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Ensuring the reliability of electrical distribution networks is a pressing concern, especially given the power 
outages due to surface contamination on insulating components. Surface contamination can elevate surface 
conductivity, thereby resulting in failures that can lead to power shutdowns. Addressing this challenge, this 
paper proposes an approach for real-time monitoring of electrical distribution grids to prevent such incidents. A 
hypertuned version of the you only look once (YOLO) model is tailored for this application. We refine the model’s 
hyperparameters by integrating a genetic algorithm to maximize its detection performance. The EigenCAM 
technique enhances the visual interpretability of the model’s outcomes, providing operators with actionable 
insights for maintenance and monitoring tasks. Benchmark tests reveal that the proposed Hypertuned-YOLO 
outperforms Detectron (Masked R-CNN), YOLOv5, and YOLOv7 models. The Hypertuned-YOLO achieves an F1-

score of 0.867 and a mAP@0.5 of 0.922, validating its robustness and efficacy.
1. Introduction

The expansion of the power supply has been increasing over the 
years, due to technological advances that help provide power with 
quality and continuity [1]. Telecontrolled systems help maintain the 
power grid working in hard-to-access places, reducing the time needed 
to reestablish electrical power when a shutdown occurs [2]. For the 
power grid to be stable and reliable, insulators need to be inspected to 
ensure they are in working condition. The main faults found in insula-

tors are contamination over their surface [3], foreign objects close to 
them (such as bird’s nests), fissures, and cracks [4].

The use of deep learning for the classification of adverse conditions 
is proving to be a promising approach [5] due to its capability to iden-

tify non-linearly separable patterns [6]. Considering that pixel-by-pixel 
classification is impractical using big data, convolutional neural net-

works (CNN) excel at using kernels that reduce the computational effort 
of the evaluation [7]. A major challenge in using CNN models is that 
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in some cases there may be classification due to the background of the 
image [8], differences in clarity caused by sunlight variations, and clas-

sification due to objects that are not being evaluated [9].

Interpretive models are a solution because they generate a result that 
can be validated by the operator [10], and specialized object detection 
methods can be used for accurate fault identification. By highlighting 
the source of failure, interpretive models can be used by less special-

ized operators, making it easier for maintenance teams to use these 
approaches. Besides interpretive models, there is a tendency to use hy-

brid methods that use different backbones than the standard models or 
combine preprocessing techniques when the data set is limited [11].

The you only look once (YOLO) model performs object identification 
in a single step, making it a more efficient framework for object detec-

tion and classification, being typically superior to region-based CNN 
(R-CNN), fast or faster R-CNN models, which are widely applied for 
fault diagnosis [12]. One of the challenges in using YOLO is to define 
which version to use, as there is a trade-off between computational ef-
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fort and desired speed [13], and for specific images, CNN models can 
perform well [14].

Considering the advantages of the YOLO structure, this paper pro-

poses an optimization of the model based on hypertuning using a 
genetic algorithm and the application of the eigenvector-based class 
activation mapping (Eigen-CAM) to have interpretability of the results. 
The main contributions of this paper are:

• The first contribution is related to the dataset, in which the condi-

tions of the components of the electrical network after inspections 
in the distribution system were annotated. This dataset is based on 
photos of distribution networks taken from the ground, a condition 
in which operators typically perform power system inspections.

• The second contribution is regarding the hypertuning of the model 
based on a genetic algorithm that optimizes its structure. This 
approach results in better performance than detectron (masked R-

CNN), YOLOv5, YOLOv7, and YOLOv7x.

• The third contribution is given by the interpretability of the re-

sults which helps in understanding why the failure was identified, 
thus helping the maintenance team in the specific correction of the 
issue, here the Eigen-CAM is used for this goal.

The remainder of this paper is organized as follows: Section 2

presents a discussion on power system failures based on related works 
and applications of Eigen-CAM and YOLO for other fields. In Section 3

the proposed model is explained, in Section 4 the results and discus-

sions about the application of the method are presented, and finally, in 
Section 5 final considerations are presented.

2. Study background

Electric power distribution systems are exposed to environmental 
variations because they are generally in an external environment [15], 
these variations have an impact on the occurrence of breakdowns and 
consequently on the quality of power distributed to consumers [16]. 
The contamination of insulators increases their surface conductivity re-

sulting in increased leakage currents and as a consequence increases the 
chance of a disruptive failure [17].

The proximity of the mains to trees or of insulators to foreign objects 
(such as a bird’s nest) can reduce the distance from the electrical insula-

tion to the ground, resulting in a greater chance of an electric shutdown 
[18]. The main indicators that measure the quality of the power sup-

ply are based on calculating how many faults occur and how long it 
takes to restore power. Based on these indicators it is possible to as-

sess the time and frequency of outages, which are used to determine 
whether the power supply is being carried out in accordance with the 
stated specifications [19].

