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Abstract
Energy efficiency is a challenging and relevant research field in modern manufacturing industries, where robotic systems
play an essential role in the automation of several industrial operations. In this paper, we present an approach for the energy-
efficiency optimization of a 3-DOF parallel robot. The proposed strategy leverages the task placement, the execution time, and
the length of the robot lower arms to minimize the energy consumption for the execution of a predefined high-speed pick-and-
place operation. To evaluate the actuators energy consumption, the kinematic, dynamic and electro-mechanic mathematical
models, as well as an equivalent multibody model, of the parallel robot are implemented. The results of extensive numerical
simulations show that the proposed strategy provides notable improvements in the energy efficiency of the parallel robot,
with respect to alternative approaches. Starting from a pick-and-place task with optimal task placement with a consumption
of 38.2 J (with a cycle time of 0.4 s), the energy expenditure can be reduced to 3.75 J (with a cycle time of 1.86 s), with a
reduction percentage of 90.2%, by additionally optimizing the execution time, and the length of the robot lower arms. These
results lead to a reduction from 5733 J/min (for 150 cycles/min) to 121 J/min (for 32 cycles/min), allowing to choose the best
trade-off between robot productivity and consumed energy.

Keywords Parallel robot · Energy efficiency · Multibody dynamics · Trajectory planning · Optimization

1 Introduction

In the last years, the growing energy demand, especially in
the manufacturing industry, has been accompanied by an
increased environment awareness. Therefore, the focus of
the design and control of robotic and mechatronic systems
has moved towards the investigation of energy-efficient and
cost-effective solutions. This trend is also encouraged by
the European Union policies, which plan to decrease the
energy consumption by 32.5% by 2030 [1]. Several stud-
ies have demonstrated that an intelligent use of industrial
robots can reduce the energy consumption while increasing
production rate [2–4]. Nevertheless, the industrial manufac-
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turing requires high volumes of production and high-speed
operations. These requests lead the industry sector to be
responsible for a large percentage of the total global energy
consumption and consequently of the CO2 emissions (in
2022, a quarter of the CO2 emissions of all energy systems
are attributable to the industrial sector [5]). In this context,
energy efficiency is becoming a challenging research topic
in both industry and academia.

Different solutions and optimization methods to achieve
energy efficiency in automatic machines and robots are
provided in the present literature, which includes both theo-
retical and experimental investigations. Possible approaches
to reach this goal comprise the (re)design of the robot struc-
ture and the use of lightweight materials to reduce motors
effort [6, 7], and the adoption of regenerative drives in order
to recover the energy generated during braking phases [8].
Another solution to enhance energy efficiency of robotic sys-
tems relies on the proper choice of electric motor and gearbox
during the design of the system [9]. A particular strategy is
based on the exploitation of the natural motion, defined as the
system dynamic response due to the conversion of potential
elastic energy into kinetic energy [10]. This approach can
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be implemented adding compliant elements to the robotic
system, beneficial especially in cyclic tasks [11].

Nevertheless, these methods require that the mechanical
system has to be modified, introducing or substituting phys-
ical components. Such operations may not always be easy to
implement in an existing system, especially if already inte-
grated in a manufacturing workcell. Further strategies for
energy efficiency in industrial robots that can overcome these
issues are the re-scheduling of the operations [12], the proper
selection and tuning of control strategy [13], the optimiza-
tion of motion time [14], the optimal task placement in the
robot workspace [15–17], as well as advanced solutions for
the trajectory planning [18–20] in order to limit the energy
or torque expenditure of the motors. Examples of trajectory
planning strategies include the study of standard primitives or
polynomials for point-to-point motion [21, 22], multi-point
trajectories [23], and the optimization of motion parameters
[16, 24].

Focusing on parallel robots, the industrial applications in
which they offer the best performance are high-frequency
pick and place and manipulation of low-payload objects in
industries such as electronics, food processing, and phar-
maceuticals [25, 26]. Their rapid and precise movements
allow for efficient handling of small components or prod-
ucts on assembly lines, as well as packaging products into
containers and sorting items on conveyor belts [27]. These
operations are often cyclical and repeated for large volumes
of products. Furthermore, parallel robots are used in mea-
surement and inspection processes that require repetitive
movements [28]. In all these applications, parallel robots
optimize throughput and minimize downtime, thus enhanc-
ing overall production efficiency. In addition, parallel robots
are more and more used in additive manufacturing and 3D
printing, machine tooling, as well as in metrology and cali-
bration [29, 30]. Therefore, promoting energy saving in these
systems can lead to a substantial reduction in the energy
consumption and, consequently, inCO2 emissions and oper-
ating costs. For instance, the authors in [31] exploit the
natural dynamics and optimize torsional spring parameters
for the energy consumption reduction in a four-degree-of-
freedom (DOF) parallel robot, where each kinematic chain
is characterized by a revolute joint and two subsequent uni-
versal joints (4-revolute-universal-universal, 4-RUU). The
manipulator executes predefined pick-and-place trajectories,
achieving a reduction of energy expenditure up to 67.8% with
respect to the reference case without springs, with numeri-
cal tests. In [10] Carabin et al. apply the same concept to a
3-DOF Linear Delta robot, optimizing the spring parameters
and position for performing a 3D printing operation, obtain-
ing a reduction of energy consumption up to almost 50%,
with both numerical and experimental tests. Another exam-
ple of energy efficiency exploiting the natural dynamics of the
system can be found in [32], where an energy consumption

reduction up to 70% is achieved equipping a 3-DOF Delta
robot with torsional variable stiffness springs (VSSs), accord-
ing to numerical results. Differently from previous works
that optimize spring parameters only for a fixed task, the
authors in [33] first optimize spring parameters for 2-DOF
planar parallel robot performing a nominal pick-and-place
task. Then, the variation of energy consumption is evaluated
with respect to the change of the predefined task, optimizing
spring preload for each task while spring stiffness remains
fixed. Both numerical and experimental tests demonstrate
that an energy consumption reduction up to 51.3% can be
achieved even when the task to perform significantly differs
from the nominal one.

Alternative approaches for achieving energy efficiency in
parallel robots can be found in [34] and [35], where the
authors optimize the parameters of the functions that define
the motion profile, respectively B-spline and Lamé curves
(the latter are used for rounding the corners of a pick-and-
place trajectory), achieving a substantial energy saving. In
[36] and [37] the authors address the problem of reducing
the energy expenditure of a 4-DOF parallel manipulator (4-
RUU) by optimizing only the placement of a linear movement
and a pick-and-place operation, respectively, with respect to
the robot base reference frame. Furthermore, Liu et al. [38]
evaluate the energy efficiency of parallel robots based on the
kinetic energy change rate. Such procedure can be applied
for optimizing trajectories and structural and process param-
eters. Lee et al. [39] achieve energy efficiency for a 2-DOF
parallel mechanism through redundant actuation, using three
motors instead of two. This method enables a reduction of
electrical energy consumption of the actuators up to 45%
compared to the corresponding non-redundant actuated ver-
sion of the mechanism, with experimental tests. An overview
on energy-efficiency strategies for parallel robots is summa-
rized in Table 1. To the best of the authors’ knowledge, no
example of optimization approaches that combine the task
placement, the execution time, and the geometry of robot
parts to minimize the energy consumption for the execution
of a predefined operation can be found in the present litera-
ture.

