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The Local Picard Group of a Ring
Extension

Dario Spirito

Abstract. Given an integral domain D and a D-algebra R, we introduce
the local Picard group LPic(R,D) as the quotient between the Picard
group Pic(R) and the canonical image of Pic(D) in Pic(R), and its
subgroup LPicu(R,D) generated by the the integral ideals of R that are
unitary with respect to D. We show that, when D ⊆ R is a ring extension
that satisfies certain properties (for example, when R is the ring of
polynomial D[X] or the ring of integer-valued polynomials Int(D)), it
is possible to decompose LPic(R,D) as the direct sum

⊕
LPic(RT, T ),

where T ranges in a Jaffard family of D. We also study under what
hypothesis this isomorphism holds for pre-Jaffard families of D.
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1. Introduction

Let D be an integral domain. The Picard group of D, denoted by Pic(D), is
the quotient between the group of invertible (fractional) ideals and the group
of principal ideals or, equivalently, the group of isomorphism classes of rank-
one projective modules. The Picard group of D is connected, among other
topics, to the factorization properties of D: for example, if D is a Dedekind
domain, then Pic(D) is trivial if and only if D is a unique factorization
domain.

The Picard group is essentially a global property of a ring, in the sense
that it cannot be recovered from the localizations: indeed, the Picard group
of a local ring is always trivial. However, in some cases it is possible to un-
derstand the structure of the Picard group by choosing carefully a family
of localizations: for example, when considering the ring R = Int(D) of the
integer-valued polynomials on a Dedekind domain D, there is an exact se-
quence

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕

M∈Max(D)

Pic(Int(DM )) −→ 0, (1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-024-02731-z&domain=pdf
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where Int(DM ) = Int(D)DM is a localization of Int(D) [1, Theorem VIII.I.9].
Since each DM is a valuation domain, Pic(Int(DM )) is known [1, Theorem
VIII.2.8], and thus we can calculate Pic(D) by localization.

The previous result was generalized in [13] in the context of Jaffard fam-
ilies: a Jaffard family of D is a family of flat overrings of D that is complete,
independent and locally finite (see Sect. 2.2 for the definitions of these proper-
ties). A typical example of a Jaffard family is the family {DM | M ∈ Max(D)}
of localizations of a one-dimensional locally finite domain (for example, a one-
dimensional Noetherian domain). It was shown [13, Proposition 4.3] that, if
Θ is a Jaffard family of D, then we can construct an exact sequence analogous
to (1) for Pic(Int(D)), and subsequently [13, Theorem 4.7] that there is an
isomorphism

LPic(Int(D),D) �
⊕

T∈Θ

LPic(Int(T ), T ), (2)

where LPic(Int(A), A) is the quotient between Pic(Int(A)) and the canonical
image of Pic(A). (We use the notation we introduce in Sect. 6 of the present
paper instead of the notation used in [13].) These results were then extended
beyond the Jaffard family context with a derived set-like construction [13,
Sections 6 and 7] first introduced in [11].

The purpose of this paper is to extend (1) and (2) beyond the case of
integer-valued polynomials to the more general framework of D-algebras. In
particular, we want to understand when, given a Jaffard family Θ of D and
a D-algebra R, we have an isomorphism

LPic(R,D) �
⊕

T∈Θ

LPic(RT, T ), (3)

fully reducing the study of the local Picard group LPic(R,D) to localizations;
moreover, we want to see whether it is possible to generalize these results to
the more general case of pre-Jaffard families. However, the isomorphism (2)
does not hold for general D-algebras: thus, the first part of the paper (Sections
3, 4, 5) is devoted to introducing and exploring the additional hypothesis we
need to put on R in order for the isomorphism to hold, while the second
part (from Sect. 6 onward) adapts the proof of the integer-valued polynomial
case to this more general setup. We shall see that several polynomial-like
constructions satisfy these conditions: for example, (3) holds not only for
R = Int(D) (which is the topic of [13]), but also for R = Int(E,D) (the ring
of integer-valued polynomials on any E ⊆ D), the polynomial ring R = D[X]
and the Bhargava ring R = Bx(D) (see [14]).

More specifically, in Sect. 3 we study D-algebras R that can be endowed
with a retract, i.e., with a map R −→ D that is a D-algebra homomorphism,
showing that they are all extensions of D such that R ∩ K = D (where K
is the quotient field of D; Proposition 3.4). In Sect. 4, we develop the theory
of unitary ideals: a fractional ideal I of R is unitary with respect to D if
I∩K �= (0). We introduce the subgroup Picu(R,D) of Pic(R) as the subgroup
generated by the classes of the unitary integral ideals of R, and we show
that it is the kernel of the canonical homomorphism Pic(R) −→ Pic(RK)
(Proposition 4.5). In Sect. 5, we introduce pseudo-polynomial algebras over D
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as those algebras where every unitary principal ideal is actually generated by
an element of D, and we show (Proposition 5.7) that this notion encompasses
several constructions contained in the ring of polynomials K[X].

In Sect. 6 we introduce the local Picard group LPic(R,D) and the uni-
tary local Picard group LPicu(R,D) as, respectively, the quotient of Pic(R)
and Picu(R,D) by the canonical image of Pic(D). We show that these con-
structions are functorial (Proposition 6.4) and that for retract D-algebras
they are actually direct summands of Pic(R) and Picu(R,D), respectively
(Proposition 6.6).

In Sect. 7, we take the proofs of (1) and (2) and show how they can
be adapted to the case of D-algebras: in order to hold in the more general
context, we need to restrict ourselves to algebras that are retract and pseudo-
polynomial and, instead to LPic(R,D), the best results are obtained when
dealing with the group LPicu(R,D) induced by unitary integral ideals (The-
orems 7.1 and 7.4). We also show several special cases of these theorems.
Finally, in Sect. 8, we show under what hypothesis the results about Jaffard
families can be generalized to pre-Jaffard families using the derived sequence.

2. Preliminaries

Throughout the paper, D is an integral domain and K is its quotient field.
We also suppose that D �= K, i.e., that D is not a field.

A fractional ideal of D is a D-submodule I of K such that dI ⊆ D
for some d ∈ D, d �= 0. We shall often refer to a fractional ideal simply as
an “ideal”, while using the term “integral ideal” to refer to fractional ideals
contained in D (i.e., to ideals of D in the usual sense).

An overring of D is a ring between D and K. If D ⊆ R is a ring
extension, with R being an integral domain, then the quotient field of R
contains K, and thus it makes sense to consider the intersection R ∩ K.
Moreover, if T is an overring of D, then the set

RT :=

{
∑

i

riti | ri ∈ R, ti ∈ T

}

is well-defined, and it is a ring and an overring of R. In particular, if T =
S−1D is a localization of D, then RT = S−1R is a localization of R.

We say that two elements a, b ∈ D are associated in D if they generate
the same principal ideal, or equivalently if there is a unit u such that a = ub.

If E is a subset of K, the ring of integer-valued polynomials on E is

Int(E,D) := {f ∈ K[X] | f(E) ⊆ D};

we also set Int(D) := Int(D,D). See [1] for facts about integer-valued poly-
nomials.

2.1. The Picard Group

A fractional ideal I of D is invertible if there is a fractional ideal J such that
IJ = D; in this case, J = (D : I) = {x ∈ K | xI ⊆ D}. Every invertible
ideal is finitely generated. The set Inv(D) of all the invertible ideals of D is a
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group under the product of ideals, with identity element D, and contains as
a subgroup the set Princ(D) of all the principal fractional ideals of D. The
quotient

Pic(D) :=
Inv(D)

Princ(D)
is called the Picard group of D; if I is an invertible ideal, we denote by [I]
the class of I in Pic(D). The Picard group can also be constructed as the set
of all isomorphism classes of all projective modules of rank 1, with operation
given by [P ] · [Q] := [P ⊗ Q].

The Picard group is a functorial construction, in the sense that a ring
homomorphism φ : A −→ B between two domains A,B induces a map
φ∗ : Pic(A) −→ Pic(B). If φ is injective then φ∗ coincides with the extension
of ideals: that is, if I is an invertible ideal of A, then φ∗([I]) = [IB].

