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Abstract: Titanium alloys are widely used in various technological fields due to their excellent
performance. Since the early stages of the 3D printing concept, these alloys have been intensively
used as materials for these processes. In this work, the evolution of the performance of the 3D printing
process has been studied by analysing the microstructure and the mechanical properties, fatigue and
tensile, of the Ti gr. 23 alloy produced by two different models of Concept Laser M2 Cusing machines
(an old model and a more recent one). The process parameters recommended by the manufacturer
were adopted for each machine. Both microstructural and surface texture characterisations were
carried out to better correlate the differences with the production process technique. For the same
purpose, tensile tests and microhardness profiles were obtained, while the dynamic mechanical
properties were evaluated by means of fatigue tests aimed at determining the fatigue limit of the
material using a staircase approach. The mechanical tests were carried out on specimens with three
different orientations with respect to the building platform, using two different SLM techniques.
The fatigue behaviour was then analysed by evaluating the fracture surfaces and, in particular, the
crack nucleation sites. By comparing the calculated fatigue values with the results of local fatigue
calculations, an estimate of the residual stresses near the crack nucleation site was obtained. The
results showed that the specimens produced on a newer machine had lower roughness (about 10%),
slightly higher ductility, and a higher fatigue limit (10–20 MPa) compared to the specimens produced
with the same material but on older equipment.

Keywords: L-PBF; fatigue resistance; Ti alloy; surface texture; fatigue limit

1. Introduction

In the last few years, additive manufacturing techniques for metal components have
evolved rapidly in terms of applied technology, with the aim of continuously improving the
surface quality, the microstructure, and the mechanical properties of the 3D printed parts.

Titanium alloys are widely studied materials because of their excellent corrosion resis-
tance and good mechanical properties. Nevertheless, the cost of these alloys is high, and
their production by means of conventional subtractive machining techniques is expensive
because of the material losses, tool consumption, demanding CAM/CNC programming
phase, and relatively high machining time due to their low machinability. The additive
manufacturing techniques are very promising since they may allow significant savings in
terms of lead time and costs for these specific alloys.

Among titanium alloys, Ti gr. 5 is commonly adopted in many strategic fields such as
aerospace and energy, while Ti gr. 23 is mainly applied in the biomedical field. The main
difference between these alloys is that Ti gr. 23 has a low amount of interstitial elements
with respect to Ti gr. 5. Both of them are processed by several additive manufacturing
techniques such as L-PBF (Laser-Powder Bed Fusion) [1–32] and EBM (Electron Beam
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Melting) [8,15,33–35]. Many research works study the effects of process parameters on in-
ternal defect generation [22,33,34,36], surface texture [13,30,31], and microstructure [21,34].
Accordingly, process parameters have a strong influence on the final mechanical perfor-
mances [3,7,10,21,30,31,33,36]. In detail, Khorasani et al. [10] showed that an increase in
power density produced a good material microstructure with high hardness, while increas-
ing the hatch spacing reduced the hardness. A more detailed study on the effect of process
parameters on microstructural texture was performed by Zhao et al. [21]. They observed
that low laser power and low scan rates produced coarser columns of Ti martensite. On the
contrary, an increase in both parameters produced a less textured martensitic microstruc-
ture, thus also influencing the final mechanical properties of the material. Some studies
were also devoted to determining the effect of surface texture on mechanical properties [10].
A study more dedicated to the effect of defects on microstructure and mechanical properties
was performed by Gong et al. [33]. In this case, they observed that the amount and dimen-
sion of internal voids in 3D printed samples have no influence on the microstructure of the
material and are strongly dependent on the process parameters. It was recently observed
that samples’ orientation with respect to the building platform has a strong impact on the
mechanical properties as well as on microstructure and surface texture [2,4–6,9,24,28,32].
Concerning the tensile tests, both vertical and 45◦ printing directions show slightly higher
mechanical properties compared to the horizontal samples in terms of Tensile Strength (TS),
Yield Strength (YS), and Elongation (E%) [5,16,24,32].