In this paper, we present an approach for the energy-
efficiency optimization of a 3-DOF parallel robot. We focus
on parallel manipulators since, compared to serial robots,
they offer notable advantages in terms of velocity and acceler-
ation, stiffness, rigidity, payload capacity, and reduced inertia
[40]. For these reasons, they are employed in many advanced
manufacturing industrial processes, as mentioned above. The
proposed strategy leverages the task placement, the execution
time, and the length of the robot lower arms to minimize the
energy consumption for the execution of a predefined high-
speed pick-and-place operation. To evaluate the actuators
energy consumption, the kinematic, dynamic and electro-
mechanic mathematical models, as well as an equivalent
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Table 1 Overview on energy-efficiency strategies for parallel robots

First author Year Ref. Considered robot Optimization approach

Balderas Hill 2021 [32] 3-DOF Delta robot with VSSs Exploiting natural dynamics

Carabin 2021 [10] 3-DOF Linear Delta robot with lin-
ear springs

Optimization of spring no-load length and
stiffness

Chen 2019 [34] 6-UPU parallel robot Optimization of B-spline motion profile
parameters

Lee 2015 [39] 2-DOF parallel robot Exploiting redundant actuation

Liu 2019 [38] 5-DOF parallel robot Exploiting kinetic energy change rate

Mora 2022 [33] 2-DOF parallel robot with torsional
springs

Optimization of trajectory, spring stiffness
and preload

Scalera 2019 [31] 4-DOF Delta robot with torsional
springs

Optimization of spring preload and stiff-
ness

Scalera 2020 [36] 4-DOF Delta robot Task placement analysis

Scalera 2021 [37] 4-DOF Delta robot Optimization of task placement

Zhang 2019 [35] 4-DOF Delta robot Optimization of Lamé curve parameters

Proposed approach 3-DOF Delta robot Optimization of task placement, execution
time, and length of the robot lower arms

multibody model of the parallel robot are implemented. The
results of extensive numerical simulations show that the pro-
posed strategy provides notable improvements in the energy
efficiency of the parallel robot, with respect to alternative
approaches.

The paper is organized as follows: Sect. 2 reports the kine-
matic, dynamic and electro-mechanic models of the robotic
system, and Sect. 3 introduces the compared approaches.
Section 4 describes the implementation of the optimization
problems and the multibody model of the robot, whereas
Sect. 5 reports simulation results. Finally, Sect. 6 concludes
the work.

2 Mathematical model of a 3-DOF parallel
robot

The robot considered in this paper is a 3-DOF Delta robot,
a type of parallel robot whose platform can only perform
translations in the 3D space. As it can be seen in Fig. 1a,
its structure is composed of two platforms, one fixed (that
acts as a base) and one mobile (to which the end-effector
is attached). These are connected by three identical kine-
matic chains. Each chain consists of two links, an upper arm
and a pair of lower arms, that are linked together by means
of spherical joints. The upper arm is connected to the fixed
platform by a revolute joint, whereas each pair of lower arms
is connected to the mobile platform through the other two
spherical joints. It can be noticed that the pairs of lower arms
cannot rotate around their central axis, due to the kinemat-
ics of the manipulator. This feature allows each pair to be
simplified as a single arm parallel to the original ones and
passing through the center of the pair (i.e., points Ci and Bi ,

with i = 1, 2, 3). In the following, the kinematic, dynamic,
and electro-mechanic models of the considered manipulator
are described. The strategy for developing the kinematic and
dynamic models is a generic method that can be adapted to
parallel robots with a similar structure.

2.1 Kinematics

In this section, the inverse kinematics of the 3-DOF parallel
manipulator is described, which aims at calculating the posi-

tion of the joint variables q = [
q1 q2 q3

]T
starting from the

pose of the end-effector X = [
x y z

]T
. The single joint vari-

able is obtained by finding the intersection between the arc of
the circumference representing the possible positions of the
upper arm end not fixed to the base (point Ci,upper arm) and
the positions reachable by the lower arm end not linked to
the mobile platform (point Ci,lower arm), as shown in Fig. 1b.
This can lead to three situations:

• zero intersections: no solutions found, the chosen pose is
outside the robot workspace;

• one intersection: the chosen pose is at the limits of the
workspace;

• two intersections: only one of them is acceptable, namely
the one that leads to a smaller qi , as it is illustrated in
Figs. 1b and 2b.

The kinematic relationship that corresponds to this con-
sideration can be obtained starting from the closing equation
of the mechanism:

bi T bi = b2 (1)
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Fig. 1 3D model of the robot
(a); search for the intersection
between upper and lower arms
(b)

where:

bi = Bi − Ci = [
bix biy biz

]T
(2)

The positions of points Ci are derived by knowing the
coordinates of points Ai , which are fixed and given by the
robot geometry, as function of joint variables qi and length
of upper arm a (Fig. 2). The coordinates of points Bi can be
obtained starting from the end-effector pose X and by taking
the geometric constants rb and h into account.

Substituting expression of Bi and Ci in Eq. 2 and applying
Eq. (1) leads to the following system of equation:

Ii cos(qi ) + Li sin(qi ) + Ki = 0 , i = 1, 2, 3 (3)

where Ii , Li e Ki are constants that are function of the robot
geometry and the end-effector pose X . Solving Eq. (3), the
solution of the inverse kinematic problem for the i-th joint
variable can be written as follows:

qi = 2 arctan
−Ii −

√
I 2
i + L2

i − K 2
i

Ki − Li
, i = 1, 2, 3 (4)

It can be noticed that these solutions are real only if the
radicands are greater or equal to zero; if one of them becomes
negative, it means that the robot pose X is outside the robot
workspace. Therefore, by imposing this condition, the robot
workspace can be easily derived.

The inverse differential kinematics of the parallel robot
can be obtained by differentiating Eq. (1) with respect to
time and it is given by:

q̇ = Jq−1 Jx Ẋ = J−1 Ẋ (5)

where:

Jq =
⎡

⎣
u1(a1 × b1) 0 0

0 u2(a2 × b2) 0
0 0 u3(a3 × b3)

⎤

⎦ (6)

and

Jx =
⎡

⎣
xb1 yb1 zb1

xb2 yb2 zb2

xb3 yb3 zb3

⎤

⎦ = [
b1 b2 b3

]T
(7)

J is the Jacobian matrix, the vector ui is the generic unit
vector parallel to motor axis (Fig. 2a), whereas ai = Ci − Ai

is the vector of the upper arm.
Finally, the inverse acceleration kinematics can be derived

by differentiating Eq. (5) with respect to time, obtaining:

q̈ = J−1 Ẍ + Jq−1( J̇x − J̇q J−1)Ẋ (8)

2.2 Dynamics

The dynamics of the 3-DOF parallel robot can be solved
adopting the Lagrangian approach restricted to some simpli-
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Fig. 2 Notation used in the model of the manipulator: top view (a), lateral view (b), and particular of lower arms movement (c)

fying assumptions, necessary to facilitate its implementation
and resolution. As main hypothesis of the dynamic model, it
is supposed that the inertia of the lower arms is small enough
to be neglected, and the distributed mass of each pair of lower
arms is approximated by two equal point masses positioned
at the extremities of the link, as shown in Fig. 3.

