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Abstract: Background: A correct approach to recurrent urinary tract infections (rUTIs) is an important
pillar of antimicrobial stewardship. We aim to define an Artificial Neural Network (ANN) for
predicting the clinical efficacy of the empiric antimicrobial treatment in women with rUTIs. Methods:
We extracted clinical and microbiological data from 1043 women. We trained an ANN on 725 patients
and validated it on 318. Results: The ANN showed a sensitivity of 87.8% and specificity of 97.3% in
predicting the clinical efficacy of empirical therapy. The previous use of fluoroquinolones (HR = 4.23;
p = 0.008) and cephalosporins (HR = 2.81; p = 0.003) as well as the presence of Escherichia coli with
resistance against cotrimoxazole (HR = 3.54; p = 0.001) have been identified as the most important
variables affecting the ANN output decision predicting the fluoroquinolones-based therapy failure.
A previous isolation of Escherichia coli with resistance against fosfomycin (HR = 2.67; p = 0.001) and
amoxicillin-clavulanic acid (HR = 1.94; p = 0.001) seems to be the most influential variable affecting
the output decision predicting the cephalosporins- and cotrimoxazole-based therapy failure. The
previously mentioned Escherichia coli with resistance against cotrimoxazole (HR = 2.35; p < 0.001) and
amoxicillin-clavulanic acid (HR = 3.41; p = 0.007) seems to be the most influential variable affecting
the output decision predicting the fosfomycin-based therapy failure. Conclusions: ANNs seem to be
an interesting tool to guide the antimicrobial choice in the management of rUTIs at the point of care.

Keywords: urinary tract infection; recurrence; artificial intelligence; antibiotic resistance

1. Introduction

Antibiotic resistance is one of the biggest public health challenges for clinicians and
health care systems worldwide, with high costs and a high risk of death due to antibiotic-
resistant infection [1,2]. Antibiotic resistance is a particular challenge in urology, due to
the high prevalence of bacterial infections among urological patients, and because many
urological conditions increase the risk of infections [3–5]. In this sense, several authors have
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demonstrated that ascertaining a correct approach to the management of symptomatic
recurrences is a key step towards improving adherence to antimicrobial stewardship prin-
ciples, due to the rate of rUTIs’ treatment failure (about 35%) [6]. The management of
UTIs and the prescription of antibiotics in urology should be performed in accordance with
international guidelines’ recommendations and the accurate evaluation of all risk factors
impacting on the risk of antimicrobial resistance [7,8]. During the last decade, we have
witnessed raised interest in tools able to process large datasets and perform cognitive tasks
that facilitate clinical decision-making in urology [7]. In recent years, artificial intelligence
(AI) has been progressively applied in different medical specialties, improving either perfor-
mance of major clinical diagnostic procedures or adherence to recommended treatments [9].
Several authors have demonstrated the efficacy of AI in predicting clinical outcomes in
oncological as well as non-oncological diseases [7,10–12]. An Artificial Neural Network
(ANN) is a machine learning model that allows a computer system to learn from clinical
experiences and predict an event from raw data or independent variables. The ANN is
based on connections between nodes (the so-called artificial neurons) analogous to brain
synapses. ANNs may identify non-linear relationship variables, representing the ideal tool
for bridging the gap between linear statistical models and human factors. In brief, ANNs
are based on a collection of connected units called “artificial neurons”; each connection,
as well as the synapses in a biological brain model, can transmit signals to other neurons.
The signal transmission is controlled by the interconnections between the artificial neurons.
Artificial neurons may have a threshold such that a signal is sent from one to the other only
if the aggregated signal crosses that threshold [10]. In this scenario, we hypothesized that
ANNs could be applied as a guide for antimicrobial choice in patients with recurrent UTIs
(rUTIs). The aim of this study is to evaluate a neural network made to predict the clinical
efficacy of the empirical antibiotic treatment of symptomatic UTI episodes in a large cohort
of women affected by rUTIs.

2. Results

Of 1234 patients, 1043 patients were finally selected and enrolled in this study, while
191 were excluded for missing data. The patients’ mean age was 39.6 years (SD ± 7.1).
All patients’ demographics, clinical and microbiological data at baseline are described in
Table 1.