Going into the details of the research, Sun et al. [24] observed that the highest tensile
strength was reached by samples oriented at 45◦. The materials were heat-treated before
the tests. On the other hand, a strong influence of defects on mechanical properties was
observed. The effect of process parameters on tensile tests is mainly related to grain ori-
entation, microstructure, and defect density. Barba et al. observed that the mechanical
properties are strongly influenced by the macro-columnar grain’s orientation, which de-
pends on growth direction and is also responsible for certain anisotropy in the material.
They also observed a dependence of the mechanical response of the material on alpha lath
orientation. Simonelli et al. [32], instead, stated that there is an influence on the mechanical
response of material due to prior beta boundary orientation and distribution.

Many studies focused on the fatigue performances of the 3D printed samples produced
with Ti gr. 5 or Ti. gr. 23 alloys [1,6,8,12,13,37,38]. Fatigue performance was investigated
by varying the samples’ orientation, surface finishing techniques, and post printing heat
treatments. In most cases, the 3D printed samples were machined before the fatigue life tests.
Only a few researchers measured the samples in their as-built condition. Low Cycle Fatigue
(LCF tests) [1], High Cycle Fatigue (HCF) [1,12,19,39] or fatigue crack propagation [4,27]
were examined. As a result, fatigue life strongly depends on the number of defects and on
the orientation of samples with respect to the building platform. In particular, the main
defects responsible for fatigue failure of the specimens are close to the external surface in
samples with a printed surface, as observed by Benedetti et al. [1]. In machined samples,
the defects responsible for material failure are internal and usually have a strong influence
on the number of cycles to failure. In detail, the bigger the defect size, the lower the
material resistance in terms of the number of cycles. Surface roughness may also play
a role in the fatigue properties of 3D printed materials [13]. In particular, the printing
process may produce some surface dross in proximity to the valley generated by layer-
by-layer production, which is also responsible for the increase in roughness in samples
produced in the vertical direction [6]. However, a major role in fatigue life is played by
residual stresses [1,4,20]. In particular, the residual stresses in printed samples are in a
tensile condition, which can reduce the fatigue life of the material, as observed by Benedetti
et al. [1] and Syed et al. [4]. This was also assessed by studying the effects of the stress-
relieving treatment on fatigue life [14]. However, the stress-relieving heat treatment may
alter the material microstructure [40], thus further influencing the final result. Nevertheless,
no studies on both the effect of printing machine evolution and samples’ orientation on the
fatigue properties of as-built specimens (not stress-relieved) were found in the literature.
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Considering the scarce literature on the effect of temporal evolution of L-PBF 3D
printing machines, this work aims to analyse and then correlate the effect of machine
temporal evolution on both microstructure, surface texture, and mechanical properties.
In order to achieve this goal, a detailed microstructural characterisation will be carried
out in order to determine both the effect of the temporal evolution on the internal defect
distribution and then on the microstructure. For this purpose, a precise evaluation is carried
out by means of microscopic techniques.

The surface texture is then studied by studying the surface roughness observed on
samples produced with different printing directions and L-PBF techniques.

The effect of machine obsolescence was also evaluated by means of tensile tests and
fatigue tests by evaluating YS, TS, E% (for tensile tests), and fatigue limit (for fatigue
tests). An attempt is made to correlate the fatigue properties with both surface texture and
microstructure using empirical models.

Measurements have been carried out on as-built samples without any post-print stress-
relieving thermal treatment, which may be responsible for altering the microstructure of
the material, also taking into account the effect of different printing directions on the above
properties.

2. Materials and Methods
2.1. Sample Preparation

A commercial Ti gr. 23 powder was used for producing 3D printed samples. The
chemical composition, acquired by optical spectroscopy and gas in metal analysis, is given
in Table 1.

Table 1. Chemical composition (wt%) of the Ti powders used in this experiment.

Al V Fe C [ppm] O [ppm] N [ppm] H [ppm] Ti

Powders 5.7 3.8 0.22 50 76 32 5 Bal.

Chemical
composition range 5.5–6.5 3.5–4.5 Max 0.25 Max 80 Max 130 Max 50 Max 12 Bal.

The Ti gr. 23 powder consists of spherical particles (Figure 1) with a granulometric
distribution ranging from 8.3 µm (10th %ile) to 40.0 µm (90th %ile) and a median diameter
of 23.3 µm (Figure 1a). No defects such as voids or blows could be detected in the metal
powders (embedded in epoxy resin and metallographically prepared), which present a Ti
martensite microstructure.

