
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Distributed Interval Synchronization
ANDREA FUSIELLO, (Senior Member, IEEE), and PIER LUCA MONTESSORO(Member, IEEE)
DPIA, University of Udine Via delle Scienze 206, 33100 Udine, Italy

Corresponding author: Andrea Fusiello (e-mail: name.surname@uniud.it).

ABSTRACT In this paper we address the problem of using pairwise measures associated with the edges
of a graph to obtain absolute consistent measures associated with the nodes. This problem is known in
the literature as graph synchronisation. In particular, we rigorously deal with the uncertainty affecting the
measures thanks to the interval analysis approach. We propose an asynchronous, distributed algorithm that
converges to an interval solution that represents all possible sharp solutions consistent with the measures.

INDEX TERMS Uncertainty in measurements, Synchronization, Interval Analysis, Distributed algorithms

I. INTRODUCTION

THIS paper deals with the synchronisation problem,
which can be stated in its most general form as follows:

given a network of nodes, where each node is characterised
by an unknown label and pairs of nodes can measure the
difference between their labels, the goal is to estimate the
unknown labels from the pairwise measurements. The prob-
lem can be modelled as a graph in which the unknown labels
are assigned to the nodes and the edges encode the pairwise
measurements, and it is well-posed only if such a graph is
connected. The solution is obtained from a linear system
whose coefficient matrix is the incidence matrix of the graph.

The term synchronisation [9] originally refers to the case
where the labels are real numbers representing local times
and the goal is to align, synchronise, all these clocks to a
common time, starting from local measures of time differ-
ences. Topographic levelling [2] is also in fact a synchroni-
sation, and – more generally – the labels are not restricted
to real numbers but can take values in any group (see, for
example, [3]).

Although our method is general, in this paper we will refer
to the problem of clock synchronisation in sensor networks
in order to anchor it in a real application.

Synchronisation is a common problem in distributed sys-
tems (e.g. wireless sensor networks) [19], [22], [23]. In most
cases, there is no global knowledge of the graph topology,
edge labels and node labels [10], [17], [20], so we adopt
a distributed method inspired by multi-agent systems: each
node evaluates its label asynchronously only on the basis
of its neighbourhood. Asynchronous distributed algorithms
are robust against packet loss, node failures, and many other
problems that occur in large wireless sensor networks [8].

The measure of the differences attached to the edges of
the graph is affected by uncertainty (see e.g. [1] for the case

of clock synchronisation), which we model using intervals,
assuming that the probability that the value of the measure
lies within the interval for all practical purposes is equal to
one, and the probability that it lies outside the interval is
essentially zero. There is no specific assumption about the
probability distribution of the measure within the interval.
We propagate uncertainty using the rules of Interval Analysis
(IA), as in, e.g., [16], [24] that guarantees that the resulting
intervals contain the true values, if the initial assumption is
verified. IA has been used in several engineering applica-
tions, such as Computer Vision [6], [7] and Robotics [12],
[13], [21], to mention some.

The baseline solution would be the straightforward appli-
cation of IA rules to the synchronisation over real numbers.
Our algorithm iteratively converges to an interval solution
that encloses the true one and is tighter than the baseline
method, as confirmed by simulations. To the best of our
knowledge, this is the first synchronisation algorithm work-
ing with intervals.

II. BACKGROUND
In this section we will briefly review some background
notions of interval analysis (Sec. II-A) and synchronisation
(Sec. II-B).

A. INTERVAL ANALYSIS
Interval analysis (IA) [14], [15] is an approach to solving
numerical problems that involves performing calculations on
sets of real numbers rather than on floating-point approxima-
tions of them. IA defines methods for calculating an inter-
val enclosing the range of various elementary mathematical
functions. It was introduced to limit measurement errors of
physical quantities for which no statistical distribution was
known. Another important application of IA is the construc-

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

tion of verifiable solutions to constraints that return intervals
guaranteed to contain all real solutions.

Interval enclosures are provably super-sets of the mathe-
matically correct results, which is why the interval approach
is said to be rigorous. Adhering to the IA paradigm, one
should not consider any probability distributions inside the
intervals.