2.2. Jaffard and Pre-Jaffard Families

A flat overring of D is an overring that is also flat as a D-module. Let Θ be
a family of flat overrings of D: we say that Θ is:

• complete if I =
⋂{IT | T ∈ Θ} for every ideal I of D;

• independent if TT ′ = K for every T �= T ′ in Θ;1

• locally finite if for every x ∈ D, x �= 0, there are only finitely many
T ∈ Θ such that x is not a unit in D.

A Jaffard family of D is a family of flat overrings that is complete,
independent and locally finite, and such that K /∈ Θ. In particular, if Θ is a
Jaffard family, for every nonzero prime ideal P of D there is a unique T ∈ Θ
such that PT �= T . If T is a flat overring of D, then T is a Jaffard overring if
T belongs to a Jaffard family of D; this condition can be checked by defining
the orthogonal of T (with respect to D) as

T⊥ :=
⋂

{DP | PT = T}.

Indeed, T is a Jaffard overring if and only if TT⊥ = K, and in this case
{T, T⊥} is a Jaffard family. See [10] and [5, Section 6.3] for properties of
Jaffard families.

The Zariski topology on the set Over(D) of overrings of D is the topol-
ogy generated by the B(x) := {T ∈ Over(D) | x ∈ T}, as x ranges in K.
A pre-Jaffard family of D is a family Θ of flat overrings that is complete,
independent, such that K /∈ Θ, and compact in the Zariski topology [11].
Any Jaffard family is also a pre-Jaffard family, and a pre-Jaffard family Θ is
Jaffard if and only if every T ∈ Θ is a Jaffard overring. If Θ is a pre-Jaffard
family and there is a T∞ ∈ Θ such that every T ∈ Θ\{T∞} is a Jaffard
overring, we say that Θ is a weak Jaffard family pointed at T∞.

Pre-Jaffard families are much more common than Jaffard families, but
they do not enjoy the same strong properties of the latter. In order to approx-
imate pre-Jaffard families with Jaffard families, and to extend some results

1For general (not necessarily flat) overrings, independence requires that there is no nonzero

prime P such that PT �= T and PT ′ �= T ′ [5, Section 6.2], but this condition reduces to
TT ′ = K for flat overrings [11, Lemma 3.4 and Definition 3.5].
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from the latter to the former, we associate to a pre-Jaffard family Θ of D two
sequences, one {N α(Θ)}α of subsets of Θ, and another {Tα}α of overrings of
D, both indexed by ordinal numbers, in the following way:

• N 0(Θ) := Θ, T0 := D;
• if α = γ + 1 is a successor ordinal, then N α(Θ) is the set of members

of N γ(Θ) that are not Jaffard overrings of Tγ ;
• if α is a limit ordinal, then N α(Θ) :=

⋂{N γ(Θ) | γ < α};
• Tα :=

⋂{T | T ∈ N α(Θ)}.

Then, {N α(Θ)}α is decreasing and {Tα}α is increasing; moreover, N α(Θ) is
always a pre-Jaffard family of Tα. A weak Jaffard family is just a pre-Jaffard
family such that N 1(Θ) is empty or a singleton. We call {Tα}α the derived
sequence with respect to Θ. If Tα = K for some α, we say that the pre-Jaffard
family Θ is sharp. See [11] for properties of pre-Jaffard families and of the
derived sequence.

3. Retract Algebras

Definition 3.1. Let D be an integral domain, and let R be a D-algebra that
is an integral domain. We say that R is a retract D-algebra if there is a
D-algebra homomorphism ε : R −→ D, which we call a retract of R onto D.

A retract is also sometimes called a Reynolds operator ; its existence
implies that D is a direct summand of R, and consequently that D is a pure
subring of R. However, since we only need basic facts about retract algebras,
we do not use any results about pure extensions.

Example 3.2. (1) Let R = D[X]. For any i ∈ D, the evaluation homomor-
phism εi(f(X)) = f(i) is a D-algebra homomorphism, and thus D[X]
is a retract D-algebra. The same holds for polynomial rings D[X1, . . . , ]
in any number of indeterminates.

(2) If K is the quotient field of D and i ∈ K, then for every E 	 i the
evaluation homomorphisms εi(f(X)) = f(i) also makes Int(E,D) into
a retract D-algebra. In particular, taking i ∈ D, we see that Int(D) is
a retract D-algebra.

(3) The power series ring D[[X]] is a retract D-algebra, with retract given
by the evaluation at 0, i.e., with the map that associates to the power
series f0 + f1X + · · · the constant term f0.

Lemma 3.3. If ε : R −→ D is a D-algebra homomorphism and R �= D, then
ε is not injective.

Proof. If r ∈ R\D then r �= ε(r) and ε(r) = ε(ε(r)) since ε(r) ∈ D, and thus
ε is not injective. �

Proposition 3.4. Let D be an integral domain with quotient field K and let
R be a retract D-algebra.
(a) R is an extension of D (i.e., the canonical D-algebra homomorphism

D −→ R is injective).
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(b) If S ⊆ R is a D-algebra, then S is a retract D-algebra.
(c) If K is the quotient field of D, then R ∩ K = D.
(d) The restriction map of spectra

Spec(R) −→ Spec(D),
P 
−→ P ∩ D,

is surjective.
(e) If R �= D, then dim(R) ≥ dim(D) + 1.

Proof. Let ε be a retract of R onto D.
(a) Let i : D −→ R be the canonical map of D-algebras. Then, ε ◦ i is

the identity on D; therefore, i must be injective, i.e., R is an extension of D.
(b) The restriction of ε to S is a D-algebra homomorphism. Hence S is

a retract D-algebra.
(c) Let D ⊆ D′ ⊆ K. Then, any ring homomorphism φ : D′ −→ A is

uniquely determined by the restriction φ|D : D −→ A, since any x ∈ D′ can
be written as a quotient y/z for y, z ∈ D. (That is, the extension D ⊆ D′ is
an epimorphism.) In particular, if R is a retract D-algebra and D′ := R ∩ D,
then the retract ε is a ring homomorphism that is the identity on D; hence,
it must be the identity on D′. However, this is impossible if D′ �= D. Thus
D′ = R ∩ K = D.

(d) The map ε induces a map ε∗ : Spec(D) −→ Spec(R) given by
ε∗(P ) = ε−1(P ): we claim that P = ε−1(P ) ∩ D. Indeed, since ε is the
identity on D, we have P ⊆ ε−1(P ) ∩ D; likewise, if d ∈ ε−1(P ) ∩ D, then
d = ε(d) ∈ P and so ε−1(P )∩D ⊆ P . Hence the restriction map is surjective.

(e) If dim(D) is infinite the claim is trivial. Suppose that dim(D) < ∞:
then, since ε is surjective, Spec(D) is homeomorphic to V (ker ε) ⊆ Spec(R).
Since D and R are integral domains, the dimensions of Spec(R) and Spec(D)
can coincide only if ker ε = (0), i.e., if ε is injective. This is impossible by
Lemma 3.3. Therefore dim(R) ≥ dim(D) + 1, as claimed. �
Remark 3.5. If R = D[X] or R = Int(D), there is more than one possible
map ε. In this case, the prime ε−1(P ) may change when changing the map,
but its image under the restriction map is always P . For example, if εd is the
map of D[X] defined as the evaluation in d, then ε−1

d (P ) = (P,X − d).

Proposition 3.6. Let D � R be an integral extension of domains. Then, R is
not a retract D-algebra.

Proof. Suppose there is a retract ε : R −→ D; since R �= D, ε is not injective
(Lemma 3.3) and thus ker ε �= (0). Let S := D\{0}: then, S−1D ⊆ S−1R is
again an integral extension, and S−1D = K is the quotient field of R. Hence,
S−1R must be a field too; however, ker ε∩D = (0), and thus S−1 ker ε �= S−1R
is a nonzero prime ideal above (0), a contradiction. Hence R is not a retract
D-algebra. �
Remark 3.7. The condition R ∩ K = D is not sufficient for R to be a re-
tract D-algebra. For example, if D is integrally closed and R �= D is an
integral extension of D, then R ∩ K = D, but R is not a retract D-algebra
by Proposition 3.6.
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The condition is not sufficient even if D is integrally closed in R: for
example, let D = Z and let R = Z[α, β] ⊆ Q(X), where X is an indeterminate
over Z and α, β satisfy

{
α2 = X,

β2 = 3 − X.