The samples were manufactured using 2 different Concept Laser M2 Cusing machines,
one installed in 2013 (older) and the other in 2017 (newer). Both machines were equipped
with a single-mode CW ytterbium-doped fibre laser with an emission wavelength of
1070 nm and processed the samples under an inert argon atmosphere with less than 0.2%
residual oxygen. The main difference between the machines was the optical system, which
in the older model was composed of the collimator, the beam expander, the scanning head,
and the F-theta lens, while in the newer model it also included a dynamic focusing unit
for adjusting the laser spot size. Consequently, radically different process parameters (see
Table 2) were recommended by the machine manufacturer when processing the considered
titanium alloy in the two machine types. In particular, the optical system of the older
machine forced the use of a small laser beam in a defocused condition, while the focusing
unit installed in the newer machine enabled the use of a much larger laser beam in a focused
condition. Consequently, the other recommended process parameters differ from each other
both when compared one at a time and when combined in synthetic indicators describing
the energy density. The most similar physical quantity in the two cases was the Linear
Energy Density (LED) [22], which was 17% higher on the bulk areas and 27% lower on the
contours with the new machine. The Surface Energy Density (SED) [35] and the Volumetric
Energy Density (VED) [23] were instead remarkably lower. However, the energy density
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is not a good indicator for comparing different process parameters [41], since it neglects
the main effects and interactions among the considered factors. In addition, it also fails to
capture the influence of defocusing, which is a main feature of the tested equipment. For
those reasons, it was decided to investigate the effect of technological advances in LPBF on
the properties of Ti gr. 23 components by comparing the performance of the machines in
their respective optimum conditions instead of equalling the energy input.
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Figure 1. (a) Progressive granulometric distribution of the Ti gr. 23 alloy powder, measured by SEM. 
(b) SEM image of the powders (magnification = 500×). (c) Light microscope analysis of the powders. 
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Figure 1. (a) Progressive granulometric distribution of the Ti gr. 23 alloy powder, measured by SEM.
(b) SEM image of the powders (magnification = 500×). (c) Light microscope analysis of the powders.

Table 2. Process parameters used for the samples manufacture.

Older Equipment Newer Equipment

Specimens Contour Specimens Contour

Power 180 W 180 W 225 W 200 W

Scanning speed 1250 mm/s 1250 mm/s 1300 mm/s 1750 mm/s

Spot diameter 50 µm 50 µm 155 µm 70 µm

Hatch distance 105 µm - 90 µm -

Layer thickness 30 µm 30 µm 25 µm 25 µm

Defocusing
distance −1.8 mm −1.8 mm 0 mm 0 mm

LED 0.14 J/mm 0.14 J/mm 0.17 J/mm 0.11 J/mm

SED 2.88 J/mm2 2.88 J/mm2 1.12 J/mm2 1.63 J/mm2

VED 96.00 J/mm3 96.00 J/mm3 44.66 J/mm3 65.31 J/mm3
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Similarly, the samples were scanned according to the specific strategy recommended by
the machine manufacturer for each machine model. In more detail, the samples produced
with both machines were scanned according to the island exposure strategy, which consists
of a chessboard pattern of 5 × 5 mm squares that were bi-directionally scanned along
mutually perpendicular directions (Figure 2). Adjacent squares were spaced by 105 µm on
the older machine and by 96 µm on the newer machine, while in both cases they underwent
an angular shift of 90◦ and an XY shift of 1 mm at each layer in order to guarantee the
material uniformity.
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Figure 2. Island exposure strategy used for producing the experimental samples.

Finally, in both cases, the contouring operation consisted of exposing a single curve
along the perimeter of the parts sections. The contour was shifted inward by 0.075 mm
from its nominal position and was aimed at improving the surface quality.

A total of 60 dog-bone (Figure 3) samples were prepared by each machine in multiple
build jobs. One third of them were oriented parallel to the building platform (0◦), one
third were oriented perpendicular to it (90◦), and one third were built with an intermediate
orientation (45◦). The specimens were randomly arranged on the building platform in
order to avoid any possible dependence on their spatial position.