Another simplification is to reduce the mobile platform
to a mass concentrated at the point B0 (Fig. 2b). This is
a reasonable approximation, since the mobile platform can
only translate, so its motion is the same of its center of mass
(approximated to the point B0) and therefore it can be consid-
ered acceptable to neglect its rotational inertia and assimilate
it to a point body. Aerodynamics effects are also neglected.

The purpose of the inverse dynamics is to compute the
torque needed for the movement of the parallel robot by
knowing the position, velocity and acceleration of the joint

variables. The total torque τ = [
τ1 τ2 τ3

]T
needed to steer

the robot during its motion can be obtained as sum of the
torques required to move the different components of the sys-
tem, i.e., τact for the actuating system (actuators and upper
arms), τ plat for the mobile platform, and τload for the pay-
load. The first torque contribution can be written as follows:

τact = Iact q̈ + gMarm cos(q) + fs + Fv q̇ (9)

The first term is the inertia term, proportional to the angu-
lar acceleration of the joints q̈. Iact = diag(

[
Ieq Ieq Ieq

]
) is

Fig. 3 Simplification of the
lower arms
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the inertia matrix, where Ieq = i2
rid Iact + Ia + Ib represents

the equivalent inertia of a single arm evaluated with respect
to the corresponding point Ai , irid is the gear ratio, Iact is
the inertia of the motor, Ia = 1

3maa2 is the inertia of the
upper arm and Ib = mba2 is the inertia of the point mass mb.
The second term is the gravitational term, given by the upper
arm mass ma and by the point mass mb located at its extrem-
ity. These contribution are comprised in matrix Marm =
diag(

[
meq meq meq

]
), where meq = 1

2maa +mba, whereas
g is the gravitational acceleration. Furthermore, the third and
fourth terms of Eq. 9 take into account the contribution of
Coulomb and viscous friction, respectively: fs = fs tanh(q̇)

is the static friction torque, Fv = diag(
[
fv fv fv

]
) and fv

is the viscous friction coefficient. The definition of Coulomb
friction permits to avoid discontinuities in the torque profile
as the sign of the joint velocity changes [41]. By substitut-
ing q̈ with Eq. 8, Eq. 9 can be rewritten as function of the
velocity Ẋ and acceleration Ẍ of the end-effector as:

τact = Iact J−1 Ẍ+ Jq−1( J̇x− J̇q J−1)Ẋ+gMarm cos(q)+ fs+Fv q̇

(10)

The second torque contribution analyzed is the one given
by the mobile platform. From the principle of virtual work,
the required torque is given by:

τ = JT F (11)

where F is the vector of forces acting on the mobile platform.
Since it can only translate, the acting forces are only the
inertia force and the force of gravity, which can be written
as:

F = Mplat(Ẍ + G) (12)

where Mplat = diag(
[
mp mp mp

]
), mp = mplat + 3mb,

where mplat is the mass of the mobile platform and G =
[
0 0 −g

]T
. It follows that the torque required by the motors

due to the mobile platform is:

τ plat = JT Mplat(Ẍ + G) (13)

The last torque contribution is given by the possible pay-
load connected to the end-effector. Since this is connected to
the mobile platform, its movement will be the same as the
latter and the required torque will be calculated in the same
way. Therefore, the torque required by the motors due to the
payload is:

τload = JT Mload(Ẍ + G) (14)

where Mload = diag(
[
mload mload mload

]
) and mload is the

mass of the payload.

Finally, the resulting expression for the torque needed for
the movement of the parallel robot can be expressed by:

τ =[Iact J−1+ JT (Mplat+Mload)]Ẋ+ JT (Mplat + Mload)G+
Iact Jq−1( J̇x− J̇q J−1)Ẋ+gMarm cos(q)+ fs+Fv q̇

(15)

2.3 Electro-mechanic model

The electro-mechanic model of robot actuators is needed to
assess energy consumption and it is developed by considering
equivalent brushless DC motors, as in [36]. The i-th motor
armature current ii (t) can be computed as function of the
torque provided by the motor τm,i = τi/irid and the motor
torque constant Kt as follows:

ii (t) = τm,i

Kt
, i = 1, 2, 3 (16)

Then, the voltage drop vi (t) across the i-th motor can be
expressed as follows:

vi (t) = R ii (t) + Ke q̇m,i (t) , i = 1, 2, 3 (17)

where R is the resistance of the motor windings, Ke is the
back-emf constant, whereas qm,i = qi irid is the velocity of
the i-th motor shaft. Considering the driver efficiency ηd ,
the voltage-current product gives the instantaneous electric
power drawn by the i-th robot actuator:

Pe,i (t) = vi (t) ii (t)

ηd
, i = 1, 2, 3 (18)

When the actuators absorb energy from the drive unit,
the electric power Pe,i has positive values. Vice versa, when
the energy takes the opposite path going from the actuators
to the drive unit, Pe,i takes negative values. However, the
drives considered for this system are not regenerative. Conse-
quently, the total energy consumption Ec is calculated taking
into account only the power consumed by the three actuators
Pc,i (t) and integrating this over the time period T , obtaining
the following equation:

Ec=
3∑

i=1

∫ T

0
Pc,i (t)dt where

Pc,i (t)=
{
Pe,i (t) if Pe,i (t) ≥ 0

0 if Pe,i (t) < 0
(19)

3 Compared approaches

In this paper, we compared three approaches to minimize the
total energy consumption of the 3-DOF parallel robot, during
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a defined task. The compared approaches are described as
follows:

• Approach (1) finds the optimal placement of a pick-and-
place task within the robot workspace that minimizes
energy consumption;

• Approach (2) plans time-energy optimal trajectories by
evaluating the proper execution times for the different
path sections.

• Approach (3) is the strategy proposed in this paper, which
leverages the task placement, the execution time, and the
length of the robot lower arms to minimize the robot
energy consumption.

Three different cases are considered for the proposed
approach: first only the length of the robot lower arms is
optimized (Approach (3a)), then, the length and the task
placement are considered (Approach (3b)). Finally, the task
placement, the execution time, and the length of the robot
lower arms are optimized together to reduce the energy con-
sumption (Approach (3c)).

In all the compared approaches, we take into account
an ordinary pick-and-place task composed of two vertical
and one horizontal movements. However, these methods can
be applied to other desired paths as well. The “434” spline
algorithm is adopted as base for motion planning [42]. The
trajectory is defined using nine way points in the operational
space as shown in Fig. 4. The path for the robot end-effector
consists of a vertical ascent of 25mm, a horizontal translation
of 305 mm, a vertical descent of 25 mm, and return along the
same path. Path corners are blended with a radius of 5 mm.