There are two main advantages of IA over classical numer-
ical analysis. The first is that input errors and rounding errors
are automatically included in the interval result. Thus interval
estimation can be viewed as automatically performing both
computation and error analysis. The second is that IA allows
to compute upper and lower bounds on the range of a function
over an interval, and this proves useful in solving global
optimisation problems.

In the sequel of this section we shall follow the notation
used in [11], where intervals are denoted by boldface. Un-
derscores and overscores will represent respectively lower
and upper bounds of intervals. The midpoint of an interval
x is denoted by mid(x) and its radius (equal to half of the
interval width) by rad(x) . IR and IRn stand respectively for
the set of real intervals and the set of real interval vectors of
dimension n.

If x = [x, x] and y =
[
y, y

]
, a binary operation between

x and y is defined in interval arithmetic as:

x ◦ y = {x ◦ y | x ∈ x ∧ y ∈ y} ,∀ ◦ ∈ {+,−,×,÷} .

Operationally, interval operations are defined by the min-max
formula:

x ◦ y =
[
min

{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}
,

max
{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}]
. (1)

Here, interval division x/y is undefined when 0 ∈ y.
It should be noted that the ranges of the four elementary

interval operations are exactly the same as the ranges of the
corresponding real operations, provided that the endpoints
are rounded outward. In general, for arbitrary functions,
interval calculations do not return the exact range, but only
an overestimation. Furthermore, different expressions for the
same function give different results, although all are guaran-
teed to contain the exact range.

B. SYNCHRONISATION IN (R,+)

In this section we will give a brief account of the synchroni-
sation in the group of real numbers R with the sum (see also
[18]).

Let G = (V,E) a be a directed simple graph, whose nodes
are V = {v1 . . . vn} and edges are E ⊆ V ×V with |E| = m.
A node labelling x : V → R is consistent with a given edge
labelling z : E → R if and only if

x(v)− x(u) = z(u, v) ∀(u, v) ∈ E (2)

Let us denote the incidence vector of the edge (u, v) with

b(u,v) = (0, . . . ,−1
↑
u

, . . . , 1
↑
v

, . . . , 0)⊤ (3)

Let x be the vector containing all the node labels and z the
vector containing the edge labels (ordered as in B). Equation
(2) can be written as

x⊤b(u,v) = z(u, v) ∀(u, v) ∈ E (4)

Let B be the n ×m incidence matrix of G, which has the
b(u,v) as columns; it is easy to see that for all the edges the
equation above becomes x⊤B = z⊤, or

B⊤x = z. (5)

If the graph is connected, the rank of B is n − 1, hence
there are infinitely many solutions. This is consistent with
the fact that the synchronisation problem is defined up to
a constant, so one can w.l.o.g. arbitrarily set xk = 0 for
a chosen k ∈ V . Removing xk from the unknowns and
the corresponding row in B leaves a full-rank n − 1 × m
matrix Bk (also called “reduced” incidence matrix). Hence
we obtain the least-squares solution:

x = (BkB
⊤
k)−1Bkz. (6)

C. SYNCHRONISATION IN (IR,+)

Stepping from real numbers to interval, synchronisation can
be defined as follows:

Definition II.1 (interval consistency). A (sharp) node la-
belling x : V → R is interval-consistent with a given edge
labelling z : E → IR if and only if

x(v)− x(u) ∈ z(u, v) ∀(u, v) ∈ E (7)

Definition II.2 (interval synchronisation problem). Given an
edge labelling z : E → IR, the solution to the interval
synchronisation problem is the node labelling s : V → IR
defined as the set of all the interval-consistent node labelling,
i.e.:

s = {x : V → R | x is interval consistent∧x(k) = 0} (8)

for a chosen k as in (6).

A straightforward enclosure of the solution can be ob-
tained by extending (7) to interval values x ∈ IRn, z ∈ IRm,
so:

x = (BkB
⊤
k)−1Bkz. (9)

As in any IA problem, the quality of solution depends on
its tightness, and we aim at improving it with respect to this
baseline solution.