Table 1. Patient anamnestic, clinical and microbiological characteristics.

p

Overall Train Phase Testing Phase

No. of analyzed and enrolled patients 1043 725 318
Age 0.83

Mean (±SD †) 39.6 (±7.1) 39.7 (±7.2) 39.4 (±6.9)
Marital status 0.31

Married 490 (46.9) 333 (45.9) 157 (49.3)
Single 553 (53.1) 392 (54.1) 161 (50.7)

Sexual intercourse per week 1.0
Mean (±SD †) 1.6 (±0.4) 1.6 (±0.5) 1.6 (±0.2)

Hormonal status 0.75
Premenopausal 991 (95.0) 688 (94.9) 303 (95.2)
Postmenopausal 52 (5.0) 37 (5.1) 15 (4.7)

Parity 0.94
Nulliparity 365 (34.9) 253 (34.8) 112 (35.3)
Multiparity 678 (65.1) 472 (65.2) 206 (64.7)

Number of UTIs #/year 0.21
Mean (± SD †) 3.1 ± 1.2 3.0 ± 1.1 3.1 ± 1.4

Previous use of antibiotics (in the last 3 months) 1.0
Yes 448 (42.9) 311 (42.8) 137 (43.0)
No 595 (57.1) 414 (57.2) 181 (57.0)
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Table 1. Cont.

p

Overall Train Phase Testing Phase

Previous treatment of ABU § 0.83
Yes 564 (54.1) 391 (53.9) 173 (54.4)
No 479 (43.9) 334 (46.1) 145 (45.6)

Bacterial strains (1912 isolated from 1043 patients) 1330 strains 582 strains
E. coli 1202 (62.8) 842 (63.4) 360 (62.1)
Klebsiella spp. 374 (19.6) 259 (19.5) 115 (19.7)
Enterococcus spp. 199 (10.5) 134 (10.0) 65 (11.2)
Enterococcus faecalis 177 (88.9) 123 (91.7) 54 (83.1)
Enterococcus faecium 22 (11.1) 11 (8.3) 11 (16.9)
Proteus mirabilis 52 (2.7) 35 (2.6) 17 (2.9)
Enterobacter spp. 44 (2.3) 31 (2.4) 13 (2.1)
Pseudomonas spp. 41 (2.1) 29 (2.1) 12 (2.0)

The table shows all patient anamnestic, clinical and microbiological characteristics. SD † = Standard Deviation;
ABU § = Asymptomatic bacteriuria; UTIs #: urinary tract infections.

2.1. Clinical and Microbiological Data

The mean number of episodes per year was 5.1 (SD ± 1.2). The mean rate of treat-
ment failure was 42% in the 3 month period before enrollment. No differences in terms of
anamnestic, clinical or microbiological data have been reported between the two groups
(Table 1). Among 1043 patients included in the analysis, 1912 strains were isolated. The
most common isolated strains at the baseline evaluation were Escherichia coli (1202; 62.9%),
followed by Klebsiella spp. (374; 19.6%) and Enterococcus spp. (199; 10.4%). All microbiologi-
cal data are displayed in Table 1.

2.2. Antibiotic Susceptibility Profiles and Antibiotic Resistance Patterns

The overall mean resistance rate among Escherichia coli to ciprofloxacin was 34.7%
(418/1202), to cephalexin 8.9% (108/1202) and to fosfomycin 6.6% (80/1202). Finally, 513
out of the 1912 (26.8%) strains were considered as cefpodoxime-resistant and belonged to
the ‘ESBL subgroup’. All data about antibiotic susceptibility profiles are detailed in Table 2.

Table 2. Antibiotic resistance of the most common isolated strains to the tested antibiotics.

No. of Isolated Strains 1912

Escherichia
coli

Klebsiella
spp.

Enterococcus
spp.

Proteus
mirabilis

Enterobacter
spp.

Pseudomonas
spp.