Then, Z is integrally closed in R and R ∩ Q = Z. Suppose there is a retract
ε : R −→ D: since α2 + β2 = 3, we also must have

ε(α)2 + ε(β)2 = ε(3) = 3,

which is impossible in Z.

We shall often deal with extending a retract D-algebra by a flat overring.
In this context, the following result is useful.

Proposition 3.8. Let D be an integral domain and let T be an overring of D.
If R is a retract D-algebra, then RT is a retract T -algebra.

Proof. Let ε : R −→ D be a retract. If x ∈ RT , then x = r1t1 + · · · + rntn
for some ri ∈ R, ti ∈ T ; we define

ε̃(x) := ε(r1)t1 + · · · + ε(rn)tn ∈ DT = T.

We need to show that ε̃ is well-defined, i.e., that if

x = r1t1 + · · · + rntn = s1t
′
1 + · · · + smt′m

for some ri, si ∈ R, ti, t
′
i ∈ T , then

ε(r1)t1 + · · · + ε(rn)tn = ε(s1)t′1 + · · · + ε(sn)t′n.

To do so, it is enough to show that if r1t1 + · · · + rntn = 0, then ε(r1)t1 +
· · · + ε(rn)tn = 0.

For each i we can write ti = yi/zi with yi, zi ∈ D, zi �= 0; let z :=
z1 . . . zn. Then, zti ∈ R for every i and zx = 0. Thus,

0 = ε(zx) = ε(z(r1t1 + · · · + rntn)) = ε(r1)(zt1) + · · · + ε(rn)(ztn)

since each zti is an element of D. The equality

ε(r1)(zt1) + · · · + ε(rn)(ztn) = 0

is an equality in K (the quotient field of D); therefore, we can simplify z and
obtain ε(r1)t1 + · · · + ε(rn)tn = 0, which is what we needed to prove.

By construction, ε̃ is an homomorphism of T -algebras, and thus it is a
retract. Hence RT is a retract T -algebra. �

Proposition 3.9. Let D ⊆ R ⊆ A be integral domains. If R is a retract D-
algebra and A is a retract R-algebra, then A is a retract D-algebra.

Proof. If ε : R −→ D and ε′ : A −→ R are retracts, then ε ◦ ε′ : A −→ D is a
retract. �
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4. Unitary Ideals

An important feature of the theory of integer-valued polynomials is the con-
cept of unitary ideals, i.e., ideals of Int(D) that meet D nontrivially. We
generalize this definition to any extension in the following way.

Definition 4.1. Let D be an integral domain with quotient field K and R an
extension of D that is an integral domain. We say that a fractional ideal I of
R is unitary with respect to D if I ∩ K �= (0).

When dealing with integral ideals, the defining condition of a unitary
ideal can be written in a slightly different way.

Lemma 4.2. Let D be an integral domain with quotient field K, and let R be
an extension of D. Let I be an integral ideal of R. Then, I is unitary if and
only if I ∩ D �= (0).

Proof. If I ∩ D �= (0), then also I ∩ K �= (0). Conversely, if x ∈ I ∩ K, x �= 0,
then there is a y ∈ D, y �= 0 such that yx ∈ D. Thus yx ∈ yI ∩ D ⊆ I ∩ D
and I ∩ D �= (0). �

Proposition 4.3. Let D be an integral domain and R an extension of D that
is an integral domain. An integral ideal I of R is unitary if and only if IK =
RK.

Proof. The ring RK is the localization of R at S := D\{0}; the claim now
follows from Lemma 4.2. �

In this paper, we are mainly interested in the study of the Picard group
of a ring. In general, whenever R is a D-algebra not contained in K, there
will be plenty of ideals of R that are not unitary; however, every ideal can
be transformed by multiplication into an unitary ideal, in the sense that, if
x ∈ I, x �= 0 then x−1I is unitary (it contains 1). In particular, if we denote
by Inv0(R,D) the set of all invertible ideals that are unitary with respect to
D (which is a subgroup of the group Inv(R) of all invertible ideals) then the
quotient

Inv0(R,D)
Inv0(R,D) ∩ Princ(R)

=
Inv0(R,D)

Princu(R,D)
(where Princ(R) and Princu(R,D) are, respectively, the subgroup of principal
ideals and of unitary principal ideals of R) is just equal to the Picard group
Pic(R), since for every I the coset I ·Princ(R) contains elements of Inv0(R,D).

A more interesting way to consider unitary ideals is the following.

Definition 4.4. Let R be a D-algebra that extends D. We define Invu(R,D)
as the subgroup of Inv(R) generated by the ideals that are both integral and
unitary with respect to D.

Furthermore, we define the unitary Picard group of R with respect to
D as the quotient

Picu(R,D) :=
Invu(R,D)

Invu(R,D) ∩ Princ(R)
=

Invu(R,D)
Princu(R,D)

.
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Proposition 4.5. Let R be a D-algebra that is extends D and is an integral
domain, and let φ : Pic(R) −→ Pic(RK), [I] 
→ [IK] be the canonical map of
Picard groups. Then, ker φ = Picu(R,D).

Proof. Since the set of all integral unitary invertible ideals is a monoid, every
[I] ∈ Picu(R,D) can be written as JL−1, where J, L are integral unitary
ideals of R; therefore, to show that Picu(R,D) ⊆ ker φ, it is enough to prove
it for integral unitary ideals. Let thus [I] be integral and unitary: then, IK ⊆
RK, while K ⊆ IK since I ∩K �= (0). Therefore, IK = RK and in particular
IK is principal in RK, i.e., [IK] = [RK] and [I] ∈ ker φ, as claimed.

Conversely, suppose that [I] ∈ ker φ: then, there is a c ∈ F (where F
is the quotient field of R) such that IK = cRK, i.e., c−1IK = RK. Let
S := D\{0}: then, RK is just the localization S−1R, and thus the equality
c−1IK = RK can be written as S−1(c−1I) = S−1R. Since I is invertible,
it is finitely generated; hence there is an s ∈ S such that sc−1I ⊆ R. Thus
sc−1I is an integral invertible ideal of R such that sc−1IK = RK, i.e.,
sc−1I ∩ K �= (0). Thus sc−1I is unitary, and [I] = [sc−1I] ∈ Picu(R,D). The
claim is proved. �

Corollary 4.6. Let R be a D-algebra that is an integral domain, and let I be
an invertible ideal of R; let K be the quotient field of D. The following are
equivalent:

(i) IK is principal;
(ii) [I] ∈ Picu(R,D);
(iii) there is a c ∈ Q(R) such that cI is unitary and integral.

Proof. The equivalence of the the first two conditions follows from Proposi-
tion 4.5, while if (iii) holds then cIK = cRK is principal, so (i) holds. The
implication (ii) =⇒ (iii) follows from the last part of the proof of Proposition
4.5. �

Corollary 4.7. If K is a field and R is a K-algebra, then Picu(R,K) = (0).

Proof. By Corollary 4.6, [I] ∈ Picu(R,K) if and only if IK = I is principal.
Thus Picu(R,K) is trivial. �

Corollary 4.8. Let D be an integral domain with quotient field K, X a family
of indeterminates. If R is a D-algebra such that D[X] ⊆ R ⊆ K[X], then
Picu(R,D) = Pic(R).

Proof. We have K[X] = D[X]K ⊆ RK ⊆ K[X], and thus RK = K[X].
The ring of polynomials K[X] is a unique factorization domain and thus its
Picard group is trivial; the claim follows from Proposition 4.5. �

5. Pseudo-polynomial Algebras

In order to prove interesting results on the Picard group, we need to further
restrict our attention to another class of D-algebras.
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Definition 5.1. Let D be an integral domain with quotient field K, and let
R be an extension of D. We say that R is pseudo-polynomial over D if every
principal integral ideal of R that is unitary over D is generated by an element
of D.

The previous definition can be rewritten in the following way.

Lemma 5.2. Let R be a D-algebra. Then, R is pseudo-polynomial over D if
and only if, for every r ∈ R\D, either r is associated in R to some d ∈ D or
rR ∩ D = (0).