No stress relieving heat treatment was carried out after the printing process. The
fatigue samples were directly detached from the building platform and machined in
proximity to the gripping head in order to avoid misalignments during the fatigue tests.
The supported surfaces of the samples oriented at both 0◦ and 45◦ were manually ground
with abrasive papers in order to avoid the surface texture effect caused by the presence of
support residuals.

2.2. Microstructural Characterisation and Microhardness Measurements

The dog-bone specimens that were realised for mechanical tests were also used for
microstructural characterisation. The samples for microstructural characterisation were
derived from the dog-bone cross section in the gauge length. They underwent hot mounting
in epoxy resin followed by a standard metallographic preparation in order to obtain a
mirror-like surface (last polishing step with colloidal silica). The internal voids were
characterised and classified on the whole area of the samples by means of light microscope
analysis at a fixed magnification (100×). Afterwards, a distribution of the defect density as
a function of their dimensions was performed.

The samples, after the void classification, were etched using Kroll etchant (30 s) and
then analysed by a light microscope near the external surface and the bulk.

On the same specimens, a microhardness profile was acquired across the radius (HV
0.3 with a distance between each measurement of 0.5 mm).

2.3. Surface Morphology and Roughness

The roughness (Ra, Ry, Rz, and ρr (average curvature of the valley of roughness
calculated in agreement with Arola et al. [42])) values of the samples were measured
using a stylus contact profilometer (Dektak-150) with a stylus tip of 12 µm radius. The Kt
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related to surface topography was calculated by means of the formula suggested by many
authors [43], that is:

Kt = 1 + 2
(

Ra

ρr

)(
Ry

Rz

)
(1)
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2.4. Tensile and Fatigue Tests

The mechanical properties of the produced samples were determined by means of
both tensile and fatigue tests at room temperature. The tensile tests were performed under
displacement control by applying a displacement rate of 1 mm/min. After the rupture
of the specimen, the Tensile Strength (TS), Yield Strength (YS), and Elongation (E%) were
acquired. The tests were performed on 3 specimens for each printing direction and for each
3D printing technique used in this work.

Regarding the fatigue tests, the staircase approach was used to determine both the
fatigue data dispersion and the fatigue life endurance. The tests started at a stress level of
200 MPa, close to the fatigue limit found by other researchers [1,14], and the stress variation
(∆S) was ± 25 MPa (in the case of failure, the stress variation was decreased, while in the
case of runout, the stress was increased). The runout cycles were 106. Concerning the
fatigue test results, S-N diagrams were obtained and analysed for each printing direction
and instrument used to produce the sample. The fatigue limit was calculated using the
Dixon–Mood approach [43]. Afterwards, the failed specimens underwent SEM analysis
of the fracture surfaces in order to determine the crack nucleation site. In this case, by
combining the microhardness results with the extension of the fatigue crack, the local
fatigue limit (σw0) in proximity to the discontinuity that generated the fatigue crack was
calculated according to the Murakami approach [44]. The formula used for surface crack
nucleation sites was:

σw0 = 1.43·
(

HV + 120(√
area

)1/6

)
(2)

The local fatigue limit was then compared to the fatigue limit (σlf) found by the Dixon–
Mood approach in order to have rough information on the residual stress level that affected
the fatigue performance of the material. In particular, as suggested by other authors [2],
Walker’s model was used to estimate the Rreal (ratio between σmin and σmax considering
also the residual stresses), whereas the model was:

σlf
σw0

=

(
1− Rreal

2

)n
(3)

The n coefficient for the as-built samples in Ti alloy was equal to 0.385. This equation was
used to qualitatively evaluate the residual stresses in proximity to the crack nucleation site.

3. Results and Discussion
3.1. Microstructural Characterisation and Microhardness Measurements

The microstructural characterisation of the samples starts with the analysis of the pore
and void distribution found on specimens printed by either machine (Figure 4). In this
case, the data presented are a summary of the results found for each printing direction.
However, the effect of the printing machines is also clearly visible.