In all the considered scenarios, the problem that we aim to
solve is a bounded constrained nonlinear optimization prob-
lem, which can be formulated as follows:

min
x∈χ

f (x)

χ = [
xL xU

]T

subject to H(x) ≥ c

(20)

where x is the vector of optimization variables, f (x) is the
cost function that has to be minimized, χ indicates the lower

(xL ) and upper (xU ) bounds for the design domain, whereas
H(x) and c define the inequality constraints. While x, f (x)

and χ depend on the approach, the inequality constraints are
the same for both approaches and are defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I 2
i + L2

i − K 2
i ≥ 0

qmin < qi < qmax

| γi |< γmax

| q̇i |< q̇max

| τi |< τmax

for i = 1, 2, 3 (21)

The first condition derives from Eq. (4) and imposes the
task to be within the robot workspace. qmin, qmax and γmax

are defined from robot kinematics, whereas q̇max and τmax

are imposed by motor limits. γ represents the rotation angle
of spherical joints from their neutral position as shown in
Fig. 2c and it is limited due to their physical limits. The
geometric, dynamic and electro-mechanic parameters of the
manipulator considered in this work are reported in Table 2.

3.1 Approach (1): optimal task placement

Approach (1) aims at evaluating the optimal positioning of
the pick-and-place task inside the robot workspace in order
to minimize the total energy consumption, by fixing the time
distance between each pair of consecutive way points. The
path of the robot is parameterized as in [37] (Fig. 5):

The position of the way points can be defined using four
parameters, i.e., the distance d and the angle φ, which are the
polar coordinates of the mid-point of the trajectory M in the
xy plane, θ , that measures the orientation of the trajectory
with respect to the direction of OM, and z, which is the
vertical coordinate of point M. This leads to the following
optimization problem:

min
d,φ,θ,z

Ec (22)

subject to the constraints in Eq. 21. The angles φ and θ are
limited above respectively to 2π/3 and π . This choice allows
us to consider all the possible solutions without repetitions

Fig. 4 Path of the robot
end-effector in the 3D space

123



The International Journal of Advanced Manufacturing Technology

Table 2 Geometric, dynamic and electro-mechanic parameters of the
robotic system considered for the numerical simulations

Parameter Value Parameter Value

a 0.450 m g −9.81 m/s

b 1.030 m fs 2.40 Nm

ra 0.091 m fv 0.24 Nms/rad

rb 0.073 m Iact 3.52 · 10−4 kg m2

h 0.078 m irid 16

ma 1.115 kg Kt 1.04 Nm/A

mb 0.165 kg Ke 0.70 V s/rad

mplat 0.846 kg R 2.40 �

mload 0.200 kg ηd 0.9

due to the symmetry of the structure. For the execution of
the different path sections (Fig. 4), a time of 0.025 s for the
vertical sections (t1, sections A− D and I − B), 0.005 s for
half of the blend sections (t2, sections D−E , E−F , G−H ,
and H − I ) and 0.065 s for half of the horizontal sections
(t3, sections F − M and M − G) are set.

3.2 Approach (2): optimal time distances between
way points

Approach (2) aims at optimizing the execution times of dif-
ferent path sections in order to plan time-energy optimal
trajectories, fixing the task position. In general, decreasing
the duration of the trajectory increases velocities, acceler-
ations, torques and consumed power. A trade-off between
duration and energy consumption can be found, depending

Fig. 5 Top view of the parametrization of the path

on which of the two contributions is preferred. Therefore, the
optimization problem that we aim to solve is the following:

min
ti

[
ω ·

∑

i

ti + (1 − ω) · Ec

]
(23)

subject to the constraints in Eq. 21. The cost function in
Eq. 23 weighs both the sum of ti , which is equal to the total
duration T , and the total energy consumption Ec. The trade-
off between the two items of the cost function is set by means
of the parameter ω, which can vary from 0 to 1. A small value
equal to 0.001 s for the lower bound of execution times is
adopted in order to ensure numerical stability. The position of
the task is defined by d = 0.135m, φ = π/3 rad, θ = 0 rad,
and z = −0.964 m. For Approach (2) we evaluate how the
optimal solution changes as the value of ω varies, as well as
the influence of the discretization (i.e., the sampling rate of
the trajectory) on computation times and the optimal solution
found. Finally, we also test how the solution is affected by the
optimization algorithm adopted for solving the optimization
problem.

3.3 Approach (3): proposed strategy

The approach proposed in this paper leverages the task place-
ment, the execution time, and the length b of the robot lower
arms to minimize the robot energy consumption. Three dif-
ferent cases are considered for the proposed approach:

• Approach (3a) finds the value of b that minimizes the total
energy consumption Ec, fixing the task position and the
execution time;

• Approach (3b) evaluates the optimal combination of b
and task placement inside robot workspace to minimize
the total energy consumption Ec, fixing the execution
time;

• Approach (3c) finds the optimal combination of b, task
placement inside robot workspace and execution times of
different path sections to planning time-energy optimal
trajectories.

We have chosen to optimize the length of the lower arms,
usually composed of lightweight aluminum or carbon fiber
tubes, since they are one of the easiest and cheapest com-
ponents of the robot structure to replace. The lower arms
can indeed be substituted one by one without disassembling
the whole robot, nor disconnecting the robot from its sup-
port structure. Furthermore, only the rod has to be replaced
without changing the couplings with the upper arms and the
mobile platform. To evaluate the mass change of lower arms
with their length, a lightweight aluminum alloy is considered
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as rod material. The length of the rod lrod can be related to
the length of entire lower arm knowing the length of coupling
parts (see Fig. 6):

lrod = b − 2 · lcoupling (24)

Therefore, the value of mb as a function of b can be com-
puted as follows:

mb = mcoupling +mrod = mcoupling + π ρrod r
2
rod (b − 2 · lcoupling)

(25)

where mcoupling is the coupling parts mass, mrod is the rod
mass, rrod is its external radius, and ρrod is the density of the
aluminum alloy. Table 3 reports the main parameters values
of lower arms.

We underline the main features of the different scenarios.
In Approach (3a), the optimization problem can be formu-
lated as follows:

min
b

Ec (26)

The task placement is defined by d = 0.21 m, φ =
π/3 rad, θ = 0.0 rad and z = −0.8 m, whereas the exe-
cution times considered are t1 = 0.050 s, t2 = 0.010 s and
t3 = 0.140 s.

For Approach (3b), the optimization problem is:

min
b,d,φ,θ,z

Ec (27)

The execution times considered are t1 = 0.050 s, t2 =
0.010 s and t3 = 0.140 s.

Approach (3c) can be seen as a combination of all pre-
vious approaches described, through which we can find the
best configuration for executing the desired task with the

minimum energy consumption. Therefore, the optimization
problem assumes the following form:

min
b,d,φ,θ,z,ti

[
ω ·

∑
ti + (1 − ω) · Ec

]
(28)

The optimization problems described in Eqs. 26, 27 and
28 are all subject to the constraints in Eq. 21.

