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In this paper, we develop an automated optimization framework for rewrite theories 
that supports sorts, subsort overloading, equations and algebraic axioms with free/non-
free constructors, and rewrite rules modeling concurrent system transitions whose state 
structure is defined by means of the equations. The main idea of the framework is to 
make the system computations more efficient by partially evaluating the equations to the 
specific calls that are required by the transition rules. This can be particularly useful for 
automatically optimizing rewrite theories that contain overly general equational theories 
which perform unnecessary and costly computations involving pattern matching and/or 
unification modulo equations and axioms. The transformation is based on a suitable 
unfolding operator parameter that relies on the symbolic operational engine of Maude’s 
equational theories, called folding variant narrowing, together with a generic abstraction 
operator. Depending on the properties of the rewrite theory, the unfolding and abstraction 
operators must be fine-tuned to achieve the biggest optimization possible while ensuring 
termination and total correctness of the transformation. We formalize two instances of our 
scheme for the case when the rewrite theory either has an infinite number of most general 
variants or a finite number of most general variants. Finally, we discuss some experimental 
results which demonstrate that the proposed optimization technique pays off in practice.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Rewriting Logic (RWL) is a logic of change that extends equational logic by adding rewrite rules that are used to describe 
non-deterministic transitions of concurrent systems. Rewriting Logic is efficiently implemented in the high-performance 
system Maude [21]. Roughly speaking, a rewrite theory R = (�, E � B, R) seamlessly combines a term rewriting system
(TRS) R , which specifies the system dynamics, with an equational theory E that defines the static structure of the system 
states as terms of an algebraic datatype. Given a signature � of program operators together with their type definition, 
the equational theory E = (�, E � B) combines, in turn, a set E of equations (that are implicitly oriented from left to 
right and operationally used as simplification rules) on � and a set B of commonly occurring axioms such as associativity, 
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commutativity, and identity that are essentially used for B-matching1 (and are implicitly expressed in Maude as operator 
attributes).

Partial evaluation (PE) is a program optimization technique (also known as program specialization) that, given a program 
and some of its input data, produces a residual or specialized program. Running the residual program on the remaining 
data is generally faster and yields the same result as running the original program on all of its input data [32]. PE has been 
widely applied to a variety of programming paradigms, including functional programming [32] and logic programming [34], 
where it is usually called partial deduction (PD). In contrast to classical PE, partial deduction allows to not only instantiate 
input variables with constant values but also with terms that may contain variables, thus providing extra capabilities for 
specialization [34,35].

Narrowing is a symbolic mechanism that extends term rewriting by replacing pattern matching with unification [30,49]. 
The Equational Narrowing-driven Partial Evaluation (EqNPE) scheme of [5] extends PD to the specialization of order-sorted 
equational theories with respect to a set of input terms by making use of folding variant narrowing (also called FV-narrowing
[29]). Thanks to the combined (logic and functional) capabilities of narrowing, the achieved transformation is strictly more 
powerful than the PE of both logic programs and functional programs [15]. In the EqNPE scheme, the key ingredients of 
PD get generalized to an order-sorted typed setting modulo axioms by formalizing: 1) a narrowing-based unfolding operator
that ensures correction of the transformation; 2) order-sorted equational homeomorphic embedding for local termination (i.e., 
finiteness of unfolding); 3) order-sorted equational closedness (a recursive notion ensuring that all possible calls that may arise 
during the execution of the residual program are covered by the specialization) for completeness; and 4) term abstraction 
(based on order-sorted equational anti-unification) for global termination of the whole specialization process.

While the EqNPE scheme of [5] only applies to deterministic and terminating equational theories, partial evaluation 
has never been investigated in the context of non-deterministic and non-terminating rewrite theories. This paper addresses 
the specialization of such rewrite theories R = (�, E � B, R), whose rewrite rules R are defined on top of an underlying 
equational theory E = (�, E � B). Altogether, the rewrite theory R models a concurrent system that evolves by rewriting 
the system states by means of equational rewriting, i.e., rewriting with the rewrite rules of R modulo the equations and 
axioms of E [36]. To be executable in Maude, the equational theory E is required to be convergent (i.e., the equations of E
are confluent, terminating, and sort-decreasing) and coherent modulo B . This ensures that every input expression t has one 
(and only one) canonical form t↓�E,B up to B-equality. On the other hand, the rules of R are required to be coherent w.r.t. 
E , which allows the rewrite steps with R to always be postponed in favor of deterministically rewriting with E .

In Maude, rewrite theories can also be symbolically executed by narrowing at two levels: (i) narrowing with the (typically 
non-confluent and non-terminating) rules of R modulo E = (�, E � B); and (ii) narrowing with the (explicitly) oriented 
equations �E modulo the axioms B . They both have practical applications: (i) narrowing with R modulo E = (�, E � B) is 
useful for solving reachability goals [41] and logical model checking [27]; and (ii) narrowing with �E modulo B is useful for 
E -unification and variant computation2 [29]. Both levels of narrowing should meet some conditions: (i) narrowing with 
R modulo E is performed in a “topmost” way (i.e., the rules in R rewrite the global system state) and there must be a 
finitary equational unification algorithm for E ; and (ii) narrowing with �E modulo B requires that B is a theory with a 
finitary unification algorithm and that E is convergent. When (�, E � B) additionally has the property that a finite complete 
set of most general variants exists for each term, known as the finite variant property (FVP), E -unification is finitary and 
topmost narrowing with R modulo the equations and axioms can be effectively performed. For variant computation and 
(variant-based) E -unification, the folding variant narrowing3 (or FV-narrowing) strategy of [29] is used in Maude, whose 
termination is guaranteed for theories that satisfy the FVP (also known as finite variant theories). Many relevant theories 
have the FVP, including theories of interest for Boolean satisfiability and theories that give algebraic axiomatizations of 
cryptographic functions used in communication protocols.

Partial evaluation techniques typically remove some computation states by performing as much program computation 
as possible, hence contracting the search space because some transitions are removed. However, narrowing-based analysis 
of rewrite theories generally requires the whole search space of a rewrite theory to be analyzed (i.e., all system states 
and transitions). Given the rewrite theory R = (�, E � B, R), to avoid hindering said analysis, our method proceeds by 
specializing the underlying order-sorted equational theory E = (�, E � B) to the precise use that the rules of R make of the 
functions that are defined in E . This is done by partially evaluating E with respect to the maximal (or outermost) function 
calls that can be retrieved from the rules of R , in such a way that E gets rid of any possible overgenerality. Actually, 
while the transformation highly contracts the system states and, more generally, the functional computations given by E
are greatly compacted, no system state disappears. Moreover, in many cases we transform a rewrite theory whose operators 

1 For example, assuming a commutative binary operator ∗, the term s(0) ∗ 0 matches within the term X ∗ s(Y ) modulo the commutativity of symbol ∗
with matching substitution {X/0, Y /0}.

2 A variant [22] of a term t in the theory E is the irreducible form of tσ in E for a given substitution σ ; in symbols, it is represented as the pair 
(tσ↓�E,B , σ).

3 The main idea of folding variant narrowing is to “fold” the search space of all FV-narrowing computations by using subsumption modulo B . That is, 
folding variant narrowing avoids computing any variant that is a substitution instance modulo B of a more general variant. Note that this notion is quite 
different from the classical folding operation of Burstall and Darlington’s fold/unfold transformation scheme [19,14], where unfolding is essentially the 
replacement of a call by its body, with appropriate substitutions, and folding is the inverse transformation, i.e., the replacement of some piece of code by 
an equivalent function call.
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obey structural, algebraic axioms such as associativity, commutativity, and unity into a much simpler rewrite theory whose 
operators obey no axioms. This makes it possible to run such theories into an independent rewriting infrastructure that does 
not support rewriting modulo axioms. Furthermore, some costly analyses that may require significant (or even unaffordable) 
resources, both in time and space, can now be effectively performed after the transformation.

A preliminary version of this work was presented in [4].

Our contribution. The main contributions of this paper are as follows.

1. We formalize a specialization scheme for rewrite theories that extends the equational, narrowing-driven partial evalua-
tion approach of [5] to the specialization of rewrite theories.

2. We ascertain the key requirements to be satisfied by the rewrite theory to guarantee the formal properties of our 
framework and we provide full proofs of all technical results in the article, which include preservation of executability 
conditions, termination, and strong correctness.

3. The original EqNPE framework of [5] was originally designed to deal with free constructors for which no equality rela-
tion can be established between any two different constructor symbols. This limitation was due to the fact that we did 
not consider subsort overloading (i.e., the overloading of operators that are related in the subsort ordering) for construc-
tor symbols. To deal with it, in this article we naturally extend some key notions of the EqNPE framework, including 
the definitions of equational closedness and equational abstraction. This allows us to deal with non-free constructors 
as overloaded function symbols that may behave as a constructor operator for some typing, while behaving as a de-
fined function symbol for a higher typing. In line with the extended definitions, we have correspondingly extended our 
technical results in [5] for dealing with sorts and subsorts in a finer way.

4. Similarly to [5], for the equational component of the rewrite theory, our specialization algorithm follows the classic 
control strategy of logic specializers [35], with two separate control levels: 1) local control (managed by a generic 
unfolding operator) that avoids infinite evaluations and is responsible for the construction of the residual equations 
for each specialized call; and 2) global control or control of polyvariance (managed by a generic abstraction operator) 
that avoids infinite iterations of the partial evaluation algorithm and decides which specialized functions appear in the 
transformed theory. To further optimize both rules and equations, we introduce a final, post-processing compression 
transformation that highly contracts the system states and the functional computations occurring in the specialized 
rewrite theory.

5. We provide two different implementations of the unfolding operator based on FV-narrowing that adapt the generic 
technique to the FVP behavior of the equational theory E by distinguishing two cases:
(a) E fulfills the finite variant property: since FV-narrowing trees are always finite in finite variant theories for any 

input term, the unfolding strategy is formulated as a process of total evaluation where the defined functions that 
have the FVP which appear in right-hand sides of rules are completely evaluated by computing a complete set of 
most general variants.

(b) E does not satisfy the finite variant property: in this case, a subsumption check is performed at each FV-narrowing 
step that compares (under order-sorted equational homeomorphic embedding [5]) the current term with all previous 
narrowing redexes in the same derivation so that all infinite FV-narrowing computations are safely stopped.

6. We have implemented an experimental prototype system called Presto, and we provide an empirical evaluation of the 
system on a set of benchmark problems that test the speedups achieved for both rewriting and narrowing computations.

Plan of the paper. The paper is organized as follows. In Section 2, we recall some preliminary notions and we provide the 
specification of a client-server communication protocol which is used as running example throughout the paper. The generic 
specialization scheme for rewrite theories is described in Section 3. After introducing the folding variant narrowing strategy 
in Section 4, in Section 5 we instantiate the specialization scheme for the two classes of equational theories already men-
tioned: theories that fulfill the FVP and theories that do not fulfill the FVP. The proposed scheme instantiations come with 
some non-trivial examples that highlight the power of our specialization methodology. Section 6 provides an experimental 
evaluation in the Presto system, which implements the proposed specialization framework. Our benchmarks demonstrate 
the program optimization that is achieved for narrowing as well as for rewriting computations. In Section 7, we discuss 
some related work and we conclude. Proofs of the main results are given in Appendix A, while Appendix B provides the full 
specification of the client-server communication protocol.

2. Preliminaries

Let � be a signature that includes typed operators (also called function symbols) of the form f : s1 . . . sm → s, where si , 
for i = 1, . . .n, and s are sorts in a poset (S, <) that models subsort relations (e.g., s < s′ means that sort s is a subsort of s′). 
� is assumed to be preregular, so each term t has a unique least sort under <, denoted ls(t). The connected components of 
(S,<) are the equivalence classes [s] corresponding to the least equivalence relation ≡< containing <. For technical reasons, 
3
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it is useful to assume that � has no ad-hoc overloading.4 However, this assumption entails no real loss of generality: any 
� can be transformed into a semantically equivalent signature with no ad-hoc overloading (by symbol renaming). Note 
that avoiding ad-hoc overloading ensures that � is sensible, in the sense that for any two typings f : s1 . . . sn → s and 
f : s′

1 . . . s′
n → s′ of a n-ary function symbol f , if si and s′

i are in the same connected component of (S, <) for 1 ≤ i ≤ n, then 
s and s′ are also in the same connected component; this provides the right notion of unambiguous signature at the order-
sorted level. Binary operators in � may have attached an axiom declaration that specifies any combinations of algebraic laws 
such as associativity (assoc), commutativity (comm), and identity (id). By ax( f ), we denote the set of algebraic axioms for 
the operator f . By T�(X ), we denote the usual non-ground term algebra built over � and the set of (typed) variables X . 
By T� , we denote the ground term algebra over �. By notation x : s, we denote a variable x with sort s. Any expression tn

denotes a finite sequence of terms t1 . . . tn , n ≥ 0. A position w in a term t is represented by a sequence of natural numbers 
that addresses a subterm of t (� denotes the empty sequence, i.e., the root position). Given a term t , we let Pos(t) denote 
the set of positions of t . We denote the usual prefix preorder over positions by ≤. By t|w , we denote the subterm of t at 
position w . By root(t), we denote the operator of t at position �.

A substitution σ is a sorted mapping from a finite subset of X to T�(X ) . Substitutions are written as σ = {X1 �→
t1, . . . , Xn �→ tn}. The identity substitution is denoted by id. Substitutions are homomorphically extended to T�(X ) . The 
application of a substitution σ to a term t is denoted by tσ . The restriction of σ to a set of variables V ⊂ X is denoted 
σ|V . Composition of two substitutions is denoted by σσ ′ so that t(σσ ′) = (tσ)σ ′ .

A �-equation (or simply equation, where � is clear from the context) is an unoriented pair λ = ρ , where λ, ρ ∈ T�,s(X )

for some sort s ∈ S, where T�,s(X ) is the set of terms of sort s built over � and X . An equational theory E is a pair 
(�, E � B) that consists of a signature �, a set E of �-equations, and a set B of equational axioms (e.g., associativity, 
commutativity, and/or identity) declared for some binary operators in �. The equational theory E induces a congruence 
relation =E on T�(X ) .

A term t is more general than (or at least as general as) t′ modulo E , denoted by t ≤E t′ , if there is a substitution γ
such that t′ =E tγ . We also define t �E t′ iff t ≤E t′ and t′ ≤E t . By abuse of notation, we write ≤B and �B when B is an 
axiom set.

A substitution θ is more general than (or at least as general as) σ modulo E , denoted by θ ≤E σ , if there is a substitution 
γ such that σ =E θγ , i.e., for all x ∈ X , xσ =E xθγ . Also, θ ≤E σ [V ] iff there is a substitution γ such that, for all 
x ∈ V , xσ =E xθγ .

An E -unifier for a �-equation t = t′ is a substitution σ such that tσ =E t′σ . By CSUE (t = t′), we denote a complete set 
of E -unifiers for the equation t = t′ so that any E -unifier of t = t′ is less general modulo E than (at least) one element in 
the set.

A rewrite rule (or simply rule) is an expression of the form λ ⇒ ρ , where λ, ρ ∈ T�(X ). A rule λ ⇒ ρ is sort-decreasing
if ls(ρ) ≡< ls(λ). A rewrite theory is a triple R = (�, E � B, R), where (�, E � B) is an equational theory and R is a set of 
rewrite rules. A rewrite theory (�, E � B, R) is called topmost if there is a sort State such that: (i) for each rule λ ⇒ ρ , 
ls(λ) ≡< State and ls(ρ) ≡< State; and (ii) there is no symbol f : t1 . . . tn → s ∈ � and i ∈ {1, . . . , n} such that s ≡< State
and ti ≡< State. Topmost rewrite theories provide a natural computation model for concurrent systems as shown in the 
following example.