III. METHOD
We tackle the problem of interval synchronisation as defined
above, i.e., the edges are labelled with intervals representing
differences between adjacent nodes and the goal is to recover
the unknown node labels, that are intervals as well. Since the
solution is not unique, because adding a constant to the nodes
does not change the differences, synchronisation requires one
node label to be taken as reference. We will call this node
anchor and set its label to zero (arbitrarily).

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

The baseline approach would be to simply solve Eq. 9,
however this solution i) entails a centralised approach that is
not always feasible e.g. in a sensor network, and ii) produces
larger enclosures than our method, as we shall see in Sec. IV.

We adopt a distributed, iterative approach, where each
node evaluates its label only on the basis of its neighbour-
hoods. Each node periodically communicates its label to the
adjacent nodes; there is no constrain about the timing of this
communication, and it is not required that the label is sent
to all the adjacent nodes at once. By iterating these steps the
node labels asymptotically converge to the interval solution
s. The procedure is summarised in Algorithm III.1. In the
following we switch to a subscript notation, where xi is the
state of node i.

ALGORITHM III.1 DISTINTSYNCH

Input: Graph with interval edge-labels zij
Output: Interval node-labels xi

Step 0: (anchor) select a node as the anchor;
Step 1: (initialisation): all the node labels, except the

anchor, are set to [−∞,+∞] , whereas the
anchor label is set to [0, 0] ;

Step 2: (label propagation): a random node i sends an
update to a random neighbour j. The label xi is
combined with the measure of the edge zij to
provide an estimate of the receiver’s label x̂j :

x̂j = zij + xi (10)

Step 3: (label update): the label of node j is updated
to the intersection between the previous label
xiand the received label x̂j .

xj = x̂j ∩ xj ; (11)

Step 4: (iterate) go to step 2.

Please note that, since the intersection with [∞,+∞]
leaves the label unchanged, and all the nodes but the anchor
are initialised to [∞,+∞], only updates originating from the
anchor are effective.

A. CORRECTNESS
The property that must be verified is that the labelling pro-
duced by Algorithm III.1 contains the solution s, as defined
in (8). Inductively, let us assume that the current labelling
x contains the solution and let us see that this property is
preserved when node j changes its label upon receiving an
update from node i.

First we prove that the estimate x̂j , computed with (10),
contains the solution si. The inductive hypothesis is

si ⊆ xi. (12)

From the interval consistency it follows that:

sj ⊆ si + zi,j , (13)

and by the property of inclusion isotonicity of IA [15] we get

si + zi,j ⊆ xi + zi,j = x̂j , (14)

hence the thesis:
sj ⊆ x̂j . (15)

The current state in turn contains the solution by the
inductive hypothesis, hence their intersection contains the
solution. At the beginning all the nodes but the anchor are set
to infinity, hence they contain the solution by construction.
Since the update rule is such that the interval radius is
always reduced, Algorithm III.1 converges to a solutions of
minimum radius.

B. ANCHOR SELECTION
In some real-world applications the set of nodes is structured
so that it is natural to choose a special node as anchor, e.g.,
the gateway in a sensor network. Most of the times, however,
the anchor can be freely chosen because all the nodes are
equally important. For the sake of developing the intuition,
let us assume that the graph is a tree. Each node label is
computed by propagating the anchor label through a single
path from the anchor to the node, and the interval radius is
monotonically increasing. The radius of the resulting interval
depends i) on the number of edges that are traversed and ii)
on the interval radius of the corresponding labels. Therefore
one would like the anchor to minimise the weighted distance
to all the other nodes, where the weights are the radius of the
edge labels.

This idea is captured by the notion of closeness centrality
(or closeness) of a node, i.e., the inverse sum of the distance
from a node to all other nodes in the graph. Hence, to min-
imise the overestimation of IA, the node with the maximum
weighted closeness (where the path length is computed as the
sum of the radius of the edge labels) is selected as anchor.

The anchor must be unique: if more than one node has the
same weighted closeness value, the tie can be broken, e.g..
with a unique node identifier.

