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Abstract
The capability to devise robust outlier and anomaly detection tools is an important research
topic inmachine learning and datamining. Recent techniques have been focusing on reinforc-
ing detection with sophisticated data generation tools that successfully refine the learning
process by generating variants of the data that expand the recognition capabilities of the
outlier detector. In this paper, we propose ARN, a semi-supervised anomaly detection and
generation method based on adversarial counterfactual reconstruction. ARN exploits a reg-
ularized autoencoder to optimize the reconstruction of variants of normal examples with
minimal differences that are recognized as outliers. The combination of regularization and
counterfactual reconstruction helps to stabilize the learning process, which results in both
realistic outlier generation and substantially extended detection capability. In fact, the coun-
terfactual generation enables a smart exploration of the search space by successfully relating
small changes in all the actual samples from the true distribution to high anomaly scores.
Experiments on several benchmark datasets show that our model improves the current state
of the art by valuable margins because of its ability to model the true boundaries of the data
manifold.
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1 Introduction

Anomaly detection [1] is a prominent research topic in data mining and machine learning
that aims at discovering unexpected elements in data populations, with relevant applications
in several fields such as smart manufacturing [2], healthcare [3], security [4] and finance [5].
Historically, this research task has been extensively investigated, and several methods have
been proposed that find outliers based on either statistical modeling or spatial proximity [6].
In general, approaches to outlier detection can be classified as supervised, semi-supervised,
and unsupervised [7].

Supervised methods exploit the availability of a labeled data set containing observations
already labeled as normal and abnormal to build a model for the normal class. Since usually
normal observations are the great majority, these data sets are unbalanced, and specific
classification techniques must be designed to deal with the presence of rare classes. Extreme
class imbalance can hamper the discovery of local patterns characterizing rare classes, thus
impeding the learning of effective models.

Non-supervised methods overcome these limitations as they do not require prior informa-
tion concerning the anomalous examples. Semi-supervised methods typically assume that
only normal examples are given. The goal is hence to find a partitioning of the domain space
into dense accepting regions, containing the normal objects, and sparse rejecting regions,
containing all the other objects significantly deviating from normality [8]. By contrast, unsu-
pervised methods make no assumption on the class distribution and search for outliers in an
unlabeled data set by assigning to each example a score that reflects its degree of abnormality.

In this paper, we focus on semi-supervised anomaly detection with a slightly different
objective: By exploiting only the examples labeled as normal, can we build a model that
accurately characterizes both normal and abnormal behaviors? In other words, for a given
example, what is the core set of relevant features characterizing the decision boundaries
between normality and outlierness?

This formulation resembles the zero-shot learning approach that is gaining popularity in
computer vision and natural language processing [9]. The focus is hence on methods that
can explain the data by generating feature representations of both seen and unseen classes,
which can hence be exploited to build a classifier capable of discriminating among them.

Probabilistic generative models are the basic tool for achieving this.
Generative models for anomaly detection, based on latent representations, are gaining

substantial attention in the current literature [10–14], due to their capabilities in modeling the
hidden causal relationships that ultimately characterize data. The expressive representation
schemes offered by deep networks [1], combined with sophisticated yet effective learning
mechanisms based on stochastic backpropagation, approximate Bayesian inference [15] and
adversarial learning [16], make these models extremely flexible and accurate in describing
the properties of the data.

Despite their flexibility, the approaches proposed in the current literature are still unable
to supply realistic outlying properties that can support the detection process. Typically, gen-
erative methods tend to model the domain space via biased probability distributions; here,
anomalies can be regarded as samples lying in low-density regions within such a probability
space. However, within complex manifolds, over-generalization can occur [17], thus hinder-
ing the capability to detect realistic outliers: In such cases, only anomalies with dramatically
altered data properties turn out to be easily identifiable.