Example 1. Let us consider a topmost rewrite theory R = (�, E � B, R) that encodes a client-server communication protocol. 
The code snippet in Fig. 1 shows a fragment of the theory signature � that includes the most relevant sorts and operators 
of the considered protocol specification.

Specifically, the signature � includes several operators and sorts that model the protocol entities. Names of the sorts are 
self-explanatory: for example, servers are typed with sort Serv, clients with sort Cli, and messages with sort Message.

Messages are encoded as non-empty, associative sequences t1 . . .tn , where, for the sake of simplicity, each ti is a term 
of sort Symbol in the alphabet {a,b,c}. We assume that the sort Symbol is a subsort of Message; hence, any symbol 
is also a (one-symbol) message. Clients are represented as 5-tuples of the form [C,S,Q,K,V] of sort Cli, where C is the 
client’s name, S is the name of the server that C wants to communicate with, Q is a message encoding a client request,
K is a natural number (specified in Peano’s notation) that determines an encryption/decryption key for messages, and V is 
a constant value that models the client status. Initially, the status is set to the initial default value mt, and it changes to
success whenever a server acknowledges message reception. Servers are simply modeled by means of pairs of the form
[S,K] of sort Serv, where S is a server name, and K is an encryption/decryption key. All network packets are represented 
as pairs of the form Host <- CNT of sort Packet, where Host is a client or server recipient and CNT specifies the 
packet content. Specifically, CNT is a term {H,M}, with H being the sender’s name and M being a message that represents 
either a client request or a server response. System states are formalized as multisets < t1 &. . .& tm > of clients, servers, 
and network packets via the associative and commutative operator _&_ whose unity element is the constant null. System 
states have sort State.

4 Given the overloaded operator f : s1 . . . sm → s0 and f : s′
1 . . . s′

n → s′
0, subsort overloading means that m = n and, for all i, 0 ≤ i ≤ n, si and s′

i belong to 
the same connected component. Otherwise, the overloading of f is called ad-hoc.
4
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--- sort specification

sorts Nat Symbol Message Content State Packet
Cli Serv Host CliName ServName Conf Status .

subsort Symbol < Message .
subsorts Packet Cli Serv < State .
subsorts CliName ServName < Host .

--- operators for the client-server data structures

op Srv-A Srv-B : -> ServName [ctor] .
op Cli-A Cli-B : -> CliName [ctor] .
op null : -> State [ctor] .
op _&_ : State State -> State [ctor assoc comm id: null] .
op _<-_ : Host Content -> Packet [ctor] .
op {_,_} : Host Message -> Content [ctor] .
op [_,_,_,_,_] : CliName ServName Message Nat Status -> Cli [ctor] .
op [_,_] : ServName Nat -> Serv [ctor] .
op <_> : State -> Conf [ctor] .
op __ : Message Message -> Message [ctor assoc] .
op a : -> Symbol [ctor] .
op b : -> Symbol [ctor] .
op c : -> Symbol [ctor] .
op len : -> Nat .
op mt : -> Status [ctor] .
op success : -> Status [ctor] .

--- operators for the Caeser chiper

--- Symbol-to-Nat Nat-to-Symbol operators
op toNat : Symbol -> Nat .
op toSym : Nat -> Symbol .
--- Encryption/Decryption operators
op shift : Nat -> Nat .
op unshift : Nat -> Nat .
op en : Nat Nat -> Nat .
op de : Nat Nat -> Nat .
op enc : Message Nat -> Message .
op dec : Message Nat -> Message .

Fig. 1. (Fragment of the) signature of the client-server communication protocol.

The protocol dynamics is specified by the term rewriting system R in R that consists of the following three rewrite 
rules, where clients and servers agree on a shared key K.

rl [req] : < [C,S,Q,K,mt] & ST > => < (S <- {C,enc(Q,K)}) & [C,S,Q,K,mt] & ST > .
rl [reply] : < (S <- {C,M}) & [S,K] & ST > => < (C <- {S,dec(M,K)}) & [S,K] & ST > .
rl [rec] : < (C <- {S,Q}) & [C,S,Q,K,mt] & ST > => < [C,S,Q,K,success] & ST > .

More specifically, the rule req allows a client C to initiate a transmission request with a server S by sending a message
Q that is encrypted by function enc(Q,K) using the client’s key K. The rule reply lets the server S consume a client 
request packet S <- {C,M} by first decrypting the incoming message M with the server key and then sending a response 
packet back to C that includes the decrypted request message. The rule rec successfully completes the data transmission 
between C and S whenever the server response packet C <- {S,Q} includes a message Q that is equal to the initial client 
request message. In this case, the status of the client is changed from mt to success. Note that the transmission succeeds 
when the client and server use the same key K.

Encryption and decryption functionality is implemented by two functions (namely, enc(M,K) and dec(M,K)) that 
are specified by the equational theory E in R . The equational theory E implements a Caesar cipher with key K, which 
is a simple substitution ciphering where each symbol in the plaintext message is replaced by the symbol that appears K
positions later in the alphabet (handled as the list a,b,c). The cipher is circular, i.e., it works modulo the cardinality of the 
alphabet. For instance, enc(a b,s(0)) delivers (b c), and dec(a b,s(0)) yields the message (c a). The equational 
theory E includes the equations5 in Fig. 2. In the specification, the equational attribute variant is used to identify the 
equations to be considered in the folding variant narrowing strategy, while any equations without the variant attribute 
are disregarded and are only considered for rewriting.

5 For the sake of simplicity, we omitted the definition of the operators [_,_,_], _<_, and _+_ that respectively implement the usual if-then-else
construct, the less-than relation, and the associative and commutative addition over natural numbers.
5
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var M : Message .
var X K : Nat .
var S : Symbol .

--- Function toNat(s) takes an alphabet symbol s as input and returns the
--- corresponding position in the alphabet.
eq toNat(a) = 0 [variant] .
eq toNat(b) = toNat(a) + s(0) [variant] .
eq toNat(c) = toNat(b) + s(0) [variant] .

--- Function toSym(n) takes a natural number n as input and returns the
--- corresponding alphabet symbol.
eq toSym(0)= a [variant] .
eq toSym(s(0)) = b [variant] .
eq toSym(s(s(0))) = c [variant] .

eq len = s(s(s(0))) --- Alphabet cardinality is equal to 3

--- Function shift(k) increments (modulo the alphabet cardinality)
--- the natural number k.
eq shift(X) = [ s(X) < len,s(X), 0 ] [variant] .

--- Function unshift(k) decrements (modulo the alphabet cardinality)
--- the natural number k.
eq unshift(0) = s(s(0)) [variant] . --- (len - s(0))
eq unshift(s(X)) = X [variant] .

--- Function e(n,k) increments the natural number n by k units
--- (modulo the alphabet cardinality).
eq e(X,0) = X [variant] .
eq e(X,s(Y)) = e(shift(X),Y) [variant] .

--- Function d(n,k) decrements the natural number n by k units
--- (modulo the alphabet cardinality).
eq d(X,0) = X [variant] .
eq d(X,s(Y)) = d(unshift(X),Y) [variant] .

--- Function enc(m,k) (resp. dec(m,k)) takes a message m and a
--- natural number k as input and returns the corresponding encrypted
--- (resp. decrypted) message using the Caesar cipher with key k.
eq enc(S,K) = toSym(e(toNat(S),K)) [variant] .
eq enc(S M,K) = toSym(e(toNat(S),K)) enc(M,K) [variant] .
eq dec(S,K) = toSym(d(toNat(S),K))[variant] .
eq dec(S M,K) = toSym(d(toNat(S),K)) dec(M,K) [variant] .

Fig. 2. Equations of the equational theory encoding the Caesar cipher.

The complete Maude specification of the client-server communication protocol can be found in Appendix B.

2.1. Computing in rewrite theories

Given a rewrite theory (�, E � B, R), with E = (�, E � B), the rewriting relation modulo E (in symbols, →R/E ) can be 
defined by lifting the usual rewrite relation on terms to the E � B-congruence classes [t]E�B on the term algebra T�(X )

that are induced by =E ; in other words, [t]E�B is the class of all terms that are equal to t modulo E � B . This means →R/E
is defined as =E ◦ →R ◦ =E .

A term t is called R/E -irreducible iff there is no term u such that t →R/E u. A substitution σ is R/E -irreducible if, 
for every x ∈ X , xσ is R/E -irreducible. We say that the relation →R/E is terminating if there is no infinite sequence 
t1 →R/E t2 →R/E · · · tn →R/E tn+1 · · · . We say that the relation →R/E is confluent if whenever t →∗

R/E u and t →∗
R/E v , 

then u and v can be rewritten to some w up to E -equality. A rewrite theory (�, E , R) is convergent if the rules R are 
sort-decreasing and the relation →R/E is confluent and terminating.

In a convergent order-sorted rewrite theory, for each term t ∈ T�(X ) , there is a unique (up to E -equivalence) R/E -
irreducible term t′ that can be obtained by rewriting t to R/E -irreducible or normal form, which is denoted by t →!

R/E t′ , 
or t↓R/E when t′ is not relevant. For each x ∈ Dom(σ ), σ↓R/E is defined as (σ↓R/E )(x) = σ(x) ↓R/E . A substitution σ is 
R/E -irreducible (normalized) iff xσ is so for each x ∈ Dom(σ ). For a set Q of terms, we denote by Q ↓R/E the set of normal 
forms of the terms in Q .

Since E -congruence classes can be infinite, →R/E -reducibility is undecidable in general because any rewrite step t →R/E
t′ involves searching through the possibly infinite equivalence classes [t]E�B and [t′]E�B . Therefore, R/E -rewriting is usually 
implemented by R,E -rewriting. We define the relation →R,E on T (X ) by t →p,R,E t′ (or simply t →R,E t′) iff there 
�

6
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is a non-variable position p ∈ Pos�(t), a rule λ → ρ in R , and a substitution σ such that t|p =E λσ and t′ = t[ρσ ]p . To 
ensure completeness of R,E -rewriting w.r.t. R/E -rewriting, we require E -coherence: for any �-terms u, u′, v if u =E u′
and u →R,E v , then there exists a term v ′ such that u′ →R,E v ′ and v =E v ′ . If E -coherence holds for a set of rewrite 
rules R , we say that R is E -coherent. Note that, assuming E -matching is decidable, →R,E is decidable and notions such as 
confluence, termination, irreducible term, and normalized substitution are defined for →R,E straightforwardly [38].

2.2. Equational theories as rewrite theories

Algebraic structures often involve axioms like associativity and/or commutativity of function symbols, which cannot be 
handled by ordinary term rewriting but are instead handled implicitly by working with congruence classes of terms. This 
is why the equation set of an equational theory is often decomposed into a disjoint union E = E ′ � B , where B is a set of 
algebraic axioms (which are implicitly expressed in Maude as attributes of their corresponding operator using the assoc, 
comm, and id: keywords) that are used for B-matching, and E ′ is a set of equations that are implicitly oriented from left to 
right as a set �E ′ of rewrite rules (and operationally used as simplification rules modulo B). By doing this, a (well-behaved) 
rewrite theory (�, B, �E ′) can be defined, with �E ′ = {t ⇒ t′ | t = t′ ∈ E ′}, which satisfies all of the conditions that we need.

This is formalized by the notion of decomposition �E = (�, B, �E) of an equational theory E = (�, E � B).

Definition 1 (Decomposition [28]). Let E = (�, E � B) be an order-sorted equational theory. We call (�, B, �E) a decomposition
of E if (�, B, �E) is an order-sorted rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t = t′ in B , we have V ar(t) = V ar(t′), and linear, i.e., for each t = t′ in B , each variable occurs 
only once in t and in t′ .

2. B is sort-preserving, i.e., for each t = t′ in B and substitution σ , we have tσ ∈ T�,s(X ) iff t′σ ∈ T�,s(X ) , for each sort 
s in the signature. Furthermore, for each equation t = t′ in B , all variables in V ar(t) and V ar(t′) have a common top 
sort.

3. B has a finitary and complete unification algorithm, which implies that B-matching is decidable.
4. The rewrite rules in �E are convergent (i.e., confluent, terminating, and sort-decreasing), and B-coherent.

Normal forms t ↓�E,B in a decomposition (�, B, �E) are also called canonical forms.
Note that the mild requirements listed in Definition 1 are satisfied by most of the equational theories that are used in 

practice. In particular, the axiom set of commonly occurring equational theories only includes combinations of associativity 
(A), commutativity (C) and identity (U) axioms, and all the three axioms are regular, linear and sort-preserving. Furthermore, 
there exist finitary and complete unification algorithms for modular axiom combinations such as ACU, AC, CU, C, and U. The 
remaining cases (namely, A and AU) are partially supported by Maude (hence by our framework) because unification modulo 
A and AU are generally infinitary, yet Maude generates a complete and finitary set of equational unifiers for many A and AU 
unification problems [24].

It is worth noting that the Maude system automatically provides B-coherence completion w.r.t. rewriting, for rules and 
equations, for any combination of associativity and/or commutativity and/or identity axioms. That is, the specified rules and 
equations are automatically completed with no need for user intervention. Note that, for narrowing derivations, B-coherence 
of rules and equations must be explicitly ensured by the user (see [39]). We often abuse notation and say that (�, B, �E ′) is 
a decomposition of an order-sorted equational theory (�, E � B), where E ′ is the explicitly extended B-coherent completion 
of E .

The Maude interpreter implements rewriting modulo E � B by means of two much simpler relations than →R/E and 
→R,E , namely →R,B and →�E,B , so that rules and (oriented) equations can be intermixed in the rewriting process by 
simply using an algorithm of matching modulo B . Then, an (R, E � B)-rewrite step →R,�E�B on a term t in the rewrite 
theory R = (�, E � B, R) can be implemented, without loss of completeness, by applying the following rewrite strategy: (i) 
reduce t w.r.t. →�E,B to the canonical form t ↓�E,B ; and (ii) rewrite t ↓�E,B w.r.t. →R,B .

A rewrite sequence t →∗
R,�E�B

t′ in the rewrite theory R = (�, E � B, R) is then deployed as the (possibly infinite) rewrite 
sequence (with t0 = t and tn↓�E,B= t′)

t0 →∗
�E,B

t0↓�E,B →R,B t1 →∗
�E,B

t1↓�E,B→R,B . . . →R,B tn↓�E,B

that interleaves →�E,B rewrite steps and →R,B rewrite steps following the strategy mentioned above. Note that, following 
this strategy, after each rewrite step using →R,B , generally the resulting term ti , i = 1, . . . , n, is not in canonical normal 
form and is thus normalized before the subsequent rewrite step using →R,B is performed. Also, in the precise strategy 
adopted by Maude, the last term of a finite computation is finally normalized before the result is delivered.