Proof. Suppose R is pseudo-polynomial and let r ∈ R\D. If rR ∩ D �= (0),
then I = rR is unitary, and thus I = dR is generated by a d ∈ D, i.e., r is
associated to d. Conversely, if the property in the statement hold and I = rR
is unitary over D, then rR ∩ D �= (0) and thus r is associated to a d ∈ D,
i.e., I = rD = dR is generated by an element of D. Thus R is pseudo-
polynomial. �

Another interpretation of pseudo-polynomiality is the following: a D-
algebra R is pseudo-polynomial over D if, for every a ∈ D, all factors of a
in R (i.e., all f ∈ R such that a ∈ fR) are associated to some element of D;
that is, modulo units, all factors of a in R are actually in D.

Lemma 5.3. Let R be a pseudo-polynomial D-algebra such that R ∩ K = D.
If I is a unitary integral principal ideal of R, then I ∩ D is principal (over
D).

Proof. Let I = rR be unitary, and let J := I ∩ D. Since R is pseudo-
polynomial, I = dR for some d ∈ D. If x ∈ J , then dx−1 ∈ R ∩ K = D
and thus x ∈ dD, i.e., d generates J . �
Remark 5.4. There are D-algebras that are not pseudo-polynomial. For ex-
ample, if D = Z, R = Z[X, 2/X], then I = XR is a unitary ideal (since
I ∩Z = 2Z) but I is not generated by an element of Z (since X/2 /∈ R). Note
also that R is a retract Z-algebra when endowed with the evaluation in 1.

The study of the pseudo-polynomiality of an extension can always be
split into two cases.

Proposition 5.5. Let D be an integral domain with quotient field K, and let
R be an integral domain that extends D. Then, R is pseudo-polynomial over
D if and only if R is pseudo-polynomial over R ∩ K and R ∩ K is pseudo-
polynomial over D.

Proof. Let A := R ∩ K.
Suppose that R is pseudo-polynomial over D, and let f ∈ R\A be such

that fR is unitary over A. Then also fR ∩ D �= (0) (since A and D have the
same quotient field) and thus f is associated to some d ∈ D. Since D ⊆ A,
it follows that R is pseudo-polynomial over A. Moreover, if f ∈ A\D, then
fA is unitary over D, and thus f = ud for some d ∈ D and some unit u
of R. However, u = f−1d ∈ R ∩ K = A, and likewise u−1 ∈ A: hence, f is
associated to d also in A. Hence A is pseudo-polynomial over D.



MJOM The Local Picard Group of a Ring Extension Page 11 of 25 189

Conversely, suppose that R is pseudo-polynomial over A and A is
pseudo-polynomial over D. Let f ∈ R\D be such that fR is unitary over
D: then, either f ∈ R\A or f ∈ A\D. In the former case, fR ∩ A �= (0), and
thus f = ua for some a ∈ A and some unit a ∈ A; since aA ∩ D �= (0), we
have a = vd for some d ∈ D and some unit v of A. Hence f = ua = uvd and
f is associated in R to an element of D. If f ∈ A\D, we have fR ∩ D �= (0)
and fA ∩ D �= (0), and thus f = ud for some d ∈ D and some unit u of A;
hence u is a unit of R and f is associated to d ∈ D also in R. Hence R is
pseudo-polynomial over D. �

Example 5.6. When R is an overring of D (i.e., when R is contained in the
quotient field of D) then every ideal of R is unitary over D: therefore, R is
pseudo-polynomial if and only if every principal integral ideal of R is gener-
ated by an element of D. More generally, this criterion holds whenever R is
contained in the algebraic closure of the quotient field of D (see Proposition
5.14 below).

For example, every localization of D is pseudo-polynomial over D. On
the other hand, consider D = Z[X], and let R be the valuation domain
associated to the valuation v defined by

v

(
k∑

n=0

anXn

)

= inf{2v(2)(an) + 3n},

where v(2) is the 2-adic valuation on Z. Then, R is a discrete valuation ring,
but no element of D generates the maximal ideal of R, since no element of
D has valuation 1. Thus R is not pseudo-polynomial over D.

We give two sufficient conditions for an algebra to be pseudo-polynomial.

Proposition 5.7. Let D be an integral domain with quotient field K, and let
X be a family of indeterminates over K. If R is a D-algebra contained in
K[X] and R ∩ K is pseudo-polynomial over D, then R is pseudo-polynomial
over D. In particular, if R ∩ K = D then R is pseudo-polynomial over D.

Proof. By Proposition 5.5, we only need to show that R is pseudo-polynomial
over R∩K, i.e., we can suppose without loss of generality that R∩K = D. Let
f ∈ R\D: then, f is a non-constant polynomial, and thus fR ⊆ fK[X] does
not contain any constant, i.e., fR ∩ D = (0). Thus R is pseudo-polynomial
over D, as claimed. �

Corollary 5.8. Let D be an integral domain. Then, the ring of polynomials
D[X] and the ring of integer-valued polynomials Int(D) are pseudo-polynomial
D-algebras.

Proof. Both rings are contained in K[X], and D[X] ∩ K = Int(D) ∩ K = D.
The claim follows from Proposition 5.7. �

Proposition 5.9. Let D be a unique factorization domain, and let R be an
extension of D. If every prime element of D is also a prime element of R,
then R is pseudo-polynomial.



189 Page 12 of 25 D. Spirito MJOM

Proof. Let f ∈ R\D, and suppose that a ∈ fR ∩ D, with a �= 0. Then, a has
a prime factorization a = p1 . . . pn in D; since each pi is also a prime element
of R, it follows that a = p1 . . . pn is also a prime factorization in R. Since
a ∈ fR, f is a divisor of a, and thus f must be associated to a subproduct
pi1 . . . pik

of the factorization of a. Since pi1 . . . pik
∈ D, the D-algebra R is

pseudo-polynomial. �

Proposition 5.10. Let D be an integral domain that it is either a unique fac-
torization domain or a Prüfer domain of dimension 1. Then, D[[X]] is a
pseudo-polynomial D-algebra.

Proof. If D is a unique factorization domain, then for every prime element p
of D the quotient D[[X]]/pD[[X]] is isomorphic to (D/pD)[[X]], which is an
integral domain; thus, p is also a prime element of D and the claim follows
from Proposition 5.9.

Suppose that D is a Prüfer domain of dimension 1. Let f ∈ D[[X]]
and suppose a ∈ fD[[X]] ∩ D: then, a = fg for some g ∈ D[[X]]. For
h ∈ Q(D[[X]]), we denote by c(h) the content of h, i.e., the D-module gen-
erated by the coefficients of h. By [9, Corollary 2.9], we have (c(f)c(g))2 =
c(f)c(g)c(fg) = a · c(f)c(g).

Let f0 and g0 be, respectively, the constant term of f and g, and let
f̃ := f/f0 and g̃ := g/g0. Then, a = f0g0, and c(f̃) = c(f)/f0 and c(g̃) =
c(g)/g0; it follows that

(f0c(f̃)g0c(g̃))2 = af0c(f̃)g0c(g̃),

i.e, I2 = I, where I := c(f̃)c(g̃). Since 1 ∈ c(f̃) and 1 ∈ c(g̃), we have D ⊆ I;
thus, for every maximal ideal M , we have DM ⊆ IDM and (IDM )2 = IDM .
Since DM is a one-dimensional valuation domain and I is a fractional ideal
of D, the only possibility is I = DM for every M , and thus I = D; hence also
c(f̃) = c(g̃) = D, and c(f) = (f0). Therefore, f is associated to f0 in D[[X]],
and D[[X]] is pseudo-polynomial over D. �

Example 5.11. The ring D[[X]] of the power series over D is not always
pseudo-polynomial. For example, suppose that D is a two-dimensional valu-
ation ring, with prime ideals (0) � P � M . Let m ∈ M\P and p ∈ P\(0).
Let

f := p + pm−1X + pm−2X2 + · · · =
∑

i≥0

pm−iXi =
p

1 − m−1X
.

Then, f ∈ D[[X]] since p ∈ P ⊆ mkD for every k; moreover, p2 ∈ fD[[X]]
since

f · (p − pm−1X) =
p

1 − m−1X
· p(1 − m−1X) = p2,

and p − pm−1X ∈ D[[X]]. In particular, fD[[X]] is a integral ideal of D[[X]]
that is unitary with respect to D.

