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Featured Application: A CFD-FVM model of the exhaust pipe of a compression-ignition engine
has been used to raise the prediction capabilities of an indirect torque-evaluation model for that
engine based on the exhaust gas temperature. The article illustrates in detail also the CFD-FVM
model tuning procedure, making use of the Response Surface Methodology and specific proce-
dures based on the exhaust gas temperature at three different locations along the exhaust pipe,
detected in some preliminary experimental tests.

Abstract: A truly universal system to optimize consumptions, monitor operation and predict main-
tenance interventions for internal combustion engines must be independent of onboard systems,
if present. One of the least invasive methods of detecting engine performance involves the mea-
surement of the exhaust gas temperature (EGT), which can be related to the instant torque through
thermodynamic relations. The practical implementation of such a system requires great care since
its torque-predictive capabilities are strongly influenced by the position chosen for the temperature-
detection point(s) along the exhaust line, specific for each engine, the type of installation for the
thermocouples, and the thermal characteristics of the interposed materials. After performing some
preliminary tests at the dynamometric brake on a compression-ignition engine for agricultural pur-
poses equipped with three thermocouples at different points in the exhaust duct, a novel procedure
was developed to: (1) tune a CFD-FVM-model of the exhaust pipe and determine many unknown
thermodynamic parameters concerning the engine (including the real EGT at the exhaust valve
outlet in some engine operative conditions), (2) use the CFD-FVM results to considerably increase
the predictive capability of an indirect torque-detection strategy based on the EGT. The joint use
of the CFD-FVM software, Response Surface Method, and specific optimization algorithms was
fundamental to these aims and granted the experimenters a full mastery of systems’ non-linearity
and a maximum relative error on the torque estimations of 2.9%.

Keywords: compression-ignition engine; torque; exhaust gas temperature; thermocouples; CFD;
FVM; RSM; indirect estimation; agricultural machines

1. Introduction
1.1. Contextualization of This Study

Sustainability is one of the master keywords that will lead world development during
the next years. Pollution derived from the use of fossil fuels and possible consequent
climate changes are two of the most debated arguments nowadays and, because of this, the
entire economic sector of internal combustion engines (ICEs), from their production to their
use as power units, is one of the most involved in sustainability issues and sustainability-
compliant strategies. To better frame the problem and its numerous aspects, ICEs are
actually the main source of energy for the small-/medium-size cogeneration sector and the
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most common mean to move vehicles and to run industrial and agricultural devices, with
traffic being one of the main sources of air pollution in our cities together with residential
heating [1,2]. Therefore, improvements brought to ICEs will result in a worldwide positive
effect, and this motivates the huge efforts undertaken to make ICEs more “eco-friendly”.

This latter aim can be pursued by using many different approaches. Indeed, even
though ICEs are a well-established technology and their architecture has reached stability
from a technical-evolutionary point of view, advancements are still possible [3]. Radical
changes to the engine’s architecture are not (economically) feasible today since they would
require heavy modifications to consolidated industrial apparatuses (devoted to the mass-
manufacturing and to servicing of these engines). In fact, just to provide some examples,
rotary ICEs (including the Wankel engine) are proposed for very specific applications so as
to be quantitatively not influent in the world market, and other, more exotic, architectures
(e.g., the opposed-piston engine), although interesting from some points of view, have
never passed the hurdle of industrial implementation.

In the described scenario, technical improvements for ICEs are mainly implemented to
the exhaust subsystem, to the engine fueling subsystem (including the fuel used to power
the engine) and/or the engine performance management subsystem [4,5]. The technical
solutions regarding the exhaust system are all aimed at further reducing the total amount
of air-pollutants emitted; some examples include: particulate filters, catalytic oxidizers
and selective catalytic converters (SCRs), whose effectiveness has largely increased over
the last years. On the other side, the most promising innovations concerning engine
fueling are, essentially, all about new fuel types deriving from renewable resources, able to
limit the carbon footprint of the combustion process and, contemporarily, to reduce the
pollutants thanks to a more efficient combustion process [6,7]. Engine performance can
also be enhanced by optimizing all those detail aspects affecting the correct operation of
the engine (i.e., valve openings, timings, injection parameters, spray formation, etc.) [8,9].
The capability of an engine-management system to collect real-time data concerning the
engine apparatus is the necessary requirement to pursue the above-listed optimization
strategies and adapt their intervention according to the current power requirements. For
this reason, modern vehicles are generally equipped with a growing number of electronic
onboard devices such as sensors, electronic control units, actuators, electronic-controlled
valves etc. that allow the gathering of data about many parameters, their fast processing,
and, finally, the use of the elaboration results to actuate the desired engine strategy. An
increasing penetration of these technologies on the market would be for sure favored by
a quick and progressive replacement policy of old units with newer ones. At this regard,
the automotive sector can be taken as a virtuous example. Indeed, the average age of
vehicles in the Italian car sector is around 10 years [10], with 68% of cars being built after
2006, so most of the circulating cars are equipped with devices that can, in some way,
collect data and improve their performances thanks to the implementation of closed-loop
controls and real-time management-logics. However, due to a mix of many unfavorable
factors (weak incentive policies, low financial availability/money supply of stakeholders,
unexpressed technical needs by the operators), not all the economic sectors have had or
actually have the same opportunities and growth possibilities: the agricultural sector is
one of these. For the explained reasons, a common situation even in developed countries
sees many agricultural machines that are quite old and that will be kept in use for still
many years. For example, the average age of farm tractors in Italy is around 20 years (25
in 2012 [11,12]) and around 700,000 vehicles are more than 33 years old [13,14]. Apart for
the total lacking onboard of any modern pollution-abatement system (e.g., EGR, SCR),
for these very old vehicles there is no possibility to gather even-simple data on their
performance, emissions, or maintenance state (no CAN-BUS system is present: it is based
on ISO 11898:2003 standard [15]), so any system-optimization strategy cannot be performed
at all.

In the delineated context, the study proposed in this article can be framed in a wider
research project by the authors, aimed also at the development of an independent low-cost
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monitoring system able to retrofit and collect data from ICE-powered agricultural machines
even not originally equipped with an engine-management/diagnostic system, whichever
the reason (high machine age, uneconomic implementation cost of retrofit solutions pro-
posed up to now, too low complexity of the machine itself, etc.). This acquisition system
must be designed respecting some compulsory characteristics to properly reach a required
level of functionality and usefulness. In the design process it is important to consider that
such a system will be mainly used on agricultural vehicles, specifically farm tractors, and
the users will be farmers, so it must comply with their needs. Therefore, such a data acqui-
sition system should be, above all, non-invasive or, at least, as low invasive as possible, i.e.,
it should require minor modifications on the tractor components and a short installation
time, not to cause interferences with normal operation of the engine and nor considerable
delays to the customer’s activities that would discourage its installation. Other mandatory
characteristics for it should be: overall robustness (specifically, it should be vibration-,
water-, and dust-proof), easiness of use (in terms of: user-friendly interface, easy access
to current and stored data, simple or almost-zero maintenance), versatility of application
(i.e., it should be suitable for any vehicle and expandable if needed), cost-effectiveness
of purchase and maintenance (at least in comparison to the advantages granted by its
adoption). Such an engine monitoring system, suitable to the meet the multiple situations
that an engine can meet in the agricultural sector, must ensure the acquisition of reliable
data related both to the fuel consumption of the vehicles and to the estimation of the
possible performance decay that normally occurs with the wear and the prolonged use
of the engines. The reliability of the acquired data guarantees the generation of “precise”
information, consistent with the nature of the decision-making processes that they will
have to support, compatible with the management logic [16]. There are several reasons
that make nowadays the research for these types of applications particularly relevant.
The first is the need to strengthen the research in the framework of the so-called smart
farming (SF) [17–19], which in turn has been stimulated by its links with innovations in the
field of Industry 4.0 [20]. For SF, indeed, a growing need is represented by the possibility
to automate operational monitoring tasks as much as possible, that is, the management
methods by which field processes are carried out, especially with regard to logistics and
energy performance. The availability of effective and reliable low-cost tools, adaptable to
various situations, even with retrofit adjustments, is a target for any SF application [21].
Secondly, what SF and Industry 4.0 application methodologies have in common is the
Knowledge Management 4.0 (KM4.0) [22,23]. Precisely in this area, a requirement of grow-
ing interest is the possibility of introducing control methodologies based on predictive
maintenance [24,25] also in agriculture as an alternative to the planned maintenance con-
ventionally used in all sectors. Monitoring systems, such as the one that is the final aim of
the activities starting from the study proposed here, go toward this direction. Indeed, they
allow, also through modeling interpretations, to highlight decay phenomena before the
occurrence of critical situations that could bring consumption out of control, and to suggest
control or maintenance interventions in advance of the conventionally-planned times.

1.2. The EGT as a Parameter Useful for Indirectly Measuring the Engine Performances

The starting point for the development of such an acquisition system is the individ-
uation of the engine parameters to gather and the assessment of the best data-collection
methods to employ. Studies dealing with ICEs [26–32] usually focus on the following
variables, which are the most representative of an engine and its operating conditions:

• Torque;
• Engine speed;
• Fuel consumption;
• Air requirement;
• Mechanical, thermodynamic, total efficiency;
• Pollutant emissions;
• Lubricant quality;
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• Engine and cooling system temperatures;
• Exhaust gas temperature;
• Sound emissions and vibrations.

Among all these parameters, this article will focus on the exhaust gas temperature
(EGT). Indeed, EGT is one of the most meaningful parameters that can be acquired because
it is representative of many phenomena occurring inside the engine (specifically, within
the combustion chambers), and it is responsible for the correct operation of the devices
located along the exhaust pipeline [33]. From a thermodynamic point of view, the EGT
can be correlated with: engine torque, power and efficiency, combustion quality, and
pollutant emissions. In addition, EGT can rightfully be assumed as an indicator of possible
malfunctions involving all previous-listed quantities related to the engine or to the technical
devices relying on EGT (the turbocharger, every pollutants-abatement systems: EGR, DPF,
SCR, catalytic converters etc.). In particular, the relation between EGT and engine torque
(M) is very important, and it is one of the reasons why EGT is such an interesting parameter
to be gathered. M is a difficult parameter to be measured if there is no built-in sensor
in the studied machine (esp. in the oldest ones), but its direct or indirect acquisition is
fundamental as it can describe the engine output better than other parameters. One way
to cope with this issue is to derive the torque value from the EGT that can be acquired
through the use of thermocouples (from now on: TCs), that are almost inexpensive and
very easy to install in comparison to a traditional torque-metering system.

The temperature of the combustion gases reached at the discharge phase of a
compression-ignition cycle (i.e., at the outlet of the exhaust valve in the motor head)
is directly related (please refer to Figure 1):

(a) To all the thermodynamic transformations composing the cycle before arriving at
expansion 3–4, ideally adiabatic (in particular, also to the amount of fuel injected
in the considered cycle, during the ideally-isobaric transformation 2–3), and also to
the free expansion of combustion gases from point 4 at the exhaust valve opening,
ideally isochoric;

(b) To the area included in the loop representing the whole cycle on a p-V plane (pressure-
volume), equal to the work per cycle performed by the engine and, hence, to the
torque [34].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 39 
 

• Engine speed; 
• Fuel consumption; 
• Air requirement; 
• Mechanical, thermodynamic, total efficiency; 
• Pollutant emissions; 
• Lubricant quality; 
• Engine and cooling system temperatures; 
• Exhaust gas temperature; 
• Sound emissions and vibrations. 

Among all these parameters, this article will focus on the exhaust gas temperature 
(EGT). Indeed, EGT is one of the most meaningful parameters that can be acquired be-
cause it is representative of many phenomena occurring inside the engine (specifically, 
within the combustion chambers), and it is responsible for the correct operation of the 
devices located along the exhaust pipeline [33]. From a thermodynamic point of view, the 
EGT can be correlated with: engine torque, power and efficiency, combustion quality, and 
pollutant emissions. In addition, EGT can rightfully be assumed as an indicator of possible 
malfunctions involving all previous-listed quantities related to the engine or to the tech-
nical devices relying on EGT (the turbocharger, every pollutants-abatement systems: EGR, 
DPF, SCR, catalytic converters etc.). In particular, the relation between EGT and engine 
torque (M) is very important, and it is one of the reasons why EGT is such an interesting 
parameter to be gathered. M is a difficult parameter to be measured if there is no built-in 
sensor in the studied machine (esp. in the oldest ones), but its direct or indirect acquisition 
is fundamental as it can describe the engine output better than other parameters. One way 
to cope with this issue is to derive the torque value from the EGT that can be acquired 
through the use of thermocouples (from now on: TCs), that are almost inexpensive and 
very easy to install in comparison to a traditional torque-metering system. 

The temperature of the combustion gases reached at the discharge phase of a com-
pression-ignition cycle (i.e., at the outlet of the exhaust valve in the motor head) is directly 
related (please refer to Figure 1): 
(a) To all the thermodynamic transformations composing the cycle before arriving at ex-

pansion 3–4, ideally adiabatic (in particular, also to the amount of fuel injected in the 
considered cycle, during the ideally-isobaric transformation 2–3), and also to the free 
expansion of combustion gases from point 4 at the exhaust valve opening, ideally 
isochoric; 

(b) To the area included in the loop representing the whole cycle on a p-V plane (pres-
sure-volume), equal to the work per cycle performed by the engine and, hence, to the 
torque [34]. 

