
of players that you use later on. You should be more precise at those points.
Reply. Definition 1 has been introduced in section 2 in order to clarify the
meaning of players of the same type.
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4. The so-called minimal homogeneous representation is of special importance
for the entire paper. However, there is no precise definition. It would make
sense to relate this concept with other minimal (integer) representations
for weighted majority games.
Reply. In section 2 we introduce a precise definition of minimal integral
representation as well as a new formal proposition (n. 1) on the uniqueness
of such a representation for homogeneous games, followed by its relevant
properties and by proper bibliographic references.

5. The concept of types of players is essential for the entire paper, so please
provide an explicit definition.
Reply. See item n.3.

6. Footnote 4: The concept of a profile is essential for the understanding of
the remaining part of the paper, so that is definition should not be hidden
in a footnote. (Applies to other definitions as well.)
Reply. Definition 2 has been introduced in section 2 in order to clarify
the meaning of the game profile, followed by a statement on the meaning
of the coalition profile.

7. Notation in Section 4: There is no explicit ki(t; z) in Theorem 1, so please
be more precise at this point. It is no waste to explicitly introduce the used
notation.
Reply. Definition 5 has been introduced in section 3 in order to clarify the
meaning of kj(t, z) in the subsequent theorem 1.

8. Footnote 6: Please do not move complicated argumentations to footnotes.
Reply. We moved the footnote in the text. Precisely in subsection 4.2,
proof of Lemma 3, case t even.

9. The proofs in sections 5, 6 and the appendix can be simplified and short-
ened if some well known facts about Fibonacci numbers are outsourced to
separate statements (with or without proofs). The explicit formula for the
Fibonacci number is an example as well as the sum of Fibonacci numbers
appearing on page 11.
Reply. We inserted a new section 5 to summarize statements (without
proofs) about well-known results concerning the standard Fibonacci se-
quence and their extension (with proofs, if needed) to the delayed frame-
work, which had been used in the proofs of the fundamental results ap-
pearing now in the new sections 6-7 (old 5 and 6). This makes proofs more
fluent. Moreover, the appendix has been inserted as proof of Proposition
n. 5 in the new section 7 (old 6).
and some minor points:

10. p1, l-2: As far as I know the von Neumann-Morgenstern book is published
in 1944. Since this is a huge book, please make your citation more precise.
Reply. Done.

11. p2, l15: I do not think that Parsimonious games is a proper noun so that
one should use lower cases (and an explanation).
Reply. Done.

12. p4, l6: The winning quota q has to be strictly positive, since otherwise the
empty set would be winning.
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Reply. In section 2 it is specified that q >
1

2
w(Ω), rather than merely

strictly positive, in order to meet the properness quality of weighted ma-
jority games.

13. p4, l-8: Please provide a reference for the constant sum case.
Reply. Done in the comments after the new Proposition 1, section 2.

14. Theorem 1: Why are you using j0 as an index when there is no j1?
Reply. In the revised version we actually used j∗ in place of j0.

15. p5, l-2: Numerousness should be replaced by number (occurs at many
places).
Reply. Done.

16. p7, l4: Proof is misplaced.
Reply. In the revised version, which has been modified also to take into
account the comments of the other reviewers, this suggestion has been
accepted.

17. p7, l10: Is there a difference between j0 and j0?
Reply. None. See also item 14.

Reply to reviewer n. 2

1. After Definition 1 the concept of profile of a game is introduced, but no
example is provided, while examples are given only for profiles of coalitions.
Reply. We introduced the formal definition (n. 2) of the game profile in
section 2 as well as the new definition (n. 3) of type representation of a
game in section 3. Immediately after, we add the example 2 as an example,
among other things, of the profile of a game.

2. The definition of strategically equivalent players (page 4, line 19) is given
for non-dummy players, but the definition applies also to dummy players,
as the authors notice.
Reply. The new Definition 1 is provided as a formal definition of strategi-
cally equivalent players, or players of the same type, and immediately after
that, it is underlined that one type groups all dummies.

3. Some abbreviations may result not so obvious.
Reply. Done.

4. I suggest to add an example after Theorem 1 in order to make clearer the
notations k(t, z) (analogously for k(p, t, z)).
Reply. Done. We provided Definition n. 4 for k(t, z) and Definition n. 6
for k(t, z, p), followed respectively by examples n. 4 and n. 5.

5. A the end of Remark 2, the summations lack of the set over which the sum
is taken.
Reply. Done.

6. The notation S/i (page 4, line 16) is intuitive but mathematically incorrect,
S i is preferable.
Reply. Done.
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7. Finally, the origin of game theory is in the book by von Neumann and
Morgenstern (1944) instead of (1947) and there are two typos in the names
of Rosenmüller and Sudhölter.
Reply. Done.

Reply to reviewer n. 3

1. Page2-Paragraph3. To mention (2016, [2]) as it is, and to add previous
papers where Fibonacci numbers also appear: [3], “J. Freixas, X. Mo-
linero, and S. Roura. Complete voting systems with two types of vot-
ers: weightedness and counting. Ann. Oper. Res., 193:273-287, 2012 (doi:
10.1007/s10479-011-0863-x)”, etc.
Reply. We inserted “J. Freixas, X. Molinero, and S. Roura. Complete
voting systems with two types of voters: weightedness and counting. Ann.
Oper. Res., 193:273-287, 2012 (doi: 10.1007/s10479-011-0863-x)” in addi-
tion to the paper of Freixas-Kurz in bibliography concerning the arising of
connections with the Golden section and Fibonacci numbers in the enu-
meration of classes of complete simple games. At the same time, we wish
to point out that this is a different connection to the one that links the
weights and the winning quota to Fibonacci numbers set, which is the
common framework between Fragnelli et al. approach and ours. This is the
reason why we have chosen to insert the respective bibliographic references
in different places in the introduction.

2. Page3-Paragraph1. To mention (2013, [3]) as it is, and other previous pa-
pers as “J. Freixas, X. Molinero, and S. Roura. Complete voting systems
with two types of voters: weightedness and counting. Ann. Oper. Res.,
193:273-287, 2012 (doi: 10.1007/s10479-011-0863-x)”, etc.
Reply. See the previous reply.

3. Page3-Paragraph1. To comment specific applications about PSF games.
Reply. Concerning this point, we confirm that in the present paper we
do not treat any application of PSF games, and so we limit ourselves to
suggest in the conclusions that possible applications may be linked to the
specific character of this class of games.

4. Page5-Line8. To write the meaning of “c.s.h.w.m.g”.
Reply. Done.

5. Page6-Line24: Explain how to compute ki(p, t, z). It is described in Lemma
3’s proof?
Reply. We provided Definition n. 4 for k(t, z) and Definition n. 6 for
k(t, z, p), followed respectively by examples n. 4 and n. 5. Theorem 2 ex-
plains how to compute those components.

6. Page6-Line27-28-29-30.To give an intuition about the meaning of ki(p, t, z).
Reply. See previous reply.

7. Page6-Line51. I can see why
∑t

j=2
kj(t, z) = t. Please, explain more.

Reply. We inserted the new Remark 3 in section 3 in order to explain the
point.
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8. Page7. In Lemma 1, to write “Proof” in the correct place.
Reply. Done.

9. Page7-Line12. “do satisfy”: “satisfy”.
Reply. Done.

10. Maybe, Examples and Remarks inside the proof of Lemma 3 (Page7-8-9)
are not suitable.
Reply. We split in three different subsections (4.1 Fundamental results,
4.2 Proof of theorem 2, and 4.3 Some clarifying examples) the proofs and
the examples previously embedded in the old section 4.