The void/pore density is higher in the specimens produced by the older equipment
compared to the specimens produced by the newer equipment for each dimensional class.
All the specimens present a prevalence of defects smaller than 40 µm. The observed
difference among the results obtained with the two machines is mainly related to the
difference in the process parameters and the focusing condition. In particular, the focusing
condition significantly influences the morphology of the molten tracks and the layers’
surface roughness. This is in accordance with other authors who observed that a negative
defocusing distance may lead to the formation of higher molten tracks with smaller contact
angles, hence a higher surface roughness [45]. This can promote the formation of pores
between the tracks and hinder powder deposition, causing the formation of small voids in
the powder bed (Figure 5). These voids can in turn become pores with a shape and size
similar to those observed in the tested samples. Although the porosity difference is low,
it is possible that their presence can affect the mechanical properties of the material, in
particular the fatigue resistance. The relative porosity, measured by Archimedes principle,
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is <0.1 vol% for all the tested samples, which corresponds to a good density value for
this kind of manufacturing technology. Eventually, the pore/void distribution was not
significantly affected by the printing direction.
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In Figure 6, the bulk microstructure of the 3D printed materials is shown. The mi-
crostructure presented is only relevant in one printing direction (90◦), close to the external
surface and to the bulk. Indeed, no appreciable differences in microstructure between each
printing direction were observed.
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Figure 6. Microstructure of the analysed specimens (printing direction: 90◦).

The microstructure of the analysed materials is composed entirely of Ti martensite,
and no differences were found between the bulk and the surface for the same batch. It
is possible to observe that the newer equipment has a Ti martensite produced by a more
intense undercooling during solidification [10,21] that produces thicker martensitic laths
compared to the martensite produced by older equipment. This is probably linked to the
different energy densities of the two pieces of equipment used to produce the samples.
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The microhardness profiles, acquired across the radius of the mechanical testing
specimen, are shown in Figure 7.
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Figure 7. Microhardness profiles acquired across the diameter of a specimen used for mechanical
testing: (a) older equipment and (b) newer equipment.

The microhardness profiles, for both the equipment and for each printing direction,
are smooth and have an average hardness of about 430 HV. In this case, the slight difference
in material microstructure has no effect on the hardness of the specimens. Moreover, there
is no clear hardness variation versus distance from the sample surface.

3.2. Surface Morphology and Roughness

By analysing the surface morphology, many undercuts were noticed that were caused
by the production process. The surface texture is strongly influenced by the layer-by-layer
growth of material, as indicated in Figure 8. The undercuts are probably related to the
overlay of the scan lines produced during the growth of the sample.
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Figure 8. Scheme that indicates the correlation of the printing process to the surface texture.

This texture, induced by sample production, has a great effect on the surface roughness
of the quasi-vertical samples (Figure 9).
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Figure 9. Roughness measurements (Ra and Rq) for the samples analysed in this work.

It is possible to observe that the Ra is strongly dependent on the printing direction.
In particular, the horizontal samples show a smoother surface compared to the samples
printed at 45◦ and in the vertical direction, while no significant differences were observed
between the samples printed at 45◦ and 90◦. The difference in surface roughness between
the horizontal and 90◦/45◦ directions is linked to the printing process. Indeed, the smoother
surface of the 0◦ samples is related to the fact that the measured surface corresponds to the
small laser scan lines. On the other hand, the rougher surface of the other printing directions
is due to the presence of deep undercuts (Figure 8) or unmelted particles adhering to the
surface. The results obtained are in agreement with previous experimental findings [18,20].

From the analysis of surface texture, it was possible to determine the severity of the
surface by calculating the surface Kt with Formula (1). The results of this calculation are
presented in Figure 10.
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Figure 10. Comparison among Kt values obtained from Formula (1) applied to the inspected specimens.