 
Figure 1. Ideal diesel cycle (i.e., related to a closed system processing an ideal fluid). The different 
heat Q supplied during the transformation 2–3. Ideally, isobar is responsible for the different 
work-per-cycle expressed by the system and gives different temperatures T at the end of the cycle. 
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heat Q supplied during the transformation 2–3. Ideally, isobar is responsible for the different work-
per-cycle expressed by the system and gives different temperatures T at the end of the cycle.

For a given compression ratio rv (constructive-geometric feature of an engine), the
values of maximum pressure p2 = p3 and volume V4 = V1 that bound geometrically the
curve of the adiabatic expansion 3–4 are fixed [34]. Consequently, the work per cycle, hence
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the torque expressed by an engine and the final temperature reached by the operating fluid,
which is related to the EGT in an open system (Tex ∼= T4), depends only on the amount of
heat supplied to the fluid (Figure 1). Furthermore, in a real thermodynamic cycle, there
is also a dependency of the torque from the rotational speed (through the volumetric
efficiency). Hence, exploiting the Taylor series, it is possible to approximate the torque as
follows [35]:

M = f (n, ∆T) = b0 + b1 · ∆T + b2 · ∆T2 + b3 · n · ∆T + b4 · n2 (1)

(where: ∆T is the difference between the external air temperature and the EGT, n is
the engine rotational speed in rpm, b0 to b4 are constants to be determined from some
performance tests).

The above-reported equation shows that the torque is a function of a temperature
difference (hence: a temperature) and the engine speed, which are parameters that can
be measured in an easier way than a direct measurement of M. Many studies on engines
fueled with traditional and innovative fuels used instead artificial neural networks (ANNs)
to predict performance and pollutant emissions [36–39]; however in those works EGT is
used to train or check the results and no one uses it to individuate an explicit relation to M.
In an earlier work [12], it was proposed a methodology to calculate M starting from EGT
and engine speed using ANNs, and it was found that this method can predict very well
the torque (R2 ∼= 0.998) with a quite short training time (≤5 s) and a reasonable amount of
data to be collected for the training and validation phase (about 219 trials).

However, independently from the method employed, the deduction of the torque
starting from the EGT strictly relies on the accuracy of the temperature measurement. This
experimental implementation can be complicated considering that the EGT, which it is
pretended to be used to deduce the torque, is detected in a generic point downstream
of the exhaust pipeline, with a thermally-conductive interposed material (i.e., with a
thermocouple not in direct contact with the exhaust gas stream). Indeed, due to the many
heat-exchange phenomena, which take place along the exhaust gas path (involving all the
three heat exchanges modes), depending also on the speed of the exhaust gas (hence by its
flow rate), there is no linear proportionality between the detected temperature variations
(increments/decrements) and the associated torque variations (increments/decrements)
also associated to the time response delays between the torque output and the temperature
measurement due to the thermal inertias. As it will be illustrated in this study, the use of
a numerical simulation program, such as computational fluid dynamics (CFD) software
using the finite volume method (FVM), constitutes a valid and viable tool to preliminary
relate the temperature detected at some points the exhaust line (Ti, with i = 1 to n, where n
is the number of TCs positioned on the exhaust line), in correspondence with a reduced
set of engine speeds (hence, with the associated mass flow rates of the exhaust gas), with
the real exhaust gas temperature T in the same cases, thus increasing the accuracy of the
general model to predict the torque M:{

M = a · Tex + b⇒ M = a · T + b
T = f (Ti, CFD− FVM model parameters, incl. n)

(2)

In this case, even if using an overall model that is linear (the first equation of the two
reported above), it is still possible to handle successfully all the non-linearities of such a
system using the CFD-FVM in the setup phase before implementing the equations in a
possible monitoring system.

Given the importance of EGT, many aspects must be considered to collect the initial
data properly and then tune a CFD-FVM model useful to further correct the measurement
errors. Proper EGT acquisition relies on a preliminary evaluation of the most adequate
instrumentation to be used. Thermal cameras and TCs are the two considered options,
each having some advantages and drawbacks:
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• Thermal cameras usually need a proper preparation of the target object (in terms of
surface reflectance, smoothness) to ensure a known value of its emissivity; but they
have a very high cost if compared to thermocouples and can measure only superficial
temperatures; among the advantages, there is the possibility to use them at a set
distance from the studied object and to acquire the temperature of many points at the
same time;

• TCs are inexpensive, small, robust, can be inserted in some difficult-access points
of an engine, even, very close to the exhaust gas flow (using specific solutions, e.g.,
thermometric wells or “thermowells” to be screwed in dedicated threaded holes),
and can be easily connected to a data logging device (output in voltage); on the other
side, they need wiring, adaptors, thermometric wells (thus implying the creation of
threaded holes on the exhaust pipe), and, finally, each thermocouple can measure the
temperature in a single point only.

For what concerns precision, studies show that there is good agreement between
the two above-illustrated acquisition techniques [40]. However, for the present case,
thermocouples were chosen. The main reason is the need to acquire the EGT also inside
the exhaust pipe (at least to have a comparison for the temperatures acquired in other
points). Furthermore, thermocouples are more suitable for possible future adoption in an
engine monitoring system, thanks to their easier synchronization with other sensors, their
robustness, and their cheapness. Nevertheless, the correct use of these sensors is not trivial,
and some aspects must be evaluated carefully, as many studies demonstrated [41–44].
Firstly, the right thermocouple-type must be chosen on the basis of the expected absolute
value and variation range of the temperature to be measured. Secondly, if thermocouples
are used to measure a temperature depending on the EGT (e.g., the surface temperature of
the exhaust pipe), the position along the exhaust system must be individuated carefully.
Indeed, in such a layout, the TC position is a key element in the measurement process
and can highly affect the representativeness of temperature measurements for deducing
the related engine performances. The longer the distance of the measuring point from
the exhaust valves of an engine, the greater the heat losses due to many (and, sometimes,
difficult-to-be-predicted) thermal phenomena. Apart from the position, another concern is
about the installation layout and the system adopted to fix the thermocouples (superficial,
welded, inside the pipe, with or without a thermometric well) because these choices may
significantly affect the final measurement too.

All those above-illustrated aspects determine different fluid dynamic and thermal
conditions for the system as its whole, hence directly affect the heat exchange and this is the
reason why so many other studies focus on these aspects [45–49]. Things to consider are,
for example, the convective exchange coefficients, the emissivity, the thermal diffusivity,
and other component properties. Issues to deal with are: the temporal delay of thermal
waves due to thermal inertia (especially during non-stationary working conditions) and
the presence of a pulsating flow that modifies the internal heat transfer coefficients, thus
making the correct EGT estimation from outside the exhaust pipe even more challenging.

1.3. Aims of This Study

The purpose of this work is to propose and illustrate a methodology for the indirect
assessment of the engine torque. Overall, this methodology should allow to correlate the
sensor readings (i.e., thermocouples and other sensors typically embedded in the exhaust
line) to the desired output (i.e., the torque) and to ensure the highest representativeness and
precision of experimental gatherings. In the same methodology, the joint use of CFD-FVM
and RSM is able to maximize the significance of the data coming from some preliminary
experimental tests and raise the accuracy of the predictive model. A case study concerning
a selected small-scale compression-ignition engine is proposed here, but the presented
methodology can be applied also to other engines with different characteristics (e.g., total
displacement and number/disposition of cylinders).
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The development of such a methodology has the final aim to develop a self-standing
engine monitoring system for agricultural machines and small power generation units,
able to acquire reliable data concerning the engine performances and possible performance
decays, useful to set up predictive maintenance plans for these machines.

2. Materials and Methods

The case study presented here is intended to illustrate a general three-step procedure
(Figure 2), which, starting ideally from two experimental tests (in this case corresponding to
operating points, named P0 and P3; step 1), thanks to the RSM, allow obtaining a tuned CFD-
FVM model of the exhaust pipe (step 2.1), useful to identify unknown parameters (step 2.2),
formulate considerations on the actual placement of temperature probes, correlate the
temperature gatherings with real exhaust gas temperature at the exhaust valve and, hence,
with engine performances, and then (step 3) arrive at a mathematical model correlating
engine performances with temperatures. This model can be subsequently used on a
programmable data acquisition and data processing single-board controller (e.g., Arduino,
Raspberry Pi, Lattepanda, or similar). The entire procedure has been verified also on two
other operative points inquired during the experimental tests (namely, P1 and P2) and its
accuracy has been evaluated.
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Figure 2. General three-step procedure to be followed to correctly correlate the exhaust gas temper-
atures of a compression-ignition engine at its exhaust valve with its performances, starting from
two tests.

Steps 2.1 and 2.2 were conceptually grouped together in a single step (step 2), as they
make use of the same software tools (CFD-FVM, RSM) to perform two sub-procedures
related to the estimation of a correct EGT temperature at the exhaust pipe inlet, i.e., at the
exhaust valve outlet: 1st sub-procedure about CFD-FVM model tuning, 2nd sub-procedure
about fast recalculating the CFD-FVM model tuning parameters.

Step 3 illustrated another algorithm that makes use of the estimated EGT to predict
the engine torque (3rd sub-procedure about creating the torque prediction model).
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2.1. Experimental Tests at the Engine Test Stand (Step 1)

The experimental setup is composed of three main parts (Figure 3):

1. an air-cooled 4-stroke single-cylinder compression-ignition engine (model 15LD225
by Lombardini S.r.l., Reggio Emilia, Italy [50]; Table 1), equipped with a properly-
designed experimental exhaust pipe and with an external instrumented fuel tank (i.e.,
mounted on a weighting structure);

2. a dynamometric brake (model Braker-Engine 100/E by Soft-Engine S.r.l., Falconara
Marittima, Ancona, Italy [51,52]);

3. a set of sensors (some of them installed on the exhaust pipe and the fuel tank, some
others embedded in the dynamometer; Table 2) connected to a data logger (model
cDAQ 9178 by National Instruments Corp., Austin, TX, USA [52,53]);

Table 1. Main properties of Lombardini 15LD225 compression-ignition engine used in this study.

Description Specification

Cylinders (number; configuration; total
displacement; bore × stroke) 1; vertical; 224 cm3; 69 × 60 mm

Fuel-system type Direct injection, mechanical speed regulator

Cooling type Forced-air circulation moved by the
bladed flywheel

Rated power (value; engine speed) 3.5 kW @ 3600 rpm (80/1269/CEE—ISO
1585:2020)

Maximum torque (value; engine speed) 10.4 Nm @ 2400 rpm

Maximum speed 3600 rpm

Table 2. Sensors and datalogger specifications (more details can be found at [52]).

Sensor/Component Manufacturer, Model Technical Specification

Fuel consumption meter (load cell) NCB Elettronica, CN/L 7.5
Max load 7.5 kgf, supply voltage 5–10 V,

rated output 2 mV/V ±10%,
combined error < ±0.025% f.s.

Thermocouples K type Operating temperature up to 800 ◦C (1073 K)

Zirconium-dioxide Lambda probe Robert Bosch, LSU 4.9
Suitable for Diesel/Gasoline/E85,

0.65 < λ < ∞, max operational EGT 930 ◦C,
accuracy ±0.05 (@λ = 1.7)

Encoder (of the dyno) Telestar, Minicod-T 1000 5/24 B 1000 Input voltage 5–30 V, Sampling speed
100 kHz, max rotation speed 6000 rpm

Torque meter (of the dyno) Laumas Elettronica, CTL 500 Max load 500 kgf, max supply voltage 15 V,
rated output 2 mV/V ± 0.1%,

Datalogger National Instruments, C-Daq 9178 Input voltage 9–30 V, power 15 W, max
frequency 1 MHz

The engine crankshaft is mechanically coupled to the dynamometric brake that ap-
plies the desired breaking torque on the engine. The same test stand also leaves the
experimenters the possibility to set the engine rotational speed at the desired value.

The original exhaust pipe and the muffler of the engine were both replaced by a specif-
ically designed duct made of AISI 316L stainless steel (Figure 4) and basically composed of
two parts:

• A straight pipe (internal diameter: 23 mm; external diameter: 27 mm; length: 250 mm),
having three different threaded bores designed to seat different sensors (not all used
for this study);
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• A pipe-to-head bended connector (internal radius: 36.5 mm; external radius: 63.5 mm;
bend angle: 80◦) necessary to direct the straight part of the pipe upward so that it can
be closer to the exhaust gas extraction system of the laboratory.
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indicated the position of the tip.