11. To put properly all squares. Why does an square appear in Page9-Line49.
Reply. Done.

12. Page10-Line29: Correct the English sentence.
Reply. Done.

13. I think Section 5, 6 and 7 should be together “homogeneous notation”, at
least Section 5 and 6.
Reply. Done.

14. Furthermore, I consider such results as Lemmata: Lemma with its proof
for the result of Section 5, with just one proof with two cases: For t even...
For t odd... Lemma with its proof for Result 1 of Section 6. Previously, to
put here the Appendix as a Proposition. Lemma with its proof for the first
result of Section 7. Corollary or Remark with its proof for the last result
of Section 7 (p = 3).
Reply. We accepted the suggestions, and introduced Lemma 4 and The-
orem 3 with their proofs in the new section 6 (old 5); Lemmas 5-6 and
Proposition 5 with their proofs in the new section 7 (old 6) replacing the
old section 6 and the Appendix; Lemmas 7-8-9 and Corollary 2 with their
proofs in the new section 8 (old 7).
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Abstract We define proper strong-Fibonacci (PSF) games the subset of proper
homogeneous weighted majority games whose minimal homogeneous represen-
tation exhibits the following strong connection with Fibonacci numbers: the
increasing sequence of type weights and winning quota is a string of consecu-
tive Fibonacci numbers. A simple characterization of the PSF games is given
in terms of their profile. This opens the way to a straightforward formula
which gives the number Ψ(t) of such games as a function of t, number of non-
dummy players’ types. Moreover, it turns out that the growth rate of Ψ(t) is
exponential; precisely, the ratio between the number of the PSF games for two
consecutive t values of the same parity, Ψ(t + 2)/Ψ(t), converges toward the
golden ratio Φ.

Keywords Weighted majority games ·minimal homogeneous representation ·
profile vector · Fibonacci numbers · Golden ratio

Preamble

In order to avoid misunderstandings, in the title of this paper the word “strong”
should be intended as the strong connection between the class of games we
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study here and the Fibonacci numbers. Hence, it doesn’t mean strong in the
well-known terminology used in the theory of simple games. A fortiori, the
same remark applies to our previous paper (2015, [16]), titled Constant sum
strong Fibonacci games, which is often recalled here. Coherently in this paper
we will use “strong-Fibonacci” to remark this connection.

1 Introduction

At the origins of modern game theory Von Neumann-Morgenstern (1944, [21],
chapt. X, p. 435) introduced the class of homogeneous weighted majority
games and studied some of their properties. Since then, many other authors
have been focusing on such games as they are the ideal framework for analyz-
ing strategic behavior in areas such as coalitions formation and negotiation of
payoff division within coalitions, both in the economic and political spheres.

Theoretical contributions of outstanding importance to these games were
then given by: Isbell (1956, [6]), who gave the proof that any constant-sum
homogeneous weighted majority game has a unique minimal integral homoge-
neous representation; Maschler-Peleg (1966, [11]), who introduced the idea of
desirability relation among players in simple games and discussed the connec-
tion between the kernel and the homogeneous weights of a game; Peleg (1968,
[14]) and Schmeidler (1969, [20]), who applied the nucleolus theory to such
games; Ostmann (1987, [13]), who extended the Isbell (1956) results to homo-
geneous non-constant sum weighted majority game; Rosenmüller (1984, [17]
and 1987, [18]), who analyzed the structure of homogeneous weighted majority
games based on the concept of players’ characters (step, sum and dummy) and
the role of satellite games; Rosenmüller-Sudhölter (1994, [19]), who treated the
nucleolus of homogeneous games with steps.

As for the enumeration issue, in addition to the pioneering contribution al-
ready cited by Von Neumann-Morgenstern (who provided the list of 7 constant-
sum homogeneous weighted majority games with less than 6 non-dummy play-
ers), we recall here Gurk-Isbell (1959, [5], pp. 263-264), who gave the list of the
14 constant-sum weighted majority games − 8 out of which homogeneous −
with exactly 6 non-dummy players; Isbell (1959, [7], pp. 27-28), who presented
a combinatorial method for the enumeration of all constant-sum homogeneous
weighted majority games, listing 114 games of such kinds − 23 out of which ho-
mogeneous − with exactly 7 non-dummy players; Krohn-Sudhölter (1995, [9]),
who provided algorithms for enumerating the classes of directed and weighted
majority games (see table 1, p. 213). An exhaustive survey of the enumera-
tion results concerning several classes of simple games, included the weighted
majority ones, may be found in Le Breton et al. (2012, [10], tables 17-20, pp.
171-172).

In this paper we extend the results of our previous article (2015, [16]),
which in turn was inspired by Isbell’s (1956). There he observed an inter-
esting connection between a particular subset of constant-sum homogeneous
weighted majority games and Fibonacci numbers. On this basis, we introduced

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Proper strong-Fibonacci games 3

and studied the class of constant sum strong-Fibonacci (CSSF) games. Such
games are constant sum homogeneous weighted majority games, whose min-
imal homogeneous representation is characterized by the following “strong”
connection with the Fibonacci sequence: the whole sequence of type weights
(in bottom-top order) and the minimal winning quota is the corresponding
initial string of the “delayed” Fibonacci sequence. We found the basic rule
that provides the profiles of all CSSF games and showed that a very simple
formula gives their number as a parity-specific linear function of the number
t of non-dummy players’ types in the game.

Some time later Fragnelli et al (2016, [2]) named “Fibonacci representa-
tions” of homogeneous weighted majority games those ones characterized by
a “weaker” link with the Fibonacci sequence: the authors preserved the con-
dition that all weights must be Fibonacci numbers, but they did not require
either the consecutiveness of such numbers or a Fibonacci number as the win-
ning quota. They have studied some properties of such representations without
dealing with enumeration problems.

Here, we carry on the “strong approach” of [16] to defining and studying
the largest class of proper (not necessarily constant sum) strong-Fibonacci
(PSF) games. We find that this extension is governed by a very simple rule:
each CSSF game is the seed of a set of PSF games (including the seed), whose
profiles replicate the one of the seed in all but the first component (number of
the weakest non-dummy players). This component may be any positive integer
(but 1, for a few “special” seeds) not greater than the first one of the seed.
Hence, a closed form formula still gives the number of PSF games as a function
of t. Its growth rate follows an exponential trend. Analyzing the asymptotic
behaviour of this rate, we find another unexpected strong connection between
PSF games and Fibonacci numbers, which is the fundamental result of the
paper: the ratio between the number of the PSF games for two consecutive t
values of the same parity converges to the golden section.

For the sake of comparison, we signal that other interesting connections
between the golden section and Fibonacci sequences in some particular classes
of voting games have been discovered and discussed by Freixas et al. (2012,
[4]) and Freixas-Kurz (2013, [3]). The point will be quickly described in the
section 9.

Lastly, we emphasize that in this paper we do not discuss the possible
applications of our Fibonacci games, although we feel confident on future po-
tential applications for weighted voting systems in parliamentary elections.
Anyway, among the vast body of literature concerning significant applications
of homogeneous weighted majority games to political issues, we recall those
by: Montero (2008, [12]), who discussed a bargaining protocol (which modifies
the one proposed by Baron-Ferejohn (1989, [1])) in which both the expected
payoffs and actual payoff division are proportional to the voting weights; Ka-
landrakis (2006, [8]) and Le Breton et al. (2012, [10]) on the applications of
homogeneous weighted majority games (constant as well as non-constant sum)
to the analysis of voting power and committees interactions.
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The plan of the paper is as follows: section 2 gives a short recall of the basics
of homogeneous weighted majority games; in section 3 a synthesis of the main
results of our previous paper on CSSF games is given, stressing in particular
those which are pillars of the new setup; in section 4, divided in three subsec-
tions, we introduce the extension from constant-sum to proper games (section
4.1), give proofs of the results concerning the connection between the respec-
tive profiles (section 4.2) and discuss some enlightening examples (sect. 4.3);
in section 5 we recall some well known results on Fibonacci numbers, useful in
the next sections, extending them to the delayed framework; in section 6 we
obtain the closed form formula for the number of PSF games as a function of
t; section 7 gives the proof of the main result of the paper, i.e. the convergence
of the ratio between the number of PSF games for two consecutive values of t
of the same parity toward the golden section; section 8 is devoted to a quick
discussion of some subsets of PSF games with special properties; in section 9
a connection between our approach and a recent paper of Freixas-Kurz [3] is
provided; conclusions follow in the final section 10.