Number of isolated strains 1202 374 199 52 44 41
Number of resistant strains
and resistance rate (%)
Amikacin 228 (18.9) 60 (16.1) 24 (12.0) 5 (9.6) 1 (3) 11 (26.8)
Amoxicillin 803 (66.8) 125 (33.5) 65 (32.6) 7 (13.4) - -
Cefalotin 781 (64.9) 202 (54.0) 199 (100) 7 (13.4) - -
Cephalexin 108 (8.9) 37 (9.8) 199 (100) 6 (11.5) 5 (11.3) -
Ceftriaxone 348 (28.9) 192 (51.3) 199 (100) 4 (7.6) 6 (13.6) -
Ciprofloxacin 418 (34.7) 201 (53.7) 96 (48.2) 11 (21.1) 1(2.2) 22 (53.6)
Fosfomycin 80 (6.6) 77 (20.5) 44 (11.7) 4 (7.6) 2 (4.5) 2 (4.8)
Gentamicin 132 (10.9) 115 (30.7) 87 (43.7) 13 (25) 3 (6.8) 16 (39.0)
Levofloxacin 379 (31.5) 207 (55.3) 92 (46.2) 6 (11.5) 1 (2.2) -
Meropenem - - - - - -
Nitrofurantoin 105 (8.7) 84 (22.4) 25 (12.5) - 36 (81.2) -
Piperacillin/Tazobactam 132 (10.9) 120 (32.1) 34 (17.0) 3 (5.7) 3 (6.8) 8 (19.5)
Cotrimoxazole 184 (15.3) 62 (16.5) 33 (16.5) 11 (21.1) 3 (6.8) -
ESBL (cefpodoxime R) 339 (28.2) 171 (45.7) - 1 (1.9) - 2 (4.8)

Table 2 shows the antibiotic resistance of the most common isolated strains to the tested antibiotics.
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2.3. Univariate and Multivariate Analyses

Multivariate analysis identified the following parameters as the most important vari-
ables affecting the output decision in predicting fluoroquinolones-based therapy failure:
previous use of fluoroquinolones (yes, HR = 4.23, p = 0.008) and cephalosporins (yes,
HR = 2.81, p = 0.003) in the last three months, and the presence of Escherichia coli with
resistance against cotrimoxazole (yes, HR = 3.54, p = 0.001). Finally, the previously men-
tioned Escherichia coli with resistance against cotrimoxazole (yes, HR = 2.35, p < 0.001)
and amoxicillin-clavulanic acid (yes, HR = 3.41, p = 0.007) was the most influential vari-
able affecting the output decision in predicting the fosfomycin-based therapy failure. The
previous use of fosfomycin in the last 3 months was not identified as a variable affecting
the output decision in predicting fosfomycin therapy failure. No significant differences
are reported stratifying data in terms of isolated strains. All univariate and multivariate
analysis results are displayed in Table 3.

Table 3. Univariate and multivariate analysis results of laboratory and clinical factors affecting the
output decision in predicting treatment outcome and treatment failure.

Categories
(Variables)

Univariate Analysis (p)
HR * (95% CI †)

Multivariate Analysis (p)
HR * (95% CI †)

Fluoroquinolones therapy failure
Previous use of antibiotics (last 3 months)

Aminoglycosides 0.55 (HR 1.05; 95% 0.48–1.61) 0.06 (HR 1.33; 95% 0.75–1.45)
Aminopenicillins 0.06 (HR 1.24; 95% 0.79–1.63) 0.07 (HR 1.12; 95% 0.73–1.35)
Fluoroquinolones 0.03 (HR 3.61; 95% 3.88–4.53) 0.008 (HR 4.23; 95% 3.88–4.53)
Fosfomycin 0.58 (HR 1.32; 95% 1.19–1.67) 0.08 (HR 1.11; 95% 0.97–1.69)
Cephalosporins 0.01 (HR 1.61; 95% 0.87–1.79 0.003 (HR 2.81; 95% 1.95–3.45)
Nitrofurantoin 0.09 (HR 0.70; 95% 0.55–1.00) 0.09 (HR 1.01; 95% 0.70–1.27)
Cotrimoxazole 0.27 (HR 0.71; 95% 0.10–1.12) 0.12 (HR 0.80; 95% 0.45–1.03)