Figure 1 shows a simple graph with symmetrical (for
simplicity) interval on the edge labels. Node distances and

[-4, 4]

[-3, 3]

[-2, 2]

[-3, 3]

[-5, 5]

[-1, 1]

A

B

C E

D

[-1, 1]

FIGURE 1. Sample graph

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

TABLE 1. All node pairs distances and centrality for the graph of Figure 1

A B C D E centrality

A 0 8 6 10 16 0,031
B 8 0 14 2 8 0,039
C 6 14 0 16 10 0,027
D 10 2 16 0 6 0,037
E 16 10 10 6 0 0,030

weighted closeness values are reported in Table 1. The max-
imum of unweighted closeness is achieved by node C, being
only one hop away from all other nodes. On the other hand,
the maximum of weighted closeness is achieved by node B.
Table 2 shows the node labels resulting from every possible
anchor selection, assuming that the anchor label is always
[0, 0]. It turns out that node B is the best anchor choice
since it produces the lowest values for both the average and
maximum interval radius of the node labels in the solution.

TABLE 2. Interval synchronisation on the sample graph: each row
corresponds to a different anchor selection.

anchor A B C D E avg max

A [0,0] [4,-4] [3,-3] [5,-5] [8,-8] 8 16
B [4,-4] [0,0] [7,-7] [1,-1] [4,-4] 6.4 14
C [3,-3] [7,-7] [0,0] [8,-8] [5,-5] 9.2 16
D [5,-5] [1,-1] [8,-8] [0,0] [3,-3] 6.8 16
E [8,-8] [4,-4] [5,-5] [3,-3] [0,0] 8 16

C. ALGORITHM WITH ANCHOR ELECTION
In the previous section, it was argued that the node with
the maximum weighted closeness should be selected as the
anchor. However, this choice requires centralised knowledge
of the network, which would violate our assumptions. In
other words, since the nodes have no global knowledge of the
graph topology, they do not know which node is the anchor
(not even the anchor itself). Therefore, we modified the
original procedure so that the anchor is elected by the nodes
in a distributed way (Algorithm III.2) using the Bellman-Ford
algorithm [4].

Before the synchronisation process starts each node evalu-
ates its weighted closeness with the Bellman-Ford distributed
algorithm and saves this value to a node attribute that we call
tag ci. The Bellman-Ford distributed algorithm keeps running
in the background to keep the weighted closeness values up
to date in the face of possible changes of the topology.

Initially, all labels are set to [0, 0] (each node "believes" to
be the anchor). During the synchronisation process, the tag is
sent to the neighbours along with the node label (modified
by the values on the edges). The update rule is such that
the nodes are always tagged with the weighted closeness of
the node from which the value stored at the node has been
propagated.

When a node receive a label estimate from another node
with a tag higher than its own it discharges its current label,

ALGORITHM III.2 DISTINTSYNCH W ANCHOR ELECTION

Input: Graph with interval edge-labels zij
Output: Interval node-labels xi

Step 0: (weighted closeness) initialise weighted close-
ness ci = ∞ ∀i and run the Bellman-Ford
algorithm to calculate the weighted closeness
values at all nodes;

Step 1: (initialisation): xi = [0, 0] ∀i;
Step 2: (label propagation): a random node i sends an

update to a random neighbour j. The label xi

is combined with the label of the edge zij to
provide an estimate of the receiver’s label x̂j :

x̂j = zij + xi

Step 3: (label update):

xj =

xj if ci < cj

x̂j if ci > cj

x̂j ∩ xj if ci = cj

(16)

cj = max(ci, cj) (17)

Step 4: (iterate) go to step 2.

because the information received for the update come from
a better origin (and it becomes "aware" of not being the
anchor). This way, the labels coming from origins different
from the anchor are progressively overwritten, leaving only
the labels synchronised with the anchor (see Algorithm III.2).

Please note that, with respect to Algorithm III.1, the ini-
tialisation of nodes’ labels to [−∞,+∞] is implicitly here,
for any time a node’s label is overwritten because of the test
on c, this can be interpreted as the intersection between the
received estimated label and [−∞,+∞].