2 Notations

We now recall some well-known definitions.
The Fibonacci sequence f is defined by the well known finite difference

equation:

fn = fn−1 + fn−2

holding for any natural n > 2 with initial conditions f1 = f2 = 1.
Henceforth, we will exploit the “delayed Fibonacci sequence” g, defined by

gn = fn+1 for any positive n; for any integer m, we denote by gm ∈ N
m the

m vector (g1, g2, . . . , gm). Sometimes we will use also g0 = f1 = 1.
A simple game is a pair (Ω, v) with Ω = {1, 2, . . . , n} the set of players

of the game. The elements S of P(Ω) are called coalitions. The characteristic
function of the game, v, is a mapping v : P(Ω) → {0, 1} such that v(∅) = 0,
v(Ω) = 1 and the monotonicity property holds: v(S) = 1 ⇒ v(T ) = 1 for any
S ⊆ T .

A coalition S ∈ P(Ω) is winning if its payoff v(S) = 1 and losing otherwise.
A simple game is proper if, for any S, v(S) = 1 ⇒ v(Ω \S) = 0; it is strong

if v(S) = 0 ⇒ v(Ω\S) = 1; it is constant-sum if, for any S, v(S)+v(Ω\S) = 1.
A player i is at least as desirable as a player j, denoted i � j, if for any S

such that S ∩ ({i} ∪ {j}) = ∅, it is v(S ∪ {i}) ≥ v(S ∪ {j}). The desirability
relation � is reflexive and transitive. It is complete if it holds for any pair
of players (see [11], 1966, p. 316). A simple game is called complete if its
desirability relation is complete.

Definition 1 If for two players it is i � j and j � i, this is denoted by i ∼ j
and they are said to be players of the same type or strategically equivalent.
Formally this happens iff, for any S such that S∩({i}∪{j}) = ∅, it is v(S∪i) =
v(S ∪ j).
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A coalition S is minimal winning if v(S) = 1 and, for any i ∈ S, v(S\{i}) =
0. The set of all minimal winning coalitions is denoted by Wm. If, for any
S ∈ Wm, (S ∩ {i}) = ∅, i is said a dummy player. Clearly, for any pair (i, j),
of dummies, it is i ∼ j.

In a complete game, the players may be divided in t+1 sets; each one groups
all players of the same type; in particular, one type groups all dummies.

Weighted majority (w.m.) games are proper simple games described by a
representation (w; q). In the representation w is a vector of (without losing
generality in non-decreasing order1) non negative numbers called weights of the
players, or individual weights; the weight of any coalition S is w(S) =

∑
i∈S wi.

The scalar q >
1

2
w(Ω) is the winning quota, so that v(S) = 1 iff w(S) ≥ q.

A representation (w; q) of a weighted majority game is homogeneous (hom)
if S ∈ Wm ⇔ w(S) = q. This implies that w(S)−w(Ω \ S) = c > 0 (constant
for all S ∈ Wm).

A weighted majority game is hom if there exists (at least) one hom repre-
sentation of the game.

Both hom and not hom w.m. games have a lot of representations. Among
them the so called integral representations are of overwhelming importance.

A representation (w; q) is integral if q ∈ N and if, for any i ∈ Ω, wi ∈
N ∪ {0}.

Henceforth we will consider only integral representations.
A representation (w

′

, q
′

) is minimal if there exists no (integral) represen-
tation (w; q) 6= (w

′

, q
′

) such that wi ≤ w∗
i for i = 1, . . . , n.

A representation (w
′

, q
′

) is minimum if, for any other (integral) represen-
tation (w; q), it is w

′

i ≤ wi for i = 1, . . . , n.
The following fundamental result holds:

Proposition 1 A hom w.m. game has a unique minimal integral representa-
tion; it is homogeneous.

For constant-sum hom w.m. games the theorem has been proved by Isbell
(1956, [6], p. 184). See also Peleg (1968, [14], p. 528). The theorem has been
extended to non-constant sum hom w.m. games by Ostmann (1987, [13], p.
79-81).

The unique minimal hom representation has the following relevant prop-
erties. It preserves types: formally i ∼ j ⇔ wi = wj , that is strategically
equivalent players have the same weight (and players of different types have
different weights); in particular, dummy players have zero weight and the
weakest non-dummies have unit weight. Moreover, in the constant-sum case
(see Isbell [6], Cor. 2, p. 184):

w(Ω) =
∑

i∈Ω

wi = 2q − 1

1 We find it convenient to use the bottom-top order rather than the top-bottom one,
typical in the literature, even if there are papers adopting the reverse convention. See Isbell,
[7], p. 25.
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6 Flavio Pressacco, Laura Ziani

or

w(S) − w(Ω \ S) = 1 for S ∈ Wm

Remark 1 Note that also “many” non hom games have a unique minimal
integral representation (obviously non hom) and, in particular, constant-sum
non hom w.m. games may satisfy w(Ω) = 2q − 1.

Example 1 The non hom constant-sum w.m. game with minimal integral rep-
resentation (w; q) = (1, 1, 2, 2, 3, 4; 7).

Isbell was the first to provide an example of a non hom game with two
minimal integral representations ([7], p. 27).

Remark 2 Up to now we used individual representations, that is (wn; q) with
wn an ordered n vector of individual weights. Henceforth, we will use also the
notation (w∗

t ; q
∗) where w∗

t is an ordered t vector of non-dummy type weights.
Of course, this is not sufficient to describe a game. As we shall see hereafter,
we need also the so called profile vector (see definition 3).

Let us recall that the non-dummy players of a hom weighted majority game
may be divided into non overlapping sets (K1,K2, . . . ,Kj , . . . ,Kt); each set
groups all players of a given type j.

Just as individual players, also types are bottom-top ordered (of course
strictly), i.e. from the weakest player to the strongest. The common weight of
any player of type j is w∗

j .
The following definition holds:

Definition 2 The profile of a game with t non-dummy types and n non-
dummy players is the ordered vector

kt = (k1, k2, . . . , kj , . . . , kt)

kj being the number of players of type j in the game, so that
∑t

j=1 kj = n.

By analogy, the profile of a coalition S (see Rosenmüller [18], p. 311) in a
game with t types is:

st = (s1, s2, . . . , sj, . . . , st)

with sj = |S ∩Kj|, that is the number of players of type j in the coalition S.

3 Short recall of some results on CSSF games

Henceforth we shall consider only the class of homogeneous weighted ma-
jority games. In particular, starting from the existence for such games of a
unique minimal integral individual representation (wn; q), we associate to it
the corresponding unique minimal integral type representation, according to
the following definition:
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Proper strong-Fibonacci games 7

Definition 3 The type representation of a hom weighted majority game with
t non-dummy types is the triplet (kt;w

∗
t ; q

∗) associated to the unique minimal
integral individual representation (wn; q), with q∗ = q, w∗

j = wi ∀i ∈ Kj,
j = 1, . . . , t and kt the profile of the game. Hence, in a type representation
there are one profile vector, one type weight vector and the winning quota.

Example 2 Let us consider the constant-sum hom w.m. game with unique
minimal integral individual representation (w6; q) = (1, 1, 1, 2, 2, 4; 6). There
are three types and the associated type representation is (k3;w

∗
3; q

∗) = (3, 2, 1; 1, 2, 4; 6).
Clearly, the game profile is k3 = (3, 2, 1).

Now let us recall that the following definition of constant-sum strong-
Fibonacci (CSSF) games has been introduced in Pressacco-Ziani [16]:

Definition 4 CSSF games are the subset of constant-sum homogeneous weighted
majority game whose minimal hom type representation (kt;w

∗
t ; q

∗) is such that
the bottom-top ordered sequence of type weights and winning quota (w∗

t ; q
∗) is

(gt; gt+1) = gt+1.

In words, the sequence of type weights and the winning quota is a string of
consecutive Fibonacci numbers, and of course kt is a feasible profile coherent
with the homogeneity condition under minimal representation.