Regarding contaminated insulators, the study of the time series of 
the leakage current has been evaluated in [20] (using a long short-

term memory network) and [21] (based on the group method of data 
handling) to determine if there is a chance of a disruptive failure oc-

curring. In [22] the Fourier transform from the ultrasonic time series of 
insulators in different conditions is evaluated. Other studies have been 
evaluating the conditions of the electrical system using the finite ele-

ment method [23], besides the use of particle swarm optimization [24].

To identify anomalies in the power grid before shutdowns occur, 
power system inspections are conducted [25]. Inspections can be per-

formed either by land, with a team passing by the power line and 
assessing its condition, or by air [26]. Currently, the use of unmanned 
aerial vehicles (UAVs) have been widely used [27], due to the diffi-

culty in assessing hard-to-reach places and the cost of inspection when 
using manned aircraft [28], which can be used in combination with 
YOLO [29]. The main focus of the airborne inspection is the registra-

tion of images that are subsequently analyzed using image processing 
techniques [30].

In electrical system inspections, specific equipment is used to im-
2

prove the understanding of the condition of the electrical power net-
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work [31]. Popular are devices based on sound capture (typically that 
cannot be heard by the human being) and techniques based on image 
classification [32]. One of the challenges in using specific equipment 
such as ultrasound is the need for advanced training and operator ex-

perience to interpret the results. For this reason, the use of deep learn-

ing models for image processing of electrical system inspections shows 
promise for identifying network failures [33].

CNNs have a high potential to be used for power system fault iden-

tification, given their capability to process large datasets it is promising 
to be applied in big data (case of electrical power system inspections) 
[34]. The main advantage of using models based on CNNs is the lower 
computational effort in using kernels for feature extraction (compared 
to classification pixels to pixels, which would be impractical), which 
makes it possible to evaluate the model using deep learning [35]. In 
which it is possible to apply models with background knowledge to im-

prove the performance of the approach [36].

Despite well-established CNN models might have promising results 
for classification, in the case of power system images, there may be 
brightness or luminosity variation in the dataset which leads to false 
positives, i.e., to classify an object as a failure when it is not because 
the image background has properties that are present in images of de-

fective grid components [30]. For this, object detection-based models 
are frequently used as presented by Ben Atitallah et al. [37], Li et al. 
[38], and Cai et al. [39] since they have the ability to identify exactly 
the location of the failure [40].

The YOLO stands out for performing detection in a single step [41], 
being more efficient than classic sliding window methods that require 
more computational effort [42]. Especially for fault detection, varia-

tions of the YOLO model are successfully applied to identify adverse 
conditions [43]. In the work by Sadykova et al. [28], augmentation 
techniques are applied to avoid overfitting when training the model. In 
[44] the YOLO model is improved by combining with other CNN classi-

fiers.

Wu and Li [45] showed that, with an accuracy rate of 93.5%, the use 
of an improved version of YOLOv3 can be more accurate than Faster R-

CNN. Besides YOLOv3, there are many versions of YOLO that can be 
used for object detection such as YOLOv4 [46], YOLOv5 [47], YOLOv6 
[48], and more recently YOLOv7 [49]. Among these versions, one of 
the most popular is YOLOv5 [50], because it is a version that has major 
differences from its previous version and is developed based on the 
PyTorch framework, which facilitates the evaluation of this model, the 
latest versions are similar variations of this version.

Based on YOLO’s high capability in identifying faults, adopting an 
interpretable approach to the model can further aid the understanding 
of the reason for the fault, thus helping the operator to identify the 
exact location where there may be a potential failure to be repaired 
[51]. Interpretability in CNNs refers to the capacity to comprehend the 
inner workings and decision-making processes of the network. This is a 
key feature of CNNs since it allows us to understand how the network is 
processing incoming data and making predictions, and it can also help 
us discover any potential network flaws or limitations [52].

Visualizing the feature maps generated by the convolutional layers 
is one technique for interpreting CNNs. As pictures, these feature maps 
represent the output of each convolutional layer. By evaluating these 
feature maps, we can learn how the network processes input data and 
what features it extracts [53]. Another method that can be used for in-

terpreting CNNs is by using saliency maps. These maps illustrate the 
parts of the input image that have the most influence on the final fore-

cast. By examining the saliency maps, it is possible to discern which 
portions of the input image the network is concentrating on while mak-

ing a prediction [54].