We claim that fD[[X]] is not generated by any d ∈ D. Indeed, if h
is a unit of D[[X]] then its constant term is a unit of D; thus, if fD[[X]]
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is associated in R to some d ∈ D, then d must be associated in D to the
constant term of f , i.e., to p. However,

f

p
=

p
∑

i≥0 m−iXi

p
=

∑

i≥0

m−iXi /∈ D[[X]]

since m−1 /∈ D. Thus, D[[X]] is not pseudo-polynomial over D.

Proposition 5.12. Let D ⊂ R ⊂ A be integral domains, and let L be the
quotient field of R. If A is pseudo-polynomial over R, R is pseudo-polynomial
over D and A ∩ L = R, then A is pseudo-polynomial over D.

Proof. Let K be the quotient field of D. Let a ∈ A be an element such
that aA ∩ K �= (0). Then, aA ∩ L �= (0), and thus there is a r ∈ R such
that aA = rA. Therefore, if t ∈ aA ∩ K then tr−1 ∈ A ∩ L = R, and
thus t ∈ rR; in particular, t ∈ rR ∩ K, and so rR ∩ K �= (0). Since R is
pseudo-polynomial over D, there is a d ∈ D such that rR = dR; hence,
aA = rA = rRA = dRA = dA, and A is pseudo-polynomial over D. �
Example 5.13. The previous proposition does not hold without the hypoth-
esis that A ∩ L = R. Indeed, let D = Z, R = Z[X] and let A = V be the
valuation overring of R induced by the valuation v defined by

v

(
k∑

n=0

anXn

)

= inf{2v(2)(an) + n}.

Then, V is a discrete valuation ring, and its ideals are generated by the powers
Xn, which are in R; hence, V is pseudo-polynomial over R. The above part
of the section also implies that R is pseudo-polynomial over D.

Let M be the maximal ideal of V . Then, M ∩ Q �= (0) because 2 ∈ M ;
indeed, M ∩Q = 2Z(2). However, M is not generated (over V ) by any rational
number, since v(2) = 2; thus V is not pseudo-polynomial over D.

Integral extensions are often not pseudo-polynomial.

Proposition 5.14. Let D ⊆ R be integral domains, and let K,L be the quo-
tient fields of D and R (respectively). Suppose that the extension K ⊆ L is
algebraic. Then, R is pseudo-polynomial over D if and only if every principal
ideal of R is generated by an element of D.

Proof. It is enough to prove that every ideal of R meets D. Write D ⊆ A1 ⊆
A2 ⊆ R, where A1 := R ∩ K and A2 is the integral closure of A1 in R. Then,
both D and A1 have quotient field K and both A2 and R have quotient field
L; thus, every ideal of R meets A2 and every ideal of A1 meets D. The claim
will thus be proved if every ideal of A2 meets A1.

Let a ∈ A2: then, a is integral over A1, and thus it has a minimal
polynomial f(X) = f0+f1X + · · ·+Xn. Then, f0 = −a(f1+f2a+ · · ·+an−1)
belongs to both A1 and aA2. and thus aA1 ∩ A2 �= (0). The claim is proved.

�
Corollary 5.15. Let R be the integral closure of Z in a proper extension L of
Q. Then, R is not pseudo-polynomial over Z.
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Proof. Since L �= Q, there is at least one prime p of Z which splits in R. Thus,
the prime ideals over pZ are not generated by elements of Z. The claim follows
from Proposition 5.14. �
Remark 5.16. It is possible for a proper integral extension to be pseudo-
polynomial. For example, if V is a valuation domain and W is an extension
of V such that the extension of value groups is trivial, then every ideal of W
is generated by elements of V .

6. The Local Picard Group

Definition 6.1. Let R be a D-algebra and let ι : Pic(D) −→ Pic(R) be the
canonical map. We define the local Picard group of R as a D-algebra as

LPic(R,D) :=
Pic(R)

ι(Pic(D))
.

Likewise, if R is an extension of D then the unitary local Picard group of
D ⊆ R is

LPicu(R,D) :=
Picu(R,D)
ι(Pic(D))

.

Remark 6.2. (1) Note that if I is an invertible integral ideal of D then IR
is integral and unitary. Thus ι(Pic(D)) ⊆ Picu(R) and LPicu(R,D) is
well-defined.

(2) From the basic properties of groups, we have
LPic(R,D)
LPicu(R,D)

=
Pic(R)/ι(Pic(D))

Picu(R,D)/ι(Pic(D))
� Pic(R)

Picu(R,D)
.

(3) Every ring R can be considered as a Z-algebra; in this case, the map
ι is just the zero map. Therefore, the Picard group Pic(R) can also be
seen as the local Picard group LPic(R, Z). Likewise, if F is a field and
R is an F -algebra, LPic(R,F ) is just Pic(R).

Example 6.3. Let D be an integral domain and R = D[X] the polynomial
ring over D. Then, the canonical map Pic(D) −→ Pic(D[X]) is surjective
if and only if D is seminormal [8, Theorem 1.6], i.e., LPic(D[X],D) is the
trivial group if and only if D is seminormal. More generally, LPic(D[X],D) is
isomorphic to Pic(A+XD[X]), where A is the base ring of D (i.e., A = Z if D
has characteristic 0, A = Fp is D has characteristic p > 0) [3, Theorem 3.8],
and a similar result holds with more indeterminates.

Proposition 6.4. Let D be an integral domain. Then, the assignments R 
→
LPic(R,D) and R 
→ LPicu(R,D) give rise to functors from the category
of integral D-algebras (where maps are D-algebra homomorphisms) to the
category of abelian groups.

Proof. Let φ : R −→ R′ be a map of D-algebras. Since Pic is a functor, φ
induces a map φ∗ : Pic(R) −→ Pic(R′) sending ιR(Pic(D)) to ιR′(Pic(D));
hence φ∗ induces a map φ� : LPic(R,D) −→ LPic(R′,D). The fact that
φ 
→ φ� respects compositions is seen in the same way.

The proof for the unitary local Picard group is the same. �
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Proposition 6.5. Let D ⊆ R ⊆ A be integral domains. Then,

LPic(A,R) � LPic(A,D)
ι̃(LPic(R,D))

,

and

LPicu(A,R) � LPicu(A,D)
ι̃u(LPicu(R,D))

,

where ι̃ : LPic(R,D) −→ LPic(A,D) is the map induced by the inclusion
R ⊆ A and ι̃u is the restriction of ι̃ to LPicu(R,D).

Proof. Let ιDR : Pic(D) −→ Pic(R), ιRA : Pic(R) −→ Pic(A), ιDA :
Pic(D) −→ Pic(A) be the canonical maps. Then, ιDA = ιRA ◦ ιDR, and
thus in particular ιRA(Pic(R)) ⊇ ιDA(Pic(D)). Hence, there is a surjective
map

LPic(A,D) =
Pic(A)

ιDA(Pic(D))
−→ Pic(A)

ιRA(Pic(R))
= LPic(A,R),

whose kernel is

ιRA(Pic(R))
ιDA(Pic(D))

=
ιRA(Pic(R))

ιRA ◦ ιDR(Pic(D))
= ι̃

(
Pic(R)

ιDR(Pic(D)

)

= ι̃(LPic(R,D)).

The claim for LPic(A,D) is proved. The case of the unitary Picard group is
analogous. �

In Example 6.3, the natural map of Pic(D) into Pic(R) is not only
injective, but give rise to a direct sum decomposition Pic(R) � Pic(D) ⊕
LPic(R,D) [3, Section 2]; this is a more general feature of retract D-algebras,
and can be proved essentially in the same way.

Proposition 6.6. Let D be an integral domain and let R be a retract D-
algebra. Then:

(a) the canonical map ι : Pic(D) −→ Pic(R) is injective;
(b) ι(Pic(D)) is a direct summand of Pic(R) and of Picu(R,D);
(c) Pic(R) � Pic(D) ⊕ LPic(R,D);
(d) Picu(R,D) � Pic(D) ⊕ LPicu(R,D).