D. DISTRIBUTED BELLMAN-FORD
In this section we will briefly review the distributed version of
the Bellman-Ford algorithm, which is used for the distance-
vector routing protocols in computer networks to find the
best routing path to send data packets between routers. The
algorithm proceeds by relaxation, in which approximations
to the correct distance are replaced by better ones until they
eventually reach the solution. Each node builds a table of dis-
tances to all other nodes, called distance vector, which is sent
to adjacent nodes every time a change occurs. The vectors
are initially empty and are updated with the only information
a node initially knows, i.e., its own identifier, and are sent to
the neighbours. Upon receiving an update from a neighbour i,
node j merges its vector with the vector of i increased of the
cost of edge (i, j) keeping the minimum distance. Eventually
the algorithm converges to the true distances. A synchronous
version of this algorithm where in one iterative step all the
nodes compute their distance vectors at the same time and
then exchange them, converges in a number of steps equal to
the length of the longest path between any two nodes in the

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

network. The "distance" metric in Bellman-Ford algorithm is
general, and this makes it useful for our purposes. In fact,
using the weighted closeness values as metric it becomes a
distributed algorithm for the anchor election.

IV. EXPERIMENTS
To evaluate the performance of the algorithm we generated
6 sets of 50 random graphs each. The graphs are connected
and planar. The sets differ for number of nodes (20 or
100) and number of edges, labelled with randomly chosen
intervals having maximum radius of 10 and average radius
of 5. Table 3 reports the statistics, including the cyclomatic
number defined as (#edges - #nodes + 1). This is the relevant
parameter to the statistics because it measure in a way the
connectivity of the graph, and we generated graphs with a
cyclomatic number in a wide range of values that well repre-
sent real world situations, from loosely to strongly connected
networks.

The graphs are available on the public domain at (removed
for blind review).

TABLE 3. Relevant statistics of the graphs used in our simulations

set #nodes
average
#edges

std dev
#edges

min
cyclomatic

max
cyclomatic

avg
cyclomatic

1 20 28.1 3.7 2 18 9.1
2 20 55.1 7.3 22 50 36.1
3 20 98.9 12.4 50 109 79.9
4 100 418.4 29.2 248 401 319.4
5 100 1379.4 72.4 1128 1456 1280.4
6 100 2560.7 117.8 2207 2710 2461.7

The proposed distributed synchronisation algorithm has
been implemented and simulated in Octave1 using the inter-
val package2. For each graph the results have been compared
with

• the baseline solution obtained by solving the linear
system (9) with IA;

• the solution obtained by propagating the anchor’s label
along the graph’s minimum spanning tree [5], where the
cost associated to each edge is the radius of the interval.

Table 4 reports the average values of maximum and mean
radius for each set. For each group of the 300 simulations
the table reports the average values; however, the distributed
synchronisation algorithm performed better than both other
approaches not only in average, but in every single simulation
too. This is not surprising, since the interval linear system
solution suffers from the well-known overestimation and
wrapping effect [15], while the spanning tree solution does
not exploit loop-closing which indeed is essential in our
approach to improve the solution.

Figure 2 shows the typical behaviour of the distributed
synchronisation algorithm. The graph used for this simu-
lation has 20 nodes and a cyclomatic number of 36. The

1https://octave.sourceforge.io/
2https://octave.sourceforge.io/interval/package_doc/

TABLE 4. Interval radius (avg/max) achieved by three algorithms on graphs
with different sizes and cyclomatic number (see Tab. 3)

average cyclomatic number

20 nodes 100 nodes
9.08 36.12 79.88 319.44 1280.42 2461.7

avg interval
linear system 17.1 14.81 12.24 32.66 18.38 13.94
spanning tree 13.77 7.16 4.24 11.68 3.92 2.68

distributed 12.34 5.64 2.7 8.22 1.83 1.29

max interval
linear system 32.14 23.3 16.53 52.69 25.6 17.89
spanning tree 28.6 15.41 8.12 25.33 7.81 5.04

distributed 27.44 13.48 5.76 19.67 4.26 2.72

grey section of the plot represents the evolution of the al-
gorithm while each node propagates its state through the
graph (therefore increasing each node label interval radius)
but not all the nodes have been updated at least once with
a value propagating from the anchor. This occurs after 215
simulation steps (the dashed vertical line in the figure), when
the anchor value has been propagated 111 times. It repre-
sents the first valid solution found by the algorithm, whose
average and maximum interval radius are 10.8 and 25.2,
respectively, smaller than the solution of the linear system
solvers (average: 14.5, maximum: 22.7). However, as shown
in the graph, the distributed algorithm keeps improving and
reaches a stable final solution with average radius of 4.7 and
maximum radius of 10.8.