The use of class activation maps (CAM) with deep learning ap-

proaches to have explainable artificial intelligence (XAI) and YOLO 
models is becoming popular in several fields in addition to the power 
system analysis, the next subsections cover other applications of these 

approaches highlighting its achievements.
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2.1. CAMs for other fields

In [55] the interpretation of defects based on CAM for risk manage-

ment is evaluated. They explore deep learning models for the recogni-

tion of structural defects in existing bridge heritage. Traditional inspec-

tion methods, while effective, are labor-intensive and time-consuming. 
The proposed models are a promising tool to automate defect recogni-

tion processes and improve the efficiency of bridge maintenance.

Jiang et al. Jiang et al. [56] explored the CAMs based on a novel ap-

proach called LayerCAM. The LayerCAM extends the concept of CAMs 
by introducing hierarchy to the localization process. LayerCAM har-

nesses the hierarchical structure within CNNs to generate multi-layered 
localization maps, offering a more fine-grained and interpretable under-

standing of object presence.

Marvasti-Zadeh et al. [57] presented the class activation mapping 
for tree crown detection (Crown-CAM), a methodology that combines 
deep learning with interpretability techniques to provide transparent 
and visually intuitive explanations for tree crown detection in aerial 
images. Crown-CAM leverages CNNs for tree crown detection while si-
multaneously generating CAMs that highlight the regions contributing 
to the network’s decision. The Crown-CAM introduces a hierarchical in-

terpretation scheme tailored to tree crown detection. It hierarchically 
segments the crown regions, providing insights into the structural char-

acteristics of individual trees and their distribution within the image.

Yu et al. [58] applied an XAI model for fault diagnosis of rotat-

ing machinery, they combined a residual neural network using 6 layers 
(ResNet06) to two CAMs approaches, these being the gradient-based 
class activation map (Grad-CAM) and Eigen-CAM. These CAM tech-

niques generate heatmaps that highlight the regions of input data con-

tributing most to the fault diagnosis, thereby enabling engineers and 
operators to understand and trust the diagnostic results.

2.2. YOLO for other fields

According to Zheng et al. [59], the detection of failures in wind tur-

bines is crucial for ensuring the safety and optimal performance of these 
energy systems. Based on the YOLOv5, they proposed an automated 
detection of surface cracks on the wind turbine blades. The proposed 
algorithm combines a deep learning model with enhancements tailored 
for the task of crack detection on curved and irregular surfaces.

YOLO has been used for a large range of applications, including the 
detection or identification of defects of steel surface [60], uneaten feed 
pellets [61], medical face masks [62], and traffic signs [63]. As pre-

sented by Li et al. [47], even considering infrared images this method 
shows promising results, proving that it is a promising framework to be 
used in various fields of research.

3. Object detection method

CNNs are neural networks commonly employed in image, naviga-

tion [64], remote sensing [65], and video processing jobs [66]. The 
fundamental component of a CNN is the convolutional layer, which ex-

tracts features from the input image using a collection of filters [67]. 
The mathematical operations of a convolutional layer are represented 
by the convolution operation, which is defined as follows:

(𝑓 ∗ 𝑔)(𝑛) =
∞∑

𝑚=−∞
𝑓 (𝑚)𝑔(𝑛−𝑚) (1)

where 𝑓 and 𝑔 are the input and filter respectively, and the output is 
represented by (𝑓 ∗ 𝑔)(𝑛).

The YOLO detects objects in real-time. The design is made up of two 
primary components: a CNN for feature extraction and a fully linked 
layer for object detection [68]. The CNN is made up of several convo-
3

lutional and max-pooling layers that extract information from the input 
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image [69]. The CNN’s final feature mappings are fed into a fully con-

nected layer, which generates a collection of bounding boxes and class 
probabilities.

3.1. YOLO architecture

The object identification layer, which uses a multi-task loss function 
to predict bounding boxes and class probabilities, is the fundamental 
mathematical component of YOLO [70]. The architecture had a lot of 
improvements since its first release: YOLOv1 is the 2015 introduction 
of the first version of YOLO. It employs a single CNN to extract char-

acteristics from the input image and to predict the bounding boxes and 
class labels for items inside the image. Real-time object detection was 
possible with YOLOv1, but accuracy and the capacity to recognize small 
items were limited. Introduced in 2016, YOLOv2 enhanced the original 
YOLO design by incorporating anchor boxes, a technique that enables 
the network to forecast bounding boxes at various scales and aspect 
ratios.

YOLOv2 also featured the Darknet-19 CNN architecture [71], which 
enhanced the accuracy of object detection. Released in 2018, YOLOv3 
introduced a number of new features and improvements to the archi-

tecture, including a new CNN architecture known as Darknet-53, a 
technique known as feature pyramid networks to improve the detection 
of small objects, and a new method known as non-maximum suppres-

sion to improve the object detection.