4 Simulation test bed

In the following, we describe the simulated test bed. First, the
implementation and resolution methods for the optimization
problems are outlined. Then, we describe how the multibody
model is built. Finally, the method adopted for solving the
optimization problem integrating the multibody model in the
co-simulation one is illustrated.

4.1 Mathematical model

The mathematical model of the 3-DOF parallel robot pre-
sented in Sect. 2 is implemented in Matlab 2020b, using
a computer running Windows 10 Pro with an Intel Core
i5-10600K CPU @ 4.10 GHz and 32.0 GB of RAM. The
optimization problem is solved using two different Matlab
functions, the constrained nonlinear multivariable function
fmincon, and the ga function. With the fmincon function,
the optimization problem is solved implementing two differ-
ent algorithms: the interior-point method and the sequential
quadratic programming (SQP) method.

The interior-point optimization algorithm transforms the
original inequality constrained problem in a sequence of
approximate equality constrained problems, that are easier
to solve. As optimization parameters, we choose a function
and a constraint tolerance of 1.0 · 10−6, and a step tolerance

Fig. 6 Lower arm parts and detail of coupling part
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Table 3 Main parameters of the lower arms

Parameter Value

rrod 0.004 m

lcoupling 0.030 m

mcoupling 0.039 kg

ρrod 2584 kg/m3

of 1.0 · 10−10. The maximum number of iterations is set to
2500, whereas the maximum number of function evaluations
is set to 10000. Moreover, we perform a multi-start optimiza-
tion, in order to better investigate the whole design domain
χ . 50 random starting points are chosen for Approaches (1),
(2) and (3b), 20 for Approach (3a) and 100 for Approach
(3c), due to the increased complexity of the problem.

The SQP method closely mimics the Newton’s method for
a constrained optimization, as it is made for an unconstrained
optimization. At each main iteration, an approximation of the
Hessian of the Lagrangian function is used to define a search
direction. As optimization parameters, we choose a function
and a constraint tolerance of 1.0 · 10−6, and a step tolerance
of 1.0 · 10−6. The maximum number of iterations is set to
400, whereas the maximum number of function evaluations
is set to 100 multiplied for the number of variables. A multi-
start optimization is performed also with the SQP algorithm,
choosing 30 random starting points for Approaches (1), (2)
and (3b), 10 for Approach (3a) and 50 for Approach (3c).

Furthermore, the ga function finds the minimum of a func-
tion using a genetic algorithm, based on a natural selection
process that mimics the biological evolution. As optimiza-
tion parameters, we choose a function tolerance of 1.0 ·10−6,
and a constraint tolerance of 1.0 · 10−3. The maximum num-
ber of generations is set to 100 multiplied for the number of
variables n, whereas the population size Np is determined as
Np = min(max(10 · n, 40), 100).

For each approach and algorithm adopted, we report the
mean solution time, the minimum energy consumption of
the parallel robot for the tested trajectory, as well as the
optimal parameters found. The energy is computed sampling
positions, velocities, accelerations and torques during the tra-
jectories with a frequency of 1000 Hz.

4.2 Multibodymodel

The mathematical dynamic model of the 3-DOF parallel
robot includes some simplifying hypothesis that approxi-
mate the actual torques that the motors have to provide,
as mentioned in Sect. 2.2. To assess the reliability of the
mathematical model, we implement a multibody model of
the manipulator using MSC Adams 2022.4. This software
allows one to simulate the kinematics and dynamic behavior

of a mechanical system with an acceptable error with respect
to the real one. In this way, the theoretical dynamic model
is validated and the differences in the results provided by
the mathematical and the multibody dynamic models can be
assessed.

The 3D model of the robot is designed using SolidWorks
and then imported in Adams. Subsequently, the required con-
straints between different structure elements are imposed.
First, the base of the 3-DOF parallel robot is fixed to the
ground. Then, the revolute joints between the base and the
three upper arms are created (Fig. 8a), choosing the correct
origin and direction for the measure of joint variable posi-
tion in order to make them consistent with those measured in
Matlab. Furthermore, friction is imposed. In Adams, choos-
ing the Original formulation with the parameters reported in
Fig. 7 permits to make friction effects comparable with those
obtained in Matlab. Differently from the Matlab model, in
the Adams one also the transition velocity and the transition
velocity coefficient have to be specified. These two parame-
ters have a similar function to that of the tanh(q̇) included in

Fig. 7 Parameters chosen for friction description in the Adams software
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the definition of friction in Matlab. Friction coefficients are
reported in Table 2 and static friction torque fs in Eq. 9 is
implemented in Adams as a friction torque preload.

Then, the spherical joints between upper arms and lower
arms and between the mobile platform and the lower arms
are implemented (Fig. 8b and c), imposing non-penetration
constraints between solids in order to avoid unrealistic move-
ments of the lower arms.

Additionally, a payload is added to the model by creating
a small body and fixing it to the end-effector, as illustrated in
Fig. 8d. This definition can be considered a suitable choice,
since the considered payload is lightweight (see Table 2) and
generally small for parallel manipulators employed in fast
pick-and-place operations.

Finally, the dynamic properties of the components are
specified, i.e., mass and inertia parameters (see Table 2).
Inertia parameters are computed from geometric properties
of components, imposing weights and materials.

4.3 Co-simulationmodel

The co-simulation using Adams and Matlab/Simulink soft-
ware allows to control a mechanical system built in Adams
with the input information from Matlab/Simulink. This sec-
ond resolution approach allows to solve the dynamics of
the manipulator with the multibody model, while the opti-
mization process still runs in Matlab. Then, the optimization
results obtained with the mathematical and the multibody
models can be compared.

Using the co-simulation, the motor joint position profiles
are sent from Matlab/Simulink to Adams, where the dynam-
ics of the parallel robot is solved. Then, the joint torque
profiles are sent back to Matlab and used for the compu-
tation of the energy consumption. Therefore, in Adams the

joints position are set as the input, whereas the torque is
selected as the output (Fig. 9a). Figure 9b illustrates model
used for co-simulation in Simulink, with mechanical system
(represented by the adams_sub block), the input and output
variables as blocks.

5 Simulation results

This section presents the simulation results obtained from
the numerical simulations with both the mathematical and
multibody models. It should be noted that the mathematical
and the multibody models adopted in the optimization prob-
lems solution have some differences that may lead to slight
differences in the results. These differences can be related to:

• friction formulation: the friction models implemented in
the mathematical and in the multibody models are similar
but not the same, as described in Sect. 4.2; consequently,
these differences could produce slight variations in the
computed torques;

• masses and inertia: the mathematical model includes
some simplifying hypothesis in the mass distribution and
inertia of the robot components (see Sect. 2.2), whereas
the multibody one considers a more realistic geometry
and mass distribution;

• joints: in the mathematical model the joints are idealized,
since their behavior is represented through equations
that model only the relative movement between links,
but not consider real constraints like non-penetration
ones; differently, the multibody model considers joints
with friction and non-penetration constraints, making the
behavior of the manipulator more similar to the one of
the real robot;

Fig. 8 Detail of fixed and
revolute joints (a), of spherical
joints between upper arms and
lower arms (b), of spherical
joints between mobile platform
and lower arms (c), and of the
payload and how it is fixed (d)
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Fig. 9 Parameters selected in Adams for the co-simulation (a), and block diagram of the model used for co-simulation with input and output
variables (b)

• dynamics solver: in the multibody model the velocity
and acceleration profiles may have non-real oscillations,
that could affect the torques computation; differently, the
mathematical model does not show this issue;

• linearity: in the mathematical model the behavior of some
components is simplified in order to easier solve the
dynamics equations and find a single solution; however,
these simplifications eliminate certain non-linearities
that are still inherent in the multibody model; due to
non-linearities, for a same trajectory the torque profile
computed with the multibody model could not be always
exactly the same.