Previous isolated strain
Escherichia coli 0.001 (HR 3.01; 95% 2.94–4.56) 0.002 (HR 2.99; 95% 1.98–3.40)
Klebsiella spp. 0.38 (HR 0.92; 95% 0.18–1.27) 0.21 (HR 1.01; 95% 0.97–1.38)
Enterococcus spp. 0.21 (HR 1.21; 95% 0.65–1.32) 0.33 (HR 1.82; 95% 0.94–1.30)
Proteus spp. 0.08 (HR 1.01; 95% 0.92–1.21) 0.07 (HR 1.18; 95% 0.80–1.49)
Enterobacter spp. 0.06 (HR 1.14; 95% 0.70–1.60) 0.09 (HR 1.21; 95% 0.99–1.84)
Pseudomonas spp. 0.45 (HR 1.05; 95% 0.80–1.69) 0.71 (HR 1.73; 95% 0.89–1.89)

Previous isolation of E. coli resistant to antibiotics
Aminoglycosides 0.18 (HR 0.97; 95% 0.45–1.11) 0.34 (HR 0.37; 95% 0.28–0.79)
Aminopenicillins 0.10 (HR 1.00; 95% 0.74–1.07) 0.13 (HR 1.28; 95% 0.77–1.34)
Fluoroquinolones - -
Fosfomycin 0.87 (HR 1.21; 95% 0.72–1.24) 0.69 (HR 1.14; 95% 0.34–1.04)
Cephalosporins 0.91 (HR 1.78; 95% 0.21–1.15) 0.62 (HR 1.50; 95% 0.77–1.48)
Nitrofurantoin 0.55 (HR 1.03; 95% 0.74–1.91) 0.78 (HR 1.73; 95% 0.91–1.93)
Cotrimoxazole 0.001 (HR 2.99; 95% 2.65–3.19) 0.001 (HR 3.54; 95% 2.73–5.52)

Cotrimoxazole and cephalosporins therapy failure
Previous isolation of E. coli resistant to antibiotics

Aminoglycosides 0.25 (HR 1.25; 95% 0.68–1.43) 0.31 (HR 1.26; 95% 0.92–1.83)
Aminopenicillins 0.04 (HR 1.97; 95% 1.11–2.02) 0.001 (HR 1.94; 95% 1.20–2.89)
Fluoroquinolones 0.22 (HR 1.17; 95% 0.65–1.23) 0.53 (HR 1.43; 95% 0.77–1.83)
Fosfomycin 0.03 (HR 2.34; 95% 2.03–2.97) 0.001 (HR 2.67; 95% 2.15–3.23)
Cephalosporins - -
Nitrofurantoin 0.54 (HR 1.09; 95% 0.82–1.04) 0.91 (HR 1.08; 95% 0.73–1.17)
Cotrimoxazole - -

Fosfomycin therapy failure
Previous isolation of E. coli resistant to antibiotics

Aminoglycosides 0.12 (HR 0.29; 95% 0.10–1.03) 0.39 (HR 0.64; 95% 0.22–0.89)
Aminopenicillins 0.03 (HR 2.53; 95% 2.74–4.01) 0.007 (HR 3.41; 95% 2.27–4.04)
Fluoroquinolones 0.71 (HR 1.90; 95% 0.53–2.13) 0.89 (HR 1.25; 95% 0.89–1.77)
Fosfomycin - -
Cephalosporins 0.12 (HR 1.04; 95% 0.56–1.39) 0.28 (HR 0.85; 95% 0.32–1.00)
Nitrofurantoin 0.56 (HR 1.99; 95% 0.79–2.91) 0.10 (HR 1.54; 95% 0.51–1.80)
Cotrimoxazole 0.003 (HR 1.94; 95% 1.27–2.38) 0.001 (HR 2.35; 95% 1.89–3.18)

Table 3 shows the univariate and multivariate analysis results of laboratory and clinical factors affecting the output
decision in predicting treatment outcome and treatment failure. HR * = Hazard Risk; CI † = Confidence Interval.
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2.4. Artificial Neural Network Analysis