In this case, it is possible to observe that Kt is lower for the specimens that were aligned
with the building platform. This is in agreement with the Ra measurements presented in
Figure 9, and it also explains the effect on surface texture. In addition, it is worth noting that
the samples obtained with new equipment show a slightly lower Kt. The differences among
the Kt values can be explained by considering the different process conditions. In detail,
the effect of the growth direction of the specimens is mainly related to the presence of the
undercuts shown in Figure 8. They correspond to the overlay of the printed layer, and they
are clearly visible in all the samples except the horizontal ones. The slightly different Kt
values obtained from the two machines are likely due to the different process parameters,
especially the single layer thickness. This parameter is strongly dependent on the hatch
distance and on the molten pool geometry, which in turn depend on the laser power, the
scanning speed, and the laser spot diameter [26]. For a given shape of the molten pool,
a disproportionate combination of layer thickness and hatch distance may result in the
formation of a lack of fusion pores, according to the mechanism represented in Figure 11.
At the same time, the layer thickness and the molten pool shape influence the formation
of surface irregularities (Figure 11), possibly affecting the surface roughness and, in turn,
the surface Kt. In particular, an increase in these parameters could increase the surface
roughness and thus the surface Kt. In this regard, machine manufacturers tend to maximise
the layer thickness to increase productivity, which was a severe problem for older machines
working with small laser beams. It is likely that this affected the fatigue properties of the
material.
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3.3. Tensile and Fatigue Tests

The results of the tensile tests are presented in Figure 12.
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Figure 12. Tensile test results for the samples analysed in this work: Yield Strength (YS) and Tensile
Strength (TS) (a) and Elongation (b).

From the analysis of the obtained results, Yield Strength (YS) and Tensile Strength (TS)
do not significantly depend on the adopted production equipment, and neither depend
on the printing direction. This result is probably related to the fact that the microstructure
of the material (Ti martensite) is the same for all the samples tested, although a slight
difference was detected between the martensite of the samples obtained by different
printing techniques. The absence of differences between each printing direction is more
related to the similarity of the microstructure of the material. This behaviour is also expected
from the same hardness profiles observed in Figure 7. On the other hand, some differences
were observed in terms of material ductility expressed through Elongation. Specifically, the
horizontal samples show lower ductility compared to the vertical and 45◦ samples. This
is probably a consequence of the macrostructure of the additively manufactured samples.
As remarked by other researchers through EBSD analysis [21,32], the macrostructure of
titanium alloys is generally composed of columnar macrograins, which are produced by
epitaxial growth of metal during solidification. The orientation of macrograins affects
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material ductility. In detail, material ductility is at its maximum when considering the
vertical samples, whose macrograins are aligned with the applied load direction. This effect
is not observed on TS and YS, in agreement with other works [18,24]. In this experience, no
effects of the printing technique on ductility were detected.

The results obtained by uniaxial fatigue tests on the tested samples are shown in Figure 13.
In general, the horizontal samples (produced at 0◦) exhibit better fatigue behaviour

than the samples printed at 45◦ and 90◦, before and after the fatigue limit elbow, for both
production equipment. This is probably due to the lower surface roughness of horizontal
samples with respect to those produced at 45◦ and 90◦. In fact, the applied load during the
uniaxial fatigue test is perpendicular to the undercuts observed in Figure 8 for the 45◦ and
90◦ specimens. No microstructural effects on fatigue life are expected since the quasi-static
mechanical response is similar between the different specimens. The slight differences
between the samples printed on older and newer equipment are more likely to be related to
the internal void distribution or the slightly higher roughness found in the samples printed
on older equipment. Using the Dixon–Mood approach (Figure 13c), a higher fatigue life
was observed for the samples produced on the newer equipment. A possible reason for this
better performance is the lower number of voids that characterise the samples produced
by the newer equipment and the slightly lower surface roughness, as mentioned above.
The fracture surfaces of some representative samples that failed at a stress level close to the
fatigue limit are shown in Figure 14.
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The crack nucleation sites are all found near the external surface and on the opposite
side with respect to the surface that was supported when producing the 0◦ and 45◦ samples.
The surface defects are mainly related to morphologies similar to the undercuts observed
and described in Figure 8. These discontinuities are related to an overlay of each molten
layer produced during the 3D printing process. Larger defects (surface notches) were
observed on the samples produced by the older equipment compared to those observed
on the samples produced by the newer equipment. The reason is the different process
parameters and dynamics, i.e., the different layer thickness and molten pool shape that
influenced the formation of surface irregularities according to the mechanism described
in Figure 11. At the older machine, a larger layer thickness combined with a lower laser
power and a smaller and defocused laser beam were adopted, which may have determined
slightly more unfavourable conditions, resulting in more detrimental surface defects.