Proof. Let i be the inclusion of D into R. The composition ε◦i is the identity
on D; since A 
→ Pic(A) is a functor, it follows that ε∗ ◦ i∗ = ε∗ ◦ ι is the
identity on Pic(D). Therefore, ι is injective and the exact sequence

0 −→ ker(ε∗) −→ Pic(R) ε∗
−−→ Pic(D) −→ 0

splits. The kernel of ε∗ is isomorphic to the quotient between Pic(R) and
ι(Pic(D)), and thus by definition is isomorphic to LPic(R,D). Hence, Pic(R)
� Pic(D) ⊕ LPic(R,D).

The reasoning for LPicu(R,D) is the same. �
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7. Localization of the Local Picard Group

We aim to study the local Picard group through the lens of localization and
of extension by Jaffard overrings, as was done for the Picard group of the
ring of integer-valued polynomials in [13]. We shall follow the same method
of the proofs therein, which are generalizations of the methods given in [1,
Chapter VIII].

The following theorem corresponds to [1, Proposition VIII.1.6] and [13,
Proposition 4.3].

Theorem 7.1. Let D be an integral domain and let R be a pseudo-polynomial
retract D-algebra. Let Θ be a complete family of flat overrings of D. Then,
there are exact sequences

0 −→ Pic(D,Θ) −→ Pic(R) πΘ−−−→
∏

T∈Θ

Pic(RT ), (4)

and
0 −→ Pic(D,Θ) −→ Picu(R,D) πΘ−−−→

∏

T∈Θ

Picu(RT,R). (5)

Proof. We first show the result for Pic(R).
The map Pic(D,Θ) −→ Pic(R) is the restriction of the extension map

ι, which is injective by Proposition 6.6, and thus it is itself injective. By
construction, if [I] ∈ Pic(D,Θ) then IT is principal for every T ∈ Θ, and
thus IRT = ITR is principal; thus, the kernel of πΘ contains ι(Pic(D,Θ)).

Suppose now that [I] ∈ ker πΘ; then, IT is principal for every T ∈ Θ and
thus IK is principal. By the proof of Proposition 4.5, [I] ∈ Picu(R,D), and
thus without loss of generality we can suppose that I is unitary and integral.
Then, (I ∩ D)T = T for all but finitely many elements of Θ, say T1, . . . , Tn.
By Lemma 5.3, for each i there is an xi ∈ ITi such that ITi = xiRTi. The
ideal Li := xiTi ∩D is finitely generated over D (since Ti is a Jaffard overring
[10, Lemma 5.9]) and LiTi = xiTi. Therefore, the ideal L := L1 + · · · + Ln

is a finitely generated ideal of D; moreover, LT = T if T ∈ Θ\{T1, . . . , Tn}
and LTi = LiTi = xiTi = ITi, and thus L is locally principal. Therefore, L
is an invertible ideal such that LT is principal for every T ∈ Θ (thus, L ∈
Pic(D,Θ)) and LRT = IRT for every T ∈ Θ. As the family Θ is complete, we
have R =

⋂{RT | T ∈ Θ}; therefore, the map 	 : Z 
→ ⋂{ZRT | T ∈ Θ} is
a star operation on R (see for example [7, §32]), and I and LR are invertible
ideals of R. Thus

I = I� =
⋂

T∈Θ

IT =
⋂

T∈Θ

LRT = (LR)� = LR,

i.e., [I] = ι([L]). Thus kerπΘ ⊆ ι(Pic(D,Θ)), as claimed.
The result for Picu(R,D) follows by restricting the previous reasoning

to unitary ideals and noting that the extension of a unitary integral ideal is
still unitary and integral. �

Putting more hypothesis on Θ, we are able to get stronger statements.
Lemma 7.3 below is a variant of [10, Lemma 5.9].
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Lemma 7.2. Let D be an integral domain, R a D-algebra with quotient field
L and T a flat overring of D. If X1,X2 are R-submodules of L, then (X1 ∩
X2)T = X1T ∩ X2T .

Proof. If T is a flat overring of D, then TR is a flat overring of R, and since
X1,X2 are R-modules,

(X1 ∩ X2)T = (X1 ∩ X2)RT = X1RT ∩ X2RT = X1T ∩ X2T,

as claimed. �

Lemma 7.3. Let D be an integral domain and let R be an extension of D; let
T be a Jaffard overring of D. Let J be a unitary ideal of RT . If J is finitely
generated over RT , then J ∩ R is finitely generated over R.

Proof. Let T⊥ be the orthogonal to T with respect to D, and let I := J ∩ R.
Using Lemma 7.2, we have

IT⊥ = (J ∩ R)T⊥ = JT⊥ ∩ T⊥ = JRTT⊥ ∩ T⊥ = JRK ∩ T⊥.

Since J is unitary, J ∩K �= (0); thus, JRK = (JK)R = KR and IT⊥ = T⊥.
Hence there is a finitely generated ideal I0 ⊆ I such that I0T

⊥ = T⊥.
Let x1, . . . , xm be the generators of J . Since IT = (J ∩R)T = JT ∩T =

J , for each i there is a finitely generated ideal Ii ⊆ I such that xi ∈ IiT ; then,
L := I0 + I1 + · · · + Im is a finitely generated ideal contained in I such that
LT = J = IT and LT⊥ = T⊥ = IT⊥. It follows that L = I, i.e., I = J ∩ R
is finitely generated. �

The following is an analogue of Theorems 4.4 and 4.7 of [13].

Theorem 7.4. Let D be an integral domain and let R be a pseudo-polynomial
retract D-algebra. Let Θ be a Jaffard family of D. Then, there is an exact
sequence

0 −→ Pic(D,Θ) −→ Picu(R,D) πΘ−−−→
⊕

T∈Θ

Picu(RT, T ) −→ 0,

and
LPicu(R,D) �

⊕

T∈Θ

LPicu(RT, T ).

Proof. By Theorem 7.1, to prove the first claim it is enough to show that the
range of πΘ is the direct sum. Indeed, if [I] ∈ Picu(R,D), then by Corollary
4.6 we can suppose without loss of generality that I is unitary and integral.
Hence, (I ∩ D)T = T for all but finitely many T ∈ Θ, and thus the range of
πΘ is contained in the direct sum.

To prove the converse, we need to show that, given a fixed T ∈ Θ and
a [J ] ∈ Picu(RT, T ), there is an [I] ∈ Picu(R,D) such that [IT ] = [J ] and
[IS] = [RS] for all S ∈ Θ\{T}. By Corollary 4.6, we can suppose that J is
integral and unitary. By Lemma 7.3, I := J ∩ R is finitely generated over R.
We claim that I satisfies the previous conditions.

Indeed, IT = (J ∩ R)T = JT ∩ RT = JT , while IS = (J ∩ R)S =
JS ∩ RS = JTS ∩ RS = JK ∩ RS = RS since J ∩ K �= (0) and thus
1 ∈ JK. To show that I is invertible, let M be a maximal ideal of R. If
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M ∩ D = (0), then RM contains RK and thus RT , for every T ∈ Θ; hence,
IRM is principal since so is IRT . If M ∩D = P �= (0), then RM contains DP ,
and thus RM ⊇ IS, where S is the member of Θ such that PS �= S. Thus
IRM is principal since IRS is principal. Therefore, I is locally principal and
thus invertible.

Therefore, the direct sum is in the image of πΘ, and the sequence in the
statement is exact.

Consider now the commutative diagram

0 Pic(D,Θ) Pic(D)
⊕

T∈Θ

Pic(T ) 0

0 Pic(D,Θ) Picu(R,D)
⊕

T∈Θ

Picu(RT, T ) 0,

ιD ιΘ

where ιD and ιΘ are the natural maps. Since the leftmost vertical map is
the equality, the snake lemma gives an isomorphism between the cokernel of
ιD (namely, LPicu(R,D)) and the cokernel of ιΘ (namely, the direct sum of
the LPicu(RT, T )). The claim follows. �

Corollary 7.5. Let D be an integral domain with quotient field K, and let R
be a pseudo-polynomial retract D-algebra such that Pic(RK) = (0). Let Θ be
a Jaffard family of D. Then, there is an exact sequence

0 −→ Pic(D,Θ) −→ Pic(R) πΘ−−−→
⊕

T∈Θ

Pic(RT ) −→ 0,

and

LPic(R,D) �
⊕

T∈Θ

LPic(RT, T ).