Example 3 Let us consider the game whose minimal hom individual repre-
sentation, is (w10; q) = (1, 1, 1, 1, 1, 2, 2, 3, 5, 8; 13). There are t = 5 types and
the associated type representation is (k5;w

∗
5; q

∗) = (5, 2, 1, 1, 1; 1, 2, 3, 5, 8; 13).
This representation satisfies the condition (w∗

5 ; q
∗) = (g5; g6) = g6. The coali-

tion profiles, for any S ∈ Wm, are (0, 0, 0, 1, 1), (0, 1, 1, 0, 1), (1, 2, 0, 0, 1),
(1, 2, 1, 1, 0), (2, 0, 1, 0, 1), (3, 1, 0, 0, 1), (3, 1, 1, 1, 0), (5, 0, 0, 0, 1), (5, 0, 1, 1, 0),

and it is easy to check that
∑5

j=1 sj · gj = q = g6. Hence, the profile of the
game is coherent with homogeneity.

Concerning CSSF games the following results hold:

Proposition 2 For any given t > 2, there are in general several CSSF games,
precisely ζ(t) = ⌊(t+ 1)/2⌋ (see [16], Cor. 3.1).

Proposition 3 All games with the same t differ (i.e. there are no ties) for
the total number of non-dummy players (see [16], Th. 3.2).

Then, they may be ordered according to such number from the smallest to
the largest. Denoting by z the counter coherent with such an order z ∈ N :=
{1 ≤ z ≤ ⌊(t+ 1)/2⌋}, we introduce the following definition:

Definition 5 The two parameters profile vector of the CSSF game with t types
and counter z is the ordered vector

k(t, z) = (k1(t, z), k2(t, z), . . . , kj(t, z), . . . , kt(t, z))

kj(t, z) being the number of players of type j in the game, so that
∑t

j=1 kj(t, z) =
n(t, z) is the total number of non-dummy players in such a game.
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8 Flavio Pressacco, Laura Ziani

The following theorem holds (see [16], Th. 3.1):

Theorem 1 For any2 positive integer t, a game is CSSF iff the profile k(t, z)
is given by3:

k(t, z) =

{
(k1,k

′

, kj∗ ,k
′′

) if z = 1, . . . , ⌊(t− 1)/2⌋
(2 + gt−1,1t−1) if z = ⌊(t+ 1)/2⌋

(1a)

(1b)

with, in formula (1a): j∗ = j(t, z) = t+1− 2z, k1 = k1(t, z) = 2+ gt−1 − gj∗ ,

k
′

= k
′

(t, z) = 1j∗−2, kj∗ = kj(t,z) = 2, k
′′

= k
′′

(t, z) = 12z−1.

Example 4 For t = 3 there are ⌊(t + 1)/2⌋ = 2 CSSF games. For z = 1 it
is j∗ = t + 1 − 2z = 2, so that k1 = 2 + gt−1 − gj∗ = 2 + g2 − g2 = 2. The

dimension of k
′

is j∗−2 = 0, kj∗ = k2 = 2, the dimension of k
′′

is 2z−1 = 1.
Hence, the game profile k(3, 1) = (2,10, 2,11) = (2, 2, 1). For z = 2, the game
profile is k(3, 2) = (2 + gt−1,1t−1 = 2 + g2,12) = (4,12) = (4, 1, 1).

This confirms that there are n(3, 1) = 5 < n(3, 2) = 6 players, coherently
with Th. 3.2. in [16].

Remark 3 For z = 1, . . . , ⌊(t−1)/2⌋, k′

and k
′′

are unit vectors of dimension
respectively (j∗ − 2) = (t − 2z − 1) and (2z − 1), whose sum is just (t − 2).
Hence, there is just one player for each non-weakest type t, except for the type
in place j∗ = t+1− 2z, (i.e. t− 1 or t− 3 or t−h with h odd) for which there
are two players. Then, the total number of non-weakest non-dummy players is∑t

j=2 kj(t, z) = (t− 2) + 2 = t.
For z = ⌊(t+1)/2⌋ there is just one player for any non-weakest type. Then,

the total number of non-weakest non-dummy players is
∑t

j=2 kj(t, z) = t− 1.
In any case, it is easy to check that there are as many weakest type players,

either (2+gt−1−gj∗) or (2+gt−1), as needed in order to meet the constant-sum

condition w(Ω) =
∑t

j=1 kjw
∗
j =

∑t
j=1 kjgj = 2q − 1 = 2gt+1 − 1.

Remark 4 k1 = k1(t, z), the number of players of the weakest non-dummy
type (with unit weight), is for any given t an increasing function of z. Indeed,
it is obtained subtracting gj∗ from 2 + gt−1. Now, j

∗ = j(t, z) = t + 1 − 2z
is decreasing with z, which implies that gj∗ is a decreasing function of z, too.
Hence, the conclusion.

4 Proper strong-Fibonacci games

4.1 Fundamental results

In this section we extend the definition of CSSF games to proper, not neces-
sarily constant-sum, strong-Fibonacci games (PSF games).

2 Both for t = 1 and t = 2, there is a unique feasible value of z = ⌊(t+ 1)/2⌋ = 1. Hence,
in both cases there is just one CSSF game, whose game profiles are, according to formula
(1b), k(1, 1) = (3) and k(2, 1) = (3, 1), respectively.

3 Henceforth, the subscript in the vectorial notation 1h means that the unit vector has
dimension h.
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Proper strong-Fibonacci games 9

Definition 6 PSF games are the subset of proper homogeneous weighted ma-
jority game whose minimal hom type representation (kt;w

∗
t ; q

∗) is such that
the bottom-top ordered sequence of type weights and winning quota (w∗

t ; q
∗) is

(gt; gt+1) = gt+1.

Remark 5 Note that for any given t, the winning quota is still q∗ = gt+1,
as in the constant-sum case; hence the only difference with CSSF game is
embedded in the profile kt of the game.

To understand the behavior of feasible profiles of PSF games, the starting
point is the set of feasible profiles k(t, z) described by Theorem 1 in section 3.

Here we need the following definition:

Definition 7

k(t, z, p) = (k1(t, z, p), k2(t, z, p), . . . , kj(t, z, p), . . . , kt(t, z, p))

is the three parameters profile vector of a PSF game with t types, counter z
and index p. Obviously, kj(t, z, p) is the number of players of type j in the PSF
game with t types, counter z and index p.

The parameter p may be seen as a new index added to the pair (t, z).
Then, let us call “truncated” profiles the vectors

k̂(t, z) = (k2(t, z), . . . , kj(t, z), . . . , kt(t, z))

k̂(t, z, p) = (k2(t, z, p), . . . , kj(t, z, p), . . . , kt(t, z, p))

obtained by the “complete” profiles k(t, z) and k(t, z, p) cutting their first
component k1, so that

k(t, z) = (k1(t, z), k̂(t, z))

k(t, z, p) = (k1(t, z, p), k̂(t, z, p))

The following theorem about feasible profiles of PSF games holds:

Theorem 2

k(t, z, p) = (p, k̂(t, z)) (2)

with k̂(t, z) coherent with (1a) and (1b), and p any positive integer satisfying:

{
1 ≤ p ≤ k1(t, z) for z < ⌊(t+ 1)/2⌋
1 < p ≤ k1(t, z) for z = ⌊(t+ 1)/2⌋

(3a)

(3b)

Example 5 Let us consider the CSSF game with t = 7 and z = 2 whose
profile is k(7, 2) = (10,12, 2,13). It is k̂(7, 2) = (12, 2,13), and putting p = 4,

by Th. 2, k(7, 2, 4) = (4, k̂(7, 2)) = (4,12, 2,13). This profile corresponds to
the individual representation (w11; q) = (1, 1, 1, 1, 2, 3, 5, 5, 8, 13, 21; 34).

Remark 6 Any CSSF game with profile k(t, z) may be thought as the seed of
a set of PSF games (including the seed).
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10 Flavio Pressacco, Laura Ziani

Corollary 1 The number Ψ(t, z) of PSF games with t types and counter z is:

Ψ(t, z) =

{
k1(t, z) if z = 1, . . . , ⌊(t− 1)/2⌋
k1(t, z)− 1 if z = ⌊(t+ 1)/2⌋

(4a)

(4b)

with k1(t, z) given by formulae (1a) and (1b).