Generative adversarial learning methods mitigate this issue with their capability to
reconstruct portions of the true distribution accurately. Still, they exhibit two potential short-
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comings. On one side, mode collapse and dropping can prevent a faithful reconstruction
[18], with the result that normal samples can be deceived as outliers. On the other side, the
generated adversarial samples tend to overlap the true distribution [19], with the consequence
that the resulting discriminator exhibits limited detection abilities besides trivial outliers.

The problem hence becomes: How to generate reliable outliers that can support the dis-
criminator in devising the actual boundaries of a complex data manifold?

We claim that an effective anomaly detection and generation strategy can be obtained by (i)
providing an efficient exploration of the data manifold and (ii) generating, for each available
normal sample, its abnormal counterpart. In practice, we aim tomap each sample in a suitable
latent feature representation space, from which an alternative counterfactual reconstruction
can be obtained with minimal but substantial differences from the original sample. The
mapping within the latent space can be obtained in a controlled way by exploiting simple yet
effective regularization schemes [15, 20]. At the same time, the adversarial reconstruction
can enable the generation of data that is still consistent with the underlying manifold, while
at the same time relating the latent representation to abnormal behavior.

Our contributions can hence be summarized as follows:

• We propose a framework based on the combination of variational autoencoders and
adversarial learning with the objective of generating realistic outliers supporting the
learning of an outlier detector. The framework relies essentially on normal data but can
be easily extended to also take into account a limited amount of supervision. We discuss
different modeling alternatives for tackling this task through the adoption of a neural
network architecture that models latent dependencies at different abstraction levels.

• We evaluate the proposed framework on several benchmark datasets by showing that:
(a) the generated outliers are realistic, as they resemble the original data and still exhibit
some specific features that the discriminator can recognize; (b) the resulting anomaly
detector is competitive with the state of the art, robust to noise and capable of taking
advantage of the efficient exploration of the entire data manifold in the learning process.

The rest of the paper is organized as follows. Section2 discusses the recent contributions
in the current literature and provides a systematic review of the approaches related to our task
of interest. Section3 discusses the mathematical details of our proposal. The effectiveness of
the proposedmodel is illustrated in Sect. 4, and pointers to future developments are discussed
in Sect. 5.

2 Related work

We structure the analysis of the literature by considering the tasks of outlier detection and
generation. The former has been extensively studied in the literature [7] and can be character-
ized as a prediction problem: Given an instance from a specific domain space, the objective
is to score its anomaly likelihood. The latter is relatively new and has gained attention with
the recent spread of deep generative models [15, 16, 21].

2.1 Outlier detection

Anomaly detection is a challenging task due to the underlying class imbalance. To overcome
this problem, most of the proposed solutions are based on unsupervised or semi-supervised
approaches. Traditional non-supervised approaches rely on one-class classification (e.g., one-
class support vector machines [8]), distance metrics (e.g., Isolation Forest [22]) or nearest
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neighbor algorithms [23].Recently, deep anomalydetectionhas emerged as a critical direction
[1]. In particular, autoencoders [24] have been extensively used for unsupervised anomaly
detection based on deep learning [25–30].

An autoencoder is a neural network that learns low-dimensional representations of the
input data and, at the same time, its reconstruction from such a reduced encoding that is as
close as possible to its original input. The core feature is the capability of devising encodings
that ignore the “signal noise.” Consequently, they can be naturally employed for anomaly
detection: Normal examples tend to map back to themselves, while anomalous tuples tend to
produce divergent reconstructions. In practice, for a given example x , the outlierness score
is given by the reconstruction error ‖x − D(E(x))‖, where E and D represent the encoder
and decoder components of the autoencoder architecture.

Within an autoencoding framework, outlierness is typically established on the basis of a
pre-defined threshold T : If the reconstruction error is higher than T , the sample is labeled
as outlier. [31] proposes a (weakly) supervised anomaly detection approach that allows to
identify anomalies without the need for T . In particular, their model is built upon an autoen-
coder that uses two decoders, namely inlier decoder (Din) and outlier decoder (Dout ). The
former performs the reconstruction for inlier samples, while the latter focuses on outlier
samples. Both decoders work in a competitive way as they both associate a reconstruction
score for the input samples. Unlabeled data are fed in both decoders and labeled as either
outliers or inliers, based on the lowest reconstruction error. Also, [32] employs clustering-
based approaches to improve the performance of autoencoders in detecting outliers without
the need of a threshold.