After the completion of the ANN learning and prediction processes, our neural net-
work showed a sensitivity of 87.8% and specificity of 97.3% in predicting the clinical efficacy
of empirical therapy. The area under the ROC curve was 0.867 (Figure 1). The calibration
plot of predicted probabilities compared with actual probabilities is displayed in Figure 2.
ANN analysis reported a high correlation between expected and observed data (train phase:
Pearson’s coefficient, 81.5—Root Mean Square error, 1.3; test phase: Pearson’s coefficient,
79.7—Root Mean Square error, 1.2). Moreover, the ANN analysis shows a prediction with
an overall accuracy of 83.63%, and the previous use of fluoroquinolones and cephalosporins
in the last three months as well as the presence of E. coli with resistance against cotrimoxa-
zole to be the most influential variables affecting the fluoroquinolone-based therapy failure.
The presence of Escherichia coli with resistance to fosfomycin and amoxicillin-clavulanic
acid has not been confirmed to be an influential variable affecting the output decision in
predicting the cephalosporins and cotrimoxazole-based therapy failure in the ANN analysis.
Finally, the previously mentioned Escherichia coli with resistance against cotrimoxazole (yes,
HR = 2.35, p < 0.001) and resistance against amoxicillin-clavulanic acid (yes, HR = 3.41,
p = 0.007) have been identified as the most important variables affecting the ANN output
decision predicting the fosfomycin-based therapy failure.
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3. Discussion

Here, we demonstrated the feasibility and reliability of ANN applications to guide
antimicrobial choice in the empiric treatment of uncomplicated cystitis in everyday clinical
practice. The ANN’s performance was good when predicting recurrence in patients with
rUTIs. We showed that the previous use of a specific class of antibiotic is not a risk factor
for developing bacterial resistance to the same class (except for the fluoroquinolones), but
instead the most important risk factor for predicting resistance is the use of other classes of
antibiotics. This is a new approach to the treatment of rUTIs.

3.1. Results in the Light of Current Knowledge: Nomogram and ANN

Proper data classification and critical management analysis represent an exponentially
growing, unmet need in the area of rUTIs. Advances in pharmacological treatment, micro-
biological pathways and increased antibiotic resistance have contributed to the generation
of Big Data in this complex scenario. Due to this increased availability of representative
variables, urologists continuously face new challenges when synthesizing information in
order to develop accurate diagnosis, tailored treatment plans and outcome prediction in
patients affected by rUTIs [5]. Nevertheless, the development of computer-based prediction
and decision support models has boosted improvements in the management of rUTIs
across different healthcare profiles [13]. Current examples are nomograms or calculators
that have been introduced in the clinical management of patients with rUTIs [13–16]. Re-
cently, Ozkan et al. demonstrated that a model based on an ANN is also a successful
medical decision-support system [13] for UTIs with complex symptoms, and the use of
this tool is associated with a lower diagnosis cost and shorter diagnosis time [13]. In this
context, our study showed promising findings. By using ANN software, the AI showed
a sensitivity of 87.8% and specificity of 97.3% in predicting clinical and microbiological
efficacy of prescribed antimicrobial medication at a 1 month follow-up.
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3.2. Results in the Light of Current Knowledge: Previous Antibiotic Exposure and Resistances