Remark 7 All the PSF games of the set generated by a given constant-sum
seed share the same k̂(t, z); hence, their profiles differ only for the first compo-
nent, i.e. the number of weakest non-dummy players. This may be any positive
integer within the upper bound k1(t, z) of the seed for any z < ⌊(t+1)/2⌋; for
z = ⌊(t + 1)/2⌋ at least two weakest players are required. In turn, keeping
account that (see Remark 3) for z < ⌊(t + 1)/2⌋ it is

∑t
j=2 kj(t, z) = t, this

implies that the smallest number of non-dummy players in any PSF game with
t types is t+ 1.

4.2 Proof of Theorem 2

The proof of Th. 2 may be divided into two parts. The first one (Lemma 1)

concerns a necessary condition for the feasibility of k̂(t, z, p), while the second
(Lemma 2 e Lemma 3) regards k1(t, z, p).

Lemma 1 A necessary condition for the feasibility of a complete profile k(t, z, p)

of a PSF game is that its truncated version k̂(t, z, p) satisfy the conditions re-
sumed by Th. 1 for the feasibility of profiles k(t, z) of the CSSF seed.

To demonstrate this Lemma, it is convenient to recall Property 6.7 in [16]
(p. 41) in the following version:

Proposition 4 In a feasible profile of a CSSF game there is at most one
positive odd integer h < (t − 1) such that kj∗ = kt−h = 2; for all other j > 1
and different from j∗, it is kj = 1.

We remind that, for CSSF games, the proof of Proposition 4 came from the
fact that, if the necessary conditions are not satisfied, there are coalitions S ∈
Wm without players of type 1 (or, more formally, with first component of the
coalition profile s1 = 0) and with coalition weight w(S) > q (a contradiction
with the hom quality of the game). Hence the proof did not involve the first
component of the profile.

As, given t, the winning quota q of any PSF game remains fixed at q = gt+1,
independently from the number of weakest players in the game, the same
argument may be applied to derive the necessity of the conditions given by
Proposition 4 also in the profiles of PSF games.

The second part of the proof gives, at first, an upper bound for the value
of k1(t, z, p).

Lemma 2 The upper bound for k1(t, z, p) is k1(t, z).
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Proper strong-Fibonacci games 11

Proof The choice of k1(t, z), according to Th. 1, grants that in the CSSF game
w(Ω) =

∑t
j=1 kjgj = 2q−1. As in proper games neither the winning quota nor

the truncated profile are modified with respect to the ones of the CSSF seed, a
choice of the first component of the complete profile k1(t, z, p) > k1(t, z) would
give w(Ω) ≥ 2q (a contradiction with the proper quality of the game). ⊓⊔

It remains to check which values of the first component k1(t, z, p), among
those respecting the upper bound, are feasible for a proper game. The answer
is given by:

Lemma 3 The feasible values of k1 are all positive integers respecting the
following conditions:

{
1 < k1 ≤ k1(t, ⌊(t+ 1)/2⌋) if z = ⌊(t+ 1)/2⌋
1 ≤ k1 ≤ k1(t, z) if z = 1, . . . , ⌊(t− 1)/2⌋

(5a)

(5b)

Proof

Case z = ⌊(t+ 1)/2⌋. The truncated profile is k̂(t, z, p) = k̂(t, z) = (1t−1).
Let us distinguish two subcases depending on the parity of t.

– If t even, for any player of type j > 1 odd, it is immediate to see by
induction that there exists a coalition S ∈ Wm such that the player of
type j is the weakest in S. In particular, this is true for j = 3.
By the same argument there is no player of type j > 1 even, which is
weakest in a min win coalition. In particular this is true for j = 2.
Suppose k1 = 1. Then, the couple of players of type 1 and 2 would replace
the player of type 3 in S, which in turn implies that type 1 player is not
a dummy. Moreover, this is clearly the only way for type 1 and type 2
players to be members of a min win coalition. Hence, players of type 1 and
type 2 would be strategically equivalent weakest players and should have
the same weight 1 in the min hom representation of the game. This is a
contradiction, so k1 = 1 is not feasible.
On the contrary, suppose k1 = 2. Then, one player of type 1 and the
unique one of type 2 may still replace the player of type 3 in S, which
still implies that type 1 players are not dummies. Yet types 1 and 2 are
no more equivalent. Indeed, let S

′

the coalition obtained by replacing the
player of type 3 in S with the first player of type 1 and the player of type
2. If we replace in S

′

the player of type 2 with the other player of type 1
the coalition is no more winning; this confirms that players of type 1 are
not equivalent to the player of type 2. Hence, k1 = 2 is feasible.

– If t odd, for any player of type j > 1 even, there exists a coalition S ∈ Wm

such that the player j is the weakest in S. In particular this is true for
j = 2.
Moreover there is no player of type j > 1 odd weakest in a min win coal.
Suppose k1 = 1. This implies that the player of type 1 would be a dummy
and in addition we could check that player 2 and 3 become equivalent
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12 Flavio Pressacco, Laura Ziani

players, contrary to the hypothesis that they have different weights: again
k1 = 1 is not feasible.
On the contrary suppose k1 = 2. Then the couple of players of type 1 would
replace the player of type 2 in S, which still implies that type 1 players are
weakest non-dummy, of course not equivalent to the type 2 player; hence
k1 = 2 is feasible.

It is intuitive (and easy to check) that also any value of k1 > 2 and of
course respecting the upper bound is feasible for a PSF game, irrespective
of the parity. Indeed, as k1 increases, there is a wider ability of the weakest
players to replace not only the player of type 2, but also other single or groups
of more powerful players.

Case z ≤ ⌊(t − 1)/2⌋. The structure of the truncated profile is k̂ =
(k

′

, kj∗ ,k
′′

) with k
′

= 1j∗−2; kj∗ = 2; k
′′

= 12z−1 with j∗ = t+ 1− 2z.

Suppose to add k1 = 1 to obtain the complete profile k = (1,k
′

, kj∗ ,k
′′

).
The following results are relevant to grant the feasibility of k1 = 1 (and a
fortiori for k1 > 1) for any z ≤ ⌊(t− 1)/2:

Result 1 t and j∗ are surely of alternative parity.

Result 2 Consider any player of type j with the same parity of j∗ (including
the couple of players of type j∗): there exists a minimal winning coalition in
which such player is weakest. Proof by induction. It is true for j = t−1, and if
true for some j (through a coalition S

′

), it is true for j−2: indeed, the weakest
player in S

′

is replaced by the players of type j − 1 and (by one if j − 2 = j∗)
of type j − 2.

Result 3 Consider any player of type j < j∗ and of alternative parity: there
exists a minimal winning coalition in which such player is weakest. Proof by
induction. It is true for j = j∗− 1 (indeed the sum of the weights of the player
type j∗ − 1 and of both players of type j∗ is equal to the weight of the player
type j∗ +2 if j∗ +2 < t, or to gt+1 = q if j∗ +2 = t+1), and if true for some
j (through a coalition S

′′

) it is true (by the same replacement argument used
in b) for j − 2.

Result 4 Jointly results 2 and 3 imply that the player of type 1 as well as the
player(s) of type 2 are weakest member of a min win coal. This again implies
that the weakest player is not dummy and is less powerful than the the next
type player(s), so that the complete profile with k1 = 1 (and a fortiori for
k1 > 1) is feasible.