Example 2. Consider the rewrite theory R = (�, E � B, R) in Example 1 together with the system state

t0 = [Cli-A,Srv-A,a,shift(s(0)),mt] & [Srv-A,s(s(0))].
7
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Then, there exists the following one-step rewrite sequence

t0 →∗
R,�E�B

t1↓�E,B where

t1↓�E,B= (Srv-A <- {Cli-A,c}) & [Srv-A,s(s(0))] & [Cli-A,Srv-A,a,s(s(0)),mt]

The considered rewrite sequence specifies an initial communication request from client Cli-A to server Srv-A using the 
key K=s(s(0)) and an initial message a. Maude implements t0 →∗

R,�E�B
t1↓�E,B as the rewrite sequence

t0 →+
�E,B

t0↓�E,B→R,B t1 →+
�E,B

t1↓�E,B

where the req rule is applied. More specifically, the rewrite sequence t0 →+
�E,B

t0↓�E,B equationally simplifies the initial state 
t0 into its canonical form t0↓�E,B by completely evaluating the function call shift(s(0)) into the term s(s(0)). Then 
the req rule is applied to t0↓�E,B and a new term

t1 = [Srv-A,s(s(0))] & (Srv-A <- {Cli-A,enc(a, s(s(0)))}) & [Cli-A,Srv-A,a,s(s(0)),mt]

is yielded that is further simplified into the canonical form t1↓�E,B by normalizing the function call enc(a,s(s(0))) with 
the oriented equations in �E .

2.3. Symbolic computation in rewrite theories

Similarly to rewriting modulo an equational theory E , where syntactic pattern-matching is replaced with matching modulo 
E (or E -matching), in narrowing modulo an equational theory (i.e., narrowing with the rules in R modulo the equations and 
axioms in E), syntactic unification is replaced by equational unification (or E -unification). More precisely, we define the 
equational narrowing relation �R,E on T�(X ) by t �σ ,p,R,E t′ (or simply t �σ ,R,E t′ or even t �σ t′) iff there is a non-
variable position p ∈ Pos�(t), a rule λ ⇒ ρ in R , and a substitution σ such that t|pσ =E λσ and t′ = t[ρ]pσ . A term t is 
called (R, E )-strongly irreducible iff there is no term u such that t �σ ,R,E u.

In a topmost rewrite theory R = (�, E � B, R), with E = (�, E � B), �R,E is implemented in Maude by means of a 
three-layer narrowing relation �R,�E�B [20]:

1. An (R, E � B)-narrowing step from s to t with a rule l ⇒ r in R can be performed iff there is a E -unifier θ of the 
�-equation s = l such that t = rθ .

2. In turn, each E -unification problem s =?
E l of Point 1 is solved by using folding variant narrowing in the equational 

theory E that computes a finite, minimal and complete set of E -unifiers for s = l under suitable requirements [29]. 
Following [42], this is done by equationally narrowing the term s =? = l (that encodes the unification problem s =?

E l) to 
an extra constant tt for denoting success in the rewrite theory R0 = (� ∪ {=? =, tt}, B, �E ∪ {ε}), where the extra6 rewrite 
rule ε = (X =? = X ⇒ tt) has been added to �E in order to mimic unification of two terms (modulo B) as a narrowing 
step7 that uses ε.

3. For each folding variant narrowing step using a rule in �E modulo B in Point 2, B-unification algorithms are employed.

The search space of topmost narrowing computations in (�, E � B, R) (respectively, FV-narrowing computations in 
(�, B, �E)) can be represented as a tree-like structure that we call topmost narrowing (respectively, FV-narrowing) tree.

Equational, (R, E � B)-narrowing computations are natively supported by Maude version 3.0 for unconditional rewrite 
theories.

Example 3. Consider the (partial) specification of integer numbers defined by the equations E = {X + 0 = X, X + s(Y) =
s(X + Y), p(s(X)) = X, s(p(X)) = X}, where variables X, Y are of sort Int, operators p and s respectively stand for the 
predecessor and successor functions, and B contains the commutativity axiom X +Y = Y +X. Also consider that the program 
signature � contains a binary state constructor operator ||_, _ ||: Int Int → State for a new sort State that models 
a simple network of processes that are either performing a common task (denoted by the first component of the state) 
or have finished the task (denoted by the second component). The system state t =||s(0),s(0) + p(0)|| can be rewritten 
to ||0,s(0)|| (modulo the equations of E and the commutativity of +) using the following rule that specifies the system 
dynamics:

||A,B|| ⇒ ||p(A),s(B)||, where A and B are variables of sort Int (1)

6 In an order-sorted setting, multiple equations are actually used to cover any possible sort in R.
7 For example, by using ε, the term s(0) ∗ 0 =? = U ∗ s(V ) FV-narrows to tt (modulo commutativity of ∗), and the computed narrowing substitution does 

coincide with the unifier modulo commutativity of the two argument terms, i.e., {U �→ 0, V �→ 0}.
8



M. Alpuente, D. Ballis, S. Escobar et al. Journal of Logical and Algebraic Methods in Programming 124 (2022) 100729
Also, a narrowing reachability goal from ||V+ V, 0 + V|| to ||p(0), s(0)|| succeeds (in one step) with computed answer 
substitution8 {V �→ 0}, which might signal a possible programming error in rule (1) since the number of processes in the 
first component of the state becomes negative.

3. Specialization of rewrite theories

In this section, we present the specialization procedure NPER
U
A , which allows a rewrite theory R = (�, E � B, R) to be 

optimized by specializing the underlying equational theory E = (�, E � B) with respect to the calls in the rewrite rules of R . 
The procedure NPER

U
A extends the equational, narrowing-driven partial evaluation algorithm EqNPE

U
A of [5], which applies 

to equational theories and is parametric on an unfolding operator U that is used to construct finite narrowing trees for any 
given expression and an abstraction operator A that guarantees global termination.

3.1. Partial evaluation of equational theories

Given a convergent equational theory E = (�, E � B) and a set Q of terms (henceforth called specialized calls), we define 
a transformation EqNPE

U
A that derives a new equational theory E ′ which computes the same answers (and values) as E for 

any input term t that is a recursive instance (modulo B) of the specialized calls in Q . This means that all of the subterms 
of t (including itself) are a substitution instance of some term in Q . The transformation EqNPE

U
A has two parameters, an 

unfolding operator U and an abstraction operator A , whose precise meaning is clarified below.
The algorithm requires that the input equational theory E to be specialized is decomposed as a rewrite theory �E =

(�, B, �E), whose only equations are the equational axioms in B and where the equations in E are explicitly oriented from 
left to right as the set �E of rewrite rules.

The transformation consists of iterating two consecutive actions:

(i) Symbolic execution (Unfolding). A finite, possibly partial folding variant narrowing tree for each input term t of Q is 
generated.9 This is done by using the unfolding operator U (Q , �E ) that determines when and how to stop the deriva-
tions in the FV-narrowing tree.

(ii) Search for regularities (Abstraction). In order to guarantee that all calls that may occur at runtime are covered by the 
specialization, every (sub-)term in any leaf of the tree must be equationally closed w.r.t. Q . This notion extends the 
classical PD closedness by:
1) considering B-equivalence of terms;
2) considering a natural partition of the signature as � = D � 
, where 
 are the constructor symbols, which are used 

to define the (irreducible) values of the theory (also called constructor terms), and D are the defined symbols, which 
are evaluated away by equational rewriting; and

3) recursing over the term structure to handle nested function calls.
Roughly speaking, a term u is equationally closed modulo B w.r.t. Q iff either: (i) it does not contain defined function 
symbols of D , or (ii) there exists a substitution θ and a (possibly renamed) q ∈ Q such that u =B qθ and the terms in 
θ are recursively Q -closed. For instance, given a defined binary symbol • (i.e., • ∈ D ) that does not obey any structural 
axioms, the term t = a • (Z • a) is equationally closed w.r.t. Q = {a • X, Y • a} or {X • Y }, but it is not closed with Q
being {a • X}; however, it would be closed if • were commutative.

Steps (i) and (ii) of the transformation are iterated as long as new terms are generated, and the considered abstraction 
operator A is used to guarantee that only finitely many expressions are evaluated, thus ensuring global termination.

For simplicity, the formulation of the EqNPE framework in [5] does not explicitly deal with subsort overloading of sym-
bols, which could introduce subtle issues in the partial evaluation process, e.g., when a given function symbol is both a 
defined function symbol and a constructor operator. The new framework in this article does deal with subsort overload-
ing via the following definition that naturally extends the equational closedness of [5] by introducing a least sort check to 
precisely identify constructor-rooted terms (i.e., terms whose top symbol is a constructor operator).

Definition 2 ((Extended) Equational closedness). Let (�, B, �E) be an equational theory decomposition and Q be a finite set of 
�-terms, i.e., terms that are built from � and a countably infinite set of variables X . Assume the signature � splits into a 
set D of defined function symbols and a set 
 of constructor operators so that � = D �
. We say that a �-term t is closed 
modulo B , or simply B-closed, (w.r.t. Q and �) if closedB(Q , t) holds, where the predicate closedB is defined as follows:

8 It is essentially calculated by first computing an E -unifier σ of the input term ||V+ V,0+ V|| and the left-hand side ||A,B|| of rule (1), σ =
{A/(V+ V),B/V}. Second, an E -unifier σ ′ is computed between the instantiated right-hand side ||p(V+ V),s(V)|| and the target state ||p(0),s(0)||, 
σ ′ = {V �→ 0}. Third, the composition σσ ′ = {A �→ 0+ 0,B �→ 0,V �→ 0} is simplified into {A �→ 0,B �→ 0,V �→ 0} and finally restricted to the variable 
V in the input term, yielding {V �→ 0}.

9 For simplicity, we assume that Q is normalized w.r.t. the equational theory E . If this were not the case, for each t ∈ Q that is not in canonical form 
such that t ↓�E,B= C(ti), where C( ) is the (possibly empty) constructor context of t ↓�E,B and ti are the maximal calls in t ↓�E,B , we would replace t in Q

with the normalized terms ti and add a suitable “bridge” equation t = C(ti) to the resulting specialization.
9
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closedB(Q , t) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

true if t ∈ X
closedB(Q , t1) ∧ . . . ∧ closedB(Q , tn) if t = c(tn : sn),∃c : sn → s ∈ � s.t.

c ∈ 
, ls(t) = s, n ≥ 0∧
x�→t′∈θ closedB(Q , t′) if ∃q ∈ Q ,∃θ such that

root(t) = root(q) ∈ D and
qθ =B t

f alse otherwise

A set T of terms is closed modulo B (w.r.t. Q and �) if closedB(Q , t) holds for each t in T . A set R of rules is closed 
modulo B (w.r.t. Q and �) if the set that can be formed by taking the right-hand sides of all of the rules in R is also closed 
modulo B . We often omit � when no confusion can arise.

The main difference of Definition 2 with respect to [5] is in the case when t = c(tn) because, due to subsort overloading, 
we might have an overloaded symbol in � with two different typings: a constructor typing and a defined typing. To cope 
with this, we need to search the very specific constructor declaration that matches the input term t; i.e., c : sn → s ∈ �, 
n ≥ 0, with c ∈ 
 and ls(t) = s. More precisely, we adopt the natural assumption that any constructor term is still constructor 
under instantiation (preregular-below condition in [48]). In other words, the preregular-below condition states that every 
overloaded symbol in � cannot have a defined typing that lies below any constructor typing for the same symbol in the 
sort poset.

Given a term t , its least-sort ls(t) provides the information that is required to establish whether the top symbol of t is 
(or is not) a constructor operator and allows us to deal with non-free10 constructor operators (whose behavior is defined 
through equations), which could not be handled by our previous framework in [5].

Example 4. Consider the following Maude program that encodes an equational theory with an overloaded operator c and 
an empty set of axioms B = ∅:

fmod OVERLOAD is
sorts A B .
subsort A B < C .
op a : -> A [ctor].
op b : -> B [ctor].
op c : A -> A [ctor] .
op c : B -> B .
eq c(X:B) = b .
endfm

The [ctor] attribute is the Maude syntax that is used to label constructor operators. Note that the program is 
preregular-below since the constructor typing c : A -> A for the overloaded operator c and its defined typing are in-
comparable in the sort poset. In particular, c : B -> B does not lie below c : A -> A.

The term c(a) is constructor and its least sort matches the declaration op c : A -> A whereas the term c(b) is 
not constructor and its least sort matches the declaration of the defined symbol op c : B -> B.

Also, for Q = ∅, closed∅(Q, c(b)) = false, since ls(c(b)) = B and the appropriate (defined) typing op c : B -> B 
is selected by closed∅ to establish that c(b) is not ∅-closed w.r.t. Q because it vacuously holds that there is no term q ∈ Q
that covers c(b).

In contrast, our previous framework in [5] would have erroneously classified c(b) as ∅-closed w.r.t. Q because we did 
not support overloaded symbols that can be constructor or defined depending on their typing. Actually, the top symbol of 
c(b) would simply have been considered to be constructor (because of the constructor typing op c : A -> A) and thus 
the closedness check for c(b) w.r.t. Q would have succeeded since its argument, b, is also constructor.

Example 5. Consider the rewrite theory in Example 1 whose complete specification appears in Appendix B. The rewrite 
theory is trivially preregular-below since it does not include any overloaded symbol.

Given the set L of leaves in the FV-narrowing trees for the partially evaluated calls in Q , in order to properly add to 
Q the non-closed (sub-)terms occurring in the terms of L , the abstraction operator A(Q , L , B) is applied, which yields 
a new set of terms which may need further evaluation. The abstraction operator A(Q , L , B) ensures that the resulting 
set of terms “covers” (modulo B) the calls previously specialized and that equational closedness modulo B is preserved 
throughout successive abstractions.

10 A constructor operator c ∈ 
 is free in E if and only if, for every c-rooted term t , there is no c′-rooted constructor term t′ , with c′ �= c, such that t �=B t′
and t =E t′ (i.e., t↓�E,B= t′). For the case when B = ∅, this is equivalent to say that free constructors only obey the strict equality axiom c(X1, ..Xn) =
c′(Y1, .., Yn) ⇔ c = c′ and Xi = Yi , for i = 1, .., n.
10
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More formally, for the correctness of the equational partial evaluation, any instance of the generic abstraction operator 
A(Q , L , B) must agree with the following definition.

Definition 3 (Equational abstraction [5]). Given the finite set of terms T and the already evaluated set of terms Q , 
A(Q , L , B) returns a new set Q ′ such that:

1. if v ∈ Q ′ , then there exists u ∈ (Q ∪ T ) and a renamed version v ′ of v , such that u|p =B v ′θ for some position p and 
substitution θ

2. for all t ∈ (Q ∪ T ), t is closed with respect to Q ′ modulo B .

A concrete implementation of an abstract operator that meets the requirements of Definition 3 is shown in Sec-
tion 5.1.

Note that the equational partial evaluation procedure does not explicitly compute a partially evaluated equational the-
ory. It does so implicitly, by computing a (generally augmented) set Q ′ of partially evaluated terms that unambiguously 
determine the desired partial evaluation of the equations E . The partial evaluation of E basically consists of the set E ′ of 
resultants tσ = t′ that are associated with the derivations in the FV-narrowing tree from a root t ∈ Q ′ to a leaf t′ with com-
puted substitution σ (i.e., the accumulated substitution along the narrowing derivation to the leaf). Note that the closedness 
condition modulo B w.r.t. Q ′ is satisfied for all function calls that appear in the right-hand sides of the equations in E ′ . 
We assume the existence of a function GenTheory(Q ′, (�, E � B)) that delivers the partially evaluated equational theory 
E ′ = (�′, E ′ � B ′) univocally determined by Q ′ and the original equational theory E = (�, E � B), with �′ = � and B ′ = B . 
Formally,

GenTheory(Q ′,E ) = (�, {tσ = t′ | t ∈ Q ′, t′ ∈ U (Q ′, �E ), t FV-narrows to t′

with computed substitution σ } � B).