YOLOv4 incorporates a number of new features, including a new 
backbone network, spatial pyramid pooling and path aggregation net-

work for improved performance, and Mosaic data augmentation for 
improved generalization. Cross mini-batch normalization is a technique 
proposed by YOLOv4 to improve stability. YOLOv5 was announced in 
2021, and it improves upon YOLOv4 by introducing new approaches, 
such as EfficientNet-Lite backbones and optimized multi-scale training 
and inference, which increase the accuracy and speed of object identi-

fication [72].

YOLOv5 employs a new grid-based method that allows it to rec-

ognize objects of varying sizes with greater precision. The major ad-

vantage of the latest versions YOLOv5, YOLOv6, and YOLOv7 is their 
flexibility in modifying the backbone size (based on the variation of 
the depth and width multiple), which is a promising option when the 
classification task has many nonlinearities [73]. The YOLO model is in-

creasingly being improved in order to perform a more accurate fault 
identification, and combined with other methods to improve its capa-

bilities [51].

Presently, the sum of localization loss, classification loss, and con-

fidence loss constitutes the loss function of YOLO. Localization loss is 
the difference between the ground truth bounding box and the expected 
bounding box for grid cells including or without an object. The classifi-

cation loss is the difference between the expected probability and actual 
probability of a class for grid cells containing an object. Formally, this 
is given by:

𝐿 = 𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2∑
𝑖=0

𝐵∑
𝑗=0

[
1
𝑜𝑏𝑗

𝑖𝑗

((
𝑥𝑖 − 𝑥̂𝑖

)2+(𝑦𝑖 − 𝑦̂𝑖)2+(𝑤𝑖 − 𝑤̂𝑖)2+(ℎ𝑖 − ℎ̂𝑖)2)
+ 𝜆𝑛𝑜𝑜𝑏𝑗1

𝑛𝑜𝑜𝑏𝑗

𝑖𝑗

((
𝑥𝑖 − 𝑥̂𝑖

)2 + (
𝑦𝑖 − 𝑦̂𝑖

)2 + (
𝑤𝑖 − 𝑤̂𝑖

)2 + (
ℎ𝑖 − ℎ̂𝑖

)2)]
+

𝑆2∑
𝑖=0

𝐵∑
𝑗=0

1
𝑜𝑏𝑗

𝑖𝑗

∑
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

(
𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐)

)2
(2)

where (𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖) and (𝑥̂𝑖, 𝑦̂𝑖, 𝑤̂𝑖, ̂ℎ𝑖) are the coordinates and dimen-

sions of the ground truth bounding box and the predicted bounding 
box, 1𝑜𝑏𝑗

𝑖𝑗
is an indicator function equal to 1 if the object is present in 

the 𝑖, 𝑗 − 𝑡ℎ grid cell and bounding box, and 0 otherwise, 1𝑛𝑜𝑜𝑏𝑗
𝑖𝑗

is an 
indicator function equal to 1 if no object is present in the 𝑖, 𝑗 − 𝑡ℎ grid 
cell and bounding box, and 0 otherwise, 𝑆2 is the number of grid cells 

in the feature map.
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Fig. 1. The detection principle of YOLO method.
𝐵 is the number of bounding boxes per grid cell, 𝑝𝑖(𝑐) is the pre-

dicted probability of class 𝑐 for the 𝑖, 𝑗 − 𝑡ℎ grid cell and bounding box, 
𝑝̂𝑖(𝑐) is the ground truth probability of class 𝑐 for the 𝑖, 𝑗 − 𝑡ℎ grid cell 
and bounding box, 𝜆𝑐𝑜𝑜𝑟𝑑 and 𝜆𝑛𝑜𝑜𝑏𝑗 are hyperparameters that control 
the relative importance of the localization and classification losses.

Let 𝑃 (𝑐𝑙𝑎𝑠𝑠𝑖|𝑥, 𝑦, 𝑤, ℎ), 𝑃 (𝑜𝑏𝑗|𝑥, 𝑦, 𝑤, ℎ), and 𝑃 (𝑥, 𝑦, 𝑤, ℎ|𝑜𝑏𝑗) be the 
predicted probabilities for the classes, objectness and the bounding box 
parameters respectively:

𝑃 (𝑐𝑙𝑎𝑠𝑠𝑖|𝑥, 𝑦,𝑤,ℎ) = 𝑒(𝑏𝑖,𝑗+𝐶𝑖,𝑗 )∑𝐶−1
𝑐=0 𝑒

(𝑏𝑐,𝑗+𝐶𝑐,𝑗 )
(3)

𝑃 (𝑜𝑏𝑗|𝑥, 𝑦,𝑤,ℎ) = 𝜎(𝑡𝑖,𝑗 ) (4)

𝑃 (𝑥, 𝑦,𝑤,ℎ|𝑜𝑏𝑗) = 1
𝑤𝑜𝑏𝑗ℎ𝑜𝑏𝑗

(5)

where 𝑥, 𝑦 is the center of the bounding box, 𝑤, ℎ is the width and 
height. During the training process, the loss function compares these 
predicted probabilities with the ground truth probabilities and adjusts 
the parameters of the model accordingly to minimize the loss.