⊓⊔

4.3 Some clarifying examples

Case z = ⌊(t+ 1)/2⌋.
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Proper strong-Fibonacci games 13

Example 6 Suppose t = 6 (even) so that z = 3. Hence, k̂(6, 3) = (15).
Suppose k1 = 1 and consider the corresponding complete profile k(6, 3, 1) =
(1,15). The individual representation of the corresponding proper Fibonacci
game would be (1,2,3,5,8,13;21). The profiles of the S ∈ Wm are S1 =
(0,0,0,0,1,1); S2 = (0,0,1,1,0,1); S3 = (1,1,0,1,0,1). Hence, the players of
weight 1 and weight 2 are strategically equivalent, 1 ∼ 2. The suggested rep-
resentation does not preserve types and can not be a minimal hom represen-
tation (see Remark 7), even though it is a hom representation involving all
the first 7 components of the Fibonacci sequence. The minimal hom individual
representation of the game4 with such minimal winning coalitions is actually
(1,1,2,3,5,8;13), with complete profile k(t, z, p) = k(5, 3, 2) = (2,14).

Example 7 Suppose t = 6 (even) so that z = 3. Hence, k̂(6, 3) = (15).
Suppose k1 = 2 and consider the corresponding complete profile k(6, 3, 2) =
(2,15). The individual representation of the corresponding proper Fibonacci
game would be (1,1,2,3,5,8,13;21). The profiles of the S ∈ Wm are still S1 =
(0,0,0,0,1,1); S2 = (0,0,1,1,0,1); S3 = (1,1,0,1,0,1). On one side, this con-
firms that type 1 players are not dummies, but despite the coincidence with
the coalition profiles of Example 1, there is no equivalence now between the
type 2 player and each player of type 1. The explanation is that the profile
(2,0,0,1,0,1) is not the one of a winning coalition. In other words, while it is
true that the player of type 2 enters in min win coal with one of the players
of type 1, two weakest players are not able to replace the player of type 2 in a
minimal winning coalition.

Remark 8 We stress that in the game of Example 7 the fact that the player
of type 2 is more powerful than each of the bottom type players does not come
from a replacement property (one for two) in some min win coalitions. The
character of such a player, in the language of modern game theory (see [19],
is step.

Example 8 Suppose t = 7 (odd) so that z = 4. Hence, k̂(7, 4) = (16). Suppose
k1 = 1 and consider the corresponding complete profile k(7, 4, 1) = (1,16). The
individual representation of the corresponding proper Fibonacci game would be
(1,2,3,5,8,13,21;34). The profiles of the S ∈ Wm are S1 = (0,0,0,0,0,1,1);
S2 = (0,0,0,1,1,0,1); S3 = (0,1,1,0,1,0,1). Then the weakest player turns out
to be dummy. Deleting this player we obtain that the S ∈ Wm are S1 =
(0,0,0,0,1,1); S2 = (0,0,1,1,0,1); S3 = (1,1,0,1,0,1), i.e. exactly the one of the
previous examples. Once more, k1 = 1 is not feasible.

Example 9 Suppose t = 7 (odd) so that z = 4. Hence, k̂(7, 4) = (16).
Suppose k1 = 2 and consider the corresponding complete profile k(7, 4, 2) =
(2,16). The individual representation of the corresponding proper Fibonacci
game would be (1,1,2,3,5,8,13,21;34). The profiles of the S ∈ Wm are now
S1 = (0,0,0,0,0,1,1); S2 = (0,0,0,1,1,0,1); S3 = (0,1,1,0,1,0,1); S4 = (2,0,1,0,1,0,1).
It is immediate to check that in S4 two bottom players replace the role of the

4 This is an example of a game with a veto player; see section 8.
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14 Flavio Pressacco, Laura Ziani

player with weight 2 in S3. This makes clear that any value of k1 > 1 and
within the upper bound gives rise to feasible complete profiles.

Remark 9 Here the source of the fact that player of type 2 is more powerful
than each of the weakest type players comes from the replacement property
(one for two) in a min win coalition. Its character is sum.

Example 10 Suppose t = 6 so that z = 3. Hence, k̂(6, 3) = (15). Suppose
k1 = 3 and consider the corresponding complete profile k(6, 3, 3) = (3,15). The
individual representation of the corresponding proper Fibonacci game would be
(1,1,1,2,3,5,8,13;21). The profiles of the S ∈ Wm are now S1 = (0,0,0,0,1,1);
S2 = (0,0,1,1,0,1); S3 = (1,1,0,1,0,1); S4 = (3, 0, 0, 1, 0, 1); S5 = (3,1,1,0,0,1);
S6 = (3,1,1,1,1,0). It is immediate to check that in S4 two weakest players
replace5 the role of the player with weight 2 in S3. This makes clear that any
value of k1 > 1 and within the upper bound gives rise to feasible complete
profiles.

Example 11 Suppose t = 2 so that z = 1. Hence, by formula (1b) the profile
is k(2, 1) = (3,11) and, coherently with formula (3b), there are k1 − 1 = 2
feasible values of p: p = 2 and p = 3. At the end there are two PSF games
with complete profile k(2, 1, 3) = k(2, 1) = (3,11) corresponding to the seed,
and the other k(2, 1, 2) = (2,11).

Example 12 Suppose t = 1 so that still z = 1. Hence, by formula (1b) the
profile is k(1, 1) = (3,10) and, coherently with formula (3b), there are k1−1 =
2 feasible values of p: p = 2 and p = 3. At the end there are two PSF games
with complete profile k(1, 1, 3) = k(1, 1) = (3,10) corresponding to the seed,
and the other k(1, 1, 2) = (2,10). In this game with two players of the same
type the only winning coalition is Ω.

Case z ≤ ⌊(t− 1)/2⌋.

Example 13 Suppose t = 7 and z = 2. Hence, k̂(7, 2) = (12, 2,13). Suppose
k1 = 1 and consider the corresponding complete profile k(7, 2, 1) = (1,12, 2,13).
Here j∗ = 4. The individual representation of the corresponding PSF game
would be (1,2,3,5,5,8,13,21;34). The profiles of min win coalitions are S1 =
(0,0,0,0,0,1,1); S2 = (0,0,0,1,1,0,1); S3 = (0,1,1,0,1,0,1); S4 = (0,0,1,2,0,0,1);
S5 = (1,1,0,2,0,0,1). Coalition S3 satisfies result 2 as player of type 2 of the
same parity of type j∗ = 4 is the weakest; coalitions S4 and S5 satisfy result
3 as player of type 3 of alternative parity is the weakest in S4 and hence the
weakest player of the game is the weakest in S5. Hence, k1 = 1 is feasible.

5 This would open the door toward a more refined analysis of the strategic role of the
players (in particular of the least powerful ones) in proper homogeneous w.m.g. We do
not enter here in such details, signalling that a formal exhaustive treatment of the point,
based on the distinction between step and sum players, has been given by Rosenmüller and
Sudhölter in [19].
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Proper strong-Fibonacci games 15

5 Statements and results about Fibonacci in the standard and

delayed framework

In what follows we will exploit some well known results on Fibonacci num-
bers, recalled here as statements, and extend them to the delayed Fibonacci
sequence introduced at the beginning of sect. 2.

Statement 1 With the initial position f1 = f2 = 1, for all t ≥ 1 it is:

ft+2 = ft+1 + ft (6)

Statement 2 For all t ≥ 2 it is:

ft+1 = 1 +

t−1∑

j=1

fj (7)

Statement 3 For all t ≥ 2 it is:

(f2
t − ft−1ft+1) =

{ − 1 for t even

+ 1 for t odd

(8a)

(8b)

Statement 4 Denoting by Φ =
1 +

√
5

2
= 1, 6180339887 . . . the Golden Ratio,

it is:

lim
t→∞

ft+1

ft
= Φ (9)

In the delayed framework, it is:

gt = ft+1 for all t ∈ N ∪ 0 (10)

and by formula (6):

gt+2 = gt+1 + gt (11)

From formulae (7) and (10) we obtain, for all t ≥ 2:

1 +

t−2∑

j=0

gj = gt (12)

and

1 +

t−2∑

j=1

gj = gt − 1 (13)

From Statement 1 and formula (12) it follows that:

g0 + g2 + g4 + . . .+ gt−1 = g0 +

t−2∑

j=0

gj = gt (14)
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16 Flavio Pressacco, Laura Ziani

and

g1 + g3 + g5 + . . .+ gt−1 = g1 +
t−2∑

j=1

gj = gt − 1 (15)