3.2. The NPER
U
A scheme for the specialization of rewrite theories

The specialization of the rewrite theory R = (�, E � B, R) is achieved by partially evaluating the hosted equational theory 
E = (�, E � B) w.r.t. the rules of R , which is done by using the partial evaluation procedure EqNPE

U
A of Section 3.1. By 

providing suitable unfolding and abstraction operators, different instances of the specialization scheme can be defined.
The NPER

U
A procedure is outlined in Algorithm 1 and it consists of two phases.

Algorithm 1 Symbolic specialization of rewrite theories NPER
U
A (R).

Require:
A rewrite theory R = (�, E � B, R), an unfolding operator U

1: function NPER
U
A (R)

Phase 1. Partial Evaluation
2: R ′ ← {(l ↓�E,B ) ⇒ (r↓�E,B ) | l ⇒ r ∈ R}
3: Q ← mcalls(R ′)
4: Q ′ ← EqNPE

U
A ((�, E � B), Q )

5: (�′, E ′ � B ′) ← GenTheory(Q ′, (�, E � B))

Phase 2. Compression
6: (�′′, E ′′ � B ′′, R ′′) ← Compress((�, E � B, R ′), (�′, E ′ � B ′), Q ′)
7: return (�′′, E ′′ � B ′′, R ′′)

Phase 1 (partial evaluation). It applies the EqNPE
U
A algorithm to specialize the equational theory E = (�, E � B) w.r.t. a set 

Q of specialized calls that consists of all of the maximal function calls that appear in the (�E, B)-normalized version R ′ of the 
rewrite rules of R .

Given � = (D �
), a maximal function call in a term t is a subterm t|w of t , with w ∈ Pos(t), such that (i) root(t|w) ∈ D , 
and (ii) there does not exist w ′ ∈ Pos(t), such that w ′ < w and root(t|w ′ ) ∈ D . In other words, a maximal function call in a 
term t is any outermost subterm of t that is rooted by a defined function symbol of E . By mcalls(R), we denote the set of 
all maximal calls in the rules of R .

Example 6. Let � be the signature { f , g, a, b, c} where D = { f , g}, 
 = {a, b, c}, and g and c are associative and commuta-
tive operators. Then, the maximal function calls for the term c( f (g(a, a)), c(g(g(b, b), a), a)) are f (g(a, a)) and g(g(b, b), a).

Example 7. Consider the set of rewrite rules R of the rewrite theory of Example 1 that specifies the dynamics of our 
client-server communication protocol. Then, mcalls(R) ={enc(Q,K), dec(M,K)}.
11
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This phase produces the new set of specialized calls Q ′ from which the partial evaluation E ′ = (�′, E ′ � B ′) of E w.r.t. 
Q is univocally derived by GenTheory(Q ′, (�, E � B)).

Phase 2 (compression). It consists of a refactoring transformation that takes as input the rewrite theory R ′ = (�, E � B, R ′), 
the computed partially evaluated theory E ′ = (�′, E ′ � B ′), and the final set of specialized calls Q ′ from which E ′ derives. 
Roughly speaking, the transformation computes a new, much more compact equational theory E ′′ = (�′′, E ′′ � B ′′) where 
unused symbols and unnecessary repetitions of variables are removed and equations of E ′ are simplified by recursively 
renaming all expressions that are Q ′-closed modulo B by using an independent (i.e., overlap-free) renaming function that 
is derived from the set of specialized calls Q ′ .

Formally, an independent renaming ρ for Q ′ is a mapping from terms to terms that is defined as follows. For each t of 
sort s in Q ′ with root(t) = f , we define ρ(t) = ft(xn : sn), where xn are the distinct variables in t in the order of their first 
occurrence and ft : sn → s is a new function symbol that does not occur in � or Q ′ , and is different from the root symbol 
of any other ρ(t′), with t′ ∈ Q ′ and t′ �= t .

By abuse, we let ρ(T ) denote the set T ′ = {ρ(t) | t ∈ T } for a given set of terms T .

Example 8. Consider the rewrite theory in Example 1 together with the set of specialized calls

Q = {dec(enc(M,s(s(0)))),enc(enc(M,K1),K2)}.
An initial renaming ρ for Q is given by

ρ = {dec(enc(M,s(s(0)))) �→ f0(M),enc(enc(M,K1),K2) �→ f1(M,K1,K2)},
where f0: Message -> Message and f1: Message Nat Nat -> Message are new function symbols.

Compression is performed by the Compress function given in Algorithm 2 that relies on the notion of best fitting calls
(BFC), which is used in the renaming process for selecting the specialized calls from Q ′ that best cover a given call t . 
Formally, given t and a set U of terms, let AntiB(t, U ) = {u ∈ U | t =B uθ} be the subset of U whose elements are more 
general (modulo B) than t (i.e., the anti-instances of t modulo B occurring in U ). Then, we define the best fitting calls 
B F C B(t, U ) for t in U w.r.t. B as the subset of minimally general elements of AntiB(t, U ) (i.e., if u ∈ B F C B(t, U ), then 
B F C B(t, U ) does not contain any term that is strictly more general than u modulo B). In symbols,

B F C B(t, U ) = {u ∈ AntiB(t, U ) | � u′ ∈ AntiB(t, U ) s.t. u′ <B u}
Note that B F C B(t, U ) may contain more than one element, and hence multiple best fitting terms are possible for a given 
term t . Let us see an example.

Example 9. Consider a signature that contains an associative binary symbol ⊕ and the constant operators a, b and c. Let X
and Y be variables. Let t = a ⊕ b ⊕ c and U = {a ⊕ X, Y ⊕ b ⊕ c}. Then, B F C B(t, U ) = U , because both a ⊕ X and Y ⊕ b ⊕ c
are anti-instances of t modulo associativity and neither a ⊕ X is more general than Y ⊕ b ⊕ c modulo A nor vice versa.

Algorithm 2 Compression algorithm.
Require:

A rewrite theory R′ = (�, E � B, R ′), a partial evaluation E ′ = (�′, E ′ � B ′) of (�, E � B) w.r.t. a set of specialized calls Q .
1: function Compress(R, E ′, Q )
2: Let ρ be an independent renaming for Q in
3: E ′′ ← ⋃

t∈Q {ρ(t)θ = RNρ(t′) | tθ = t′ ∈ E ′}
4: R ′′ ← {RNρ(l) ⇒ RNρ(r) | l ⇒ r ∈ R ′}
5: �′′ ← (�′ \ { f | f occurs in ((E � B) \ (E ′ � B ′))}) ∪ {root(ρ(t)) | t ∈ Q }
6: B ′′ = {ax( f ) ∈ B ′ | f ∈ �′ ∩ �′′}
7: return (�′′, E ′′ � B ′′, R ′′)

where
RNρ(t) =

⎧⎪⎨
⎪⎩

c(RNρ(tn)) if t = c(tn) with c : sn → s ∈ � s.t. c ∈ 
, ls(t) = s, n ≥ 0

ρ(u)θ ′ if ∃θ,∃u ∈ B F C B (t, Q ) s.t. t =B uθ and θ ′ = {x �→ RNρ(xθ) | x ∈ Dom(θ)}
t otherwise

Essentially, the Compress function recursively computes, by means of the function RNρ , a new equation set E ′′ by 
replacing each call t in E ′ by a call to the corresponding renamed function according to ρ and the best fitting calls for t in 
Q , i.e., B F C B(t, Q ).11

11 Note that the function RNρ is actually non-deterministic since order-sorted anti-unification modulo axioms is not unitary, in contrast to untyped syn-
tactic anti-unification. Hence, multiple (equally “best”) renamings are possible for a term t under an independent renaming ρ . However, our implementation 
deterministically selects one element of B F C B(t, Q ), thereby producing just one renaming for t .
12



M. Alpuente, D. Ballis, S. Escobar et al. Journal of Logical and Algebraic Methods in Programming 124 (2022) 100729
Furthermore, a new rewrite rule set R ′′ is also produced by consistently applying RNρ to the rewrite rules of R ′ . Formally, 
each rewrite rule l ⇒ r in R ′ is transformed into the rewrite rule RNρ(l) ⇒ RNρ(r), in which every maximal function call 
t in the rewrite rule is recursively renamed according to the independent renaming ρ and B F C B (t, Q ). The algorithm also 
computes the specialized signature �′′ and restricts the set B ′ to those axioms obeyed by the function symbols in �′ ∩ �′′ . 
Finally, the rewrite theory R ′′ = (�′′, E ′′ � B ′′, R ′′) is delivered as the final outcome.

Note that, while the independent renaming suffices to rename the left-hand sides of the equations in E ′ (since they are 
mere instances of the specialized calls), the right-hand sides are renamed by means of the auxiliary function RNρ , which 
recursively replaces each call in the given expression by a call to the corresponding renamed function (according to ρ).

Also, observe that compression does not reduce the number of equations and rules of a rewrite theory, it just replaces 
(possibly) textually-large expressions in equations and rules with simpler ones that are obtained via the recursive renaming 
procedure. However, the effect of compression is much more striking than a mere reduction of the program size. This is 
because of two reasons. On the one hand, the set of axioms may be cut down whenever any operator that is equipped 
with some axioms and does not occur in the partially evaluated equations is taken out from the theory E ′ , as shown in 
Example 17. On the other hand, potential overlaps among the specialized calls in the final set Q ′ are removed by applying 
the independent renaming ρ , and so is any spurious non-determinism that might have been introduced by the specialization 
process before compression. This is illustrated in the following example.

Example 10. Consider the equational definition

1 eq append(nil, L) = L [ variant ] .
2 eq append(X . L,L’) = X . append(L,L’) [variant] .
3 eq append(append(nil, nil), L) = L [ variant ] .
4 eq append(append(nil, X . L), L’) = X . append(L, L’) [ variant ] .
5 eq append(append(X . L, L’), L’’) = X . append(append(L, L’), L’’) [ variant ] .

that can be obtained by partially evaluating the well-know append function for list concatenation w.r.t. the input 
call append(append(L1:List,L2:List),L3:List) that concatenates three lists by applying the append function 
twice.

The first two equations in the specification above reproduce the original definition of the append function where nil
and _._ are the usual list constructors, while the remaining three equations provide the intended specialization for the 
double append call. However, note that a given term append(append(l1,l2),l3)) could be possibly narrowed by 
using equations 3, 4, and 5, but also using equations 1 and 2, which is certainly unintended, wastes the optimized function 
and has more indeterminism than the original definition.

The compression phase is able to eliminate this extra, spurious non-determinism by producing the following independent 
set of renamed equations where double append applications can now be reduced only by f1 equations:

eq f0(nil, L) = L [ variant ] .
eq f0(X . L,L’) = X . f0(L,L’) [variant] .
eq f1(nil, nil, L) = L~ [ variant ] .
eq f1(nil, X . L, L’) = X . f0(L, L’) [ variant ] .
eq f1(X . L, L’, L’’) = X . f1(L, L’, L’’) [ variant ] .

The following technical result holds for the specialization of the rewrite theories.

Theorem 1 (Preservation of executability conditions by NPER
U
A (R)). Let R = (�, E � B, R) be a topmost rewrite theory such that 

E = (�, E � B) and R is E -coherent. Let �E = (�, B, �E) be a decomposition of E , and let the left-hand sides of the rules in R be 
(�E, B)-strongly irreducible. Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls 
in the normalized rules of R, let R ′ = (�′, E ′ � B ′, R ′) =NPER

U
A (R) be the specialization of R , with Q ′ =EqNPE

U
A ((�, E � B), Q )

and E ′ = (�′, E ′ � B ′) =GenTheory(Q ′, (�, E � B)) being the partial evaluation of E w.r.t Q . (under a given independent renaming 
ρ for Q ′).

Then, �E ′ = (�′, B ′, �E ′) is a decomposition of E ′ , R ′ is E ′-coherent, and the left-hand sides of the rules in R ′ are (�E ′, B ′)-strongly 
irreducible.

Now we are ready to establish the strong correctness of our specialization algorithm.

Theorem 2 (Strong correctness of NPER
U
A (R)). Let R = (�, E � B, R) be a topmost rewrite theory such that E = (�, E � B)

and R is E -coherent. Let �E = (�, B, �E) be a decomposition of E , and let the left-hand sides of the rules in R be (�E, B)-strongly 
irreducible. Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls in the nor-
malized rules of R, let R ′ = (�′, E ′ � B ′, R ′) =NPER

U
A (R) be the specialization of R , with Q ′ =EqNPE

U
A (E , Q ) and E ′ =

(�′, E ′ � B ′) =GenTheory(Q ′, (�, E � B)) being the partial evaluation of E w.r.t Q . (under a given independent renaming ρ for 
Q ′).

Let u ∈ T�(X ) be B-closed w.r.t. Q ′ and � and u′ = RNρ(u) ∈ T�′ (X ).
13
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1. (u →∗
R,�E�B

v) if and only if (u′ →∗
R,�E�B

v ′), with v ′ =B ′ RNρ(v).

2. If E satisfies the FVP, then for any (�E, B)-irreducible computed substitution σ , (u �∗
σ ,R,�E�B

v) if and only if (u′ �∗
σ ′,R ′, �E ′�B ′ v ′), 

with v ′ =B ′ RNρ(v) and σ ′ =B ′ RNρ(σ ).

Proofs of the (strong) correctness of the N P E RU
A specialization algorithm and of the preservation of the executability 

conditions of the specialized theories are given in Appendix A.

4. FV-narrowing for specializing rewrite theories

Given a rewrite theory R = (�, E � B, R), with E = (�, B, �E) being a decomposition of (�, E � B), the equational theory 
E in R may or may not meet the finite variant property (FVP). In this section, we formalize the notion of finite vari-
ant property and the related narrowing strategy that is called folded variant narrowing, which are the key ingredients to 
partially evaluate finite variant as well as non-finite variant equational theories.

Intuitively, given an equational theory E = (�, E � B), the (�E,B)-variants (or simply variants) (tσ↓�E,B
, σ) of t are the “ir-

reducible patterns” (tσ)↓�E,B
to which t can be narrowed, with computed substitution σ , by applying the oriented equations 

�E modulo B . For instance, there is an infinite number of variants for the term (0 + Y:Int) in the equation the-
ory of Example 3; e.g., (Y:Int, id), (0, {Y:Int �→ 0}), (s(0), {Y:Int �→ s(0)}), (s(Z:Int), {Y:Int �→ s(Z:Int)}), 
(p(0), {Y:Int �→ p(0)}), . . .

A preorder relation of generalization between variants provides a notion of most general variant and also a notion of 
completeness of a set of variants. Formally, a variant (t, σ) is more general than a variant (t′, σ ′) w.r.t. an equational theory 
E (in symbols, (t, σ) ≤E (t′, σ ′)) iff t ≤E t′ and σ ≤E σ ′ . For instance, for the term 0 + Y:Int, the most general variant is 
(Y : Int, id) since any other variant can be obtained by equational instantiation.

Example 11. Consider the definition of the (associative and commutative) Boolean conjunction operator ∧ given by E =
{X ∧ true = X, X ∧ false = false}, where variable X belongs to sort Bool and constants true and false stand 
for the corresponding Boolean values. There are five most general variants modulo associativity and commutativity for the 
term X∧ Y, which are: {(X∧ Y,id), (Y, {X �→ true}), (X, {Y �→ true}), (false, {X �→ false}), (false, {Y �→ false})}.