Proof. If Pic(RK) = (0), then Picu(R,D) = Pic(R) and LPicu(R,D) =
LPic(R,D) (and the same for T , since Pic(RTK) = Pic(RK)). The claim
follows from Theorem 7.4. �

Remark 7.6. Without the hypothesis Pic(RK) = (0), Corollary 7.5 does not
hold. For example, suppose that R is a Prüfer domain: then, the canonical
map φ : Pic(R) −→ Pic(RK) is surjective, and so by Proposition 4.5 we have
Pic(R)/Picu(R, T ) � Pic(RK). If the corollary were true, we would have a
commutative diagram

0 Pic(D,Θ) Picu(R,D)
⊕

T∈Θ

Picu(RT, T ) 0

0 Pic(D,Θ) Pic(R)
⊕

T∈Θ

Pic(RT ) 0
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and an application of the snake lemma would give

Pic(RK) �
⊕

T∈Θ

Pic(RK).

However, if Pic(RK) �= (0), then this isomorphism may not hold.

The following corollaries are special cases of Theorem 7.4 and Corollary
7.5.

Corollary 7.7. Let D be an integral domain and let Θ be a Jaffard family of
D. Let X be a family of independent indeterminates over D. Then,

LPic(D[X],D) �
⊕

T∈Θ

LPic(T [X], T ).

Proof. The polynomial ring D[X] is a pseudo-polynomial retract D-algebra.
Since D[X]K = K[X] is a unique factorization domain, we can apply Corol-
lary 7.5. �

Corollary 7.8. Let D be an integral domain and let Θ be a Jaffard family of
D. Let E ⊆ K be a subset such that dE ⊆ D for some d �= 0. Then,

LPic(Int(E,D),D) �
⊕

T∈Θ

LPic(Int(E, T ), T ),

and
LPic(Int(D),D) �

⊕

T∈Θ

LPic(Int(T ), T ).

Proof. Note that Int(E,D) � Int(dE,D), and thus we can suppose without
loss of generality that E ⊆ D.

The ring Int(E,D) is a retract D-algebra since the evaluation in any d ∈
E is a retract. Moreover, D[X] ⊆ Int(E,D), and thus Int(E,D)K = K[X];
therefore, Pic(Int(E,D)K) = (0), so that Picu(Int(E,D),D)=Pic(Int(E,D))
and LPicu(Int(E,D),D) = LPic(Int(E,D),D). Finally, Int(E,D) ∩ K = D
and thus D is pseudo-polynomial by Proposition 5.7. By Theorem 7.4, we
have

LPic(Int(E,D),D) �
⊕

T∈Θ

LPic(Int(E,D)T, T ).

The equality Int(E,D)T = Int(E, T ) follows as in [13, Section 3].
If E = D, then Int(E,D) = Int(D) and Int(D)T = Int(T ). The claim

is proved. �

Let x ∈ D. The Bhargava ring of D with respect to x is [14]

Bx(D) := {f ∈ K[X] | f(aX + x) ∈ D[X] for all a ∈ D}.

Corollary 7.9. Let D be an integral domain and let Θ be a Jaffard family of
D.Then,

LPic(Bx(D),D) �
⊕

T∈Θ

LPic(Bx(T ), T ).
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Proof. The Bhargava ring Bx(D) satisfies D[X] ⊆ Bx(D) ⊆ K[X], and
Bx(D) ∩ K = D; therefore, it is pseudo-polynomial and Pic(Bx(D)K) = (0).
Moreover, Bx(D) ⊆ Int(x,D) and thus Bx(D) is also a retract D-algebra. By
Corollary 7.5, we have LPic(Bx(D),D) � ⊕

T∈Θ LPic(Bx(D)T, T ), and we
need to show that Bx(D)T = Bx(T ).

Let T⊥ be the orthogonal of T with respect to D. By [2, Lemma 1.1],
since T and T⊥ are sublocalizations and D = T ∩ T⊥ we have Bx(D) =
Bx(T ) ∩ Bx(T⊥); by Lemma 7.2 it follows that

Bx(D)T = (Bx(T ) ∩ Bx(T⊥))T = Bx(T )T ∩ Bx(T⊥)T.

Since Bx(T ) is a T -algebra we have Bx(T )T = Bx(T ) ⊆ K[X]. Moreover,
Bx(T⊥)T = Bx(T⊥)T⊥T = Bx(T⊥)K = K[X]. Thus Bx(T )T ⊆ Bx(T⊥)T
and Bx(D)T = Bx(T ). The claim is proved. �

Corollary 7.10. Let D be a locally finite one-dimensional domain, and let R
be a pseudo-polynomial retract D-algebra. Then,

LPicu(R,D) �
⊕

M∈Max(D)

Picu(RDM ,DM ),

and
Picu(R,D) � Pic(D) ⊕

⊕

M∈Max(D)

Picu(RDM ,DM ).

Proof. The first isomorphism follows from Theorem 7.4 using the family Θ :=
{DM | M ∈ Max(D)} (which is a Jaffard family since D is one-dimensional
and locally finite), and the fact that Pic(DM ) = (0) since each DM is local.
The second isomorphism now follows from Proposition 6.6. �

Corollary 7.11. Let D be an integral domain and let Θ be a Jaffard family of
D; let R be a pseudo-polynomial retract D-algebra. If Pic(D) = (0), then

Picu(R,D) �
⊕

T∈Θ

Picu(RT, T ).

Proof. If Pic(D) = (0), then Pic(T ) = (0) for every Jaffard overring T ; thus,
LPicu(R,D) = Picu(R,D) and LPicu(RT, T ) = Picu(RT, T ). �

Corollary 7.12. Let D be a locally finite Prüfer domain of dimension 1. Then,

Picu(D[[X]],D) � Pic(D) ⊕
⊕

M∈Max(D)

Picu(D[[X]]DM ,DM ).

Note that D[[X]]DM is not the ring DM [[X]] of power series over DM :
for example,

∑
n Xn/3n belongs to Z(2)[[X]] but not to Z[[X]]Z(2).

Proof. The ring D[[X]] is pseudo-polynomial over D by Proposition 5.10 and
a retract D-algebra (with ε being the evaluation in 0). The claim now follows
from Corollary 7.10. �

Remark 7.13. Theorems 7.1 and 7.4 do not hold for general D-algebras. For
example, let D = Z and let R be the integral closure of Z in a finite extension
L of Q. Note that Picu(R, Z) = Pic(R) since RK = L. Let Θ be the family of
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localizations of Z at the maximal ideals. Then, for every T = Z(p) ∈ Θ, the
ring RT is semilocal (its maximal ideals correspond to the maximal ideals of R
over (p), which are finite since [L : Q] < ∞), and thus Pic(RT ) = (0) for every
T , and thus also LPic(RT, T ) = (0). On the other hand, Pic(D,Θ) = (0),
and thus (4) becomes

0 −→ 0 −→ Pic(R) −→ 0.

If R does not have unique factorization, Pic(R) �= (0) and thus the sequence
is not exact. Likewise, LPic(R,D) = Pic(R) �= (0), and thus the isomorphism
LPic(R,D) � ⊕

T∈Θ LPic(RT, T ) is not true.

8. Pre-Jaffard Families

The results in the previous section only deal with Jaffard families. As done
in [13], under some hypothesis we can extend the results to the more general
case of pre-Jaffard families.

We start with an analogue of [13, Proposition 7.2], of which we follow
the proof.

Lemma 8.1. Let D be an integral domain and Θ be a pre-Jaffard family of D;
let {Tα} be the derived sequence associated to Θ. Let R be a pseudo-polynomial
retract D-algebra. Then, the extension map Picu(R,D) −→ Picu(RTα, Tα) is
surjective.

Proof. By induction on α. If α = 1, let L be the lattice of Jaffard overrings of
D. By the proof of [13, Proposition 6.1], we have T =

⋃{S | S ∈ L}; using the
same proof of [13, Lemma 5.2], it follows that RT =

⋃{RS | S ∈ L}. Since
for S ∈ Θ\{T} the map Picu(R,D) −→ Picu(RS, S) is surjective (Theorem
7.4), the same reasoning of the proof of [13, Lemma 5.1] shows that also
Picu(R,D) −→ Picu(RT, T ) is surjective.