From Statement 3 and formula (10) it is:

(g2t − gt−1gt+1) =

{ − 1 for t odd

+ 1 for t even

(16a)

(16b)

From Statement 4 and formula (10) it is:

lim
t→∞

gt+1

gt
= Φ (17)

6 The number of Proper strong-Fibonacci games

Denoting by Ψ(t) the total number of PSF games with t types and recalling
that Ψ(t, z) is the number of PSF games with t types and counter z, the
following lemma holds:

Lemma 4 For any t:

Ψ(t) =

⌊(t+1)/2⌋∑

z=1

Ψ(t, z) =

⌊(t−1)/2⌋∑

z=1

Ψ(t, z) + Ψ(t, ⌊(t+ 1)/2⌋) (18)

Then we claim that:

Theorem 3 For any t it is:

Ψ(t) = (2 + gt−1) · ⌊(t+ 1)/2⌋+
{ − (gt − 1) for t even

− gt for t odd

(19a)

(19b)

Proof Inserting formulae (4a) and (4b) in Lemma 4, we have:

Ψ(t) =

⌊(t−1)/2⌋∑

z=1

k1(t, z) + k1(t, ⌊(t+ 1)/2⌋)− 1 =

= − 1 +

⌊(t+1)/2⌋∑

z=1

k1(t, z)

(20)

Substituting the values of k1(t, z) provided by formulae (1a) and (1b), and
applying elementary algebra, we get:

Ψ(t) = (2 + gt−1) · ⌊(t+ 1)/2⌋ −
(
1 +

⌊(t−1)/2⌋∑

z=1

gj∗

)
(21)
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Proper strong-Fibonacci games 17

To obtain a closed form formula, it remains to compute the term (1 +∑⌊(t−1)/2⌋
z=1 gj∗) as a function of t (not involving z). Of course, in case t = 1

or t = 2 this term reduces to 1, as ⌊(t − 1)/2⌋ = 0; hence, in formulae (19a)
and (19b) the addends after the curly brackets become −1, and immediately
Ψ(t) = 2 in both cases.

– Case t > 2 even.

⌊(t−1)/2⌋∑

z=1

gj∗ = (g3 + g5 + . . .+ gt−1)

so that, by formula (15):

Ψ(t) = (2 + gt−1)⌊(t+ 1)/2⌋ − (1 + g3 + g5 + . . .+ gt−1)

= (2 + gt−1)⌊(t+ 1)/2⌋ − (gt − 1)
(22)

– Case t > 1 odd.

⌊(t−1)/2⌋∑

z=1

gj∗ = (g2 + g4 + . . .+ gt−1)

so that, by formula (14):

Ψ(t) = (2 + gt−1)⌊(t+ 1)/2⌋ − (1 + g2 + g4 + . . .+ gt−1)

= (2 + gt−1)⌊(t+ 1)/2⌋ − gt
(23)

⊓⊔

The following table is built applying formulae (1a), (1b), (4a), (4b), (19a)
and (19b).

z 1 2 3 4
t Ψ(t, z) Ψ(t) ζ(t) Ψ(t)/ζ(t)
1 2 2 1 2,00
2 2 2 1 2,00
3 2 3 5 2 2,50
4 2 4 6 2 3,00
5 2 5 6 13 3 4,33
6 2 7 9 18 3 6,00
7 2 10 13 14 39 4 9,75
8 2 15 20 22 59 4 14,75
... ... ... ... ... ... ... ...

Table 1: The number Ψ(t, z) of proper strong-Fibonacci games with t types and counter z; their
row sum, over z, Ψ(t), the number ζ(t) of CSSF games, and the ratio Ψ(t)/ζ(t) for some small
values of t.
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18 Flavio Pressacco, Laura Ziani

7 Proper strong-Fibonacci games and the Golden ratio

Let us consider the following ratio:

ξ(t) =
Ψ(t+ 2)− Ψ(t)

Ψ(t)
(24)

It represents the local growth rate of Ψ(t) (for two consecutive values of t

of the same parity). In fact ξ(t) =
Ψ(t+ 2)

Ψ(t)
− 1 or

Ψ(t+ 2)

Ψ(t)
= 1 + ξ(t).

In order to understand the behaviour of ξ(t), we study the difference Ψ(t+
2)−Ψ(t); here we treat only the odd case as the even one is a trivial extension.

Lemma 5

Ψ(t+ 2)− Ψ(t) = 2 + gt · ⌊(t+ 1)/2⌋ (25)

Proof Exploiting ⌊(t + 3)/2⌋ = ⌊(t + 1)/2⌋+ 1 and recalling formula (11) we
obtain, by elementary algebra:

Ψ(t+ 2)− Ψ(t) = [(2 + gt+1)⌊(t+ 3)/2⌋ − gt+2]− [(2 + gt−1)⌊(t+ 1)/2⌋ − gt]

= (2 + gt−1) + gt · ⌊(t+ 1)/2⌋ − gt+1 + gt

= 2 + gt · ⌊(t+ 1)/2⌋
⊓⊔

Hence:

ξ(t) =
Ψ(t+ 2)− Ψ(t)

Ψ(t)
=

2 + gt · ⌊(t+ 1)/2⌋
(2 + gt−1) · ⌊(t+ 1)/2⌋ − gt

(26)

Proposition 5 ξ(t) is, after a few steps, definitively monotone decreasing.

We have to prove that ξ(t) − ξ(t+ 2) > 0, at least for some t > t0. Let us
put6 α = ⌊(t+ 1)/2⌋ and, in turn, 1 + α = ⌊(t+ 3)/2⌋.

Proof

ξ(t)− ξ(t+ 2) =
2 + gt · α

(2 + gt−1) · α− gt
− 2 + gt+2 · (1 + α)

(2 + gt+1) · (1 + α)− gt+2
> 0

We have just to prove that:

(2+gt ·α) · [(2+gt+1) ·(1+α)−gt+2]− [2+gt+2 ·(1+α)] · [(2+gt−1) ·α−gt] > 0

By elementary algebra it is:

2(2 + gt+1)(1 + α)− 2gt+2 + α(1 + α)(2 + gt+1)gt − αgtgt+2

− 2α(2 + gt−1) + 2gt − α(1 + α)(2 + gt−1)gt+2 + (1 + α)gtgt+2 =

6 Actually, for t odd, ⌊(t + 1)/2⌋ = (t + 1)/2.
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Proper strong-Fibonacci games 19

= α(1 + α)[(2 + gt−1 + gt)gt − (2 + gt−1)(gt + gt+1)]+
+ (1 + α)[2(2 + gt+1) + gtgt+2]− α[gtgt+2 + 2(2 + gt−1)]− 2(gt+1 + gt) + 2gt =

= α(1 + α)[(g2t − gt−1gt+1 − 2gt+1]+
+ (1 + α)[2(2 + gt+1) + gtgt+2]− α[2(2 + gt−1) + gtgt+2]− 2gt+1

and exploiting formula (16a):

= α(1 + α)(−1− 2gt+1) + 2(2 + gt+1) + gtgt+2 − 2gt+1+

+α[2(2 + gt + gt−1)− 2(2 + gt−1)] =

= α(1 + α)[−1− 2(gt−1 + gt)] + (4 + gtgt+2) + 2αgt =

= α2(−1− 2gt−1 − 2gt) + α(−1 − 2gt−1 − 2gt + 2gt) + 4 + gtgt+2 =

= −α(1 + α)(1 + 2gt−1)− 2α2gt + 4 + gtgt+2 =

= 4− α(1 + α)− α(1 + α)2gt−1 − 2α2gt + gt(gt + gt+1) =

= 4− α(1 + α)− α(1 + α)2gt−1 − 2α2gt + gt(gt + gt−1 + gt) =

and finally:

= 4 + gt(gt − 2α2) + gt−1(gt − 2α(1 + α)) + (g2t − α(1 + α)) (27)

By the inequalities g2t > gt for all t > 1 and 2α(1 + α) > 2α2 > α(1 + α)
for any t odd greater than 1, a sufficient condition for all addends in formula
(27) to be positive is that gt > 2α(1 + α); and it could be easily checked that
this is verified for any t odd > 9. See also Table 2. ⊓⊔

Lemma 6 limt→∞ ξ(t) = Φ.