The TCs were applied in three different locations of the experimental exhaust system
(see Figure 4 left) with different fixing systems:

• The first TC (TC1) has a grommet that allowed it to be fixed on the bolt of the bended
connector holding the exhaust duct on the engine; the tip is close to the grommet
external circumference, and, hence, when fixed, it is in contact with the bolt surface
and measures the temperature of it (right); this TC is 29.6 mm apart from the exhaust
duct axis, in a position that is 144 mm distant (equivalent to about 6.3 duct diameters)
from the exhaust valve position;
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• The second TC (TC2) has a clamp, which allowed to place the TC with its tip in contact
with the exhaust pipe external surface; the clamp was tightened on the exhaust pipe in
a position close to the third TC, 70 mm (3.0 diameters) from the straight tube junction
with the connector, 190 mm (8.3 diameters) from the engine head junction, 334 mm
(14.5 diameters) from the exhaust valve position;

• The third one (TC3) is a TC probe whose tip was inserted into a thermowell screwed
in a specific seat on the exhaust pipe, 50 mm (2.2 diameters) from the straight tube
junction with the connector, 170 mm (7.4 diameters) from the engine head junction,
314 mm (13.7 diameters) from the exhaust valve position. Therefore, the tip of this
TC is spatially inside the exhaust pipe (approximatively at a depth corresponding to
the center of the pipe section), and the external surface of the thermowell is in direct
contact with the flow of exhaust gases.

In other future applications of the exposed methodology, it is possible to place the
TCs in other points, which will be specific to the exhaust line present in the inquired
machine (hence, even very different from the one used here). As will be explained later, an
experimenter should only take care to individuate the exact positions of the TCs’ tips and
place them in the CFD-FVM model to proceed with the model calibration procedure that
will be explained in the following paragraphs.

For this case study, a total of 4 trials were performed, each one characterized by
different conditions of engine load and speed imposed by the dyno, hence determining
4 different operative points for the engine (named from P0 to P3). As mentioned before,
only two of these operative points are effectively needed for this procedure (in this case, P0
and P3 were chosen), the other two (in this case P1 and P2) have been used as verification
points and, therefore, in future applications of this procedure they may not be carried out.

The load and speed conditions were kept constant for a minimum of 500 s per trial, so
as the detected temperatures (T1 for TC1, T2 for TC2, T3 for TC3) could reach a constant
value, and this value was kept for at least 50 s (meaning that the system was in a steady-
state condition in this last part of the observation period). The room (ambient) temperature
was stable around 27 ◦C during all the trials.

During each trial, many parameters of interest were collected at the same time: the
temperatures from the three TCs, the rotational speed, the torque, the fuel weight, and
the value of lambda. The data acquisition interval was set at 10 s (i.e., the sampling
frequency was 0.1 Hz) by using a proper program developed within the LABVIEW software
environment (by National Instruments Corporation, Austin, Texas, USA [53]) and running
on the datalogger. The same program also allowed the calculation of the mobile average on
the last 5 acquired values for each measured quantity. Table 3 reports the average values
and the expanded uncertainty values (calculated from the instrumental uncertainty and
measurement uncertainty using the coverage factor of 1.96 referred to a confidence interval
of 95% [54]) referred to thermal steady-state conditions for the engine per each operative
point of the engine. It is worth noting that the highest temperature per each operative
point is never the one related to TC1 (i.e., the TC closest to the engine head) because this
TC is fixed at a bolt quite distant from the exhaust duct axis and positioned on the external
surface of the engine head, so its thermal exposition to the heat of the EG is for sure lower
than other TCs.

2.2. CFD-FVM Model (Step 2.1)

After the first experimental phase, a computational phase started, making use of the
data corresponding to the first operative point P0. In this phase, a list of different cases
was simulated (simulations plan) to progressively align the output of an initial CFD-FVM
model of the exhaust pipe with reality.

Firstly, a complete 3D model of the exhaust line (Figure 5a), including the exhaust
pipe used in the experimental layout (obtained from the drawings used to manufacture
the exhaust duct) and part of the exhaust manifold in the engine head (developed from
the technical drawings of the engine), was created through the CAD-CAE software suite
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SolidWorks 2020 SP2.0 (by Dassault Systèmes, Vélizy-Villacoublay, France). It is worth
noting that, since the goal of such a CFD-FVM model was having the correct path (in terms
of length and bends) of the exhaust duct, even in the part inside the engine head, to have the
correct flow motion of the exhaust gas, the engine head was carefully modeled only in the
exhaust duct starting from some cross-sections found in the technical documentation of the
engine. On the contrary, the head was externally modeled with very simple, parallelepiped
volumes useful to contain the duct (hence only a “simulacrum” of the engine head was
created for this simulation). Therefore, the actual mass and shape, outer surfaces, gaskets
and inner cavities of the engine head (including the presence of engine fluids and possible
sludge in it) were deliberately not taken into account to have, in the simulation, an element
as simple as possible.

Table 3. Experimental data gathered in correspondence at four operative points for the engine (NB:
the reported data are the average values, and the expanded uncertainty values referred to steady-state
conditions only).

Quantity Unit
Engine Operative Point

P0 P1 P2 P3

Torque (M) Nm 8.09 (±0.22) 8.15 (±0.31) 6.79 (±0.25) 5.33 (±0.25)
Rotational Speed (n) rpm 2400 (±4) 1970 (±13) 2440 (±14) 2450 (±7)

T1 (grommet) K 450 (±2) 448 (±2) 438 (±2) 430 (±2)
T2 (clamp) K 540 (±2) 529 (±2) 503 (±2) 480 (±2)
T3 (well) K 680 (±2) 673 (±2) 633 (±2) 591 (±2)

Subsequently, the CAD drawings of this system were imported into the computational
package “Flow Simulation” (developed by Mentor Graphics Corporation, part of Siemens
group), included in the same software suite SolidWorks, to perform some computational
fluid dynamics simulations [55]. This CFD-FVM package is an agile software program
sufficiently accurate for industrial applications (hence very widespread in an industrial
context), and it was deliberately chosen over other software because of some specific
advantages it has for the purposes of this work, not finalized at performing a detailed
study on the fluid dynamics of the used exhaust pipe but rather using the CFD-FVM
simulation as a tool of a more general procedure. Indeed, “Flow Simulation” has a direct
interface with the CAD package, making the model-import operations very quick, simple
and error-proof, and setting a simulation is very fast. Notwithstanding some limitations
with respect to other more famous CFD-FVM programs, SolidWorks Flow Simulation
proved to be more than suitable for the aims of this study, whose novelty is the joint use
of some numerical tools, included but not exclusively, a CFD-FVM software. Specifically,
the imported geometry was used to bound the spatial domain for the subsequent CFD
calculations. In this regard, the geometry of the engine head, far enough from TCs (in
particular, TC1) not to influence the results, was properly simplified, not to increase the
simulation time uselessly. The spatial domain was then discretized (“meshed”) into small
control volumes to perform the calculations (Figures 5b and 6). The numerical method
used to solve the fluid dynamics equations is based on the cell-centered finite volume
method (FVM) with the “two-scales wall functions model” [55–57], using two different
approaches depending on the mesh refinement level. The resulting mesh (hexcore-type
mesh) is composed of a total of 258 398 parallelepiped-shaped elements (hexahedrons)
for the fluid, having the sides parallel to the three references planes constituting the base
trihedron (this is a peculiarity of this software program), and 140 900 elements at the fluid-
solid interfaces, composed by elements divided geometrically by the solid wall surface
(locally approximated by portions of plane), coupling two different calculation domains.
The base dimension for the elements was set to 2.500 mm (i.e., at a refinement level of 2
with reference to the internal scale), with local refinements at the interfaces arriving down
to 1.250 and 0.625 mm (corresponding, respectively, to a refinement level of 3 and 4 for the
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mesh). The refinement of the mesh for the fluid volume near the solid walls is required
by this software to create a sufficient number of very small elements able to cope with the
inclined solid walls and, hence, to model correctly the boundary layer. The used software
applies automatically the Van Driest hypothesis about the mixing length in turbulent
boundary layers and the k-ε turbulence model [58]. Before running the simulations, mesh
independence was proven by raising significantly the number of elements used for the
general discretization of fluid and solids domains up to +44% and +37%, respectively,
then refining the mesh in correspondence with TC2 and TC3 in two further subsequent
steps, respectively characterized by +92% and +198% of elements, obtaining in all these
cases temperature values for the TCs differing on average by 1.0% from the reference
configuration (1.5% for TC2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 39 
 

type mesh) is composed of a total of 258 398 parallelepiped-shaped elements (hexahe-
drons) for the fluid, having the sides parallel to the three references planes constituting 
the base trihedron (this is a peculiarity of this software program), and 140 900 elements at 
the fluid-solid interfaces, composed by elements divided geometrically by the solid wall 
surface (locally approximated by portions of plane), coupling two different calculation 
domains. The base dimension for the elements was set to 2.500 mm (i.e., at a refinement 
level of 2 with reference to the internal scale), with local refinements at the interfaces ar-
riving down to 1.250 and 0.625 mm (corresponding, respectively, to a refinement level of 
3 and 4 for the mesh). The refinement of the mesh for the fluid volume near the solid walls 
is required by this software to create a sufficient number of very small elements able to 
cope with the inclined solid walls and, hence, to model correctly the boundary layer. The 
used software applies automatically the Van Driest hypothesis about the mixing length in 
turbulent boundary layers and the k-ε turbulence model [58]. Before running the simula-
tions, mesh independence was proven by raising significantly the number of elements 
used for the general discretization of fluid and solids domains up to +44 % and +37 %, 
respectively, then refining the mesh in correspondence with TC2 and TC3 in two further 
subsequent steps, respectively characterized by +92 % and +198 % of elements, obtaining 
in all these cases temperature values for the TCs differing on average by 1.0 % from the 
reference configuration (1.5 % for TC2). 

The exhaust gas was approximated as air [59], and related properties were then re-
called by the software library (cp/cv = 1.399; molecular mass = 0.2896 kg∙mol−1; cp, dynamic 
density, thermal conductivity variable with the temperature). AISI 316L was chosen as the 
material for all the parts of the exhaust duct (pipe and connector) and also as material for 
the engine head as the real material was unknown (see tuning procedure in the following 
Sections). 

 
Figure 5. (a) 3D-CAD lateral view of the exhaust duct geometry; the asterisks indicate the posi-
tions of the TCs tips. (b) Used mesh as visible on a section passing through the exhaust pipe axis; 
the color green is associated to a higher refinement of the base mesh (in light blue) for the fluid. 
The exhaust pipe inlet is not visible due to the presence of the pipe-to-head connector. 

TC3 

TC2 

TC1 

(a) (b) 

Bended 
connector 

Exhaust 
pipe 

Engine 
head 

Figure 5. (a) 3D-CAD lateral view of the exhaust duct geometry; the asterisks indicate the positions
of the TCs tips. (b) Used mesh as visible on a section passing through the exhaust pipe axis; the color
green is associated to a higher refinement of the base mesh (in light blue) for the fluid. The exhaust
pipe inlet is not visible due to the presence of the pipe-to-head connector.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 39 
 

 
Figure 6. (a) Close-up view of the mesh for the first part of the exhaust duct, within the pipe-to-
head connector and the engine head; the grey circle is the inlet surface of the exhaust line, placed 
in the same position of the exhaust valve. (b) Close-up view of the mesh in correspondence with 
the thermowell. 

As very frequently occurs when setting up numerical simulations, the used software 
program needs a lot more input parameters than the parameter actually available/known 
in reality, especially in cases like this one in which a component (the engine head) has 
been deliberately simplified. For example, although there is the possibility of using inter-
nal libraries for the physical properties of the materials involved, often the missing infor-
mation is just the exact type of material (in the present case for the simulacrum of engine 
head, different from the actual engine head and, therefore, using also a material non-nec-
essary equal to the real material). Only the full knowledge of all simulation parameters 
would theoretically result in a perfectly-tuned numerical model. In any other case, there 
is a need to align the model output(s) with that of the experiments by tuning the unknown 
parameters. Consequently, a set of unknown parameters has been chosen to act as inde-
pendent variables to be inquired in their effect on the temperature T1, T2, T3 (controlled 
outputs) and, hence, to be used as tuning parameters for the CFD-FVM model. For all 
other parameters, the default values proposed by software were kept as valid. Hence, tun-
ing parameters were chosen both according to a literature review and starting from some 
considerations on the experimental setup used in the first phase (Table 4): 
• Radiation and convection (natural or forced) coefficients affect the heat exchange in-

side and outside the exhaust ducts, whereas material conductivity is responsible for 
heat conduction through the solid components [42,46]; 

• The exhaust gas mass flow and the inlet gas temperature influence the amount of 
discharge thermal power, the fluid dynamics, and the boundary layers inside the 
pipes influence the heat transfer [43,45,49]; 

• Thermal contact resistance might affect the heat exchange between different compo-
nents and between the thermocouples and the metal surfaces where they lay. 

Table 4. Reference, upper and lower values for the 8 parameters used in the CFD-FVM model tuning procedure. 