Figures 3 and 4 shows how the three approaches (linear
system solver, spanning tree, and distributed synchronisa-
tion) produce better results when the graph’s cyclomatic
number increases. This is somehow expected, since the cy-
clomatic number is related to the amount of cycles in the
graph and therefore to its degree of connectivity. In particular,
a higher cyclomatic number implies shorter paths from the
the spanning tree root to the leaves, which improves the
solution. Our distributed approach, in addition, benefits from
the presence of cycles that provides multiple paths over
which independent propagation occur.

It also is interesting to notice that the superiority of the

average radius

maximum radius

synchronization reached

0 100 200 300 400 500 600 700

30

25

20

15

10

5

0

FIGURE 2. Evolution of the interval radius (max/avg) during a simulation on
the 20 nodes graph.

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90

Average radius vs. cyclomatic number, 20 nodes

linear system spanning tree distributed algorithm

FIGURE 3. Average radius vs. cyclomatic number for the graphs sets of 20
nodes

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

Average radius vs. cyclomatic number, 100 nodes

linear system spanning tree distributed algorithm

FIGURE 4. Average radius vs. cyclomatic number for the graphs sets of 100
nodes

proposed algorithm is greater for larger graphs with relatively
few edges (smaller cyclomatic numbers).

V. CONCLUSION
In this paper, we addressed the problem of graph synchro-
nisation that consists in exploiting pairwise measurements
associated with the edges of a graph to obtain consistent
values associated to nodes.

We proposed a rigorous method to deal with uncertainty,
which we modelled as intervals, and developed an asyn-
chronous, distributed algorithm that converges to the interval
solution representing all possible measurement-consistent
sharp solutions. Simulations confirm the properties of the
proposed approach. These features make it particularly suit-
able for real-world applications in wireless sensors networks.

REFERENCES
[1] A. Ageev, D. Macii, and D. Petri. Synchronization uncertainty contribu-

tions in wireless sensor networks. In Instrumentation and Measurement
Technology Conference Proceedings, pages 1986 – 1991, 06 2008.

[2] J. M. Anderson and E. M. Mikhail. Surveying Theory and Practice.
WCB/McGraw-Hill, 1998.

[3] F. Arrigoni and A. Fusiello. Synchronization problems in computer vision
with closed-form solutions. International Journal of Computyer Vision,
128:26–52, 2020.

[4] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[5] B. Bollobas. Modern Graph Theory. Springer, 1998.
[6] D. N. Brito, F. L. Pádua, and A. P. Lopes. Using geometric interval algebra

modeling for improved three-dimensional camera calibration. Journal of
Mathematical Imaging and Vision, 61(9):1342–1369, 2019.

[7] M. Farenzena and A. Fusiello. Rigorous Computing in Computer Vision.
In M. Chantler, editor, Vision, Video, and Graphics (2005). The Euro-
graphics Association, 2005.

[8] D. Fontanelli and D. Macii. Master-less time synchronization for wireless
sensor networks with generic topology. In 2012 IEEE International
Instrumentation and Measurement Technology Conference Proceedings,
pages 2785–2790. IEEE, 2012.

[9] A. Giridhar and P. Kumar. Distributed clock synchronization over wireless
networks: Algorithms and analysis. Proceedings of the IEEE Conference
on Decision and Control, pages 4915–4920, 2006.

[10] D. Grimaldi and F. Lamonaca. Measurement techniques to assess the time
synchronization in distributed systems. In Proceedings of the 16th IMEKO
TC4 Symposium, Florence, Italy, pages 480–485, 2008.

[11] R. Kearfott, M. Nakao, A. Neumaier, S. Rump, S. Shary, and P. Van Hen-
tenryck. Standardized notation in interval analysis. Vychislitel’nye
Tekhnologii, 15, 2010.