An equational theory has the finite variant property (FVP) (or it is called a finite variant theory) iff there is a finite and 
complete set of most general variants for each term. It is generally undecidable whether an equational theory has the 
FVP [18]; a semi-decision procedure is given in [37] (and implemented in [7]) that works well in practice. The procedure in 
[37] works by computing the variants of all flat terms f (X1, . . . , Xn) for any n-ary operator f in the theory and pairwise-
distinct variables X1, . . . , Xn (of the corresponding sort); the theory does have the FVP iff there is a finite number of most 
general variants for every such term.

For example, the theory of Example 11 satisfies the FVP since the flat term (X and Y) has only five most general 
variants. In contrast, the equational theory of Example 1 does not have the finite variant property; for instance, the term 
d(X,Y) has an infinite number of most general variants (X, {Y �→0}), (unshift(X), {Y �→s(0)}), . . ., (unshiftk(X), 
{Y �→ sk(0)}).

In [29], folding variant narrowing was proved to be complete, minimal, and finitary for variant generation and variant 
E � B-unification w.r.t. (�E,B)-normalized substitutions, provided that the theory has the FVP.

FV-narrowing derivations correspond to sequences t0 �
σ0,�e0,B t1 �

σ1,�e1,B . . . �
σn,�en−1,B tn , where t �

σ ,�e,B t′ (or simply 
t �σ t′ when no confusion can arise) denotes a transition (modulo the axioms in B) from term t to t′ via the variant 
equation e (i.e., an oriented equation �e that is enabled to be used for FV-narrowing thanks to the attribute variant) using 
the equational unifier σ . The composition σ0σ1σn−1 of all the unifiers along a narrowing sequence leading to tn (restricted 
to the variables of t0) is the computed substitution of this sequence. By notation t �

σ ,�E,B
t′ (or also t ��E,B

t′), we denote a 

FV-narrowing step which is performed using some oriented equation in �E . Also, notation t �n
σ ,�E,B

t′ (or simply t �n
�E,B

t′) 
denotes a FV-narrowing derivation of exactly n FV-narrowing steps. The set of all FV-narrowing computations for a term t
in E can be represented as a tree-like structure, denoted by VN�

�E (t), which we call the FV-narrowing tree of t in E .

Assuming that the initial term t is normalized, each (variant narrowing) step t �
σ ,�e,B t′ is followed by the simplification 

of the term into its normal form by using all of the equations in the theory, which may include not only the variant 
equations in the theory but also (non-variant) equations (i.e., equations without the variant attribute). More precisely, 
given a rewrite theory R = (�, E � G � B, R), where B is the axiom set, E is the set of variant equations, and G is the 
set of non-variant equations, Maude does not perform narrowing with R modulo E � G � B , but only modulo E � B , while 
equational simplification is carried out modulo the whole equational set E � G � B . This gives a more flexible narrowing 
relation for rewrite rules, which is particularly useful when only the equational theory fragment (�, E ∪ B) has the FVP 
(while equations in G would break it) so that variant E � B-unification is finitary, whereas variant E �G � B-unification would 
be infinitary and undecidable. Therefore, in this scenario, each narrowing step with a rewrite rule r of the form t � � t′
σ ,R,E�B

14
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is followed by simplification using the rewrite relation →!
�G��E�B

, i.e., the combined relation (�σ ,p,R,�E�B ; →!
�G��E,B

) is defined 

as t �σ ,p,R,�E�B ; →!
�G��E,B

t′′ iff t �σ ,p,R,�E�B t′ , t′ →∗
�G��E,B

t′′ , and t′′ = t′ ↓�G��E,B .

An important number of verification tools and techniques rely on narrowing-based variant generation: for example, 
protocol analyzers, proofs of coherence and local confluence, termination provers, variant-based satisfiability checkers, and 
different applications of symbolic reachability analyses (references can be found in [7]).

5. Instantiating the specialization scheme for FVP and non-FVP theories

Recall that the parameterized NPER
U
A algorithm of Section 3.2 relies on two generic operators: an unfolding operator U

that defines the unfolding rule used to determine when and how to terminate the construction of the narrowing trees; and 
an abstraction operator A that is used to guarantee that the set of terms obtained during partial evaluation (i.e., the set of 
deployed narrowing trees) is kept finite and progressively covers (modulo B) all of the specialized calls. The instantiation 
of the scheme requires particularizing these two parameters in order to specify a terminating, correct, and complete partial 
evaluation for E . We provide two different implementations for the unfolding operator U , namely, Ufvp and Ufvp . Both 
implementations exploit the folding variant narrowing strategy outlined in Section 4. Furthermore, we will resort to a single 
concrete definition of the abstraction operator A that works for both cases and is based on an equational generalization 
algorithm.

5.1. Abstraction operator via least general generalizations

In general, there is no guarantee that the leaves L of the FV-narrowing trees are B-closed w.r.t. the specialized calls in 
Q . Indeed, the chosen unfolding operator U might deliver uncovered function calls that should be subsequently considered 
for specialization, while avoiding the set of partially evaluated calls from growing infinitely. In the following we introduce 
an abstraction operator AElgg(Q , L , B) that returns a set Q ′ of specialized calls that abstracts the set Q ∪ L by using the 
generalization process formalized in [5] that ensures that Q ′ is B-closed w.r.t. Q ∪ L .

The abstraction operator AElgg(Q , L , B) relies on an equational order sorted extension of the pure, syntactical least general 
generalization algorithm [8] so that not too much precision is lost despite the abstraction. Roughly speaking, the syntac-
tic generalization problem for two or more expressions, in a pure syntactic and untyped setting, means finding their least 
general generalization (lgg), i.e., the least general expression t such that all of the given expressions are instances of t
under appropriate substitutions. For instance, the expression sibling(X,Y) is a generalizer of both sibling(john,sam) and sib-
ling(tom,sam), but their least general generalizer is sibling(X,sam).

In [8], the notion of least general generalization is extended to the order-sorted modulo axioms setting, where function 
symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such 
axioms). For instance, the least general generalizer of sibling(sam,john) and sibling(tom,sam) is still sibling(X,sam), when 
sibling is a commutative symbol. In general, there is no unique lgg in the framework of [8], due to both the order-sortedness 
and to the equational axioms. Nonetheless, for the case of modular combinations of associativity and commutativity axioms, 
there is always a finite, minimal, and complete set of equational lggs (E-lggs) so that any other generalizer has at least one 
of them as a B-instance. This result is fully extended in [12] to any modular combinations of associativity, commutativity, 
and identity axioms.

Formally, given an order-sorted signature � and a set of algebraic axioms B , a generalization modulo B of the 
nonempty set of terms {t1, . . . , tn} is a pair 〈t, �〉, where � = {θ1, . . . , θn} is a set of substitutions, such that, for all 
i = 1, . . . , n, tθi =B ti . The pair 〈t, �〉 is the least general generalization modulo B of a set of terms S , written lggB(S), if 
(1) 〈t, �〉 is a generalization of S and (2) for every other generalization 〈t′, �′〉 of S , t′ is more general than t modulo B .

Let us introduce the notion of best matching set that is aimed at avoiding loss of specialization due to generalization. 
This notion is a proper, equational extension of [1] that we use to select the more appropriate terms in a given set U that 
cover a new call t . Roughly speaking, we determine the best matching set for t in a set U of terms w.r.t. B , BM S B(U , t), as 
follows: for each ui in U , we compute the set W i = lggB({ui, t}) and select the subset M of minimal upper bounds of the 
union W = ⋃

i W i . Then, the term uk belongs to BM S B(U , t) if at least one element in the corresponding Wk belongs to M .
Let us introduce a simple motivating example, with B = ∅.

Example 12. Let Q = { f (g(a)), f (g(b)), f (a)} and t = f (g(d(a, b))). To compute the best matching set for t in Q , we first 
consider the set

W = lgg({ f (g(a)), f (g(d(a,b)))}) ∪ lgg({ f (g(b)), f (g(d(a,b)))}) ∪ lgg({ f (a), f (g(d(a,b)))})
= { f (g(x)), f (g(y)), f (z)}

Now, the minimally general elements of W are f (g(x)) and f (g(y)), and thus we have BM S B(Q , t) = { f (g(a)), f (g(b))}.

Definition 4 (Best matching set modulo B). Let E = (�, E � B) be an order-sorted equational theory. Let U = {u1, . . . , un}
be a set of terms and t be a term. Given the decomposition (�, B, �E) of (�, E � B), consider the sets of terms W i =
15
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{w | 〈w, {θ1, θ2}〉 ∈ lggB({ui, t})}, for i = 1, .., n, and W = ⋃n
i=1 W i . The best matching set BM S B(U , t) for t in U modulo B is 

the set of those terms uk ∈ U such that the corresponding Wk contains a minimally general element w of W under ≤B , i.e., 
there is no different element w ′ in W (modulo the relation �B induced by ≤B ) such that w <B w ′ .

The following example illustrates the above definition.

Example 13. Let t = g(1) ⊗ 1 ⊗ g(Y ), U ≡ {1 ⊗ g(X), X ⊗ g(1), X ⊗ Y }, and consider B to consist of the associativity and 
commutativity axioms for the function symbol ⊗. To compute the best matching set for t in U , we first compute the sets 
of lggB ’s of t with each of the terms in U :

W1 = lgg AC ({g(1) ⊗ 1 ⊗ g(Y ),1 ⊗ g(X)}) = {〈Z ⊗ 1, {{Z/g(1) ⊗ g(Y )}, {Z/g(X)}}〉,
〈Z ⊗ g(W ), {{Z/1 ⊗ g(1), W /Y }, {Z/1, W /X}}〉}

W2 = lgg AC ({g(1) ⊗ 1 ⊗ g(Y ), X ⊗ g(1)}) = {〈Z ⊗ g(1), {{Z/1 ⊗ g(Y )}, {Z/X}}〉}
W3 = lgg AC ({g(1) ⊗ 1 ⊗ g(Y ), X ⊗ Y )}) = {〈Z ⊗ W , {{Z/1, W /g(1) ⊗ g(Y )}, {Z/X, W /Y }}〉}

Now, the set M of minimal upper bounds of the set W1 ∪ W2 ∪ W3 is M = {〈Z ⊗ 1, {{Z/g(1) ⊗ g(Y )}, {Z/g(X)}}〉, 〈Z ⊗
g(1), {{Z/1 ⊗ g(Y )}, {Z/X}}〉} and thus we have: BM S AC (U , t) = {1 ⊗ g(X), X ⊗ g(1)}.

Now, we are ready to instantiate the abstraction parameter A of our specialization procedure with the following function 
AElgg(Q , T , B) that relies on the notions of best matching set modulo B and equational least general generalization. Given 
the current set Q of already specialized calls, in order to augment Q with a new set T of terms, the best matching set is 
used when selecting the most appropriate terms of Q to be used for generalizing T , in the sense of providing appropriate 
least general generalizations.

Definition 5 (Abstraction operator). Let E = (�, E � B) be an order-sorted equational theory, with � = D � 
. Let U =
{u1, . . . , un} be a set of terms and t be a term. Given the decomposition (�, B, �E) of (�, E � B), Let Q , T be two sets of 
terms. We define AElgg(Q , T , B) = abs�̆B (Q , T ), where:

⎧⎪⎪⎨
⎪⎪⎩

abs�̆B (. . .abs�̆B (Q , {t1}), . . . , {tn}) if T = {t1, . . . , tn},n > 1
Q if T = ∅ or T = {X}, with X ∈ X

abs�̆B (Q , {t1, . . . , tn}) if T = {c(tn : sn)} and ∃c : sn → s ∈ � s.t. c ∈ 
, ls(t) = s,n ≥ 0
generalizeB(Q , Q ′, t) if T = {t},otherwise

where Q ′ = {t′ ∈ Q | root(t) = root(t′) and t′ �B t}. The function generalize is defined as follows:

generalizeB(Q ,∅, t) = Q ∪ {t}
generalizeB(Q , Q ′, t) = Q if t is B-closed w.r.t. Q and �

generalizeB(Q , Q ′, t) = abs�̆B (Q \ BM S B(Q ′, t), Q ′′↓�E,B) (otherwise)

where Q ′′ = {l | q ∈ BM S B(Q ′, t), 〈w, {θ1, θ2}〉 ∈ lggB({q, t}), x ∈ Dom(θ1) ∪ Dom(θ2), l ∈ {w, xθ1, xθ2}}.

It is worth noting that Definition 5 slightly generalizes the original formulation in [5] in order to fully deal with subsort 
overloading (including the overloading of constructor symbols). The new formalization of AElgg(Q , T , B) searches for the 
very specific constructor declaration that matches the input term t , similarly to the extended notion of equational closed-
ness of Definition 2; i.e., c : sn → s ∈ �, n ≥ 0, with c ∈ 
 and ls(t) = s. The following example illustrates the improved 
specialization power that we achieve by this extension.

Example 14. The Maude functional module OS-NAT/2 provides a specification of natural numbers modulo 2.

fmod OS-NAT/2 is
sorts Nat Zero One .
subsort Zero One < Nat .
op 0 : -> Zero [ctor] .
op s : Zero -> One [ctor] .
op s : Nat -> Nat .
eq s(s(0)) = 0 [variant] .

endfm

This module introduces two subsorts, namely, Zero and One, whose aim is to respectively type the two values 0 and s(0). 
Furthermore, operator overloading is used to provide two versions of the successor operator s so that for one typing is a 
constructor symbol and for another typing is a defined symbol. More specifically, s : Zero→ One specifies a constructor 
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symbol that builds the canonical form s(0), while s : Nat→ Nat is a defined symbol that is used to simplify any natural 
number sk(0), with k≥ 2, to either the value 0 or s(0) via the equation s(s(0)) = 0.

The term s(0) is constructor and matches the declaration op s : Zero -> One whereas the term s(s(0)) is not 
and it matches the declaration of the defined symbol op s : Nat -> Nat.

Also, for Q = ∅, L = {s(s(0))}, and axiom set B = ∅, we have AElgg(Q , L , B) = {s(s(0))} since ls(s(s(0)))) = Nat. 
This allows the appropriate (defined) typing op s : Nat -> Nat to be considered and the uncovered call s(s(0)) is 
added to Q .

On the contrary, our previous framework in [5] would have erroneously classified s(s(0)) as a constructor term and, 
as a result, the uncovered call s(s(0)) could not have been specialized.

Theorem 3. The operator AElgg(Q , L , B) terminates and is an abstraction operator in the sense of Definition 3.

5.2. Unfolding operators

Let us provide two possible implementations of the unfolding operator U that are respectively able to deal with: 
(a) equational theories that do not satisfy the FVP; and (b) equational theories that satisfy the FVP. Since (�, B, �E) is a 
decomposition of (�, E � B), both implementations adopt the folding variant narrowing strategy to build the narrowing 
trees that are needed to specialize the input theory.