Proof By formula (26):

lim
t→∞

ξ(t) = lim
t→∞

Ψ(t+ 2)− Ψ(t)

Ψ(t)
= lim

t→∞

2 + gt · (t+ 1)/2

(2 + gt−1) · (t+ 1)/2− gt
=

lim
t→∞

=
2 + gt · (t− 1)/2 + gt

(t+ 1) + gt−1 · (t− 1)/2 + gt−1 − gt
= lim

t→∞

2 + gt · (t− 1)/2 + gt−1 + gt−2

(t+ 1) + gt−1 · (t− 1)/2− gt−2
=

lim
t→∞

gt · (t− 1)/2

gt−1 · (t− 1)/2
= lim

t→∞

gt

gt−1
= lim

t→∞

ft+1

ft
= Φ

⊓⊔
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20 Flavio Pressacco, Laura Ziani

t gt Ψ(t) ξ(t)
3 3 5 1,6000
5 8 13 2,0000
7 21 39 2,2051
9 55 125 2,2160
11 144 402 2,1542
... ... ... ...
21 ... ... 1,8967
31 ... ... 1,8001
41 ... ... 1,7531
51 ... ... 1,7254
61 ... ... 1,7071
71 ... ... 1,6942
81 ... ... 1,6845
... ... ... ...
99 3.542·1017 106·1020 1,6721
199 ... 1.706·1040 1,6446
399 ... 215.817·1080 1,6312
599 ... 20.364.984·10120 1,6268
799 ... 17.058·10165 1,6246
999 ... 1.338.844·10205 1,6233
1499 ... ... 1,6215
1999 ... ... 1,6207
2999 ... ... 1,6198
3999 ... ... 1,6193
4399 ... ... 1,6191
... ... ... ...

Table 2: Table of Ψ(t) and ξ(t) for some odd values of t.

8 Some games with special properties

PSF games with p = 2 or p = 3 have some special properties for the extreme
values of z.

Lemma 7 For p = 2 and z = 1, we have, for any t > 2, one CSSF game
whose profile is k(t, 1, 2) = (2, k̂(t, 1)) = k(t, 1) = (2,1t−3, 2,11). Such games
have n = t+2 non-dummy players as well as t+2 minimal winning coalitions.

The proof of this lemma has been given by Isbell ([6], p. 185), who studied
these games in the context of the wider class of minimal winning parsimonious
games. Such games are the subset of constant-sum homogeneous weighted
majority games which have, for any given value n of non-dummy players, the
smallest number (that is exactly n) of minimal winning coalitions. More details
in [15].

Lemma 8 For p = 2 and for z = ⌊(t + 1)/2⌋, we have, for any t > 2, one
non-constant sum PSF game whose top player is a veto player7, i.e. belongs
to all min win coalitions.

Proof For t > 2, k(t, ⌊(t + 1)/2⌋, 2) = (2, k̂(t, ⌊(t + 1)/2⌋)) = (2,1t−1) with 2
a lower bound for k1 (see Lemma 3). Indeed:

t−1∑

j=1

kjw
∗
j =

t−1∑

j=1

kjgj = 1 +
t−1∑

j=1

gj = gt+1 − 1 < q = gt+1

7 On the point see [2], Theorem 2 and Corollary 1.
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Proper strong-Fibonacci games 21

It is easy to check that it is the unique veto player. ⊓⊔
Corollary 2 For p = 3 and still for z = ⌊(t + 1)/2⌋, the top player is a
semiveto (see [3], Sect. 2, def. 5), i.e. belongs to all min win coalitions except
for the coalition of all other players.

Proof For t > 2, k(t, ⌊(t+ 1)/2⌋, 3) = (3, k̂(t, ⌊(t+ 1)/2⌋)) = (3,1t−1) Indeed:

t−1∑

j=1

kjw
∗
j =

t−1∑

j=1

kjgj = 2 +

t−1∑

j=1

gj = gt+1 = q

so that the coalition of all but the top player is the unique minimal winning
coalition without the top player, which is then the (unique) semiveto. ⊓⊔
Lemma 9 For p = 1 and z = ⌊(t− 1)/2⌋, we have, for any t > 2 odd, a PSF
game in which the top player is semiveto.

Proof For t > 2 odd, k(t, ⌊(t − 1)/2⌋, 1) = (1, k̂(t, ⌊(t − 1)/2⌋)) = (1, 2,1t−2)
Indeed:

t−1∑

j=1

kjw
∗
j =

t−1∑

j=1

kjgj = 2 +

t−1∑

j=1

gj = gt+1 = q

⊓⊔
Remark 10 It is clear that, besides these cases, for t > 2 there are no other
PSF games with veto or semiveto players.

9 A connection with Freixas-Kurz approach

As said in the introduction, apparently similar results have been recently ob-
tained by Freixas-Kurz in [3], extending and generalizing results previously
introduced by Freixas et al. [4]. Indeed, their paper [3] makes (in the title)
explicit reference to the “golden number and Fibonacci sequences” in voting
structures. Their main result too is a formula which gives the number of a class
of voting games with different structures; such a formula too highlights the role
of the golden section as a limiting value of the rate of growth of such number.
But, even if the enumeration goal is in some sense the common core of their as
well as of our paper, there are also relevant differences to be stressed. Indeed,
they treat a large class of complete simple games, not necessarily proper, with
at least one type of “special” players (vetoes, semivetoes, passers, semipassers
and null), and do not restrict the attention to weighted majority games, re-
quiring a fortiori neither homogeneity nor the “strong-Fibonacci property”.

On the contrary, we precisely regard the restricted class of simple proper
homogeneous weighted majority games characterized by that specific prop-
erty. Hence, it could be said that for this particular class of games we give
a solution to the enumeration problem put by Freixas-Kurz (see the last but
one paragraph of sect. 6 in [3]), as we provide a closed form formula for the
number of our games as a function of t (see formulae (19a) and (19b)).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 Flavio Pressacco, Laura Ziani

10 Conclusions

In this paper we define and study the class of proper strong-Fibonacci (PSF)
games. We show that this class may be obtained through a generalization of
constant-sum strong Fibonacci (CSSF) games. The latter are constant-sum
homogeneous weighted majority games, whose minimal homogeneous repre-
sentation is characterized by the following “strong Fibonacci property”: the
whole sequence of type weights (in bottom-top order) and the minimal winning
quota is the corresponding initial string of the “delayed” Fibonacci sequence.
The generalization is obtained by relaxing the constant-sum condition, pre-
serving the proper quality.

Indeed we find that each CSSF game is the seed of a set of PSF games
(including the seed), whose profiles replicate the one of the seed in all but the
first component (the number of the weakest non-dummy players). This one
may be any positive integer (but 1 for a few “special” seeds) not greater than
the first component of the seed. Then we provide a closed form formula for the
number of PSF games as a function of the number t of non-dummy players’
types in the game. The growth rate of this function follows an exponential
pattern. Analyzing the limiting behaviour of this rate (as t diverges) we find the
key result of the paper: the ratio between the number of the PSF games for two
consecutive values of t of the same parity converges to the golden section. This
way, for this particular class of games, we solve the enumeration problem posed
by Freixas-Kurz. We show that particular values of the parameters generate
“special games”, i.e. games in which special types of players, according to
Freixas-Kurz terminology, emerge (either one veto or one semiveto).

Compared to other weighted majority games, PSF games combine two spe-
cific characteristics: the presence of some, or perhaps many, “peones” (players
with minimum weight), along with an almost total ranking (with one tie at
most) of all the other players, whose individual power grows at the speed of the
Fibonacci sequence. Even if our paper is wholly theoretical, this feature could
be particularly useful in applications to weighted voting systems. Verification
of this conjecture on real data of national parliaments could be the object of
further research.
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