However, these slight differences between the two mod-
els should not produce significant changes in the results.
Figure 10a depicts a comparison between the joints torques
calculated by Matlab and Adams for the same exemplary
trajectory, whereas Fig. 10b provides a visualization of the
differences between the computed joints torques. The aver-
age error is 2.3 ± 2.5 Nm, highlighting that the differences
between the torques computed by the mathematical and the
multibody model are minimal.

5.1 Approach (1): optimal task placement

Approach (1) aims at evaluating the optimal positioning of
the pick-and-place task inside the robot workspace in order to
minimize the total energy consumption, fixing the time dis-
tance between each pair of consecutive way points. Approach
(1) can be suitable if there are time limits (for instance for
production requirements) but the robot can be placed freely
with respect to the task to execute. The results obtained adopt-
ing the mathematical model for the three different algorithms
are reported in Table 4, whereas the ones obtained with the

multibody model in co-simulation are reported in Table 5.
Figure 11 shows a comparison between the optimal trajec-
tories in the operative space computed by the two different
models using the SQP algorithm. Figure 12 represents the
same trajectories in the joints space. Finally, Fig. 13 depicts
the main phases of the task executed in Adams.

From Table 4 it can be seen that the optimal solutions
found with the mathematical model and adopting the three
algorithms are basically the same, both for the minimum
energy consumption (the differences in minimum energy
consumption computed by the three algorithms is lower than
0.1%) and for optimal task placement. Instead, the com-
putation times for the different optimization algorithms are
different, especially the one needed by the ga function is
much greater. In cases with a small number of variables like
this, the fmincon function (in particular implementing the
SQP method) is preferred, since it leads to the same solution
in a shorter time. Differently, Table 5 shows that the minimum
energy consumption found with the co-simulation model and
adopting the three algorithms are very similar (the differences
among the optimum solutions found by the three algorithms
is lower than 0.2%), but the combinations of parameters that
lead to them are quite different. This can be related to the
fact that the multibody model simulates the dynamics of the
robot with less approximations with respect to the real one,
also including some non-linearities. Moreover, the computa-
tion times taken by the co-simulation model are higher than
the ones needed for the mathematical model. This is due to
how the co-simulation works, since for each function evalu-
ation it has to simulate the entire task in Adams.

Comparing the results from Tables 4 and 5, it can be seen
that, although the optimum solutions found are slightly dif-
ferent, the consumed energy is almost the same (38 J for the
mathematical model and 35 J for the multibody model), with
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Fig. 10 Example of the joints torques computed by Matlab and Adams for the same exemplary trajectory (a), and difference in computed joints
torques (b)

a difference lower than 10%. This can be also highlighted by
observing Fig. 12b and d, where optimal velocity and torque
profiles obtained with the two models are very similar. How-
ever, differences in the position profiles (Figs. 11a and 12a)
are present since the mathematical and the multibody mod-
els have found slightly different optimal configurations, as it
can be seen from Tables 4 and 5. Finally for both models the

Table 4 Approach (1): computation times and results for different
algorithms in optimizing task placement in the robot workspace with
mathematical model

Algorithm Interior-point SQP GA

tcomp,mean [s] 64.035 12.150 152.556

Ec,min [J ] 38.220 38.220 38.222

d [m] 0.176 0.176 0.179

φ [rad] 1.019 1.019 1.076

θ [rad] 1.777 1.777 1.723

z [m] −1.052 −1.052 −1.052

lowest minimum of energy consumption is obtained with the
SQP algorithm.

5.2 Approach (2): optimal time distances between
way points

Approach (2) aims at optimizing the execution times of dif-
ferent path sections in order to plan time-energy optimal

Table 5 Approach (1): computation times and results for different
algorithms in optimizing task placement in the robot workspace with
multibody model

Algorithm Interior-point SQP GA

tcomp,mean [s] 27922.080 3888.943 344959.975

Ec,min [J ] 35.330 35.329 35.391

d [m] 0.050 0.132 0.000

φ [rad] 0.124 0.758 0.680

θ [rad] 3.115 2.063 0.467

z [m] −1.054 −1.054 −1.053
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Fig. 11 Comparison between the optimal trajectory in the operative space calculated by the two models for Approach (1): positions (a), velocities
(b), and accelerations (c)

trajectories, by keeping the task position fixed. Approach
(2) can be exploited when robot placement relative to the
task is fixed (for example for space or layout constraints)
but the execution times can be modified. Figure 14 depicts
how the minimum energy consumption Ec,min changes with
respect to the execution time T . This curve presents a mini-
mum in correspondence to the execution time that maximizes
the energy saving.

The optimization problem is first solved varying the value
of the weight ω in Eq. 23 from 0 to 1. This procedure allows
to highlight how the optimal solution changes as the weight
given to the energy and time contributions varies. In order to
reduce calculation times, the SQP algorithm is implemented
for solving the optimization problem.

The results showed in Table 6 evidence that as the ω value
increases, the energy consumed increases, while the exe-
cution time decreases. The case with ω = 0 equals to the
minimum energy consumption without requirements for the
execution time. Contrarily, the case with ω = 1 corresponds
to the shortest execution time without considering the energy
consumption, taking into account especially the constraints
for torques and velocities. For example, with ω = 1 the
execution time decreases by 85% with respect to the case
with ω = 0, but the energy consumed increases by 1105%.
Therefore, in this way we can find a trade-off between pro-
ductivity (i.e., minimum execution time) and operating costs
(i.e., energy consumed), varying depending on which of the
two requirements is to be favored.
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Fig. 12 Comparison between the optimal trajectories in the joint space calculated by the two models for Approach (1): positions (a), velocities (b),
accelerations (c), and torques (d)

With the aim of reducing the computation times, an eval-
uation on how the minimum energy changes by reducing the
sampling rate of the trajectories (i.e., by varying the dynam-
ics discretization) is performed. The optimization problem

is solved adopting the SQP algorithm and setting ω = 0.5
to equally weight the time duration and the energy con-
sumption of the robot trajectory. The results are reported in
Table 7.
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Fig. 13 Main task phases for Approach (1): pick the piece (a), move horizontally (b), and place the piece (c)

From Table 7 it can be observed that the dynamics dis-
cretization considerably decreases the computation times
(with a sampling frequency of 200 Hz the computation
time is reduced by 33% compared with the reference case
at 1000 Hz), without visibly affecting the optimal solution
computed. A slight difference is present with a sampling fre-
quency of 200 Hz, due to the less precise energy calculation,
which is done through integration of the consumed power
over time (Eq. (19)). However, the optimal solution found

with a sampling frequency of 200 Hz is similar to the one
obtained with a sampling frequency of 1000 Hz, with differ-
ences in minimum energy consumption and execution time
of 0.2% and 1%, respectively.