Quantity Abbreviation Units Ref. Values Lower Values Upper Values 

 Inlet exhaust gas mass flow rate exm  kg∙s−1 0.004 0.002 0.008 

Inlet exhaust gas temperature T K 750 600 900 
Superficial convective exchange coefficient 

(engine head) 
Hh W∙m−2∙K−1 10 5 50 

Superficial convective exchange coefficient (ex-
haust duct) 

Hex W∙m−2∙K−1 10 5 50 

Engine head emissivity eh - 0.65 0.30 1.00 
Exhaust duct surface emissivity eex - 0.65 0.30 1.00 

Head material conductivity Ch W∙m−1∙K−1 15 5 100 
Contact thermal resistance Cr m2∙K∙W−1 0.00058 0.00010 0.00120 

(a) (b) 

Figure 6. (a) Close-up view of the mesh for the first part of the exhaust duct, within the pipe-to-head connector and
the engine head; the grey circle is the inlet surface of the exhaust line, placed in the same position of the exhaust valve.
(b) Close-up view of the mesh in correspondence with the thermowell.



Appl. Sci. 2021, 11, 3892 13 of 38

The exhaust gas was approximated as air [59], and related properties were then
recalled by the software library (cp/cv = 1.399; molecular mass = 0.2896 kg·mol−1; cp,
dynamic density, thermal conductivity variable with the temperature). AISI 316L was
chosen as the material for all the parts of the exhaust duct (pipe and connector) and also as
material for the engine head as the real material was unknown (see tuning procedure in
the following Sections).

As very frequently occurs when setting up numerical simulations, the used software
program needs a lot more input parameters than the parameter actually available/known
in reality, especially in cases like this one in which a component (the engine head) has been
deliberately simplified. For example, although there is the possibility of using internal
libraries for the physical properties of the materials involved, often the missing information
is just the exact type of material (in the present case for the simulacrum of engine head,
different from the actual engine head and, therefore, using also a material non-necessary
equal to the real material). Only the full knowledge of all simulation parameters would
theoretically result in a perfectly-tuned numerical model. In any other case, there is a
need to align the model output(s) with that of the experiments by tuning the unknown
parameters. Consequently, a set of unknown parameters has been chosen to act as inde-
pendent variables to be inquired in their effect on the temperature T1, T2, T3 (controlled
outputs) and, hence, to be used as tuning parameters for the CFD-FVM model. For all
other parameters, the default values proposed by software were kept as valid. Hence,
tuning parameters were chosen both according to a literature review and starting from
some considerations on the experimental setup used in the first phase (Table 4):

• Radiation and convection (natural or forced) coefficients affect the heat exchange
inside and outside the exhaust ducts, whereas material conductivity is responsible for
heat conduction through the solid components [42,46];

• The exhaust gas mass flow and the inlet gas temperature influence the amount of
discharge thermal power, the fluid dynamics, and the boundary layers inside the
pipes influence the heat transfer [43,45,49];

• Thermal contact resistance might affect the heat exchange between different compo-
nents and between the thermocouples and the metal surfaces where they lay.

Table 4. Reference, upper and lower values for the 8 parameters used in the CFD-FVM model tuning procedure.

Quantity Abbreviation Units Ref. Values Lower Values Upper Values

Inlet exhaust gas mass flow rate
.

mex kg·s−1 0.004 0.002 0.008
Inlet exhaust gas temperature T K 750 600 900

Superficial convective exchange
coefficient (engine head) Hh W·m−2·K−1 10 5 50

Superficial convective exchange
coefficient (exhaust duct) Hex W·m−2·K−1 10 5 50

Engine head emissivity eh - 0.65 0.30 1.00
Exhaust duct surface emissivity eex - 0.65 0.30 1.00

Head material conductivity Ch W·m−1·K−1 15 5 100
Contact thermal resistance Cr m2·K·W−1 0.00058 0.00010 0.00120

Once these parameters have been individuated, viable values (reference, upper, lower)
were found for each of them, obtaining a set of values used to generate a first simulation
plan, i.e., as a starting point for the CFD-FVM model tuning procedure:

• The reference value for the EG mass flow rate
.

mex was calculated, as a first approx-
imation, using the following formula (λ = AFR/AFRs mean air–fuel equivalence
ratio, measured experimentally in the operative point P0; AFRs air–fuel ratio under
stoichiometric conditions, equal to 14.5 as indicated in [60] for diesel oil;

.
m f uel average

fuel consumption in kg·s−1, measured experimentally in the operative point P0):

.
mex = (λ · AFRs + 1) · .

m f uel (3)
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The lower and upper values were calculated, respectively, by dividing and multiplying
by two the reference value so as to have a wide range of investigation having the same
magnitude order of the reference value;

• The reference value for the EGT at the exhaust pipe inlet (i.e., the approximate temper-
ature immediately after the exhaust valve), namely T, has been set at 750 K, a realistic
value considering that the gas temperature at the end of the adiabatic expansion phase
is typically between 550 and 650 ◦C (823.15–923.15 K) and the temperature of the
EGT at the pipe outlet can be 220–250 ◦C (593.15–623.15 K). These data were found in
literature in other works using diesel engines of the same size [32,61]; the lower and
upper values were calculated from the same references;

• The reference values for the external convection coefficients of the simulacrum of
engine head Hh and the exhaust duct Hex were estimated starting from formulas
referred to natural convection for the considered geometries [62–64]. The lower value
is referred to a perfect calm ambient air (i.e., by referring to the situation of some parts
of the engine head and exhaust duct, less exposed to the movement of air, as specified
later); the higher value is instead calculated considering an enhanced heat dissipation
due to a forced-convection phenomenon for some parts of the engine head and of the
exhaust gas pipe. Indeed, for the engine head, forced convection could be ascribed
to the air-cooling system of the engine (principally insisting on the side of the motor
presenting the flywheel), whereas, for the exhaust duct, a forced movement of air
could be due to the exhaust gas aspiration system of the laboratory (the aspiration
hose inlet was very close to the outlet of the exhaust duct);

• The reference values for the emissivity of the materials (in the engine head simulacrum
and the exhaust duct), their conductivity, and the contact thermal resistance were all
found in the SolidWorks flow simulation database for the stainless steels with a surface
roughness of 1.14 µm and a surface pressure of 40–70 atm in the bolted junctions.
These values are in full accordance with the literature [65]. Upper and lower values
of the emissivity were chosen with reference to other surface finishing and with the
aim of having a wide range of possible variations (especially for the head, represented
only in a conventional way, as indicated). Upper and lower values of the conductivity
and thermal resistance were chosen by looking through other types of iron alloys and
different contact pressures in the same database.

Starting from a first n-tuple, having all parameters at the reference values of Table 4 (n-
tuple nr. 1 of Table 5), other 16 n-tuples have been generated by varying a single parameter
at a time to its maximum and minimum value, hence: 8 parameters with 2 values. The
following 10 n-tuples have been generated by varying 2 parameters at a time (with the
exclusion of: convection coefficient referred to the finite elements of the engine head,
contact resistance between the different components of the assembly being simulated, the
emissivity of the finite elements of the head on the external side). The last 4 n-tuples of
the initial dataset have been generated by again varying 2 parameters at a time (with the
exclusion of: convection coefficient referred to the finite elements of the exhaust pipe,
contact resistance between the different components of the assembly being simulated, the
emissivity of the finite elements of the pipe and head on the external side, the conductivity
of the finite elements of the head). Therefore, a total of 31 cases given by 31 different
n-tuples of parameters (1 + 16 + 10 + 4) have formed the first dataset of simulations (see
Section 3.1, Table 5), whose results were used for the model tuning procedure.
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Table 5. Combinations of unknown independent parameters generated from the feasible values of the 8 indicated parameters
and temperatures foreseen by the CFD-FVM software.

Nr.

Factors (Unknown Independent Parameters) CFD-FVM Results

T
.

mex Hh Hex eh eex Ch Cr T1 T2 T3
K kg·s−1 W·m−2 K−1 W·m−2 K−1 - - W·m−1·K−1 m2·K·W−1 K K K

1 750 0.004 10 10 0.65 0.65 15 0.00058 550 566 669
2 900 0.004 10 10 0.65 0.65 15 0.00058 617 637 779
3 600 0.004 10 10 0.65 0.65 15 0.00058 474 486 551
4 750 0.002 10 10 0.65 0.65 15 0.00058 517 538 611
5 750 0.008 10 10 0.65 0.65 15 0.00058 576 593 691
6 750 0.004 50 10 0.65 0.65 15 0.00058 463 553 658
7 750 0.004 5 10 0.65 0.65 15 0.00058 566 569 670
8 750 0.004 10 10 0.65 0.30 15 0.00058 561 591 679
9 750 0.004 10 10 0.65 0.99 15 0.00058 541 549 661
10 750 0.004 10 10 0.65 0.65 15 0.00010 555 571 668
11 750 0.004 10 10 0.65 0.65 15 0.00120 544 560 669
12 750 0.004 10 10 0.65 0.65 100 0.00058 566 565 668
13 750 0.004 10 10 0.65 0.65 5 0.00058 537 567 670
14 750 0.004 10 50 0.65 0.65 15 0.00058 499 473 629
15 750 0.004 10 5 0.65 0.65 15 0.00058 559 583 676
16 750 0.004 10 10 0.99 0.65 15 0.00058 541 564 667
17 750 0.004 10 10 0.30 0.65 15 0.00058 563 570 671
18 600 0.002 10 10 0.65 0.65 15 0.00058 451 466 515
19 600 0.004 10 10 0.65 0.99 15 0.00058 469 475 546
20 600 0.004 10 50 0.65 0.65 15 0.00058 433 413 551
21 600 0.004 10 10 0.65 0.65 5 0.00058 466 486 551
22 750 0.002 10 10 0.65 0.99 15 0.00058 508 521 602
23 750 0.002 10 50 0.65 0.65 15 0.00058 463 443 563
24 750 0.002 10 10 0.65 0.65 5 0.00058 502 539 612
25 750 0.004 10 50 0.65 0.99 15 0.00058 495 467 626
26 750 0.004 10 10 0.65 0.99 5 0.00058 528 549 662
27 750 0.004 10 50 0.65 0.65 5 0.00058 480 474 631
28 800 0.003 10 10 0.65 0.65 15 0.00058 559 576 689
29 750 0.003 20 10 0.65 0.65 15 0.00058 508 548 651
30 750 0.003 40 10 0.65 0.65 15 0.00058 466 540 646
31 780 0.004 50 10 0.65 0.65 15 0.00058 474 568 681

2.3. Use of RSM to Tune the CFD-FVM Model (Step 2.1)

The Response Surface Methodology (RSM) was developed by George E. P. Box and
K. B. Wilson in 1951 [66,67]; it is a collection of mathematical and statistical techniques
based on the fit of data using a polynomial equation [68]. The final goal of every appli-
cation of RSM is to describe in a mathematically simple way the behavior of a dataset in
order to carry out statistical previsions. Specifically, the RSM allows the calculation of an
explicit polynomial regression-function of a dependent variable (called “response”) from
a set of input data concerning a set of independent variables (or “factors”), assumed to
be measurable and continuous in their own variation ranges. This function is the best
approximation, in a limited validity domain (i.e., the first part of the Taylor series up to
the third degree), of an unknown real function [69–72]. In this study, RSM was used to
elaborate the effect of different values of parameters on the results and, in particular, to
find a combination of values useful to tune the CFD-FVM model (1st sub-procedure about
CFD-FVM model tuning). The program Design-Expert v 7.0.0 (Stat-ease inc. Minneapolis,
Minnesota, USA; [73]) was used at this purpose.

The model tuning procedure is described hereinafter (see also Figure 7 and Appendix A
for details about the RSM):

• The first 31 CFD-FVM simulations were carried out on the basis of the 31 n-tuples of
input parameters, whose values were derived with the procedure described in the
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previous Section, and whose results (temperature values T1, T2, or T3) can be seen in
Section 3.1 and constitute the 1st dataset in Figure 7.

• For each of the three measurement positions, thanks to the RSM applied to these
first results from the CFD-FVM model, three multilinear mathematical models were
found; each model correlates the variation of the unknown parameters with one of the
three outputs (temperature values T1, T2 or T3) obtained from the CFD-FVM program
(Section 3.1).

• Subsequently, using the internal numerical optimization routine of the RSM program
(Appendix A), a list of 30 further parameter combinations (n-tuples of parameters) was
generated (it is visible in Section 3.2); on the basis of the predictive numerical models,
this list would allow the CFD-FVM to obtain temperatures at the three measurement
points as close as possible to the real ones.

• These combinations of parameters were simulated in the CFD-FVM, verifying at
the same time the accuracy of the model and the achievement of the experimental
temperatures.

• In order to obtain a greater precision for the predictive numerical model and the
results obtained at the CFD-FVM, these last 30 simulations were added to the 31 of the
initial dataset, obtaining a new dataset (2nd dataset in Figure 7) composed altogether
of 61 combinations of parameters, many of which generate an output (T1, T2, T3) very
close to the ideal optimal case (hence with a greater resolution in the neighborhood of
the ideal solution).

• By means of the RSM, a second set of three numerical models for T1, T2, T3 was
then obtained, intentionally kept at low complexity in accordance with the statistical
analysis (therefore still multilinear, without increasing in complexity and, therefore,
without requiring quadratic models); again, using the numerical optimization routine
inside the RSM program (Appendix A), another list of 30 parameter combinations was
generated (with a decreasing desirability function; Section 3.4).

• The CFD-FVM verification of these 30 parameter combinations made it possible to
identify the best parameter combination for the tuning of the exhaust CFD-FVM model
(Section 3.5).