(a) When E does not meet the finite variant property, folding variant narrowing may lead to the creation of an infinite FV-
narrowing tree for some specialized calls in Q . In this case, the unfolding rule must implement a form of local control 
that stops the expansion of infinite derivations in the FV-narrowing tree. A solution to this problem has already been 
provided in [5] by means of an unfolding operator that computes a finite (possibly partial) FV-narrowing tree fragment 
for every specialized call t in Q . Narrowing derivations in the tree are stopped when no further FV-narrowing step can 
be performed or potential non-termination is detected by applying a subsumption check at each FV-narrowing step. The 
subsumption check is based on an equational order-sorted extension �̆B [6] of the classical homeomorphic embedding 
relation � that is commonly used to ensure termination of symbolic methods and program optimization techniques.
Roughly speaking, a homeomorphic embedding relation is a structural preorder under which a term t is greater than 
(i.e., it embeds) another term t′ , written as t � t′ , if t′ can be obtained from t by deleting some parts, e.g., s(s(X +
Y ) ∗ (s(X) + Y )) embeds s(Y ∗ (X + Y ))). Embedding relations have become very popular to ensure termination of 
symbolic transformations because, provided the signature is finite, for every infinite sequence of terms t1, t2, . . ., there 
exists i < j such that ti � t j . In other words, the embedding relation is a well-quasi order (wqo) [33]. Therefore, when 
iteratively computing a sequence t1, t2, . . . , tn , finiteness of the sequence can be guaranteed by using the embedding as 
a whistle: whenever a new expression tn+1 is to be added to the sequence, we first check whether tn+1 embeds any 
of the expressions already in the sequence. If that is the case, we say that � whistles, i.e., it has detected (potential) 
non-termination and the computation has to be stopped in tn+1. Otherwise, tn+1 is added to the sequence and the 
computation can proceed.
The Ufvp(Q , �E ) operator implements an unfolding rule that is based on the homeomorphic relation �̆B , whose full 
formalization relies on the following auxiliary notion.
We say that a FV-narrowing derivation D is admissible w.r.t. �̆B if and only if it does not contain a pair of comparable 
narrowing redexes (i.e., rooted by the same operation symbol) s and t , where s precedes t in D, such that s�̆Bt .

Example 15. Consider the equational theory E = (�, E � B) that encodes the Caesar cipher of Example 1 and the input term
dec(M:Message,s(0)) that represents the decryption of a generic message M w.r.t. the key s(0). Then, we have the 
following FV-narrowing derivations for dec(M:Message,s(0)) in E :

dec(M : Message,s(0)) �
σ ′,�E,B

toSym(unshift(toNat(M′ : Symbol))) �
σ ′′,�E,B a

with σ ′ = {M : Message/M′ : Symbol} and σ ′′ = {M′/b}.

dec(M : Message,s(0)) �
σ ′′,�E,B

toSym(unshift(toNat(S′ : Symbol))) dec(M′ : Message,s(0))

with σ ′′ = {M : Message/(S′ : Symbol M′ : Message)}. While the former is an admissible derivations, the latter is not, since there 
exists the trivial embedding dec(M:Message,s(0)) �̆B dec(M’:Message, s(0)).

Definition 6 (Unfolding function). Given the equational theory E = (�, E � B) with a decomposition �E = (�, B, �E), and a term 
t0 to be specialized in E , we define Unfold(t0, �E ) as the set of terms given by

Unfold�̆B (t0, �E ) = {tn | t0 �n
�E,B

tn ∈ VN�
�E (t0),

t0 �n−1
�E,B

tn−1 is admissible w.r.t. �̆B and

either �w : t0 �n
�E,B

tn ��E,B
w ∈ VN�

�E (t0)

or t0 �n tn is not admissible w.r.t. �̆B .}
�E,B
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eq dec(a,s(s(0))) = b [variant] . eq dec(b,s(s(0))) = c [variant] .
eq dec(c,s(s(0))) = a [variant] .
eq dec(S:Symbol M:Message,s(s(0))) = toSym(unshift(unshift(toNat(S:Symbol))))

dec(M:Message,s(s(0))) [variant] .
eq enc(a,s(s(0))) = c [variant] .
eq enc(b,s(s(0))) = a [variant] .
eq enc(c,s(s(0))) = b [variant] .
eq enc(S:Symbol M:Message, s(s(0))) =
toSym([[toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0] < s(s(0)),
s([toNat(S:Symbol)<s(s(0)),s(toNat(S:Symbol)),0]),0])

enc(M:Message,s(s(0))) [variant] .
eq toSym([[toNat(a) < s(s(0)),s(toNat(a)),0] <

s(s(0)),s([toNat(a) < s(s(0)),s(toNat(a)),0]),0]) = c [variant] .
eq toSym([[toNat(b) < s(s(0)),s(toNat(b)),0] <

s(s(0)),s([toNat(b) < s(s(0)),s(toNat(b)),0]),0]) = a [variant] .
eq toSym([[toNat(c) < s(s(0)),s(toNat(c)),0] <

s(s(0)),s([toNat(c) < s(s(0)),s(toNat(c)),0]),0]) = b [variant] .
eq toSym(unshift(unshift(toNat(a)))) = b [variant] .
eq toSym(unshift(unshift(toNat(b)))) = c [variant] .
eq toSym(unshift(unshift(toNat(c)))) = a [variant] .

Fig. 3. Specialization algorithm, Phase 1: partial evaluation of E w.r.t. Q.

Given a set Q of terms, we also define Ufvp(Q , �E ) = ⋃
t∈Q Unfold�̆B (t,R).

Note that Ufvp(Q , �E ) of Definition 6 computes a finite (possibly partial) folding variant narrowing tree in �E for each 
term t in Q and returns the set of the (normalized) leaves of the trees. Derivations are stopped when there is no further 
folding variant narrowing steps or the embedding whistle blows.

Example 16. Consider a specific instance of the rewrite theory of Example 1, where servers and clients use a pre-shared 
fixed key; for simplicity, assume K=s(s(0)). Let R = (�, E � B, R) be such a rewrite theory, where E = (�, E � B) is 
the equational theory of R . In E , the FV-narrowing trees associated with encryption and decryption functionality may be 
infinite since E does not have the FVP, as shown in Section 4. For instance, terms of the form (t1 . . . tn enc(M′,s(s(0))))

derive from enc(M,s(s(0)) by FV-narrowing, where enc(M′,s(s(0))) can be further narrowed to unravel an unlimited se-
quence of identical terms modulo renaming. Nonetheless, homeomorphic embedding detects this non-terminating behavior 
since enc(M′,s(s(0)) embeds enc(M,s(s(0)).

By using the unfolding operator U f vp , the first phase of the NPER
U
A (R) algorithm, with U = U f vp and A = AElgg , 

computes the initial set Q= {enc(M,s(s(0)),dec(M,s(s(0))} consisting of the (normalized) maximal function calls of R . 
Then, the equational theory E is partially evaluated w.r.t. Q by EqNPE

U
A , using the tandem U f vp/AElgg . During the partial 

evaluation process, U f vp only unravels finite fragments of the FV-narrowing trees that are rooted by the specialized calls, 
thereby yielding the partial evaluation E ′ of E in Fig. 3.

After the second phase of the algorithm, Presto produces the compressed equational theory E ′′ of Fig. 4 by computing 
the following renaming for the specialized calls:

dec(M : Message,s(s(0))) �→ f0(M : Message)

enc(M : Message,s(s(0))) �→ f1(M : Message)

toSym(unshift(unshift(toNat(X : Symbol)))) �→ f3(X : Symbol)

toSym([[toNat(X : Symbol) < s(s(0)),s(toNat(X : Symbol)),0] < s(s(0)),

s([toNat(X : Symbol) < s(s(0)),s(toNat(X : Symbol)),0]),0]) �→ f2(X : Symbol)

which eliminates prolix nested calls and redundant arguments in E ′′ computations.
It is worth noting that the resulting specialization E ′′ provides a highly optimized version of E for an arbitrarily fixed 

key K=s(s(0)), where both functional and structural compression are achieved. Specifically, data structures in E for nat-
ural numbers and their associated operations for message encryption and decryption are totally removed from E ′′ . Note 
that the _+_ operator, together with its associative and commutative axioms, disappears from E ′′ , thereby avoiding expen-
sive matching operations modulo axioms. This transformation power cannot be achieved by existing, functional, logic or 
functional logic partial evaluators. Encryption (resp., decryption) in E ′′ is now the direct mapping f0 (resp., f1) that as-
sociates messages to their corresponding encrypted (resp. decrypted) counterparts, avoiding a huge amount of computation 
in the profuse domain of natural numbers. Finally, the computed renaming is also applied to R by respectively replacing 
the maximal function calls enc(M,s(s(0)) and dec(M,s(s(0)) with f0(M) and f1(M) into the rewrite rules of R . 
This allows the (renamed) rewrite rules to be able to access the new specialized encryption and decryption functionality 
provided by E ′′ .

Example 1 shows that a high degree of simplification can be achieved by the specialization technique of Presto for 
theories that do not have the FVP. Furthermore, in many cases, the specialization algorithm is also able to transform an 
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eq f0(a) = b [variant] . eq f0(b) = c [variant] . eq f0(c) = a [variant] .
eq f2(a) = c [variant] . eq f2(b) = a [variant] . eq f2(c) = b [variant] .
eq f1(a) = c [variant] . eq f1(b) = a [variant] . eq f1(c) = b [variant] .
eq f3(a) = b [variant] . eq f3(b) = c [variant] . eq f3(c) = a [variant] .
eq f0(S:Symbol M:Message) = f3(S:Symbol) f0(M:Message) [variant] .
eq f1(S:Symbol M:Message) = f2(S:Symbol) f1(M:Message) [variant] .

Fig. 4. Specialization algorithm, Phase 2: compressed theory E ′′ .

eq f0(M:Symbol) = f3(M:Symbol) [variant] .
eq f1(Q:Symbol) = f2(Q:Symbol) [variant] .
eq f2(a) = c [variant] . eq f2(b) = a [variant] . eq f2(c) = b [variant] .
eq f3(c) = a [variant] . eq f3(a) = b [variant] . eq f3(b) = c [variant] .

Fig. 5. Equations of the specialized equational theory for one-symbol messages and key K=s(s(0)).

equational theory that does not meet the FVP into a specialized one that does. This typically happens when the function 
calls to be specialized can only be unfolded a finite number of times. Let us see an example.

Example 17. Consider a slight variant of the protocol theory of Example 16 in which messages consist of one single sym-
bol instead of arbitrarily long sequences of symbols. This variant can be obtained by simply modifying the sort of the 
messages from Message to Symbol in the protocol rewrite rules. In this scenario, the set of maximal function calls be-
comes Q={enc(S,s(s(0))↓�E,B,dec(S,s(s(0)↓�E,B)}, where S is a variable of sort Symbol. Note that the calls in
Q subsume a finite number of more specific calls that correspond to the encryption and decryption of the symbols a, b
and c w.r.t. the key s(s(0)). The rewrite theory can be automatically specialized by Presto for this use case by using
NPER

U
A (R), instantiated with U = U f vp and A = AElgg . The final outcome produced is a specialized rewrite theory R ′

whose underlying, transformed equational theory is shown in Fig. 5. This theory clearly meets the FVP since it specifies four 
non-recursive functions that all work over the finite domain {a,b,c}. Additionally, the obtained specialization gets rid of 
the associative data structure needed to build messages of arbitrary size since only one-symbol messages are allowed in the 
specialized program.

Finally, note that the satisfaction of the FVP allows narrowing-based reachability problems to be effectively solved within 
the specialized rewrite theory, while they were unfeasible in the original rewrite theory.12 For instance, the following 
reachability goal succeeds, proving that it is possible to establish a successful communication from an initial state in which 
client Cli-A sends a request containing the crypted message c to server Srv-A

< [Cli-A,Srv-A,Q,K,mt] & [Srv-A,K] & (Srv-A <- {Cli-A,c}) > =>*
< [Srv-A,K] & [Cli-A,Srv-A,Q,K,success] >

Also the computed substitution {K/s(s(0)),Q/a} provides the required key K and the plain message Q that the server 
sends back to the client.

(b) When the equational theory E does satisfy the FVP, FV-narrowing trees are always finite objects that can be effectively 
constructed in finite time. Therefore, in this specific case, we define the following unfolding operator that constructs 
the complete FV-narrowing tree for any possible call.

Definition 7. Given the equational theory E = (�, E � B) with a decomposition �E = (�, B, �E), and a set of terms Q to be 
specialized in E , then

Ufvp(Q , �E ) =
⋃
t∈Q

{t′ | t �!
�E,B

t′ ∈ VN�
�E (t)}

where t �!
�E,B

t′ denotes a FV-narrowing derivation from t to the term t′ to which no FV-narrowing steps can be applied.

Note that, when an equational theory has the FVP, both unfolding operators Ufvp and Ufvp can be used to specialize a 
rewrite theory. Nonetheless, the advantage of using Ufvp instead of Ufvp is twofold. First, Ufvp disregards any embedding 
check, which can be extremely time-consuming when E includes several operators that obey complex modular combina-
tions of algebraic axioms.13 Second, Ufvp exhaustively explores the whole FV-narrowing tree of a term, while Ufvp does not. 
This leads to a lower degree of specialization when Ufvp is applied to a finite variant theory, as shown in the following 
(pathological) example.

12 Reachability goals can be solved by the Maude built-in vu-narrow command.
13 Actually, given an AC operator ◦, if we want to check whether a term t = t1 ◦ t2 . . . ◦ ti is embedded into another term with a similar form, all possible 

permutations of the elements of both terms must be non-deterministically tried.
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Example 18. Consider the equational theory that is encoded by the following Maude functional module:

fmod MKEVEN is sort Nat .
ops 0 1 : -> Nat [ctor] . op mkEven : Nat Nat -> Nat .
op_+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
vars X Y : Nat .
eq mkEven(X + X + 1,1 + Y) = mkEven(X + X + 1 + 1,Y) [variant] .
eq mkEven(X + X,0) = X + X [variant] .

endfm

The equational theory specifies the encoding for natural numbers in Presburger’s style14 and uses this encoding to define 
the function mkEven(X,Y) that makes X even (if X is odd) by “moving” one unit from Y to X. Otherwise, if X is even,
X is left unchanged. The partial evaluation of the given theory w.r.t. the call mkEven(X,Y) yields different outcomes that 
depend on the chosen unfolding operator. On the one hand, by using U f vp , the output is the very same input theory, thus 
no “real” specialization is achieved. On the other hand, the unfolding operator Ufvp produces the specialized definition of
mkEven given by

eq mkEven(X + X,0) = X + X [variant] .
eq mkEven(1 + X + X, 1) = 1 + 1 + X + X [variant] .

where the second equation is generated by fully exploring the FV-narrowing derivation

mkEven(Z,W) �{Z/X+X+1,W/1+Y} mkEven(1+ 1+ X+ X,Y) �{Y/0} 1+ 1+ X+ X

where t �σ t denotes a FV-narrowing step from t to t′ with substitution σ . In contrast, Ufvp stops the sequence at
mkEven(1 + 1 + X + X, Y) since mkEven(1 + 1 + X + X, Y) embeds mkEven(Z,W) and hence yields a specialized 
equation that is equal (modulo associativity and commutativity of +) to the original equation mkEven(X + X + 1,1 + Y) 
= mkEven(X + X + 1 + 1,Y).

Termination of the symbolic specialization Algorithm NPER
U
A (R) for finite variant theories and non-finite variant theo-

ries follows from the global termination of the EqNPE
U
A(E ) algorithm proved in [5] for the unfolding function Ufvp(Q , �E )

and the equational least general abstraction function AElgg(Q , L , B), and from the local termination of Ufvp(Q , �E ).

Theorem 4 (Termination of NPER
U
A (R)). Let R = (�, E � B, R) be a rewrite theory such that E = (�, E � B), and �E = (�, B, �E) is 

a decomposition of E . Let U be an unfolding operator and let A be an abstract operator. Algorithm NPER
U
A (R) terminates when E

satisfies the FVP (respectively, E does not satisfy the FVP) with the tandem Ufvp/AElgg (respectively, the tandem Ufvp/AElgg).