The YOLO employs anchor boxes, which are pre-defined bounding 
boxes with varying aspect ratios [74]. The final bounding box is deter-

mined by comparing the predicted bounding box to these anchor boxes 
to see which one is the closest match to the ground truth box. This al-

lows the network to detect objects with varying sizes and aspect ratios 
[73].

The anchor boxes are determined during training. The confidence 
of the predictions is given by the product of the probability of 
classes 𝑃 (𝑐𝑙𝑎𝑠𝑠𝑖|𝑜𝑏𝑗𝑒𝑐𝑡), the probability that the cell contains an ob-

ject 𝑃 (𝑜𝑏𝑗|𝑥, 𝑦, 𝑤, ℎ), and the intersection over union (IoU) between the 
predicted bounding box and the ground truth bounding box, as follows:

𝑃 (𝑐𝑙𝑎𝑠𝑠𝑖|𝑜𝑏𝑗𝑒𝑐𝑡) ⋅ 𝑃 (𝑜𝑏𝑗𝑒𝑐𝑡) ⋅ 𝐼𝑜𝑈𝑡𝑟𝑢𝑡ℎ𝑝𝑟𝑒𝑑
= 𝑃 (𝑐𝑙𝑎𝑠𝑠𝑖) ⋅ 𝐼𝑜𝑈𝑡𝑟𝑢𝑡ℎ𝑝𝑟𝑒𝑑

(6)

where 𝐼𝑜𝑈𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑

is the IoU between the predicted and the ground truth 
bounding boxes. The working principle of the YOLO model is shown in 
Fig. 1.

3.2. Transfer learning

Transfer learning is an approach in which a pre-trained model, 
trained on a large dataset, is used as a starting point to solve a re-

lated but different task. The idea behind transfer learning is to leverage 
4

the knowledge learned by the pre-trained model on the original task 
and transfer it to the new task with the hope that it will improve the 
performance of the model on the new task [75].

(𝐷n𝑒𝑤, 𝜃) =(𝐷n𝑒𝑤, 𝜃p𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ) + 𝜆(𝐷p𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 , 𝜃p𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ) (7)

where 𝐷n𝑒𝑤 is the new dataset, 𝜃 are the model parameters, 𝜃p𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑
are the pre-trained model parameters, (𝐷, 𝜃) is the loss function of the 
model on dataset D with parameters 𝜃, and 𝜆 is a hyperparameter that 
controls the trade-off between the new task loss and the pre-trained task 
loss. In this work, pre-trained models from the fifth-generation YOLO 
released by Ultralytics [76] were used.

3.3. Eigen-CAM

Eigen-CAM aims to show the parts of an image that are significant 
for a certain class prediction provided by a CNN. Eigen-CAM’s funda-

mental concept is to use the eigenvectors of the final convolutional 
layer’s feature maps to determine the weights necessary to build the 
heatmap [77]. The eigenvectors are computed using the covariance ma-

trix of the feature maps, which represents the relationships between 
various feature maps. Eigen-CAM is calculated as:

𝐿𝑐 =
∑
𝑖

𝛼𝑐
𝑖
𝐴𝑐
𝑖

(8)

where 𝐿𝑐 is the output class score, 𝐴𝑐
𝑖

are the feature maps of the final 
convolutional layer, and 𝛼𝑐

𝑖
are the weights that are computed by taking 

the dot product between the eigenvectors of the feature maps 𝐴𝑐
𝑖

and 
the output class score 𝐿𝑐 . The final heatmap is then obtained by taking 
the weighted sum of the feature maps 𝐴𝑐

𝑖
using the weights 𝛼𝑐

𝑖
.

Eigen-CAM can be considered superior to Grad-CAM because it is 
more resistant to changes in the feature maps and less susceptible to 
noise. By using the eigenvectors of the feature maps from the final 
convolutional layer to compute the weights that are used to build the 
heatmap, the approach may be used to show the portions of an image 
that are significant for a certain class prediction generated by a CNN. 
This method is less susceptible to noise and more resistant to changes 
in the feature maps than Grad-CAM [78]. The optimization of the hy-

perparameters of the CNN models makes them promising and therefore 
can be used in various applications related to fault identification in the 
power electrical system [79].

3.4. Hypertuning

A genetic algorithm (Algorithm 1) is an optimization approach that 

can be used to determine the optimal hyperparameters for machine 
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Fig. 2. Field inspection pictures of the dataset: A) insulator in good condition; B) structure in good condition; C) insulator that requires maintenance; D) structure 

that requires maintenance.

learning models such as YOLO. The main idea is to generate a popula-

tion of diverse sets of hyperparameters and then evolve the population 
over numerous generations using a set of genetic operators (such as 
crossover and mutation). The objective is to identify the optimal hyper-

parameter values that optimize a performance metric, such as the mean 
average precision (mAP), which was considered in this paper.