Following Cox regression analysis, previous use of fluoroquinolones or cephalosporins
were the only significant variables affecting the output decision predicting the
fluoroquinolones-based therapy failure in the last three-month period of the identification
of Escherichia coli strain resistance to cotrimoxazole. Moreover, the presence of a previous
Escherichia coli infection resistant to either fosfomycin or amoxicillin-clavulanic acid in at
least one antibiogram were both indicators of cephalosporins- and cotrimoxazole-based
therapy failure. Based on Cox regression analysis, we demonstrated that among all stan-
dard clinical and microbiological variables, only the previous use of different antibiotic
types was an independent predictor of clinical failure. These data are comparable with
the results of a previously published series. Evident disparities between linear statistical
or mathematical analysis may justify results obtained in our model, as either rUTIs or
a progression to more severe infectious diseases (e.g., pyelonephritis or sepsis) may be
related to a complex network of anatomical or clinical variables not available in our dataset.
Despite this, the ANN showed the ability to analyze a non-linear relationship, by using
multiple layers of interconnected nodes with an adequate accuracy. According to our series,
previous microbiological data results seem to have a significant prognostic role in the deter-
mination of antibiotic selection. Among rUTIs, only patients prone to multiple resistances
to a single Escherichia coli strain could benefit from a follow-up with strict observations. The
optimal follow-up schedule of rUTIs should not be planned only on the basis of clinical
and microbiological variables, rather it should consider the complex interactions between
multiple features included in our system. We previously believed that only a small number
of rUTIs which reported multiple previous antibiotic treatments should undergo a restric-
tive follow-up with frequent and more invasive instrumental diagnostic methodologies.
However, future studies with a closer follow-up control to check microbiological eradica-
tion should be planned to test this hypothesis. The decision to include only adult women in
this study is based on a higher incidence of rUTIs in this specific population. Considering
their intrinsic anatomical predisposition, adult women must be treated properly to avoid
recurrences, severe complications and unnecessary morbidity. Moreover, as highlighted by
Cai et al., clinical management shows poor adherence to current antibiotic stewardship,
with a subsequent high rate of overdiagnosis and overtreatment [5]. We argue that the use
of an ANN enhances antibiotic stewardship adherence in follow-up decision making for
this population of patients. Recently, Schinkel et al. developed a machine learning model
for predicting blood culture outcomes highlighting the usefulness of learning machines
for improving antimicrobial stewardship in a hospital setting [17]. Finally, Yelin et al.
demonstrated that the combination of clinical and microbiological parameters by using
a learning machine reduced the risk of mismatched treatment when compared with the
current standard of care [18]. However, several legal issues should be considered and
discussed in the future [19]. In analogy to previous reports, our findings encourage the use
of mathematical applications to improve the management of rUTIs in everyday clinical
practice [11,20]. We demonstrated the feasibility and reliability of ANN applications in
rUTIs, reporting good accuracy in antibiotic selection and hence an improved antibiotic
stewardship. If our findings are confirmed in future studies, ANNs should be regarded as
a valuable tool to improve the management of patients with uncomplicated UTIs, prevent
antimicrobial resistance and improve antimicrobial stewardship. Finally, the findings of
this research provide an easy-to-use and low-cost tool for improving our adherence to the
principles of antibiotic stewardship in everyday clinical practice. The costs are associated
with the software use and the ANN application, as reported by other authors [21].

3.3. Strengths and Limitations of This Study

The ANN represented a quick methodology to support the management of patients
with rUTIs by computing a combination of established prognostic factors, e.g., previous
use of any antibiotics in the last three months and urinary culture results that are used in
everyday urological practice. Although it is supported by a large cohort of women, this
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study has some limitations. Firstly, the characteristics of the patient population. We enrolled
only women affected by a recurrent and uncomplicated UTI. This cohort of patients is,
however, very common in everyday clinical practice and these patients undergo several
antimicrobial treatments and have a high risk of recurrence. We believe this feature explains
the prevalence of ESBL strains, which is 26.8%. The suboptimal follow-up timeframe in
this specific patients’ cohort remains to be resolved in future studies.

4. Materials and Methods
4.1. Study Design, Population and Data Source

We conducted a retrospective study including 1043 consecutive patients who had
undergone antimicrobial treatment for uncomplicated cystitis between January 2012 and
December 2020, at two referral urological centers. Each patient underwent antimicrobial
therapy in accordance with the recommendations of EAU guidelines on urological infec-
tions [7]. All data were prospectively collected in a dedicated database. All data about
previous use of antibiotics and antibiograms were included in the analysis together with
clinical follow-up data. We analyzed the importance of bacterial strain, susceptibility and
previous antibiotic use for clinical efficacy. Data were analyzed by using the commercially
available software program NeuralWorks (NeuralWare, version 3.2, ©Solvusoft Corpora-
tion, Carnegie, PA, USA, 2011–2022), as reported by Cai et al. [11]. The results of the ANN
were compared with the follow-up data in order to test the feasibility and reliability of AI
applications to guide antimicrobial choice in patients with recurrent cystitis.

4.2. Inclusion and Exclusion Criteria

We considered all women >18 years affected by clinically and microbiologically con-
firmed recurrent cystitis for the enrolment. Recurrent cystitis was defined as three episodes
of a UTI in the previous 12 months, or two episodes in the previous six months [7]. Only
women who tested positive for uropathogens in two or more consecutive cultures (colony-
forming units ≥105/mL) were included and analyzed. In line with Cai et al., the following
characteristics were considered as exclusion criteria: major concomitant diseases, upper
urinary tract congenital abnormalities or stones and sexually transmitted infections [22].