[12] D. Malyshev, L. Rybak, G. Carbone, T. Semenenko, and A. Nozdracheva.
Optimal design of a parallel manipulator for aliquoting of biomateri-
als considering workspace and singularity zones. Applied Sciences,
12(4):2070, 2022.

[13] J.-P. Merlet. Interval analysis and robotics. In Robotics research, pages
147–156. Springer, 2010.

[14] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
[15] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval

analysis. SIAM, 2009.
[16] Z. Niu, H. Zhu, X. Huang, A. Che, S. Fu, S. Meng, and Z. Han. Uncertainty

quantification method for elastic wave tomography of concrete structure
using interval analysis. Measurement, 205:112160, 2022.

[17] R. T. Rajan and A.-J. van der Veen. Joint ranging and synchronization
for an anchorless network of mobile nodes. IEEE Transactions on Signal
Processing, 63(8):1925–1940, 2015.

[18] W. Russel, D. Klein, and J. Hespanha. Optimal estimation on the graph
cycle space. IEEE Transactions on Signal Processing, 59(6):2834 – 2846,
2011.

[19] E. Serpedin and Q. M. Chaudhari. Synchronization in Wireless Sensor
Networks: Parameter Estimation, Performance Benchmarks, and Proto-
cols. Cambridge University Press, 2009.

[20] T. Surmacz, B. Wojciechowski, M. Nikodem, and M. Słabicki. Distributed
time management in wireless sensor networks. In Proceedings of the
Ninth International Conference on Dependability and Complex Systems
(DepCoS-RELCOMEX), pages 443–453. Springer, 2014.

[21] R. Voges and B. Wagner. Timestamp offset calibration for an imu-camera
system under interval uncertainty. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Madrid, Spain, October 2018.

[22] B. Xue, Z. Li, P. Lei, Y. Wang, and X. Zou. Wicsync: A wireless multi-
node clock synchronization solution based on optimized uwb two-way
clock synchronization protocol. Measurement, 183:109760, 2021.

[23] X. Xue, H. Qin, and H. Lu. High-precision time synchronization of
kinematic navigation system using gnss rtk differential carrier phase time
transfer. Measurement, 176:109132, 2021.

[24] Y. Zhou, S. Zhou, G. Hao, and J. Zhang. Bridge influence line iden-
tification based on big data and interval analysis with affine arithmetic.
Measurement, 183:109807, 2021.

ANDREA FUSIELLO received the Laurea (M.S.)
degree in computer science from the University
of Udine (Italy) in 1994, and the Dottorato di
Ricerca (Ph.D.) degree in computer engineering
from the University of Trieste, in 1999. In 1999
he was a Research Fellow with the Heriot-Watt
University, Edinburgh. From 2001 to 2011, he
was with the Department of Computer Science,
University of Verona. As an Associate Professor
he joined the DPIA at the University of Udine in

2012, and became Full Professor in 2023. He is the author of more than 150
articles, and holds two patents. His research interests covers various topics in
Computer Vision, Photogrammetry and Image Analysis, with a focus on 3-
D modelling/reconstruction. He is an Associate Editor of IEEE Transactions
on Image Processing.

Prof. Fusiello was a recipient of the Best Paper - Honorable Mention
award at the International Conference on Computer Vision 2021.

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fusiello, Montessoro: Distributed Interval Synchronization

PIER LUCA MONTESSORO was born in
Torino (Italy) in 1961. He received the Dr. Eng.
degree in Electronic Engineering from the Poly-
technic of Turin, Italy, in 1986, and now he is
full professor in Computer Science at University
of Udine, Italy. Previously he has been with the
Italian National Council for Scientific Research
in Italy and scientific consultant for the Digital
Equipment Corporation (later Compaq) in Mass.
(USA) in the field of simulation for VLSI design.

His research interests, after several years spent on CAD systems for digital
circuits design and on multimedia systems for e-learning, are currently
focused on computer networks, ICT security and pervasive computing, in
particular distributed controls and algorithms for agents-based systems. He
has been chair and organizer of the WCC 2013 workshop "International
Workshop on Cloud Convergence: challenges for future infrastructures and
services", hosted in the IEEE ICC conference and chair of the 30th edition
of the Didamatica conference, held in Udine.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346959

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