More in detail, every time the RSM was used in the above-illustrated general pro-
cedure, after analyzing the data, the software automatically selected for all the models a
multilinear model of the 8 variables (xi with i = 1 to 8) for each of the investigated responses
yj, i.e., for the three temperatures Tj with j = 1 to 3 (a0 is the interception coefficient, and ai,
are the coefficients of the linear terms) [74]:

yj = f (xi; i = 1 to 8) = a0 +
8

∑
i=1

aixi = Tj (4)

The evaluation of the mathematical models of T1, T2, T3 (obtained via RSM in more
than a point of the above-described procedure) was carried out, metrologically speaking,
in terms of accuracy of the predicted values with respect to the experimental results. This
means that the outputs of the associated CFD-FVM model were evaluated in terms of:

• predictive capability as such (in terms of closeness of the CFD-FVM model outputs
to the numerical predictions of the RSM in correspondence with each n-tuple of
setup parameters);

• optimization capability (in terms of closeness of the CFD-FVM model output to the
target experimental results in correspondence with each n-tuple of setup parameters).
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2.4. Metric to Evaluate the n-Tuples Proposed by RSM-Based Optimization on the Basis of the
CFD-FVM Results

The evaluation of the many n-tuples indicated by the RSM-based optimization proce-
dure (and, in particular, the individuation of the best n-tuple) has been performed on the
basis of the values of the temperatures resulting from the CFD-FVM simulations, after the
CFD-FVM model has been run with the independent parameters set as the values of the
n-tuples. At this purpose, a merit function Mf, useful to rank the n-tuples using a single
value, has been defined, starting from the following two quantities:

• the mean of absolute percentage errors (εmean,abs), defined as the arithmetic mean of the
absolute value of relative errors (expressed as percentages) of the difference between
each value obtained from the CFD-FVM simulations Ti from the target value Ttarget,i
for the same temperature;

• the maximum absolute percentage error (εmax,abs), defined as the greatest among the
absolute values of relative errors (expressed as percentages) of the difference between
each value obtained from the CFD-FVM simulations Ti from the target value Ttarget,i
for the same temperature;

If each couple (εmean,abs; εmax,abs) is represented as a point on a proper Cartesian plane,
a merit function, useful to evaluate the adherence of a CFD-FVM simulation to the reality
by accounting both the described quantities at the same time, can be defined as the inverse
of the Euclidean distance of these points from the origin:

εmean,abs =
1
3 ·

3
∑

i=1

∣∣∣100 · Ti−Ttarget,i
Ttarget,i

∣∣∣
εmax,abs = max

{
i = 1 : 3;

∣∣∣100 · Ti−Ttarget,i
Ttarget,i

∣∣∣} ⇒ M f = 100 ·
(

ε2
mean,abs + ε2

max,abs

)− 1
2 (5)

If the target values are the reference values from the experimentation as referred
to the operative point P0 (450, 540, and 680 ◦C), the merit function Mf is a valid aid to
individuate the best n-tuple to tune the FVM model so as it is as close as possible to the
reality in terms of outputs. The higher the value assumed by Mf, the more suitable is the
n-tuple for this purpose (i.e., the better the adherence of the associated simulation to reality).
Considering again the graphical representation of each couple (εmean,abs; εmax,abs) as a point
on a Cartesian plane, all points are placed in the first quadrant above the bisector (because
εmean,abs ≤ εmax,abs always) and below the line εmax,abs = 3 · εmean,abs (because the maximum
cannot be over 3 times the mean of absolute percentage errors, as there are only positive
absolute values in the two indicated quantities). As Mf is inversely related to the Euclidean
distance of each of these points from the origin of the axes, by a geometrical-topological
point of view, the best n-tuple is individuated by the point closest to the origin.

If a value of 5 percentage points were considered as the threshold of technical ac-
ceptability for both the mean of absolute percentage errors (εmean,abs) and the maximum
absolute percentage error (εmax,abs), the feasible n-tuples will have the representative points
all within the triangle ABO (evidenced in Figure 8); the merit function at the upper bound-
ary segment AB will have a value spanning from 100/(50)0.5 = 14.14 of point A (if εmean,abs
= εmax,abs = 5) to 100/(27.78)0.5 = 18.97 of point B (if εmean,abs = 5/3 = 1.67 and εmax,abs = 5).
The value of 14.14 must therefore be considered as the minimum reference value for the
merit function.
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3. Results and Discussion
3.1. First Set of RSM Models for the Exhaust Gas Temperatures Obtained from the
CFD-FVM Model

According to the RSM software suggestions based on the number of independent
factors and their inferred influence on the CFD-FVM responses in correspondence to
the 31 n-tuples of the first dataset (Table 5), the only possible type of response surface
model for each of the considered responses (i.e., the three temperatures in this case) can
only be a linear model. An ANOVA analysis for each response (reported in Appendix B)
allowed evidencing the statistically significant factors for each of the three responses [67,75],
performing a backward elimination-process of the non-significant terms till arriving to
have three multilinear regression models with only the statistically significant factors (6 for
T1, 5 for T2, 3 for T3, Tables 6 and 7).

Table 6. Factors influencing each of the three responses (indicated by the black spot •) as resulting
from the ANOVA performed on the CFD-FVM results.

Response
Factors

T
.

mex Hh Hex eh eex Ch Cr

T1 • • • • - • • -
T2 • • • • - • - -
T3 • • - • - - - -

Table 7. Multilinear regression models for the three temperatures elaborated on the basis of the first dataset (31 cases).

Model R2 Adj R2

T1 = +193.93281 + 0.46572·T + 12,005.37018· .
mex − 2.14127·Hh − 1.25159·Hex − 26.00263·eex + 0.30761·Ch 0.9707 0.9634

T2 = +211.42148 + 0.48917·T + 10,909.56897· .
mex − 0.31697·Hh − 2.19402·Hex − 50.45951·eex 0.9883 0.9859

T3 = +62.28571 + 0.71706·T + 17,416.25541· .
mex − 0.83049·Hex 0.9391 0.9323
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3.2. Additional Set of 30 Possible n-Tuples to Match the Experimental Results

Thanks to the internal numerical optimization routine of the RSM software, it has
been possible to generate further 30 n-tuples of values for the unknown parameters, which,
according to the above-reported regression models, should be able to match the CFD-
FVM model with the experimental results. These considered 30 n-tuples are only the
n-tuples with the highest value of desirability (see Table 8). The same table also shows the
numerical estimates for the three temperatures, calculated with the RSM models stated
above. It is worth noting that, due to the linearization of the phenomena made by the
RSM models, some estimates for the three temperatures can correspond to a physically
impossible situation where T ≤ T3 (cases nr. 11, 22, 23). As the CFD-FVM software operates
instead according to rigorous physical principles, these n-tuples would originate for sure
high prediction errors (in particular in correspondence with T3), but, as a general rule,
they should be, however, simulated to have some further points useful to correct the
RSM models.

Table 8. Combinations of unknown independent parameters suggested by RSM optimization procedure, together with the
outputs in terms of desirability ad foreseen temperature in the three measuring points.

Nr.

Factors (Unknown Independent Parameters) RSM Optimization
Procedure Outputs

T
.

mex Hh Hex eh eex Ch Cr Desirability T1 T2 T3
K kg·s−1 W·m−2 K−1 W·m−2 K−1 - - W·m−1·K−1 m2·K·W−1 - K K K

1 815 0.003 50 24 0.68 0.69 5 0.00095 0.9873 456 540 679
2 816 0.003 50 17 0.30 0.91 5 0.00034 0.9870 460 544 686
3 830 0.002 50 22 0.65 0.77 10 0.00101 0.9868 453 536 674
4 844 0.002 50 28 0.58 0.59 9 0.00110 0.9857 456 539 679
5 856 0.002 50 37 0.30 0.32 5 0.00120 0.9830 456 539 680
6 838 0.003 50 36 1.00 0.32 13 0.00040 0.9797 464 543 686
7 707 0.008 50 32 0.67 0.34 6 0.00120 0.9729 465 541 682
8 765 0.005 49 14 0.49 1.00 19 0.00010 0.9721 468 543 686
9 763 0.005 50 17 1.00 0.87 26 0.00114 0.9715 466 542 682

10 833 0.003 50 36 0.92 0.32 32 0.00113 0.9674 467 541 682
11 678 0.008 50 11 0.79 1.00 23 0.00010 0.9662 466 540 679
12 716 0.006 50 12 0.30 1.00 33 0.00012 0.9634 461 534 670
13 840 0.002 50 24 0.42 0.72 44 0.00096 0.9626 467 539 680
14 847 0.002 50 30 0.99 0.50 56 0.00050 0.9531 472 541 680
15 740 0.006 50 19 0.98 0.85 44 0.00040 0.9520 471 538 682
16 815 0.003 50 34 0.34 0.30 56 0.00010 0.9441 469 537 671
17 810 0.003 50 14 0.30 1.00 85 0.00029 0.9378 483 543 684
18 750 0.005 50 14 1.00 0.95 79 0.00106 0.9357 478 538 676
19 773 0.004 50 13 0.30 1.00 84 0.00021 0.9343 478 538 675
20 702 0.008 50 31 1.00 0.34 63 0.00108 0.9336 482 541 679
21 838 0.003 50 50 0.30 0.32 10 0.00120 0.9335 445 512 674
22 654 0.008 50 6 0.71 1.00 65 0.00010 0.9241 474 539 666
23 645 0.008 50 6 1.00 0.78 20 0.00010 0.9202 462 546 659
24 684 0.007 50 9 0.31 1.00 88 0.00011 0.9182 479 536 667
25 685 0.008 50 18 0.31 0.75 91 0.00041 0.9171 488 541 678
26 795 0.004 50 30 1.00 1.00 43 0.00059 0.9144 455 512 677
27 824 0.002 40 15 0.45 1.00 56 0.00119 0.9087 488 540 676
28 851 0.002 33 35 0.70 0.64 5 0.00120 0.8998 485 530 678
29 846 0.002 29 39 0.87 0.30 5 0.00119 0.8855 495 537 671
30 848 0.002 38 31 0.46 1.00 31 0.00120 0.8842 476 518 679

These n-tuples were subsequently inquired via the CFD-FVM software. The results
coming from the simulation have been collected in the following table (Table 9), together
with the absolute and percentage errors (related to the experimental target values), and the
above-defined metrics, based on these errors, used to evaluate each n-tuple. Figure 9 gives
a graphical representation of the evaluation metrics.
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Table 9. Evaluation of each n-tuple with reference to the experimental target values for the temperatures.

Nr.

Simulation Outputs
(CFD-FVM) Absolute Errors Percentage Errors Evaluation Metrics

T1 T2 T3 ∆T1 ∆T2 ∆T3 ∆T1 ∆T2 ∆T3 Mean abs. Err. Max abs. Err. Mf
K K K K K K % % % % % -

1 431 522 671 −19 −18 −9 −4.2 −3.3 −1.3 3.0 4.2 19.4
2 462 558 685 +12 +18 +5 +2.7 +3.3 +0.7 2.2 3.3 24.9
3 425 512 618 −25 −28 −62 −5.6 −5.2 −9.1 6.6 9.1 8.9
4 422 509 621 −28 −31 −59 −6.2 −5.7 −8.7 6.9 8.7 9.0
5 411 501 624 −39 −39 −56 −8.7 −7.2 −8.2 8.0 8.7 8.5
6 485 605 716 35 +65 +36 +7.8 +12.0 +5.3 8.4 12.0 6.8
7 432 520 635 −18 −20 −45 −4.0 −3.7 −6.6 4.8 6.6 12.3
8 490 550 666 +40 +10 −14 +8.9 +1.9 −2.1 4.3 8.9 10.1
9 458 535 662 +8 −5 −18 +1.8 −0.9 −2.6 1.8 2.6 31.3