If α is a limit ordinal, the claim follows in the same way since
⋃

γ<α Tγ =
Tα [13, Lemma 7.1] and thus

⋃
γ<α RTγ = RTα; hence we can apply [13,

Lemma 5.1]. If α = γ +1 is a successor ordinal, then the map Picu(R,D) −→
Picu(RTα, Tα) factors as

Picu(R,D) −→ Picu(RTγ , Tγ) −→ Picu(RTα, Tα);

the first map is surjective by inductive hypothesis, while the second one is
surjective since we can apply the case α = 1 to the Tγ-algebra RTγ . �

The following result is the analogue of Proposition 6.2 and Theorem 6.4
of [13]. We premise a lemma, that was implicitly used in the proof of [13,
Proposition 6.2].

Lemma 8.2. Let Θ be a weak Jaffard family of D pointed at T∞. Let I be a
finitely generated ideal of D such that IT∞ is principal. Then, there are only
finitely many T ∈ Θ such that IT is not principal.
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Proof. Without loss of generality we can suppose that I ⊆ D. Let Λ be the
set of all T ∈ Θ such that IT is not principal.

Let I = (x1, . . . , xn). Suppose that IT∞ = fT∞: then, there are t1,
. . . , tn ∈ T∞ such that f = x1t1 + · · · + xntn. Consider the set Ω :=
B(t1, . . . , tn, fx−1

1 , . . . , fx−1
n ) ⊆ Θ of all elements of Θ that contain each

ti and each fx−1
i : then, Ω is an open set with respect to the Zariski topology,

and T ∈ Ω if and only if IT = fT . In particular, T∞ ∈ Ω; thus, Λ0 := Θ\Ω
is a closed set of Θ not containing T∞, and Λ ⊆ Λ0.

Since Θ is compact in the Zariski topology and Λ0 is closed, Λ0 is
compact. Let A :=

⋂{T | T ∈ Λ0}: then, each T is a flat overring of A,
and it is also a Jaffard overring of A since each such T is a Jaffard overring
of D. If P is a prime ideal of D such that PT = T for every T ∈ Λ0 then

ADP =

(
⋂

T∈Λ0

T

)

DP =
⋂

T∈Λ0

TDP = K,

using [4, Corollary 5]. Thus, Λ0 is a Jaffard family of A, and in particular it is
locally finite. Consider IA and the extensions IAT for T ∈ Λ: then, IAT = IT
is not principal for such T , and thus IAT �= T . By local finiteness, Λ0 must
be finite, as claimed. �
Proposition 8.3. Let D be an integral domain and let R be a pseudo-polynomial
retract D-algebra. Let Θ be a weak Jaffard family of D pointed at T∞. Let
πΘ : Picu(R,D) −→ ∏{Picu(RT, T ) | T ∈ Θ} be the extension map and let
Δ be its cokernel. Then, there are exact sequences

0 −→
⊕

T∈Θ\{T∞}
Picu(RT, T ) −→ Δ −→ Picu(RT∞, T∞) −→ 0,

and

0 −→
⊕

T∈Θ\{T∞}
LPicu(RT, T ) −→ LPicu(R,D) −→ LPicu(RT∞, T∞) −→ 0.

Proof. The inclusion of Δ into the direct sum
∏

T∈Θ Picu(RT, T ) induces
a projection map π′ : Δ −→ Picu(RT∞, T∞), which is surjective since it
factorizes the surjective extension map Picu(R,D) −→ Picu(RT∞, T∞).

The kernel of π′ contains exactly the extensions of the classes [I] ∈
Picu(R,D) such that I becomes principal in each RT , for T ∈ Θ\{T∞}.
Using Theorem 7.4, we obtain that the direct sum

⊕{Picu(RT, T ) | T ∈ Λ} is
contained in the kernel; conversely, if [I] ∈ ker π′ then IT∞ = fT∞ for some f
and thus I is not principal for only finitely many T ∈ Θ (Lemma 8.2); thus the
kernel is contained in the direct sum. Therefore, kerπ′ =

⊕{Picu(RT, T ) |
T ∈ Λ}, and the first sequence in the statement is exact.

The diagram

0
⊕

T∈Θ\{T∞}
Pic(T )

Pic(D)

Pic(D,Θ)
Pic(T∞) 0

0
⊕

T∈Θ\{T∞}
Picu(RT, T ) Δ Picu(RT∞, T∞) 0
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commutes, the vertical maps are injective, and the horizontal rows are exact
(the top one by [13, Lemma 6.3], the bottom one by the previous part of the
proof). Applying the snake lemma, we obtain an exact sequence

0 −→
⊕

T∈Θ\{T∞}
LPicu(RT, T ) −→ Δ

Pic(D)/Pic(D,Θ)
−→ LPicu(RT∞, T∞) −→ 0,

that becomes the one in the statement by noting that
Δ

Pic(D)/Pic(D,Θ)
=

Picu(R,D)/Pic(D,Θ)
Pic(D)/Pic(D,Θ)

� Picu(R,D)
Pic(D)

= LPicu(R,D)

by definition. �

The following is analogous to Theorem 7.3 of [13].

Theorem 8.4. Let D be an integral domain and let R be a pseudo-polynomial
retract D-algebra. Let Θ be a pre-Jaffard family of D, and let {Tα} be the
derived series of D. Fix an ordinal α and suppose that LPicu(RT, T ) is a free
group for each T ∈ Θ\N α(Θ). Then, there is an exact sequence

0 −→
⊕

T∈Θ\N α(Θ)

LPicu(RT, T ) −→ LPicu(R,D) −→ LPicu(RTα, Tα) −→ 0.

Proof. By induction on α: if α = 1 then Θ is a weak Jaffard family and the
claim follows from Proposition 8.3.

If α = γ+1 is a successor ordinal, then we have a commutative diagram

0
⊕

T∈Θ\Nγ(Θ)

LPicu(RT, T ) LPicu(R,D) LPicu(RTγ , Tγ) 0

0 L LPicu(R,D) LPicu(RTα, Tα) 0,

f
g

(6)
where L is the kernel of LPicu(R,D) −→ LPicu(RTα, Tα). The two rows
are exact: the first one by induction, the second one by definition and by
Lemma 8.1. The snake lemma and the fact that the middle vertical arrow is
the identity give an exact sequence

0−→
⊕

T∈Θ\N γ(Θ)

LPicu(RT, T )−→L −→
⊕

T∈N γ(Θ)\N α(Θ)

LPicu(RT, T ) −→ 0,

which splits since LPicu(RT, T ) is free for T ∈ N γ(Θ)\N α(Θ), by hypothesis.
The claim follows reading the second row of (6).

If α is a limit ordinal, and Lγ is the kernel of the surjective map
LPicu(R,D) −→ LPicu(RTγ , Tγ), then {Lγ}γ<α is a chain of free subgroups
such that every element is a direct summand of the following ones and whose
union is Lα. Therefore, by [12, Lemma 5.6] (or [6, Chapter 3, Lemma 7.3])
Lα is the direct sum of the quotients

Lγ+1

Lγ
� LPicu(RTγ+1, Tγ+1)

LPicu(RTγ+, Tγ)
�

⊕

T∈N γ+1(Θ)\N γ(Θ)

LPicu(RT, T ).

Hence, Lα � ⊕{LPicu(RT, T ) | T ∈ Θ\N α(Θ)}. The claim is proved. �
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Corollary 8.5. Let D be an integral domain and let R be a pseudo-polynomial
retract D-algebra. Let Θ be a sharp pre-Jaffard family of D, and suppose that
LPicu(RT, T ) is a free group for each T ∈ Θ. Then,

LPicu(R,D) �
⊕

T∈Θ

LPicu(RT, T ).

Proof. If Θ is sharp, by definition there is an ordinal α such that Tα = K. By
the previous theorem, the cokernel of

⊕
T∈Θ LPicu(RT, T ) −→ LPicu(R,D)

is LPicu(RK,K). By Corollary 4.7, the latter is a quotient of the trivial group
Picu(RK,K), and thus it is itself trivial. The claim is proved. �
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