Finally, the influence of the optimization algorithm on
the optimization problem is evaluated. Also in this case, the
value of ω is set to 0.5 to equally weight the time dura-
tion and the energy consumption of the robot trajectory. The
results obtained adopting the mathematical model for the

Fig. 14 Minimum energy consumption Ec,min with respect to execution time T
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Table 6 Approach (2): Calculation times and results by changing ω in
optimizing time distance between way points

ω Ec,min [J ] T [s] t1 [s] t2 [s] t3 [s]
0.0 5.613 2.124 0.138 0.029 0.335

0.1 5.620 1.992 0.133 0.028 0.309

0.2 5.645 1.852 0.126 0.026 0.285

0.3 5.689 1.720 0.118 0.025 0.262

0.4 5.721 1.660 0.112 0.023 0.257

0.5 5.786 1.584 0.105 0.022 0.247

0.6 5.903 1.488 0.099 0.020 0.233

0.7 6.128 1.372 0.091 0.019 0.214

0.8 6.615 1.212 0.081 0.016 0.190

0.9 8.022 0.980 0.067 0.012 0.154

1.0 67.652 0.316 0.022 0.005 0.047

three different algorithms are reported in Table 8, whereas
the ones obtained with the multibody model in co-simulation
are reported in Table 9.

Table 8 shows that the optimal solutions for the energy
consumption found with the mathematical model and adopt-
ing the three algorithms are almost the same, both for the
minimum of energy expenditure (the differences in mini-
mum energy consumption computed by the three algorithms
is lower than 0.8%) and for the combination of parameters
(t1, t2, t3) that leads to it. Regarding the calculation times,
the considerations are the same made for Approach (1). Like-
wise, from Table 9 it can be noticed that the minimums found
with the multibody model and adopting the two methods of
fmincon function are again quite close, both for the minimum
energy consumption (the differences among the optimum
solutions found by the three algorithms is lower than 1.5%)
and for the optimal execution times. Similarly to Approach
(1) the computation times taken by the co-simulation model
are higher than the one required for the mathematical model,
still caused by the co-simulation working. No simulations
have been performed in co-simulation with the genetic algo-
rithm due to the high computational times.

Comparing the results from Tables 8 and 9, the differ-
ences between minimum energy consumption is about 17%,
a value slight higher than the Approach (1) but still accept-
able. The optimal parameters computed by the two models

Table 8 Approach (2): Computation times and results for different
algorithms in optimizing time distance between the way points with
mathematical model

Algorithm Interior-point SQP GA

tcomp,mean [s] 49.198 9.168 553.684

Ec,min [J ] 5.784 5.786 5.739

T [s] 1.588 1.584 1.648

t1 [s] 0.106 0.105 0.111

t2 [s] 0.022 0.022 0.025

t3 [s] 0.247 0.247 0.251

are also quite similar, differently from Approach (1). Simi-
larly to Approach (1), for both models the lowest minimum
is obtained with the SQP algorithm. Furthermore, as it can
be seen from Tables 8 and 9, the optimal execution time
computed by the mathematical and the multibody models is
equal to 1.584 s and 1.452 s, respectively, with a percentage
difference of 8%.

5.3 Approach (3): Proposed approach

The results obtained from Approaches (1) and (2) have val-
idated the mathematical model, showing minimal variations
between the optimal trajectories computed by the mathemat-
ical and the multibody models. Therefore, although there
are differences between the mathematical and the multibody
models, with the mathematical one energy optimal trajecto-
ries can be calculated in a shorter computation time. Then,
for Approach (3) only the mathematical model is used in
order to limit the computation times.

5.3.1 Approach (3a): Optimizing only lower arms length

Approach (3a) aims at finding the value of b that minimizes
the total energy consumption Ec, fixing the task position
and the execution time. Approach (3a) can be useful when
the robot position with respect to the task and the execution
time are predefined (for example for space and productivity
constraints), but the robot structure can be modified. For this
optimization problem, the ga function is not used to solve the
optimization problem, since there is only one variable and a

Table 7 Approach (2):
computation times and results
by varying dynamics
discretization in optimizing time
distance between way points

Sampling frequency 1000 Hz 500 Hz 333 Hz 250 Hz 200 Hz

tcomp,mean [s] 10.162 7.958 7.382 7.076 6.764

Ec,min [J ] 5.786 5.786 5.786 5.789 5.775

T [s] 1.584 1.584 1.584 1.580 1.600

t1 [s] 0.105 0.105 0.105 0.104 0.108

t2 [s] 0.022 0.022 0.022 0.022 0.022

t3 [s] 0.247 0.247 0.247 0.247 0.248
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Table 9 Approach (2): computation times and results for different algo-
rithms in optimizing time distance between way points with multibody
model

Algorithm Interior-point SQP

tcomp,mean [s] 169712.573 44930.65

Ec,min [J ] 4.685 4.754

T [s] 1.660 1.452

t1 [s] 0.113 0.098

t2 [s] 0.026 0.021

t3 [s] 0.250 0.223

genetic algorithm would not be well exploited. The results
obtained adopting the mathematical model for the SQP and
the interior-point algorithms are illustrated in Table 10. The
optimal solutions for the energy consumption found adopting
the two algorithms are the same, both for the minimum energy
consumption and for the lower arms length. The percentage
of energy consumption reduction with respect to the case with
the original lower arms length (b = 1.030m, Ec = 12.592 J )
is 26.6%. Furthermore, the computation times are shorter
than the previous approaches, since in this case there is only
one variable to optimize.

Previously, the energy saving performance of three dif-
ferent methods for achieving energy efficiency has been
evaluated, i.e., optimize the task position within the robot
workspace (Approach (1)), plan time-energy optimal trajec-
tories (Approach (2)), and find the proper length of the lower
arms (Approach (3a)). In the following, the different meth-
ods are applied together with the aim at enhancing energy
efficiency in a parallel robot.