10 449 508 671 −1 −32 −9 −0.2 −5.9 −1.3 2.5 5.9 15.6
11 471 533 619 +21 −7 −61 +4.7 −1.3 −9.0 5.0 9.0 9.7
12 483 536 638 +33 −4 −42 +7.3 −0.7 −6.2 4.8 7.3 11.4
13 450 513 621 0 −27 −59 +0.0 −5.0 −8.7 4.6 8.7 10.2
14 453 508 619 +3 −32 −61 +0.7 −5.9 −9.0 5.2 9.0 9.7
15 474 532 651 +24 −8 −29 +5.3 −1.5 −4.3 3.7 5.3 15.4
16 480 516 662 +30 −24 −18 +6.7 −4.4 −2.6 4.6 6.7 12.4
17 486 537 671 +36 −3 −9 +8.0 −0.6 −1.3 3.3 8.0 11.6
18 462 534 656 +12 −6 −24 +2.7 −1.1 −3.5 2.4 3.5 23.3
19 490 541 664 +40 +1 −16 +8.9 +0.2 −2.4 3.8 8.9 10.3
20 455 516 630 +5 −24 −50 +1.1 −4.4 −7.4 4.3 7.4 11.7
21 429 483 665 −21 −57 −15 −4.7 −10.6 −2.2 5.8 10.6 8.3
22 470 532 603 +20 −8 −77 +4.4 −1.5 −11.3 5.7 11.3 7.9
23 462 535 599 +12 −5 −81 +2.7 −0.9 −11.9 5.2 11.9 7.7
24 481 532 621 +31 −8 −59 +6.9 −1.5 −8.7 5.7 8.7 9.6
25 475 528 622 +25 −12 −58 +5.6 −2.2 −8.5 5.4 8.5 9.9
26 463 507 661 +13 −33 −19 +2.9 −6.1 −2.8 3.9 6.1 13.8
27 467 521 623 +17 −19 −57 +3.8 −3.5 −8.4 5.2 8.4 10.1
28 433 497 623 −17 −43 −57 −3.8 −8.0 −8.4 6.7 8.4 9.3
29 438 497 621 −12 −43 −59 −2.7 −8.0 −8.7 6.4 8.7 9.3
30 459 492 617 +9 −48 −63 +2.0 −8.9 −9.3 6.7 9.3 8.7
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The positioning of the points in the Cartesian plane of Figure 9 (left) shows substantial
parallelism with respect to the bisector of the quadrant (the slope of the interpolation line is
approximately unitary) and an average deviation of about 2.5 percentage points. Only six
points are below the threshold of 14.14 of the merit function, and only four points have both
coordinates below the threshold of 5%, commonly considered the maximum acceptable
deviation threshold for technical system simulations. More evident individuation of the
best n-tuples can be seen in the histogram of Figure 9 on the right: the higher the bars,
the higher the merit function, the closer the CFD-FVM results to the real case (P0), the
better those n-tuples to tune the FVM model. The higher four bars in the represented
graphic correspond to n-tuples 1, 2, 9, and 18. The best-ever combination of this set of
30 combinations of factors is the n-tuple number 9, achieving a value for Mf of 31.3, a mean
of absolute errors of 1.8% and a maximum absolute error of 2.6% (the three temperatures
are: 458, 535, 662 ◦C, hence, respectively, at +8, −5, and −18 ◦C from the target values of
case P0). Although this result would be already more than acceptable, another iteration
of the optimization procedure has been performed to better illustrate the method and
demonstrate that it allows even a further improvement. According to experience of the
authors, two iterations of the described procedure are generally sufficient for CFD-FVM
model tuning in all cases an experimenter can ever meet.

The desirability and the merit function were also correlated graphically, positioning
the points for each n-tuple on a Cartesian plane (Figure 10). Although the figure shows
a weak linear correlation, the slope of the regression line and, above all, the positioning
of the points on the plane show unequivocally that high values of the merit function can
reasonably be expected in correspondence of very high values of desirability.
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3.3. Second Set of RSM Models for the Exhaust Gas Temperatures

The improvement of the predictive capacity of the RSM numerical models (and,
therefore, a further closeness of the CFD-FVM model output to experimental values)
occurs by increasing the calculation points of the same models, possibly in a zone of
the multidimensional space of the solutions that is close to the searched optimum. This
translates into using the 30 n-tuples previously investigated as further combinations to
be added to the initial 31, thus having a second dataset of 61 combinations of factors to
whom the RSM method is applied a second time. Hence, another ANOVA analysis for each
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response (reported in Appendix C), performed on all the factors and based on the second
dataset (31 + 30 = 61 n-tuples), evidenced the statistically-influencing factors for each of
the three responses, which are, in this case, the same already evidenced in the previous
application of RSM (Table 6): 6 for T1, 5 for T2, 3 for T3. By performing again a backward
elimination of the non-significant terms from the multilinear regression models based on
the ANOVA results, it has been possible to arrive to three regression models that are still
multilinear but have only the significant terms (Table 10).

Table 10. Multilinear regression models for the three temperatures using the second dataset of 61 cases.

Model R2 Adj R2

T1 = +194.80036 + 0.46497·T + 11,898.19656· .
mex − 2.14856·Hh − 1.23564·Hex − 26.35972·eex + 0.32078·Ch 0.9798 0.9776

T2 = +212.17727 + 0.48821·T + 10,843.33590· .
mex − 0.31434·Hh − 2.18245·Hex − 50.42908·eex 0.9864 0.9851

T3 = +61.55935 + 0.71766·T + 17,518.39820· .
mex − 0.81363·Hex 0.9476 0.9449

3.4. Second Set of 30 Possible n-Tuples to Match the Experimental Results (2nd Dataset)

Thanks to the internal numerical optimization routine of the RSM software, it has
been possible to generate other 30 n-tuples of values for the unknown parameters to
make the FVM model match the experimental results. Even in this case, only the first
30 n-tuples (i.e., with the highest value of desirability) have been selected and subsequently
inquired via the FVM software. Table 11 shows the simulated n-tuples, together with the
numerical estimates for the three temperatures, calculated with the RSM models illustrated
above in Table 10. The results coming from the simulation have been collected in Table 12,
together with the percentage errors (related to the experimental target values) and the
aforementioned metrics, based on these errors, to evaluate each n-tuple. It is worth noting
that also in this case there are two n-tuples (nr. 10, 12) that correspond to a physically
impossible situation; the same considerations as above apply.

The positioning of the points corresponding to the 30 n-tuples of Table 12 in the
Cartesian plane (Figure 11 left) shows a better situation than in the previous iteration under
many aspects. First of all, the points are generally closer to the bisector of the quadrant,
and their distance to the bisector decreases approximating to the origin (the slope of the
interpolation line is greater than unitary), thus indicating a lower dispersion of the three
temperature differences. Then, there are up to 15 points below the threshold of 14.14 of
the merit function (i.e., under the red arc of Figure 11 left; previously, they were only 6),
and 12 have both coordinates below the threshold of 5% (previously they were only 4). The
histogram of the merit function (Figure 11 right) shows higher bars than in the previous
case, indicating a closer matching of the CFD-FVM software to the reality. The four highest
bars in the represented graphic correspond to n-tuples 3, 4, 5, and 7 (all with a value for Mf
above 30). The best-ever combination of this set of 30 combinations of factors (and also
of the previous set of combinations) is the n-tuple number 4, achieving a value for Mf of
50.7, a mean of absolute errors of 1.1% (−0.7 percentage points with respect to the previous
iteration) and a maximum absolute error of 1.6% (−1.0 percentage points than the previous
iteration); the three temperatures from the CFD-FVM model are, respectively: 453, 534, and
669 ◦C (i.e., +3, −6, and −11 ◦C with respect to case P0). According to these evidences, is
therefore possible to state that the values of the factors associated with n-tuple number 4
allow having a tuned CFD-FVM model.
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Table 11. Combinations of unknown independent parameters suggested by RSM optimization procedure, together with the
outputs in terms of desirability ad foreseen temperature in the three measuring points.

Nr.

Factors (Unknown Independent Parameters) RSM Optimization
Procedure Outputs

T
.

mex Hh Hex eh eex Ch Cr Desirability T1 T2 T3
K kg·s−1 W·m−2 K−1 W·m−2 K−1 - - W·m−1·K−1 m2·K·W−1 - K K K

1 836 0.002 50 21 0.94 0.81 5 0.00074 0.9910 454 540 679
2 831 0.002 50 23 0.36 0.72 5 0.00092 0.9900 452 537 674
3 775 0.004 50 14 1.00 1.00 5 0.00085 0.9880 453 537 676
4 787 0.004 50 24 0.67 0.67 5 0.00026 0.9850 455 538 677
5 765 0.005 50 22 0.46 0.71 5 0.00120 0.9840 458 540 680
6 825 0.003 50 36 1.00 0.30 6 0.00068 0.9830 456 538 677
7 770 0.005 50 26 1.00 0.58 5 0.00033 0.9830 459 541 681
8 724 0.007 50 21 0.63 0.71 5 0.00099 0.9810 464 544 687
9 745 0.006 50 25 0.60 0.58 5 0.00114 0.9800 461 541 681

10 679 0.008 50 12 0.72 0.96 5 0.00021 0.9790 460 540 679
11 758 0.005 50 18 0.30 0.82 16 0.00010 0.9770 461 540 678
12 679 0.008 50 11 0.46 1.00 8 0.00041 0.9760 461 540 680
13 818 0.003 50 34 1.00 0.32 15 0.00120 0.9750 458 538 673
14 748 0.006 50 34 0.36 0.32 5 0.00089 0.9740 458 536 676
15 850 0.002 50 36 0.31 0.33 25 0.00010 0.9730 461 538 677
16 697 0.007 50 16 0.31 0.85 20 0.00093 0.9700 459 535 671
17 852 0.002 50 35 0.70 0.36 46 0.00119 0.9590 469 540 680
18 852 0.002 50 35 1.00 0.37 44 0.00073 0.9590 468 539 680
19 745 0.005 50 13 0.51 1.00 56 0.00120 0.9510 469 536 673
20 843 0.002 50 34 1.00 0.37 59 0.00055 0.9490 470 537 674
21 805 0.004 50 34 0.33 0.71 5 0.00118 0.9480 450 523 682
22 742 0.006 50 28 0.30 0.49 49 0.00024 0.9480 472 538 676
23 733 0.006 49 16 0.83 0.89 54 0.00120 0.9470 476 540 680
24 703 0.007 50 13 0.41 0.96 67 0.00119 0.9390 478 539 678
25 771 0.005 50 30 0.89 0.44 75 0.00010 0.9320 481 539 678
26 814 0.003 50 18 0.93 0.87 89 0.00033 0.9320 485 543 684
27 761 0.005 50 18 0.86 0.84 89 0.00120 0.9260 485 541 681
28 743 0.007 48 31 1.00 0.86 5 0.00010 0.9190 461 525 692
29 773 0.005 45 25 1.00 1.00 22 0.00117 0.8860 467 525 684
30 801 0.002 40 10 0.99 1.00 69 0.00113 0.8840 489 540 663
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Table 12. Evaluation of each n-tuple with reference to the experimental target values for the temperatures.

Nr.

Simulation Outputs
(CFD-FVM) Absolute Errors Percentage Errors Evaluation Metrics

T1 T2 T3 ∆T1 ∆T2 ∆T3 ∆T1 ∆T2 ∆T3 Mean abs. Err. Max abs. Err. Mf
K K K K K K % % % % % -

1 421 518 623 −29 −22 −57 −6.4 −4.1 −8.4 6.3 8.4 9.5
2 418 515 621 −32 −25 −59 −7.1 −4.6 −8.7 6.8 8.7 9.1
3 440 536 666 −10 −4 −14 −2.2 −0.7 −2.1 1.7 2.2 35.9
4 453 534 669 +3 −6 −11 +0.7 −1.1 −1.6 1.1 1.6 50.7
5 439 532 665 −11 −8 −15 −2.4 −1.5 −2.2 2.0 2.4 31.4
6 433 511 668 −17 −29 −12 −3.8 −5.4 −1.8 3.6 5.4 15.4
7 453 536 665 +3 −4 −15 +0.7 −0.7 −2.2 1.2 2.2 39.8
8 440 531 648 −10 −9 −32 −2.2 −1.7 −4.7 2.9 4.7 18.2
9 437 528 656 −13 −12 −24 −2.9 −2.2 −3.5 2.9 3.5 22.0

10 451 533 620 +1 −7 −60 +0.2 −1.3 −8.8 3.4 8.8 10.6
11 484 542 660 +34 +2 −20 +7.6 +0.4 −2.9 3.6 7.6 11.9
12 456 532 620 +6 −8 −60 +1.3 −1.5 −8.8 3.9 8.8 10.4
13 435 507 665 −15 −33 −15 −3.3 −6.1 −2.2 3.9 6.1 13.8
14 440 521 655 −10 −19 −25 −2.2 −3.5 −3.7 3.1 3.7 20.7
15 456 506 618 +6 −34 −62 +1.3 −6.3 −9.1 5.6 9.1 9.4
16 455 524 628 +5 −16 −52 +1.1 −3.0 −7.6 3.9 7.6 11.6
17 442 500 620 −8 −40 −60 −1.8 −7.4 −8.8 6.0 8.8 9.4
18 445 501 619 −5 −39 −61 −1.1 −7.2 −9.0 5.8 9.0 9.4
19 462 533 653 +12 −7 −27 +2.7 −1.3 −4.0 2.6 4.0 21.0
20 448 501 615 −2 −39 −65 −0.4 −7.2 −9.6 5.7 9.6 9.0
21 431 512 672 −19 −28 −8 −4.2 −5.2 −1.2 3.5 5.2 15.9
22 485 529 651 +35 −11 −29 +7.8 −2.0 −4.3 4.7 7.8 11.0
23 460 530 648 +10 −10 −32 +2.2 −1.9 −4.7 2.9 4.7 18.0
24 460 527 633 +10 −13 −47 +2.2 −2.4 −6.9 3.8 6.9 12.6
25 488 531 663 +38 −9 −17 +8.4 −1.7 −2.5 4.2 8.4 10.6
26 475 531 669 +25 −9 −11 +5.6 −1.7 −1.6 2.9 5.6 15.9
27 464 533 662 +14 −7 −18 +3.1 −1.3 −2.6 2.4 3.1 25.6
28 456 521 653 +6 −19 −27 +1.3 −3.5 −4.0 2.9 4.0 20.2
29 461 519 661 +11 −21 −19 +2.4 −3.9 −2.8 3.0 3.9 20.3
30 458 525 617 +8 −15 −63 +1.8 −2.8 −9.3 4.6 9.3 9.7

3.5. Values of Unknown Parameters and Relation with the Engine Torque (Step 2.2)

The above-described iterative procedure of CFD-FVM model tuning allows to find the
values of a set of unknown parameters used in the CFD-FVM simulation, but that is also
interesting from an experimental point of view (Table 13).