Algorithm 1: Genetic algorithm.

Input : Initial population 𝑃 , number of generations 𝑔, crossover 
probability 𝑝𝑐 , mutation probability 𝑝𝑚

Output : Optimal solution

for 𝑖 ← 1 to 𝑔 do

for 𝑗← 1 to |𝑃 | do

if 𝑟𝑎𝑛𝑑() < 𝑝𝑐 then
offspring𝑗 ← crossover(select(P), select(P))

if 𝑟𝑎𝑛𝑑() < 𝑝𝑚 then
offspring𝑗 ← mutation(offspring𝑗 )

𝑃 ← selection(offspring, 𝑃 )

return 𝑏𝑒𝑠𝑡(𝑃 )

3.5. Dataset

The images used in this paper were registered during inspections of 
the electrical power distribution system in the state of Santa Catarina, 
in the southern region of Brazil. The distribution power grids are of the 
13.8 kV class, which use pillar-type and mainly porcelain pin profile 
grid support insulators, and porcelain shell and suspension composite 
insulators.

The dataset has 240 images, of which 120 are photographs taken 
from structures in good condition, and the other 120 photographs are 
from inspections where maintenance was required. Considering the fol-

lowing conditions of structures that need maintenance: Contaminated 
or broken insulators; contaminated crosshead or fuse switch; foreign ob-

jects near the structure (birds’ nests on the crosshead or fungi strongly 
attached). An example of images in different conditions of the used 
dataset is shown in Fig. 2.

The pictures taken during the inspection are in high resolution with 
mostly structures with contamination (Fig. 2D) and in good condi-

tion (Fig. 2B), some of the dataset images are specifically of insulators 
(Fig. 2A and Fig. 2C), which were zoomed in for a more detailed record 
of the component’s condition. As contamination increases conductivity, 
5

maintenance should be carried out when there is a high concentration 
of contaminants on supporting structures of the grid or insulating com-

ponents. For future comparisons, the dataset is available.1

3.6. Experiment

The experiments were performed in a cluster, in which the following 
requirements have been allocated: an NVIDIA Tesla V100S 32GB Graph-

ics Card using 64GB of random access memory (RAM). The YOLOv5 
(n, s, m, l, and x) [76], detectron (masked R-CNN) [80], and YOLOv7 
(standard and x) [81] are evaluated. To avoid overfitting, the early stop 
criterion was used, in which training is ended when there is no im-

provement in the model. For practical purposes, a maximum value of 
500 epochs was adopted. The precision, recall, and F1_score were used 
to evaluate the classification task, given by:

precision = 𝑡𝑝

𝑡𝑝+ 𝑓𝑝
, (9)

recall = 𝑡𝑝

𝑡𝑝+ 𝑓𝑛
, (10)

F1_score =
2 × recall × precision

recall + precision
, (11)

where 𝑡𝑝 is the true positive, 𝑓𝑝 is the false positive, and 𝑓𝑛 is the false 
negative.

For object detection, the mAP is considered, given by:

mAP = 1
𝑛

𝑛∑
𝑘=1

(∑
𝜂

(recall𝜂 − recall𝜂−1)precision𝜂

)
𝑘

(12)

where 𝑛 is the number of classes, 𝑘 is the corresponding class, and 𝜂 is 
the 𝑛𝑡ℎ threshold.

4. Results and discussion

In this session the results of the application of the proposed approach 
will be presented, initially, the adequate version of YOLOv5 will be 
evaluated to detect components of the electrical distribution network, 
considering 2 classes: insulating components in good condition; and in-

sulating components that need maintenance (with contamination, near 
strange objects, or broken). The best results of each evaluation are high-

lighted in bold.
1 https://github .com /SFStefenon /InspectionDataSet.

https://github.com/SFStefenon/InspectionDataSet
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Table 1

Object detection evaluation using YOLOv5 versions.