The previously analysed defects also have an effect on the local fatigue limit calculated
by means of the Murakami formula [44] close to the defect that caused the fatigue crack
nucleation (Figure 15).
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Figure 15. Local fatigue limit calculated by the Murakami approach for the tested samples as a
function of printing direction.

It is possible to observe that the local fatigue limit is similar between all the tested
samples and roughly seven times higher compared to the measured fatigue limit. This
discrepancy between the local fatigue limit and the real fatigue limit can be correlated to the
presence of residual stresses that have an effect on the fatigue behaviour of materials and
are usually present on materials produced by the L-PBF process [4,20]. The local fatigue
does not vary considerably when considering different printing directions; it is slightly
smaller when considering the samples produced by the older equipment. This is probably
related to the higher defects’ extensions, which are mainly undercuts originated by the
molten pool overlay found on broken specimens.

A rough evaluation of the local residual stresses—which were responsible for the
fatigue crack nucleation (to be considered only in this area)—can be carried out by means
of Walker’s relation (3), as suggested by other authors [14]. For this purpose, the real Rreal
should be acquired, which is correlated to the average applied stress corresponding in this
work to the axial residual stresses of the tested samples. To calculate the Rreal parameter,
both the σw0 and the σlf were previously presented, while the n exponent was taken in
agreement with Cutolo et al. and was equal to 0.385 [14]. The results obtained are shown
in Table 3.
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Table 3. Rreal values calculated from Walker’s relation for the samples tested in this work.

Printing Direction Older Newer

0◦ 0.97 0.96

45◦ 0.98 0.98

90◦ 0.98 0.98

The calculated values for Rreal are close to one. In this experience, the fatigue tests
were performed to R = −1. Thus, the axial residual stresses are close to the YS of the
material. This justifies the low values of fatigue limit acquired by the fatigue tests, and it
is in agreement with other tests on Ti gr. 23 in as-built conditions [14,19]. Eventually, the
Rreal parameter was approximately constant independently of the printing direction and
the production equipment used.

4. Conclusions

The present work aimed to determine the effect of 3D printing machine temporal
evolution on the properties of the as-built Ti gr. 23 alloy that was produced by using three
different growth directions.

The main results are summarised below:

- The microstructural characterisation showed that the samples printed with the older
equipment had a larger amount of external and internal defects of coarser size com-
pared to the samples printed with the newer equipment. The occurrence and number
of internal defects are mainly correlated to the printing parameters;

- Surface texture analysis of samples printed on older equipment showed a rougher
surface texture (about 10% higher). This is related to both the process parameters and
the different optical systems of the laser;

- Tensile test results showed no difference in the YS, TS, or E% of the samples tested;
- Regarding the fatigue properties of the as-built specimens, in general, poor fatigue

resistance was observed, especially for the specimens printed at 45◦ and 90◦ (10–20
MPa less compared to the horizontal specimens). This result is mainly due to the
surface texture (especially the undercuts generated by the overlay redeposition) and
the residual stresses rather than the presence of internal defects. However, the fatigue
performance of the specimens produced on the newer equipment is slightly better
than that of the specimens produced on the older equipment (10–20 MPa) for the
horizontal and 45◦ specimens. This is mainly due to the higher quality of the surface,
which is the typical crack initiation site for the specimens tested.

The observed results were a direct consequence of the improved equipment operation
and the use of more powerful process parameters, which in turn were made possible by the
novel equipment installed on the newer machine. Taken together, these results ultimately
reflect the technological progress of the equipment.
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5. Hacısalihoğlu, I.; Yıldiz, F.; Çelik, A. The Effects of Build Orientation and Hatch Spacing on Mechanical Properties of Medical
Ti–6Al–4V Alloy Manufactured by Selective Laser Melting. Mater. Sci. Eng. A 2021, 802, 140649. [CrossRef]

6. Cutolo, A.; Elangeswaran, C.; Muralidharan, G.K.; Van Hooreweder, B. On the Role of Building Orientation and Surface Post-
Processes on the Fatigue Life of Ti-6Al-4V Coupons Manufactured by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2022, 840,
142747. [CrossRef]
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