Table 13. Best combination of unknown independent parameters to make the CFD-FVM model output coincident with
experimental results.

Nr.

Factors (Unknown Independent Parameters)

T
.

mex Hh Hex eh eex Ch Cr
K kg·s−1 W·m−2 K−1 W·m−2 K−1 - - W·m−1·K−1 m2·K·W−1

4 787 0.004 50 24 0.67 0.67 5 0.00026

The first three factors are directly related to the inquired engine operative condition
and, in particular, two of them to the exhaust gas stream. They are, therefore, very
important for the overall aim of this study, i.e., the indirect prediction of the torque
delivered by the engine at the different engine speeds:

• The temperature of the exhaust gas at the inlet of the exhaust pipe T, i.e., at the outlet of
the exhaust valve in the motor head, related to the torque (see the following Section);
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• The mass flow rate of the exhaust gas flowing along the exhaust pipeline
.

mex, related
to the engine speed and to the governor action;

• The convective coefficient of the motor head Hh, whose cooling is related to the fan
speed (integrated to the flywheel in the used engine), hence to the engine speed.

The other five parameters depend on external/environmental conditions (the convec-
tive coefficient of the motor head) or by the material (Cr and Ch) and the surface finishing
(eex and eh) of the components of the assembly.

This means that having other experimental measurements of the temperature at the
same three positions but at different engine speeds and loads (i.e., in an operative point
different from P0), there are two possible ways to proceed to obtain again the values of
the three above-listed parameters related to the inquired engine operative condition (in
particular, the temperature of the exhaust gas at the inlet of the exhaust pipe T):

1. To retrace, for each experimental case (different from P0), the whole tuning procedure
of the FVM software illustrated, thus obtaining again the values of all the unknown
parameters (and, among these ones, also the first three parameters of interest);

2. To carry out a fast recalculation procedure of the first three parameters, based on the
RSM numerical models, illustrated in the following paragraph (referred to as: 2nd
sub-procedure about fast recalculating the CFD-FVM model tuning parameters).

As will be shown, the second approach to the problem is much more efficient (i.e.,
faster and less resource-intensive) than the first one, and, therefore, it is preferable. The
following steps are taken:

1. The mass flow rate, in this case, is calculated from the speed of rotation through a
simple linear correlation from the value found for case P0, as it is minimally influenced
by the mass flow rate of the fuel and assuming a constant volumetric efficiency
(simplifying hypothesis valid for speeds of rotation of the new cases close to those of
the initial tuning for the FVM model);

2. A system of two equations (i.e., two of the three RSM models for T1, T2, T3) for the
two unknown quantities (T and Hh) is set up by fixing two of the three experimentally
measured temperatures, then solving the system for the third value; since there are
three temperatures, the previous step is repeated three times, changing the pair of
temperatures to be matched each time;{

T1 = f1(T; Hh) = T1,exp
T2 = f2(T; Hh) = T2,exp

⇒
{

T∗
Hh∗

⇒ T3 = f3(T∗; Hh∗){
T2 = f2(T; Hh) = T2,exp
T3 = f3(T; Hh) = T3,exp

⇒
{

T∗
Hh∗

⇒ T1 = f1(T∗; Hh∗){
T1 = f1(T; Hh) = T1,exp
T3 = f3(T; Hh) = T3,exp

⇒
{

T∗
Hh∗

⇒ T2 = f2(T∗; Hh∗)

(6)

3. The parameters T and
.

mex that will be chosen for each case will then be the arithmetic
averages of the values obtained in the previous step (i.e., T and

.
mex will be calculated

as the average of the three values obtained in the previous step).

The results of the sub-procedure listed above are shown in Table 14, whereas Figure 12
shows the relative positioning of the parameters used for the matching on a two-axis diagram.

By observing the results, in particular the average and the maximum of absolute
errors, we can state that:

• A parameter-matching procedure based only on T2 and T3 (i.e., on the temperatures
at the clamp and the thermowell) gives the worst results (average of absolute errors:
≤3.5%; the maximum of absolute errors: ≤10.4%); this fact evidences a substantial
homogeneity of the measures at those two measuring points and a clear difference in
the behavior of temperature taken at the grommet; if the problem is inquired by setting
the matching point at the clamp and the thermowell, there is an underestimation of
temperature at the grommet (T1);
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• For the same reason, if this parameter-matching procedure involves the temperature
at the grommet (T1) and one of the temperatures measured at the clamp and at the
thermowell (i.e., T2 or T3), the results will be better; this can be clearly seen by looking
at the results and at the average and the maximum of absolute errors, all largely within
the threshold 5% (average of absolute errors: ≤0.6%; the maximum of absolute errors:
≤1.8%);

• By using for T and
.

mex in each of the three additional cases the average values resulting
from the parameter-matching procedure based respectively on T1 and T2, on T2 and
T3, T1 and T3, the results (in terms of forecasted temperatures T1, T2, T3) are very close
to the experimental values, and the average and the maximum of absolute errors are
all lower than 5% (average of absolute errors: ≤1.5%; the maximum of absolute errors:
≤3.5%).

Table 14. Steps of the parameter-recalculation procedure for the experimental points P1, P2, P3 using the results obtained
from the RSM model.

Descript.
Parameters Experim. RSM Relative Err. Ave Max

T
.

mex Hh T1 T2 T3 T1 T2 T3 T1 T2 T3
K kg·s−1 W·m−2 K−1 K K K K K K % % % % %

Ref. case P0 787 0.0040 50.0 450 540 680 455 538 677 +1.2 −0.4 −0.5 0.7 1.2

Match on T1, T2

P1 784 0.0033 48.7 448 529 673 448 529 662 0.0 0.0 −1.6 0.5 1.6
P2 710 0.0040 41.3 438 503 633 438 503 622 0.0 0.0 −1.8 0.6 1.8
P3 658 0.0040 33.8 430 480 591 430 480 584 0.0 0.0 −1.1 0.4 1.1

Match on T2, T3

P1 799 0.0033 72.2 448 529 673 405 529 673 −9.7 0.0 0.0 3.2 9.7
P2 726 0.0040 66.0 438 503 633 392 503 633 −10.4 0.0 0.0 3.5 10.4
P3 667 0.0040 48.2 430 480 591 403 480 591 −6.2 0.0 0.0 2.1 6.2

Match on T1, T3

P1 799 0.0033 52.0 448 529 673 448 535 673 0.0 +1.2 0.0 0.4 1.2
P2 726 0.0040 44.8 438 503 633 438 510 633 0.0 +1.3 0.0 0.4 1.3
P3 667 0.0040 35.8 430 480 591 430 484 591 0.0 +0.8 0.0 0.3 0.8

Average
values from

previous cases

P1 794 0.0033 58.0 448 529 673 434 531 669 −3.2 +0.4 −0.5 1.4 3.2
P2 721 0.0040 51.0 438 503 633 423 505 629 −3.5 +0.4 −0.6 1.5 3.5
P3 664 0.0040 39.0 430 480 591 421 481 589 −2.1 +0.3 −0.4 0.9 2.1
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3.6. Relation of Temperatures in the Exhaust Gas Line with the Engine Torque (Step 3)

Thanks to the experimental cases reported in this article (P0, P1, P2, and P3 in Table 3),
of which the exhaust gas temperature at the exhaust valve (i.e., at the exhaust pipe inlet)
has been calculated, it is possible to illustrate a third sub-procedure useful to foresee the
torque delivered by the engine (namely: third sub-procedure about creating the torque
prediction model; Figure 13). In this regard, with the aim of illustrating and verifying the
procedure, the four experimental cases will be divided into two sets:

• The first set, including P0 and P3, will be used to create a simple (linear) model of the
torque as a function of the temperature T (set of torque model creation points);

• The second set, including P1 and P2, will be used to verify the goodness of the
predictive model for the torque (set of verification points).
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obtained by tuning of a CFD-FVM software model aided by the RSM.

It is worth noting that two is the minimum number of experimental cases needed
to build such a predictive model; it is possible to use more than two cases so that the
final predictive capabilities can be further improved. Similar to other studies articulated
in experimental and numerical phases, the best number of cases to be used to set up the
torque prediction model should be set as a trade-off between the costs, due to an addition of
experimental activities, and the desired predictive capability of the model. When planning
the operative conditions to be experimentally inquired and, hence, the experimental cases
that will be used to be part of the model, the only recommendation is to have them as
distant as possible in terms of torque values. By doing so, the model that will be set up,
will be used only to interpolate other values and not to extrapolate them, so as it will be
more reliable in its results.

Using the EGT value for the point P0, deriving from the model tuning procedure
(1st sub-procedure), and the EGT value for the point P1, deriving instead from the fast
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recalculation procedure (2nd sub-procedure), it is now possible to calculate a model to
predict the torque as a linear function the EGT (3rd sub-procedure):

M = 0.0225 · T − 9.5982
T = f (T1, T2, T3, other CFD− FVM parameters)

(7)

To have a comparison and evaluate the whole procedure, it is possible to use the data
related to the experimental cases P0 and P3 to calculate also the three numerical models
allowing the prediction of the torque, respectively, as a linear function of directly the three
experimental temperatures T1, T2, T3. The models are reported hereinafter:

M = 0.1380 · T1 − 54.0100
M = 0.0460 · T2 − 16.7500
M = 0.0310 · T3 − 12.9976

(8)

Each of these four equations allows estimating the engine torque in correspondence
with the two experimental cases P1 and P2. Observing the mean values for the torque
reported in Table 15, it is possible to observe that the model based on T is more precise than
the other models, based instead on the three experimental temperatures T1, T2, T3. Indeed,
the model based on T has a maximum absolute relative error of 2.9% of the foreseen mean
values with respect to the mean experimental values, compared to: 5.2% for model based
on T1 (TC1: grommet), 6.9% for model based on T2 (TC2: clamp), and 3.4% for model
based on T3 (TC3: thermowell). By keeping into account also the confidence intervals, it is
possible to observe that there is a very high superimposition of torque prediction intervals
based on T with the experimental values in terms of intervals’ width and vertical placement.
Rather, the predictions based only on a single TC value can have a very wide uncertainty
range (see TC1) or a very different vertical placement of the prediction interval, so the
torque forecasts can be considered substantially different from the experimental values
(see TC2). TC3 shows a slightly better forecast than TC1 and TC2, however not as good as
the forecasts based on T, which instead manage to be very precise at high engine loads.

Table 15. Torque values as resulting from the use of the linear torque-prediction models, accompanied by expanded
uncertainty values (95% confidence).

Exp. Torque Forecasts Model Forecast Errors on
Torque Predictions

M on T on T1 on T2 on T3 on T on T1 on T2 on T3
Nm Nm Nm Nm Nm % % % %

P1 8.15 (±0.31) 8.24 (±0.37) 7.81 (±1.26) 7.58 (±0.42) 7.87 (±0.39) +1.1 −4.1 −6.9 −3.4
P2 6.79 (±0.25) 6.60 (±0.37) 6.43 (±1.25) 6.39 (±0.42) 6.63 (±0.38) −2.9 −5.2 −5.9 −2.3

4. Conclusions

This study proposes a general procedure whose main purpose is to improve the
accuracy of the indirect prediction of the torque delivered by a compression-ignition
engine for agricultural purposes from a series of (three) temperatures measured along
the exhaust pipe through three thermocouples freely placed on it. This procedure tries to
overcome all the problems of metrological nature related to the positioning of temperature
sensors positioned along the exhaust line and, therefore, to their physical distance from the
point of heat generation, i.e., the combustion chamber. The proposed procedure uses the
detected temperature values to tune a CFD-FVM model of the exhaust line with the aim
of calculating the temperature of the exhaust gases closer to the engine head, hence more
significant to infer the mechanical performance.

More in detail, the CFD-FVM model has been properly tuned on a first single oper-
ative point of the engine (P0) with the help of the RSM, applied iteratively to generate a
multilinear predictive model and new n-tuple of parameters having an estimated output
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(temperatures T1, T2, T3) closer and closer to the experimental evidence (1st sub-procedure
about CFD-FVM model tuning). Thanks to a merit function defined for this purpose, it
has been possible to individuate the best values of a set of physical parameters related
to heat transfer in the three-dimensional domain so as to have a CFD-FVM model fully
aligned with the experimental results. In particular, this tuned CFD-FVM model has both
the average and the maximum value of the absolute percentage errors fully below the
acceptability threshold of 5% (typical for simulations), precisely reaching 1.1% and 1.6%,
respectively, for the average and the maximum of the absolute values of relative percentage
errors. Among the physical parameters object of the model tuning algorithm, there is
also the EGT evaluated at the inlet of the exhaust pipe, i.e., at the exit of the exhaust
valve in the engine head, which is the real aim of the use of the CFD-FVM software. This
temperature is the one that, more than any other temperature measured along the exhaust
line, allows an accurate valuation of the torque delivered by the engine, as demonstrated
in the second part of the article using a simple linear model. As the setup of such a linear
model requires at least another value for the exhaust gas temperature at the exit of the
exhaust valve, the present study proposes another algorithm (2nd sub-procedure about
fast recalculating the CFD-FVM model tuning parameters) to calculate the exhaust gas
temperature in another operative point of the engine (here: P3) on the basis of the first
tuned CFD-FVM model, without repeating the previously-illustrated tuning procedure. In
addition, in this case, this sub-procedure demonstrated its effectiveness: the average and
maximum of absolute values of relative errors on the temperatures are all lower than 5%
(average: ≤1.5%; maximum: ≤3.5%).