Model
Batch 
Size

Mem. 
(GB)

Precision Recall F1_score
mAP

[0.5] [0.5:0.95]

YOLOv5n

4 0.59 0.82669 0.92391 0.87260 0.90134 0.82005

8 1.08 0.85600 0.86957 0.86273 0.90017 0.76861

16 1.89 0.81350 0.90217 0.85554 0.89150 0.80990

YOLOv5s

4 1.38 0.82568 0.86957 0.84706 0.90058 0.82619

8 2.34 0.84309 0.87625 0.85935 0.88750 0.80582

16 3.76 0.80449 0.86957 0.83576 0.86915 0.79712

YOLOv5m

4 2.37 0.80725 0.90217 0.85207 0.90246 0.83453

8 3.83 0.80756 0.86957 0.83742 0.90344 0.85084

16 6.41 0.79185 0.92391 0.85280 0.89035 0.84243

YOLOv5l

4 3.62 0.82828 0.89253 0.85921 0.91969 0.88160

8 6.10 0.84028 0.89508 0.86681 0.88968 0.85256

16 9.96 0.82548 0.88175 0.85269 0.87036 0.83472

YOLOv5x

4 5.22 0.81324 0.88043 0.84550 0.90210 0.84432

8 8.99 0.81441 0.86957 0.84109 0.86916 0.82929

16 14.2 0.81820 0.92391 0.86785 0.88657 0.84701
Fig. 3. Loss function evaluation.

The model training was considered completed when it reached the 
early stop criterion regarding the loss function, Fig. 3 shows an exam-

ple of an experiment where model overfitting started after 170 epochs, 
however, the model stabilized only after 320 epochs when the valida-

tion loss (val) function became distant from the training loss (train) 
function and there was no improvement in the model.

4.1. Definition of the architecture

To define the framework for solving the classification task of the 
conditions of the power grid components the YOLOv5 was considered 
as the base model and its versions will be evaluated. In Table 1 the 
results of the evaluation of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5x are presented according to the batch size variation.

The first observation that can be made in this experiment, is that the 
models that use more parameters require more memory to run, whereas 
the smaller the batch size, the less memory capacity is required. There-

fore when a benchmark is performed in which there is a limitation in 
processing power it is possible to reduce the batch size to be able to 
perform the analysis, disregarding the time needed for training.

Regarding the batch size for the YOLOv5 versions, in some cases 
there was a higher mAP using a smaller batch size value, however, it is 
not possible to affirm that the number of images loaded for training has 
a direct influence on the model performance, so it is necessary to per-

form analyses varying this parameter to define a better configuration. 
6

Considering that increasing the batch size did not bring better results 
Fig. 4. F1_score and mAP@0.5 over the epochs.

and that it required more computational power, experiments were per-

formed with a maximum value of 16. In a preliminary test to compute 
the YOLOv5x model (the largest of the YOLOv5 versions) with a batch 
size equal to 32, it is necessary to have 27.5 GB of GPU available.

In relation to mAP@0.5 and mAP@0.5:0.95, the best-performing 
model was YOLOv5l which did not present the best F1_score, however, 
there was the highest precision in the comparison between models of 
this class, for this reason, this model was considered more suitable in 
this evaluation. Moreover, the difference for the best F1_score was only 
1.34%, being the value of 0.85921 acceptable for a preliminary analy-

sis. An example of the performance of these metrics during the training 
is shown in Fig. 4.

It took about 30 hours to perform each experiment for each variation 
of the model and batch size. It was observed that there was no direct 
relationship between the size of the model or the batch size with the 
speed of convergence, the main reason that some models converged 
faster happened because the early stop was reached, as the weights are 
initialized randomly, the results have no meaning in terms of the model 
configuration (convergence time evaluation), for this reason, they were 
not presented.

4.2. Parameters optimization

Considering that the YOLOv5l had the best results in an initial 
evaluation (for the mAP), a hypertuning of its hyperparameters was 

performed to obtain an optimized structure. The result of applying 
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Fig. 5. Parameter sensibility.
the genetic algorithm for hyperparameter optimization, regarding its 
sensibility, is shown in Fig. 5 representing fitness (𝑦-axis) versus hyper-

parameter values (𝑥-axis), while the correlation between the parameters 
can be observed in Fig. 6.

The resulting best value for their use is presented for each compo-

nent in Table 2 and was used as the default value for the hypertuning. 
Further, for a complete analysis, optimizers, batch sizes, and patience 
thresholds are evaluated. Fig. 7 shows how the metrics change regard-

ing the sensibility during hypertuning. It was possible to observe that 
SGD was consistently the best optimizer for this given problem.

The procedure to evaluate the optimization of the hyperparameters 
performs several experiments and compares them according to the vari-

ation of the hyperparameters to define their best performance, this 
interactive process requires great computational effort, requiring 48 
hours to compute the model considering 10 epochs per evolution.

4.3. Interpretability evaluation

Activation maps can be used to comprehend how CNNs make their 
predictions by revealing which features of the input image the network 
is focusing on. For instance, if an activation map displays high values in 
a particular region of the image, this indicates that the network is uti-

lizing information from that region to make its prediction. By analyzing 
the activation maps, researchers can better comprehend how the net-

work extracts the features from the input image and use them to make 
7

predictions.
Table 2

Best parameters resulting from 
the hypertuning procedure.