5.3.2 Approach (3b): Optimizing lower arms length
and task placement

Approach (3b) has the purpose to evaluate the optimal com-
bination of b and task placement inside robot workspace to
minimize the total energy consumption Ec, fixing the exe-
cution time. Approach (3b) can be applied when there are
productivity constraints (i.e., the execution time is limited),
but the robot can be moved with respect to the task and
its structure can be modified. The optimization problem is
solved by varying the optimization algorithm adopted. The

Table 10 Approach (3a): calculation times and results for lower arms
length optimization

Algorithm Interior-point SQP

tcomp,mean [s] 2.934 2.348

Ec,min [J ] 9.286 9.286

b [m] 0.808 0.808

Table 11 Approach (3b): computation times and results for different
algorithms in optimizing lower arms length and task placement in the
robot workspace

Algorithm Interior-point SQP GA

tcomp,mean [s] 76.532 18.882 461.174

Ec,min [J ] 8.180 8.180 8.183

b [m] 0.527 0.526 0.533

d [m] 0.148 0.148 0.150

φ [rad] 0.004 0.004 0.006

θ [rad] 1.570 1.570 1.567

z [m] −0.818 −0.818 −0.823

results depicted in Table 11 show that the optimal solutions
computed with the mathematical model and adopting the
three algorithms are almost the same, both for the minimum
energy consumption (the differences in minimum energy
consumption computed by the three algorithms is lower
than 0.05%) and for the task placement and the lower arms
length. The better solution for minimum energy consumption
is obtained with the SQP and the interior-point algorithms.
The evaluations on computation times are the same made
for Approaches (1) and (2). Furthermore, Approach (3b)
achieves a reduction of energy consumption of 12% with
respect to the results obtained for Approach (3a), where the
execution time is the same but the task placement is not opti-
mized.

5.3.3 Approach (3c): Optimizing lower arms length, task
placement and time distance between way points

After demonstrating that combining two different energy
efficiency methods can further reduce energy consumption,
it can be evaluated whether combining all three previously

Table 12 Approach (3c): computation times and results for differ-
ent algorithms in optimizing lower arms, task placement in the robot
workspace and time execution of different sections

Algorithm Interior-point SQP GA

tcomp,mean [s] 232.983 39.234 966.904

Ec,min [J ] 3.772 3.767 3.751

b [m] 0.760 0.735 0.927

d [m] 0.232 0.242 0.110

φ [rad] 0.001 0.000 1.013

θ [rad] 1.562 1.571 0.044

z [m] −1.131 −1.101 −1.320

T [s] 1.776 1.764 1.856

t1 [s] 0.128 0.127 0.130

t2 [s] 0.026 0.025 0.026

t3 [s] 0.264 0.264 0.282
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described methods can significantly reduce energy consump-
tion compared to the minimums found with the previous
approaches. Therefore, in Approach (3c) the goal is to find
the optimal combination of b, task placement inside robot
workspace and execution times of different path sections to
planning time-energy optimal trajectories. Approach (3c) can
be useful when robot and task configuration can be modi-
fied (in this case, task placement with respect to the robot,
time execution and robot structure). The optimization prob-
lem is solved by varying the optimization algorithm adopted,
whereas the value of ω is chosen equal to 0.5 in order to
equally weight the energy consumption and the time dura-
tion of the robot trajectory. The results obtained adopting the
mathematical model for the three different algorithms are
shown in Table 12. Figure 15 shows the optimal trajectory in
the operative space computed adopting the SQP algorithm,
whereas Fig. 16 represents the same trajectory in the joints
space.

The time-energy optimal trajectories computed with the
three algorithms similar, both for the minimum of energy
consumption (the differences in minimum energy expendi-
ture computed by the three algorithms is lower than 0.6%)
and for the combination of parameters (b, d, φ, θ , z, t1, t2,
t3) that leads to it. The computation times are higher than
the ones needed by the other approaches, mainly due to the
higher number of considered optimization variables. Sim-
ilarly to the previous approaches, the lowest minimum is
obtained adopting the SQP algorithm.

As illustrated in Approach (2), by varying the value of the
weight ω in Eq. 28 the relevance of the two contributions
(energy and time) can be modified, allowing planning trajec-
tories that give greater priority to one of the two requirements.

Approach (3c) highlights that applying together different
energy efficiency strategies can further improve the energy
saving for the executed task. Indeed, the optimization of all
the eight parameters considered (b, d, φ, θ , z, t1, t2, t3) gives

Fig. 15 Optimal trajectory in the operative space computed with the mathematical model for Approach (3c): positions (a), velocities (b), and
accelerations (c)
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Fig. 16 Optimal trajectory in the joint space computed with the mathematical model for Approach (3c): positions (a), velocities (b), accelerations
(c), and torques (d)

good results and the task is executed by the robot with an
energy consumption of only 3.767 J . For instance, with
respect to optimizing only the execution times (Approach

(2)) the energy expenditure decreases by 35%, whereas the
execution time remains almost the same. This reduction in
energy consumption can lead to sustainability of industrial
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manufacturing processes and to lower energy costs especially
in robots that continuously perform high-speed tasks in the
industry environment.

6 Conclusions

In this paper, we presented an approach for the energy-
efficiency optimization of a 3-DOF parallel robot. The
proposed strategy leverages the task placement, the exe-
cution time, and the length of the robot lower arms to
minimize the energy consumption for the execution of a
predefined high-speed pick-and-place operation. To evaluate
the actuators energy consumption, the kinematic, dynamic
and electro-mechanic mathematical models, as well as an
equivalent multibody model, of the parallel robot have been
implemented. The results of extensive numerical simulations
showed that the proposed strategy provides notable improve-
ments in the energy efficiency of the parallel robot, with
respect to alternative approaches.

More in detail, starting from a pick-and-place task with
optimal task placement with a consumption of 38.2 J (with a
cycle time of 0.4 s), the energy expenditure can be reduced to
3.75 J (with a cycle time of 1.86 s), with a reduction percent-
age of 90.2%, by additionally optimizing the execution time,
and the length of the robot lower arms. These results lead to a
reduction from 5733 J/min (for 150 cycles/min) to 121 J/min
(for 32 cycles/min). Furthermore, compared to Approach (2),
which only considers the execution time, the energy expen-
diture found with the proposed strategy decreases by 34.8%,
whereas the execution time increases by 11.8%. With respect
to Approach (3a), which considers only the length of the
lower arms, the energy consumption decreases by 59.4% and
the execution time raises by 110.0%. Finally, compared to
Approach (3b) that optimizes task placement and the length
of the lower arms, Approach (3c) reduces the energy con-
sumption by 53.9%, with an increase of the execution time
of 110.0%. These comparisons show that the energy sav-
ing with Approach (3c) is higher than both approaches that
exploit only one energy efficiency strategy (Approaches (1),
(2), and (3a)) and Approach (3b), which optimizes both the
task placement and the length of the lower arms. However,
the execution time of the pick-and-place trajectory increases.
The results of this work highlight the importance of properly
setting the execution time of the task, in addition to opti-
mizing the task placement and the robot physical structure,
in order to further reduce the energy consumption, allowing
to choose the best trade-off between robot productivity and
consumed energy.

The limitations of the proposed approach include the
need of an optimization routine that can result in high
computational times to solve the energy minimization prob-
lem. Furthermore, the proposed approach does not only

require the modification of the software trajectory param-
eters, but also the replacement of a physical component
of the robotic system, i.e., the lower robot arms. However,
this operation can be performed without disassembling the
whole robot, nor disconnecting the robot from its support
structure.

In future work, we plan to experimentally validate the
results of the proposed optimization approach with consumed
energy measurements on real parallel robotic systems in
which voltage and current data are available. Furthermore, we
will also explore alternative strategies for energy efficiency in
parallel robots, such as exploitation of the natural dynamics,
and the optimization of additional physical components.
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