4.3. Microbiological Considerations, Follow-Up Evaluation and Outcome

All microbiological and laboratory analyses were performed as previously
described [22–24]. In particular, the cut-off for significant pathogenic growth was con-
sidered ≥105 CFU/mL for the microbiological diagnosis of UTIs [22,24]. Fosfomycin
susceptibilities were determined using both the CLSI agar dilution and disk diffusion refer-
ence methods as well as using an E-test, in line with Karlowsky J.A. [25] and Tutone M. [26].
Moreover, in line with Tutone et al., isolates resistant to cefpodoxime were inferred to be
ESBL-producers [26]. Here, we considered data of the first follow-up (T1). In line with Cai
et al., all patients underwent a clinical assessment and microbiological analyses at baseline
(T0) and during a follow-up at 1 month (T1) [22]. At the follow-up evaluation, all women
underwent urological and midstream urine culture evaluation. The outcome of interest
was clinical cure, defined as symptom relief and return to a pre-UTI performance status.
Treatment failure was defined as evidence of microbiological colonization with at least 105

Colony Forming Units per milliliter (CFUs/mL) of a single uropathogen in the midstream
urine culture associated with the persistence of lower urinary tract symptoms [22,27,28].

4.4. Statistical Analysis and Artificial Neural Networks

To evaluate the correlation between the different parameters we used Pearson’s co-
efficient and Fisher’s exact test to assess the statistical significance with p < 0.05 accepted
as significant. Moreover, we used Bonferroni’s correction as well as an ANOVA test for
a univariate analysis and the log-rank test (Mantel Cox) for a multivariate analysis. We
used the Cox proportional hazard regression model to calculate the hazard ratio (HR) with
the 95% confidence interval (95% CI). The best cut-off value, in the ANN analysis, was
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tested by the receiver operating characteristic curve (ROC). The efficacy of the ANN in
guiding the antimicrobial choice in the management of recurrent cystitis was tested with
accuracy, sensitivity, specificity, positive predictive value and negative predictive value.
The error between corresponding pairs of values in two series of values has been evaluated
by the Root Mean Square. The ANN methodology and data analysis were described by
Cai et al. [11]. All statistical analyses were performed using SPSS 22 for Apple-Macintosh
(SPSS, Inc. Chicago, IL, USA). In the present study we evaluated the impact of previous use
of antibiotics (all antibiotic classes) in the last three months and the previous resistance (all
antibiotic classes) extracted by the last microbiological analysis (antibiogram). All factors
were finally used as input parameters (input neurons) to the ANN. All characteristics of
the ANN structure were the same as described by Cai et al. [11]. Of 1043 selected patients,
725 (69.5%) were used to train the system, while 318 (30.5%) were used for the testing
phase. We did not perform the re-training of the network after the first training phase. No
standard logistic regression was performed to compare these results to those of the ANN
analysis, because the ANN analysis produces more accurate results than the LR and other
standard statistical analyses [29].

4.5. Ethical Considerations

This study was planned with a retrospective design; for this reason, Ethical Committee
approval was not required in accordance with Italian law. However, all anamnestic, clinical
and laboratory data containing sensitive information about patients were de-identified to
ensure the analysis of anonymous data only. The de-identification process was performed
by non-medical staff by means of dedicated software [30]. The study was conducted in line
with the Good Clinical Practice guidelines and the ethical principles laid down in the latest
version of the Declaration of Helsinki.

5. Conclusions

We demonstrated that an ANN is a feasible and reliable instrument to guide antimicro-
bial choice in the empiric treatment of uncomplicated cystitis in clinical urological practice,
and to predict the recurrence of a UTI. Compared to traditional linear statistical approaches,
the ANN provided, in terms of decision-making and prediction accuracy, a significant
benefit in terms of adherence to antibiotic stewardship principles in the management
of rUTIs in adult women. The ANN enables the clinician to consider more variables of
importance for antimicrobial stewardship and has the potential to become an important
aid in the management of rUTIs. The isolation of Escherichia coli with resistance against
cotrimoxazole is the most influential variable for predicting the fluoroquinolones-based
therapy failure, and the resistance against cotrimoxazole and amoxicillin-clavulanic acid
predicts fosfomycin-based therapy failure.
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