Parameter Value

lr0 0.01114

lrf 0.01

momentum 0.98

weight_decay 0.00035

warmup_epochs 3.3407

warmup_momentum 0.84312

warmup_bias_lr 0.11476

box 0.05128

cls 0.4638

cls_pw 1.2452

obj 0.9074

obj_pw 1.2133

iou_t 0.2

anchor_t 4.0051

hsv_h 0.01794

hsv_s 0.67387

hsv_v 0.38951

translate 0.09722

scale 0.60727

mosaic 1.0

anchors 2.2496

In addition, activation maps can assist in identifying regions of the 
image where the model is not paying attention, allowing for a more in-
terpretable explanation of the model’s predictions. In addition, it can be 
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Fig. 6. Parameter sensibility correlation matrix.

Fig. 7. Parameter sensibility for different optimizers, batch size, and patience thresholds.
used to identify the model’s failure cases by identifying regions where 
the model is not paying attention, which could result in incorrect pre-

dictions. Eigen-CAM applied to four images (2 containing defective and 
2 containing normal insulators) are presented in Fig. 8.

4.4. Benchmark

The benchmarking will be presented by comparing the proposed 
Hypertuned-YOLO to YOLOv5 (standard), YOLOv7, and detectron 
(masked R-CNN), the results of this evaluation are presented in Ta-

ble 3. In version 7 of the YOLO model, two variations are available: 
YOLOv7 (std) and YOLOv7x. The variations of these versions were not 
as influenced by the early stop, thus the models required more time to 
converge and complete the training, each experiment took around 45 
to 50 hours, and as with the other models the difference in simulation 
8

time was not significant due to the variation in batch size.
The results of the model based on Masked R-CNN were inferior in 
all metrics considered, thus the YOLO versions were a better alternative 
for the objectives proposed in this paper. The model that had its param-

eters optimized had an improvement in mAP@0.5 and was the second 
best in F1_score, showing to be promising for the application that was 
evaluated.

5. Final remarks

This study focused on deploying object detection algorithms, specif-

ically a Hypertuned-YOLO model, to assess the condition of insulating 
components in electrical power distribution systems in Santa Catarina, 
Brazil. Utilizing a dataset of 240 inspection photographs taken from 
13.8 kV-class power grids, the research examined the model’s ability to 
distinguish between insulating components in good condition and those 

in need of repair or replacement.
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Fig. 8. Activation maps obtained with Eigen-CAM applied to YOLO5 (best model): A) Fuse switches and shell-type insulators with contamination; B) Fuse switches 
and pin-type insulators with contamination; C) Shell-type insulators in normal condition; D) Fuse switches and shell-type insulators in normal condition.

Table 3

Benchmark for object detection.

Model Precision Recall F1_score
mAP Time 

(h)
[0.5] [0.5:0.95]

Masked R-CNN 0.81912 0.76964 0.79361 0.87508 0.76964 7.42

YOLOv5 (best) 0.82828 0.89253 0.85921 0.91969 0.88160 20.74

YOLOv7 (std) 0.87006 0.86663 0.86834 0.89976 0.85079 47.10

YOLOv7 (x) 0.82942 0.90075 0.86361 0.88617 0.84558 48.71

Our Method 0.84411 0.89130 0.86706 0.92241 0.80201 4.85
One notable aspect of this research was incorporating a genetic 
algorithm to optimize hyperparameters of the YOLO model. The op-

timization process successfully enhanced several performance metrics 
and reduced computational requirements. Specifically, the optimized 
9

model exhibited faster convergence rates during the training phase, out-
performing standard YOLOv5 by 4.3 times, YOLOv7 by 9.7 times, and 
YOLOv7x by 10 times.

This efficiency in identifying faults is advantageous for real-world 
applications where frequent model updates and retraining are nec-
essary. Evaluation criteria included precision, recall, F1-score, and 
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mAP@0.5. The performance results were promising, demonstrating that 
the method is suitable for practical applications in inspecting electrical 
power distribution systems. Eigen-CAM was integrated into the model 
to offer an explainable framework, facilitating better understanding and 
interpretation for end-users or system operators.

The findings of this study support the viability of using an optimized 
object detection model for reliable and efficient monitoring of electrical 
power distribution networks. The model’s performance was comparable 
to, in some evaluation metrics, exceeded that of existing object detec-

tion models. This research thereby contributes to the ongoing efforts to 
improve the accuracy and efficiency of power grid inspections.

For future studies, a larger dataset could enable more complex mod-

eling approaches, such as multi-classification, which would be bene-

ficial for identifying a range of conditions affecting insulating com-

ponents. It could also extend the model’s capability to differentiate 
among other electrical infrastructure elements like fuse switches. Such 
advancements would further aid operators in conducting more compre-

hensive and effective inspections.
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