Finally, thanks to the use of the CFD-FVM model, which addresses all non-linearities
in the system (especially in the correlation of the exhaust gas temperature with the tem-
peratures measured in other three points of the exhaust line) and the dependence of them
by the engine speed, it was possible to set up a simple (linear) model to estimate the
torque based on only the exhaust gas temperature in the operative points P0 and P3 (3rd
sub-procedure about creating the torque prediction model). The torque estimations based
on this temperature have a maximum absolute relative error of 2.9% and expanded un-
certainty intervals very close to what determined experimentally at the engine test stand,
as emerges from a numerical comparison with the experimental values of the torque in
other two operative points P1 and P2, used as verification points. The obtained value
is more than acceptable for a proficient use of all the illustrated procedure in possible
future applications where there is the need to indirectly estimate and monitor the engine
performance of compression-ignition engines, e.g., in heavy-duty applications (agricultural
machinery, cogeneration units) with no electronics to interface. Indeed, after repeating the
illustrated procedure on a model of vehicle to be monitored, the simple algebraic equations
constituting the indirect torque-estimating model can be stored in a controller and used
in all the vehicles of the same model, hence having the same exhaust lines, and with the
temperature probes are positioned in the same points. In all other vehicles, experimenters
have to repeat the illustrated procedure taking care to accurately model the exhaust line via
CFD-FVM software, placing in the model the thermocouples in the same position where
they are effectively, as did in the illustrated case study.

This study can be framed in a wider research project carried on by the authors, aimed
at the development of an independent low-cost monitoring system able to retrofit and
collect data from ICE-powered agricultural machines not originally equipped with an
engine-management/diagnostic system. When ready, such a monitoring system will be
used to develop a predictive-maintenance logic able to keep the machines performance,
the fuel consumptions and the engine overall efficiency under control and always at a level
adequate to keep as low as possible the environmental impact of these machines.
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Appendix A. Remarks on the RSM-Based Optimization

The numerical optimization of multiple responses, proposed by the used statistical
software, is based on the maximization of a (global) “desirability” function (D) [75]. This
desirability function was used by the RSM software to identify the 30 n-tuples of factors
that, if set in the CFD-FVM program, would most likely result in an output close to the
experimental situation. The desirability function is an objective function that keeps into
account the reaching of multiple goals together, each one formulated through a “utility”
function di, i.e., a dimensionless individual desirability, in this case having a value included
in the variability range [ymin,i; ymax,i] and depending by the distance of each response xi
from its target value xt,i [76]. More in detail, D ranges from zero to one (at the simultaneous
matching of all goals di) and it is formulated as the geometric mean of all these utility
functions, as follows:

di =


1 f or yi = yt,i

yt,i−yi
yt,i−ymin,i

f or (ymin,i ≤ yi ≤ yt,i)
yi−yt,i

ymax,i−yt,i
f or (yt,i ≤ yi ≤ ymax,i)

0 f or (yi < ymin,i ∨ yi > ymax,i)

D =

(
n
∏
i=1

dri
i

) 1
∑ ri (i f all weights are equal)

=
n
∏
i=1

di

(9)

where:

• n is the number of simultaneously-optimized responses, i.e., for which a goal is
formulated; in the present case n = 3 because a specific n-tuple is evaluated by the
distance of its predicted outputs of T1, T2, T3 from the target values corresponding to
the operative point P0;

• di is the “desirable range” for a single generic response i, i.e., a metric related to the
closeness of an output from its target value; the desirable ranges are all from zero to
one (i.e., from least to most desirable value, respectively);

• r is a weight accounting for the importance of that factor over the others (in the present
case, all weights were set at the same value, meaning that no temperature of the three
is more important than the others to be matched).

If any of the responses yi falls outside their desirability range, the overall function
becomes zero. For a simultaneous optimization, each response must range within an
assigned low and high variation value (not necessarily equally distant from the target
value), and the individual desirability is formulated in this case as “being equal to a
target value”. If the weight is 1 for a specific response, the desirability values are linearly
increasing from 0 (response lower or equal to the minimum value, or higher or equal to
the maximum value for that response) to 1 (response perfectly equal to the target); see
Figure A1. Finding an initial feasible region where all responses are within their ranges can
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be difficult. So the RSM program used a penalty function in a downhill simplex (Nelder–
Mead) multidimensional pattern search [77] that converges at either a stationary point or a
design space boundary. Some example of applications can be found in [78,79].
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Appendix B. ANOVA Analysis for Each Response in the First Application of RSM

The ANOVA was performed on each of the temperatures obtained from the CFD-FVM
model, reported in Table 5 (31 n-tuples): T1 (Table A1), T2 (Table A2), T3 (Table A3). For the
significance of all reported statistical quantities, please see [75].

Table A1. ANOVA for the response surface reduced linear model concerning T1 (1st dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 60,294.59 8 7536.82 109.45 <0.0001
A—T 27,117.89 1 27,117.89 393.82 <0.0001

B—
.

mex 5196.75 1 5196.75 75.47 <0.0001
C—Hh 16,622.82 1 16,622.82 241.40 <0.0001
D—Hex 10,269.93 1 10,269.93 149.14 <0.0001
E—eex 423.92 1 423.92 6.16 0.0212
F—Cr 47.89 1 47.89 0.70 0.4133
G—Ch 712.07 1 712.07 10.34 0.0040
H—eh 246.38 1 246.38 3.58 0.0718

Residual 1514.89 22 68.86
Cor Total 61,809.48 30

Model 60,000.28 6 10,000.05 132.66 <0.0001
A—T 27,106.06 1 27,106.06 359.58 <0.0001

B—
.

mex 5191.84 1 5191.84 68.87 <0.0001
C—Hh 16,607.16 1 16,607.16 220.30 <0.0001
D—Hex 10,257.33 1 10,257.33 136.07 <0.0001
E—eex 422.03 1 422.03 5.60 0.0264
G—Ch 713.58 1 713.58 9.47 0.0052

Residual 1809.20 24 75.38
Cor Total 61,809.48 30
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Table A2. ANOVA for the response surface reduced linear model concerning T2 (1st dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 78,970.18 8 9871.27 252.65 <0.0001
A—T 29,892.19 1 29,892.19 765.08 <0.0001

B—
.

mex 4284.20 1 4284.20 109.65 <0.0001
C—Hh 364.88 1 364.88 9.34 0.0058
D—Hex 31,505.45 1 31,505.45 806.37 <0.0001
E—eex 1586.85 1 1586.85 40.61 <0.0001
F—Cr 55.51 1 55.51 1.42 0.2460
G—Ch 2.22 1 2.22 0.057 0.8136
H—eh 18.51 1 18.51 0.47 0.4984

Residual 859.56 22 39.07
Cor Total 79,829.74 30

Model 78,893.81 5 15,778.76 421.47 <0.0001
A—T 30,002.50 1 30,002.50 801.41 <0.0001

B—
.

mex 4296.54 1 4296.54 114.77 <0.0001
C—Hh 364.75 1 364.75 9.74 0.0045
D—Hex 31,722.68 1 31,722.68 847.36 <0.0001
E—eex 1595.03 1 1595.03 42.61 <0.0001

Residual 935.93 25 37.44
Cor Total 79,829.74 30

Table A3. ANOVA for the response surface reduced linear model concerning T3 (1st dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 89,369.93 8 11,171.24 47.32 <0.0001
A—T 63,320.82 1 63,320.82 268.23 <0.0001

B—
.

mex 10,594.21 1 10,594.21 44.88 <0.0001
C—Hh 13.71 1 13.71 0.058 0.8118
D—Hex 4321.88 1 4321.88 18.31 0.0003
E—eex 501.67 1 501.67 2.13 0.1590
F—Cr 3.11 1 3.11 0.013 0.9096
G—Ch 31.47 1 31.47 0.13 0.7185
H—eh 8.76 1 8.76 0.037 0.8490

Residual 5193.55 22 236.07
Cor Total 94,563.48 30

Model 88,802.47 3 29,600.82 138.73 <0.0001
A—T 65,998.97 1 65,998.97 309.32 <0.0001

B—
.

mex 10,993.79 1 10,993.79 51.52 <0.0001
D—Hex 4640.69 1 4640.69 21.75 <0.0001

Residual 5761.01 27 213.37
Cor Total 94,563.48 30

Appendix C. ANOVA Analysis for Each Response in the Second Application of RSM

The ANOVA was performed on each of the temperatures obtained from the CFD-FVM
model, reported in Tables 5 and 8 (for a total of 61 n-tuples): T1 (Table A4), T2 (Table A5),
T3 (Table A6). For the significance of all reported statistical quantities, please see [75].
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Table A4. ANOVA for the response surface reduced linear model concerning T1 (2nd dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 98,524.62 8 12,315.58 324.81 <0.0001
A—T 34,012.71 1 34,012.71 897.05 <0.0001

B—
.

mex 15,407.00 1 15,407.00 406.34 <0.0001
C—Hh 65,323.72 1 65,323.72 1722.85 <0.0001
D—Hex 12,955.90 1 12,955.90 341.70 <0.0001
E—eex 1597.59 1 1597.59 42.13 <0.0001
F—Cr 0.66 1 0.66 0.017 0.8958
G—Ch 2735.52 1 2735.52 72.15 <0.0001
H—eh 56.92 1 56.92 1.50 0.2260

Residual 1971.64 52 37.92
Cor Total 1.005·105 60

Model 98,467.45 6 16,411.24 436.81 <0.0001
A—T 35,159.09 1 35,159.09 935.82 <0.0001

B—
.

mex 15,948.91 1 15,948.91 424.51 <0.0001
C—Hh 65,586.00 1 65,586.00 1745.68 <0.0001
D—Hex 13,433.78 1 13,433.78 357.56 <0.0001
E—eex 1604.41 1 1604.41 42.70 <0.0001
G—Ch 2910.00 1 2910.00 77.45 <0.0001

Residual 2028.81 54 37.57
Cor Total 1.005·105 60

Table A5. ANOVA for the response surface reduced linear model concerning T2 (2nd dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 80,413.35 8 10,051.67 478.27 <0.0001
A—T 37,650.37 1 37,650.37 1791.44 <0.0001

B—
.

mex 12,515.28 1 12,515.28 595.49 <0.0001
C—Hh 1456.62 1 1456.62 69.31 <0.0001
D—Hex 40,253.34 1 40,253.34 1915.29 <0.0001
E—eex 5770.08 1 5770.08 274.55 <0.0001
F—Cr 0.90 1 0.90 0.043 0.8372
G—Ch 3.70 1 3.70 0.18 0.6763
H—eh 9.63 1 9.63 0.46 0.5014

Residual 1092.87 52 21.02
Cor Total 81,506.22 60

Model 80,395.26 5 16,079.05 796.02 <0.0001
A—T 38,763.81 1 38,763.81 1919.07 <0.0001

B—
.

mex 13,605.73 1 13,605.73 673.58 <0.0001
C—Hh 1583.19 1 1583.19 78.38 <0.0001
D—Hex 42,108.25 1 42,108.25 2084.64 <0.0001
E—eex 6165.34 1 6165.34 305.23 <0.0001

Residual 1110.96 55 20.20
Cor Total 81,506.22 60
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Table A6. ANOVA for the response surface reduced linear model concerning T3 (2nd dataset) before
and after the backward selection process.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F

Model 1.125·105 8 14,062.02 123.13 <0.0001
A—T 79,712.45 1 79,712.45 698.00 <0.0001

B—
.

mex 32,211.20 1 32,211.20 282.06 <0.0001
C—Hh 1.17 1 1.17 0.010 0.9198
D—Hex 6096.99 1 6096.99 53.39 <0.0001
E—eex 152.70 1 152.70 1.34 0.2528
F—Cr 5.92 1 5.92 0.052 0.8208
G—Ch 106.32 1 106.32 0.93 0.3391
H—eh 36.11 1 36.11 0.32 0.5763

Residual 5938.47 52 114.20
Cor Total 1.184·105 60

Model 1.122·105 3 37,410.93 343.83 <0.0001
A—T 1.075·105 1 1.075·105 987.99 <0.0001

B—
.

mex 44,398.97 1 44,398.97 408.06 <0.0001
D—Hex 6725.32 1 6725.32 61.81 <0.0001

Residual 6201.88 57 108.80
Cor Total 1.184·105 60
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