6. Experimental evaluation

Table 1 contains the experiments that we have performed with the Presto system [45], which is a prototype implemen-
tation of the proposed specialization framework for rewrite theories. The experimental evaluation has been conducted on 
an Intel Xeon E5-1660 3.3 GHz CPU with 64 GB RAM running Maude v3.1.

We have considered the following benchmark programs: Crypto Protocol, a variant of the client server communication 
protocol of Example 1 where we introduce extra functions (e.g., the Fibonacci function and the mod function that computes 
the remainder of the division between natural numbers) in the underlying equational theory to make key generation heav-
ier; FM-Account, a rewrite theory that specifies a bank account system with managed accounts which automates a simple 
investment model; tkEven, a simple rewrite theory that tuples a couple of calls to the mkEven function of Example 18; 
Handshake-KMP, a handshake network protocol in which a client sends an arbitrary long and noisy message M to a server. 
The handshake succeeds if the server can recognize a secret handshake sequence P inside the client message M by matching
P against M via the well-known KMP string matching algorithm. These experiments plus several others are also publicly 
available at Presto’s website. For each experiment, we publish the source code of all of the examples to make the exper-
iments easily reproducible. In many cases, we transform a rewrite theory whose operators obey algebraic axioms, such as 
associativity, commutativity, and unity, into a much simpler rewrite theory with no structural axioms.

The experiments have been divided into two classes. The first class, which is identified by the Rewriting section in Table 1, 
aims at measuring the speedup of the obtained specialization w.r.t. the rewriting evaluation mechanism; the second class 
corresponds to the Narrowing section in Table 1 and measures the speedup w.r.t. narrowing computations. Column RlsR/

14 Using this encoding, a natural number can be the constant 0 or a sequence of the form 1 + 1 ... + 1.
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Table 1
Rewriting and narrowing experimental results in Presto.

Program size Rewriting Narrowing

RlsR/EqsR RlsR′ /EqsR′ Rewrites T →
R (ms) T →

R′ (ms) Speedup→ Levels T �

R (ms) T �

R′ (ms) Speedup�

Crypto Protocol 3/31 3/6 1M 45,869 953 48.13 50 31,587 3,926 8.05
2.5M 104,295 2,324 44.88 75 100,124 11,767 8.51
5M 207,558 4,924 42.15 100 227,459 25,236 9.01
7.5M 311,016 7,647 40.67 125 426,466 47,388 9.00
10M 420,795 9,434 44.60 150 730,430 79,738 9.16

Handshake-KMP 2/14 2/0 1M 87,362 576 151.67 2 7 4 1.75
2.5M 209,143 1,408 148.54 4 49 28 1.75
5M 416,655 2,875 144.92 6 313 180 1.74
7.5M 642,196 5,181 123.95 8 1,672 948 1.76
10M 806,152 6,701 120.30 10 8,008 4,513 1.77

FM-Account 3/11 3/2 1M 14,512 282 51.46 1 1 1 1.00
2.5M 36,430 649 56.13 2 13 4 3.25
5M 73,548 1,297 56.71 3 158 16 9.88
7.5M 108,195 1,977 54.73 4 1,957 49 39.94
10M 142,475 2,595 54.90 5 35,834 145 247.13

1M 1,752 383 4.57 5 460 20 23.00
tkEven 1/8 1/8 2.5M 4,276 886 4.83 10 6,129 80 76.61

5M 8,961 1,907 4.70 15 38,675 183 211.34
7.5M 13,779 3,044 4.53 20 153,273 337 454.82
10M 17,612 3,915 4.50 25 492,588 603 816.90

EqsR (resp. RlsR′ /EqsR′ ) shows the size of the original (resp. specialized) theories measured as the number of rules and 
equations they contain. We do not benchmark the specialization times since they are almost negligible (<100 ms for most 
cases).

To evaluate rewriting performance, we considered rewrite sequences of increasing sizes that range from 1 million to 
10 million rewrite steps. Column Rewrites in Table 1 indicates the number of rewrites for each benchmark program and 
experiment.

For each rewriting experiment, we executed the original specification R and the specialized R ′ on the very same input 
states. Specialization was performed according to the nature of each benchmark program. Therefore, programs that do not 
meet the FVP have been specialized using the unfolding operator Ufvp , while programs that include a finite variant theory 
have been specialized using the Ufvp operator. We recorded the following experimental data: the execution times (in ms) 
for R (Column T →

R ) and for R ′ (Column T →
R′ ), and the speedup that is computed as the ratio T →

R /T →
R′ (Column Speedup→). 

To reduce the noise, we considered the average time of ten runs for each experiment.
Regarding rewriting times, our figures show that the specialized rewrite theories achieve a significant improvement 

when compared to the original theory, with an average speedup for these benchmarks of 60.34. In other words, the spe-
cialized program is, on average, more than 60 times faster than the original program on the considered inputs. Particularly 
remarkable is the performance improvement of the Handshake-KMP, which reaches two orders of magnitude for the case 
when the specialized maximal calls within the rewrite theory partially instantiate the input pattern and input message. 
This is basically due to the huge simplification that is achieved by Presto by specializing the KMP string matching func-
tion. The smallest speedup for rewriting executions is obtained by tkEven. In this case, we specialize the very general call
tkEven(X:Nat,Y:Nat), which offers less opportunities for optimization since no argument in tkEven has been suffi-
ciently instantiated.

For the narrowing experiments, we considered a narrowing-based reachability goal for each benchmark program, which 
has been used to search for solutions in a narrowing tree fragment of an increasing number of levels from 1 to 150 levels. 
This means that our experiments consider huge search spaces that consist of complete narrowing trees of depth up to 
150 levels. It is worth recalling that narrowing-based reachability goals cannot be solved in those Maude programs with 
an equational theory E that does not meet the FVP since E -unification may not terminate. Thus, to be able to execute 
narrowing-based reachability goals in any benchmark programs R = (�, E � B, R) regardless of their FVP behavior, we only 
performed narrowing steps with R modulo E ′ � B , where E ′ = (�, E ′ � B) is the maximal FVP-fragment of the equational 
theory (�, E � B) included in R . The rest of the equations (E \ E ′) are only used for normalization as described in Section 4.

In this case, we recorded the search time in the corresponding narrowing tree fragment for the original program (Column 
T �

R ) as well as for the specialized program (Column T �
R′ ), together with the achieved speedup (Column Speedup�). In all 

narrowing experiments, the specialized program outperforms the original one by greatly reducing the time required to solve 
the considered narrowing-based reachability goals. The average speedup is 96.82. For some example programs, we note that 
the speedup for narrowing exponentially grows with the size of the narrowing tree. In particular, this happens for programs 
FM-Account and tkEven where the obtained specializations greatly reduce the branching factor of the narrowing trees (both 
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at the level of rules and equations) associated with the considered reachability goals, thereby enabling a faster exploration of 
the search space in the specialized programs that is more noticeable the larger the size of the trees. This means that some 
costly analyses that might require inordinate resources, both in time and space, could be effectively performed after the 
transformation. For the case of Handshake-KMP, the performance gain that is obtained for narrowing with specialized rules 
and equations is much lower than for equational rewriting computations. This is actually expected, since in order to select 
the maximal FVP-fragment of the KMP equational theory (so that we can run the three-level narrowing modulo equations 
and axioms mechanism), we must remove the variant attribute from most of the KMP equations, which dramatically 
reduces the opportunities for optimizing the narrowing computations.

The original EqNPE framework of [5] was implemented in our earlier partial evaluator Victoria. Since Victoria cannot 
handle rewrite theories but only equational theories, the specialization of rewrite theories supported by Presto could not be 
previously achieved unless a complex hack is introduced not only at the level of the theory signature but also by providing a 
suitable program infrastructure that simulates rewrite rule nondeterminism through equations. For the case when we simply 
specialize an equational theory, both systems perform similarly. For instance, we benchmarked the total specialization time 
for a loop consisting of 1000 specializations of the KMP program that is classically used to compare program specializers, 
and then we divided the accumulated specialization time by 1000. This modus operandi allowed the noise on the small 
time for a single specialization to be reduced. The resulting specialization times of Victoria and Presto are comparable (6.6
ms and 5.6 ms, respectively). This is noteworthy since the implementation of Presto is considerably more ambitious and it 
provides much greater coverage of the Maude language compared to the simpler approach of Victoria.

Presto includes a FVP checker for equational theories that is based on the checking procedure described in [37]. It also 
implements a strong irreducibility checker that determines whether there is any redex within the left-hand sides of the 
rewrite rules (w.r.t. the hosted equational theory).

7. Related work and conclusion

The generic specialization framework proposed in this work represents our most ambitious automated optimization 
scheme for rewrite theories. To efficiently achieve aggressive specialization that scales to real-world problems, the key 
components of the EqNPE scheme needed to be thoroughly investigated, extended, and highly optimized over the years. 
This is because equational problems such as order-sorted equational homeomorphic embedding and order-sorted equational 
least general anti-unification are much more costly than their corresponding “syntactic” counterparts and achieving proper 
formalizations and efficient implementations has required years [10,11,8,9,3,5,12].

Our specialization technique can have a decisive impact on the symbolic analysis of concurrent systems that are modeled 
as rewrite theories in Maude. The main reason why our technique is so effective in this area is that it not only achieves 
huge speedup for relevant classes of rewrite theories, but it can also cut down an infinite folding variant narrowing space 
to a finite one for the underlying equational theory E . By doing this, any E -unification problem can be finitely solved, and 
symbolic, narrowing-based analysis with R modulo E can be effectively performed.

Among the wide literature on logic program specialization, the partial evaluation of functional logic programs [15,2,
31] is the closest to our work. The narrowing-driven Partial Evaluation (NPE) algorithm of [15] extends to narrowing the 
classical PD scheme of [35] and was proved to be strictly more powerful than the PE of both logic programs and functional 
programs [15], with a potential for specialization that is comparable to conjunctive partial deduction (CPD) and positive 
supercompilation [23]. Early instances of this framework implemented partial evaluation algorithms for different narrowing 
strategies, including lazy narrowing [13], innermost narrowing [15], and needed narrowing [16]. NPE was extended in [5] to 
the specialization of order-sorted equational theories and implemented in the partial evaluator for equational theories Victoria. 
For a detailed discussion of the literature related to narrowing-driven partial evaluation, we refer to [5].

A narrowing-based partial evaluator for the lazy functional logic language Curry is described in [31,44]. Its implementa-
tion can be seen as an instance of the generic narrowing-based partial evaluation framework of [15]. This system improves 
the former prototype of [2] by taking into account (mutually recursive) let expressions and non-deterministic operations, 
while the PE system of [2] was restricted to confluent programs. Obviously, the protocol benchmarks in this paper cannot 
be directly specialized by using Curry’s partial evaluator since neither evaluation modulo algebraic axioms nor concurrency 
are supported by Curry’s partial evaluator; this would require artificially rewriting the program code so that any comparison 
would be meaningless. In the opposite direction, Presto cannot manage the specialization of higher-order functions that is 
achieved by [31].

Our specialization technique falls into the category of the semantic-preserving program transformations. There are very 
few semantic-preserving transformations for rewrite theories in the related literature. An important example is explicit 
coherence completion [50] between rules, equations and axioms, which is necessary for symbolic execution in rewrite 
theories and relies on semantically-equivalent theory transformations [39]. Also the semantic K-framework [46] and the 
model transformations of [47] are based on sophisticated program transformations and both preserve the reduction se-
mantics of the original theory. Nonetheless, they do not aim to program optimization. Furthermore, Maude tools usually 
rely on weaker theory transformations that preserve only specific properties such as invariants or termination behavior 
(Full-Maude [20], Real-time Maude [43], MTT [25], and Maude-NPA [26] are prominent examples). Other transformations 
focus on reducing the size of the search space; for instance, equational abstraction [40,17] reduces an infinite state system 
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to a finite quotient of the original system algebra by introducing some extra equations that preserve certain temporal logic 
properties.

Finally, we would like to discuss the limitations of the current specialization framework (and its associated implemen-
tation) along with possible lines of future work. Although a wide class of Maude rewrite theories can be already partially 
evaluated, there are still some Maude features that cannot be handled by Presto.

First, there is no support for user-defined rewrite strategies and object-oriented programming. Since these are important 
Maude features, as future work we plan to investigate possible extensions of the framework that can deal with them.

Second, rewriting logic is parameterized by an equational logic that, in the case of Maude, is membership equational 
logic (MEL). MEL allows sorts of terms to be asserted through suitable (conditional) membership axioms. Nonetheless, our 
specialization technique only handles order-sorted equational logic which is strictly less expressive than MEL. This is because 
the computation of term variants is currently formulated and implemented in Maude only for order-sorted specifications. 
Hence, the extension of our partial evaluation framework to deal with MEL specifications is far from trivial since it requires 
to extend both folding variant narrowing and variant computation to MEL specifications.

Third, we plan to generalize our specialization scheme so that it can cope with rewrite theories that are not strongly 
irreducible. Strong irreducibility is a reasonable requirement that is much more practical and less demanding than a con-
structor discipline forbidding that arguments of the left-hand side of rules contain any defined symbols. Nonetheless, we 
do believe that more relaxed conditions can be found to specialize rewrite theories without jeopardizing correctness of the 
specialization.
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Appendix A. Proofs of technical results

In this appendix, we demonstrate the main technical results of the paper, together with other important results for 
equational partial evaluation.

In the following, given a substitution σ and a renaming ρ , we define RNρ(σ )(x) = RNρ(σ (x)) for x ∈ Dom(σ ) (renaming 
of a substitution). We recall the following two main results of [5].

Theorem 5 (Preservation of executability conditions by EqNPE
U
A (E , Q ) [5]). Let E = (�, E � B) be an equational theory such that 

�E = (�, B, �E) is a decomposition of E , let u be a �-term, and let Q be a finite set of �-terms.
Given an unfolding operator U and an abstract operator A , let Q ′ =EqNPE

U
A (E , Q ) and let E ′ = (�′, E ′ � B ′) = GenTheory(Q ′,

(�, E � B)) be the partial evaluation of E w.r.t Q . Then, �E ′ is a decomposition of E ′ .

Theorem 6 (Strong correctness and completeness of EqNPE
U
A (E , Q ) [5]). Let E = (�, E � B) be an equational theory such that 

�E = (�, B, �E) is a decomposition of E , and let Q be a finite set of �-terms.
Given an unfolding operator U and an abstract operator A , let Q ′ =EqNPE

U
A (E , Q ) and let E ′ = (�′, E ′ � B ′) = GenTheory(Q ′,

(�, E � B)) is the partial evaluation of E w.r.t Q . Let u be a �-term, let ρ be an independent renaming of Q ′ , and let u′ = RNρ(u). 
If u is B-closed w.r.t. Q ′ and �, then (u �∗

σ ,�E,B
v) ∈ VN�

�E (u) for a variant v that is B-closed w.r.t. Q ′ and �, if and only if 

(u′ �∗
σ ′, �E ′,B

v ′) ∈ VN�
�E ′ (u′), where v ′ =B RNρ(v) and σ ′ ≤B RNρ(σ ).

Theorem 3. The operator AElgg(Q , T , B) terminates and is an abstraction operator in the sense of Definition 3.

Proof sketch. The proof is a slight modification of the proof of Proposition 18 of [5] that considers subsort overloading. Note 
that Condition (1) of Definition 3 is trivially fulfilled, since abs�̆B only applies the lggB operator, which cannot introduce 
function symbols not appearing in Q or T . Condition (2) is proved by well-founded, structural induction on MQ ∪T , which 
is the multiset of all the depths of the terms in Q ∪ T . The induction entirely resembles the proof in [5] with a minor 
change in the treatment of the constructor case abs�̆B (Q , c(tn)), where c is a constructor symbol. In the original proof, 
there is no need to check the least sort of c(tn : sn) since no overloaded operator c could have both a constructor and a 
defined typing. Here, we relaxed this condition in favor of the milder preregularity-below property and thus the constructor 
case abs�̆B (Q , c(tn : sn)) is applied if and only if the following refined check is fulfilled: c : sn → s ∈ � s.t. c ∈ 
, ls(t) = s.

Similarly, termination of the abstract operator computation can be proved as in the proof of Theorem 2 of [5]. The proof 
scheme again exploits a well-founded, structural induction on MQ ∪T .

First, we ensure that executability conditions are preserved for rewrite theories that are specialized by using the NPER
U
A

algorithm.
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Lemma 1 (Preservation of decomposition). Let R = (�, E � B, R) be a topmost rewrite theory where �E = (�, B, �E) is a decomposition 
of E = (�, E � B). Given an unfolding operator U and an abstract operator A , let R ′ = (�′, E ′ � B ′, R ′) = NPER

U
A (R) be a 

specialization of R under the independent renaming ρ . Then, �E ′ = (�′, B ′, �E ′) is a decomposition of E ′ = (�′, E ′ � B ′).

Proof. By Theorem 5. �
Lemma 2 (Preservation of topmost condition). Let R = (�, E � B, R) be a topmost rewrite theory where �E = (�, B, �E) is a decom-
position of E = (�, E � B). Given an unfolding operator U and an abstract operator A , let R ′ = (�′, E ′ � B ′, R ′) = NPER

U
A (R) be 

a specialization of R under the independent renaming ρ . Then, R ′ is topmost.

Proof. Immediate, since the topmost property ensures that no function symbol of the signature � admits a subterm of the 
topmost sort State. Then, the property follows straightforwardly because no extra sorts are introduced by the independent 
renaming ρ: given ρ(t) = ft(xn : sn), where t has sort s, we have ft : sn → s. �
Lemma 3 (Preservation of coherence). Let R = (�, E � B, R) be a topmost rewrite theory where E = (�, E � B), �E = (�, B, �E) is a 
decomposition of E , R is E -coherent, and the left-hand sides of the rules in R are (�E, B)-strongly irreducible.

Given an unfolding operator U and an abstract operator A , let R ′ = (�′, E ′ � B ′, R ′) = NPER
U
A (R) be a specialization of R

under the independent renaming ρ . Then, R ′ is E ′-coherent with E ′ = (�′, E ′ � B ′).

Proof. Immediate by the condition of (�E, B)-strong irreducibility since no equation can be applied to the left-hand side of a 
rule of R . �

It is very important that equations do not interfere with the topmost property, as shown in the following example.

Example 19. The following rewrite theory does not satisfy the strong irreducibility condition of Lemma 3 because the left-
hand side f(X,Y) of the rewrite rule can be narrowed by using the equation.

mod EXA-COHERENCE is
sorts AB F .
ops a b : -> AB [ ctor ] .
op f : AB AB -> F .
vars X Y : AB .
eq f(X,a) = f(X,b) [ variant ] .
rl f(X,Y) => f(a,Y) [ narrowing ] .

endm

The specialization of this rewrite theory proceeds by partially evaluating the two expressions occurring in the rule: f(X,Y)
and f(a,Y). The partially evaluated equational theory contains one extra variant equation.

eq f(a, a) = f(a, b) [ variant ] .

Given the independent renaming {f(X,b) �→ f0(X),f(X,Y) �→ f1(X,Y),f(a,Y) �→ f2(Y),f(a,b) �→ f3}, the spe-
cialized rewrite theory is

mod EXA-COHERENCE is
sorts AB F .
ops a b : -> AB [ ctor ] .
vars X Y : AB .
op f0 : AB -> F [ ctor ] .
op f1 : AB AB -> F .
op f2 : AB -> F .
op f3 : -> F [ ctor ] .
eq f1(X, a) = f0(X) [ variant ] .
eq f2(a) = f3 [ variant ] .
rl f1(X, Y) => f2(Y) [ narrowing ] .

endm

However, this theory is no longer coherent, and moreover the term f(b,b) is reducible in the original rewrite theory but 
the corresponding renamed term f0(b) cannot be reduced in the specialized rewrite theory.

Now we are ready to prove that the specialization of a rewrite theory preserves the executability conditions of the 
original rewrite theory.
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Theorem 1 (Preservation of executability conditions by NPER
U
A (R)). Let R = (�, E � B, R) be a topmost rewrite theory such that 

E = (�, E � B) and R is E -coherent. Let �E = (�, B, �E) be a decomposition of E , and let the left-hand sides of the rules in R be 
(�E, B)-strongly irreducible. Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls 
in the normalized rules of R, let R ′ = (�′, E ′ � B ′, R ′) =NPER

U
A (R) be the specialization of R , with Q ′ =EqNPE

U
A ((�, E � B), Q )

and E ′ = (�′, E ′ � B ′) =GenTheory(Q ′, (�, E � B)) being the partial evaluation of E w.r.t Q . (under a given independent renaming 
ρ for Q ′).

Then, �E ′ = (�′, B ′, �E ′) is a decomposition of E ′ , R ′ is E ′-coherent, and the left-hand sides of the rules in R ′ are (�E ′, B ′)-strongly 
irreducible.

Proof. The result follows immediately from Lemmata 1, 2 and 3 �
In order to prove our main result, we first prove the following auxiliary lemma.

Lemma 4 (Preservation of unification). Let R = (�, E � B, R) be a topmost rewrite theory such that E = (�, E � B) and R is E -
coherent. Let �E = (�, B, �E) be a decomposition of E , and let the left-hand sides of the rules in R be (�E, B)-strongly irreducible. 
Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls in the normalized rules 
of R, let R ′ = (�′, E ′ � B ′, R ′) =NPER

U
A (R) be the specialization of R , with Q ′ =EqNPE

U
A ((�, E � B), Q ) and E ′ = (�′, E ′ �

B ′) =GenTheory(Q ′, (�, E � B)) being the partial evaluation of E w.r.t Q . (under a given independent renaming ρ for Q ′).
Let t be a term that is B-closed w.r.t. Q ′ and � and let l be the left-hand side of a rule in R. Then, σ is an E -unifier of t and l if and 

only if RNρ(σ ) is an E ′-unifier of RNρ(t) and RNρ(l).

Proof. Since l is (�E, B)-strongly irreducible, we have that (tσ)↓�E,B =B lσ . By Theorem 6, l being (�E, B)-strongly irreducible 
implies RNρ(l) is ( �E ′, B ′)-strongly irreducible. Since t is B-closed w.r.t. Q ′ and �, by Theorem 6, we have that there exists 
a substitution θ such that (t �∗

θ,�E,B
lσ) ∈ VN�

�E (t) if and only if (t′ �∗
θ ′, �E ′,B ′ lσ ′) ∈ VN�

�E ′ (t
′), where t′ = RNρ(t), θ ′ = RNρ(θ), 

and σ ′ = RNρ(σ ). Therefore, the conclusion follows. �
The following result establishes the strong correctness of the NPER

U
A specialization Algorithm 1, which states that the 

specialized rewrite theory R ′ =NPER
U
A (R) and the original theory R are equivalent in the very strong sense that all 

computations in R are preserved in R ′ .

Theorem 2 (Strong correctness of NPERU
A (R)). Let R = (�, E � B, R) be a topmost rewrite theory such that E = (�, E � B)

and R is E -coherent. Let �E = (�, B, �E) be a decomposition of E , and let the left-hand sides of the rules in R be (�E, B)-strongly 
irreducible. Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls in the nor-
malized rules of R, let R ′ = (�′, E ′ � B ′, R ′) =NPER

U
A (R) be the specialization of R , with Q ′ =EqNPE

U
A (E , Q ) and E ′ =

(�′, E ′ � B ′) =GenTheory(Q ′, (�, E � B)) being the partial evaluation of E w.r.t Q . (under a given independent renaming ρ for 
Q ′).

Let u ∈ T�(X ) be B-closed w.r.t. Q ′ and � and u′ = RNρ(u) ∈ T�′ (X ).

1. (u →∗
R,�E�B

v) if and only if (u′ →∗
R,�E�B

v ′), with v ′ =B ′ RNρ(v).

2. If E satisfies the FVP, then for any (�E, B)-irreducible computed substitution σ , (u �∗
σ ,R,�E�B

v) if and only if (u′ �∗
σ ′,R ′, �E ′�B ′ v ′), 

with v ′ =B ′ RNρ(v) and σ ′ =B ′ RNρ(σ ).

Proof. Immediate by Lemma 4 which works for: (i) matching with only axioms B , and (ii) unification with equations E and 
axioms B . �

Global termination of the EqNPE
U
A (E ) algorithm was proved in [5] for a version of Ufvp(Q , �E ) and AElgg(Q , L , B)) 

that do not deal with subsort overloading for constructor operators. By replacing these notions with the extended defini-
tions of equational closedness and equational generalization given in this article, the proof of global termination extends 
with no changes to theories that fully cope with subsort overloading and that are either finite variant or non-finite vari-
ant.

More precisely, for the equational theories that do not satisfy the FVP, the equational homeomorphic embedding in-
tegrated in Ufvp(Q , �E ), which is used to prevent infinite narrowing derivations, is not affected by the extension, and 
termination of AElgg(Q , L , B) is not affected by the extension either. For equational theories that have the FVP, Ufvp(Q , �E )

terminates by definition, and hence the tandem Ufvp/AElgg cannot introduce any nontermination issues.
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Theorem 7 (Termination of EqNPE
U
A (E , Q )). Let E = (�, E � B) be an equational theory, and �E = (�, B, �E) be a decomposition of 

E . Let Q be a set of �-terms. Let U be an unfolding operator and let A be an abstract operator. Then, Algorithm EqNPE
U
A (E , Q )

terminates both for the tandem Ufvp/AElgg and the tandem Ufvp/AElgg .

Proof. The result follows from: 1) the fact that Ufvp(Q , �E ) terminates for FVP theories; 2) the local termination of EqNPE

for Ufvp(Q , �E ) (Theorem 1 in [5]); 3) termination of the abstraction operator AElgg(Q , L , B)) (Theorem 2 in [5]); and 4) 
the fact that the proof of the global termination of EqNPE in (Theorem 3 in [5]) relies on: a) termination of the applied 
unfolding operator and termination of the abstraction operator AElgg(Q , L , B)). �

Now we can prove the termination result for the symbolic specialization of rewrite theories that are defined on top of 
both, finite variant and non-finite variant equational theories.

Theorem 4 (Termination of NPERU
A (R)). Let R = (�, E � B, R) be a rewrite theory such that E = (�, E � B), and �E = (�, B, �E) is 

a decomposition of E . Let U be an unfolding operator and let A be an abstract operator. Algorithm NPER
U
A (R) terminates when E

satisfies the FVP (respectively, E does not satisfy the FVP) with the tandem Ufvp/AElgg (respectively, the tandem Ufvp/AElgg).

Proof. Termination of the Phase 1 follows straightforwardly from Theorem 7. Termination of the Phase 2 is immediate since 
function RNρ trivially terminates (structural induction over terms). �
Appendix B. Client-server communication protocol

This section includes the complete Maude specification of the client-server communication protocol of Example 1.

fmod CAESAR-CIPHER is
pr TRUTH-VALUE .

sorts Nat NzNat Symbol Message .
subsort NzNat < Nat .
subsort Symbol < Message .

--- Nat constructors and defined functions for natural numbers

op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op _<_ : Nat Nat -> Bool .
op _+_ : Nat Nat -> Nat [assoc comm] .

--- if then else
op [_,_,_] : Bool Nat Nat -> Nat .

vars X Y : Nat .

--- Addition, lower-than, and if-then-else: definition
eq 0 + X = X [variant] .
eq s(X) + Y = s(X + Y) [variant] .
eq 0 < s(X) = true [variant] .
eq X < 0 = false [variant] .
eq s(X) < s(Y) = X < Y [variant] .
eq [ true,X,Y ] = X [variant] .
eq [ false,X,Y ] = Y [variant] .

--- Alphabet symbols
op a : -> Symbol [ctor] .
op b : -> Symbol [ctor] .
op c : -> Symbol [ctor] .

--- list constructor (messages)
op __ : Message Message -> Message [ctor assoc] .

--- Symbol-to-Nat Nat-to-Symbol operators: declaration and definition
op toNat : Symbol -> Nat .
op toSym : Nat -> Symbol .
op len : -> Nat .
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eq len = s(s(s(0))) . --- Alphabet cardinality
eq toNat(a) = 0 [variant] .
eq toNat(b) = toNat(a) + s(0) [variant] .
eq toNat(c) = toNat(b) + s(0) [variant] .
eq toSym(0)= a [variant] .
eq toSym(s(0)) = b [variant] .
eq toSym(s(s(0))) = c [variant] .

--- Encryption/Decryption operators: declaration and definition
op shift : Nat -> Nat .
op unshift : Nat -> Nat .
op en : Nat Nat -> Nat .
op de : Nat Nat -> Nat .
op enc : Message Nat -> Message .
op dec : Message Nat -> Message .

var M : Message .
var K : Nat .

eq shift(X) = [ s(X) < len,s(X), 0 ] [variant] .
eq unshift(0) = s(s(0)) [variant] .
eq unshift(s(X)) = X [variant] .

eq en(X,0) = X [variant] .
eq en(X,s(Y)) = en(shift(X),Y) [variant] .
eq de(X,0) = X [variant] .
eq de(X,s(Y)) = de(unshift(X),Y) [variant] .

eq enc(S:Symbol,K) = toSym(en(toNat(S:Symbol),K)) [variant] .
eq enc(S:Symbol M,K) = toSym(en(toNat(S:Symbol),K)) enc(M,K) [variant] .
eq dec(S:Symbol,K) = toSym(de(toNat(S:Symbol),K))[variant] .
eq dec(S:Symbol M,K) = toSym(de(toNat(S:Symbol),K)) dec(M,K) [variant] .

endfm

mod CLI=SERV-PROTOCOL-CAESAR is
pr CAESAR-CIPHER .
sorts Content State Packet Cli Serv Host CliName ServName Conf Status.
subsorts Packet Cli Serv < State .
subsorts CliName ServName < Host .

op Srv-A Srv-B : -> ServName [ctor] .
op Cli-A Cli-B : -> CliName [ctor] .
op null : -> State [ctor] .
op _&_ : State State -> State [ctor assoc comm id: null] .
op _<-_ : Host Content -> Packet [ctor] .
op {_,_} : Host Message -> Content [ctor] .
op [_,_,_,_,_] : CliName ServName Message Nat Status -> Cli [ctor] .
op [_,_] : ServName Nat -> Serv [ctor] .
op success : -> Status [ctor] .
op mt : -> Status [ctor] .
op <_> : State -> Conf [ctor] .

var K : Nat .
var C : CliName .
var S : ServName .
vars Q M : Message .
var St : State .

rl [req] : < [C, S, Q, K, mt] & St > => < [C, S, Q, K, mt] &
(S <- { C,enc(Q,K) }) & St > .

rl [reply] : < (S <- {C, M}) & [ S,K ] & St > => < [ S,K ] &
(C <- {S, dec(M,K)}) & St > .

rl [rec] : < (C <- {S, Q}) & [ C, S, Q, K, mt ] & St > =>
< [ C, S, Q, K, success ] & St > .

endm
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