Besides reconstruction error, an alternative emerging research direction is the adoption
of generative adversarial networks (GANs) [10] to embed the detection process within a
generative framework directly.

GANs [16] estimate generative models via an adversarial process in which two models
are trained simultaneously. A generator G aims at capturing the data distribution, while a
discriminator D aims at estimating the probability that an example came from the training
data (i.e., real data) rather than from the generated data (i.e., fake data). To learn the generative
distribution pG over the data, a prior noise distribution is defined, and then, a mapping from
the prior noise distribution to the data space is learned. The discriminator output is a single
scalar value, and it can be interpreted as the probability that the input sample came from the
real data rather than pG.

To the best of our knowledge, the first approach that combines generative adversarial
networks and outlier detection is AnoGAN [33]. The model aims at learning a mapping
from the latent space to realistic (normal) samples. The mapping procedure is defined as
an iterative process: The goal is to find a point z in the latent space corresponding to the
generated sample that is most similar to the input sample. The similarity is computed as a
combination of residual and feature matching loss [34] and represents the anomaly score.

The mapping is devised as a sequence of backpropagation steps that make the overall
detection procedure inefficient. To overcome this limitation, some variants [13, 35, 36] are
proposed.

For example, ALAD [13] represents an improvement that, in addition to generator and
discriminator, exploits an encoder to refine the detection capabilities by discriminating the
pair (x, E(x)) versus (G(z), z).

The underlying architecture also tries to overcome the cycle-consistency problem [37],
suffered by architectures based on BiGAN [38], like [36].

GANomaly [11] combines adversarial learning and latent representation through an
encoding–decoding framework. The model is composed of a generator and a discrimina-
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tor, but the generator consists of three components: an encoder–decoder that maps the input
samples into a latent space and back and a further encoder that is used to map the recon-
struction of the decoder in the latent space. The anomaly score is defined as the distance
between the latent representation of the input sample and that of the reconstruction. [39] pro-
poses an extension of GANomaly particularly suited for input data represented by images.
In such cases, in fact, the adoption of skip connections can substantially improve the recon-
struction and consequently boost the detection abilities. In [40], a self-training approach is
proposed exploiting a similar generator–discriminator structure. The generator tries to learn
the normal data distribution, whereas the discriminator, together with a classifier, amplifies
the reconstruction error of anomalous data for better identification of anomalies.

ADAE [41] models both the generator and the discriminator as autoencoders. The recon-
struction error of the discriminating autoencoder represents the anomaly score. The claimed
advantage is that this choice allows a better split between normal and anomalous scores,
leading to superior performance. Also, [42] exploits two autoencoder subnetworks acting as
generator and discriminator. In addition, the authors introduce the mutual adversarial train-
ing approach that allows the swap of the two subnetworks’ roles in training, boosting the
reconstruction capability. Moreover, an anomaly determination mechanism is proposed to
circumvent the ‘high anomaly’ issue caused by the noisy records. Finally, a recent line of
research is exploring the adoption of ensemble architectures based either on autoencoders
[43, 44] or GANs [45]. In general, ensembles can efficiently combine baseline models and
thus better model the distribution of normal data. Ensembles are particularly effective with
GANs, where a group of generators and a group of discriminators can be trained together,
so that every generator gets feedback from multiple discriminators, and vice versa.

2.2 Outlier generation

The generation of artificial outliers can serve the double purpose of testing outlier detection
algorithms and aiding the training phase. For example, the class imbalance can be solved
by generating artificial outliers that can be exploited to refine the detection phase for real
outliers.

In principle, probabilistic generative models can be easily adapted to produce outliers,
by sampling from low-density regions. For example, [14] proposes an approach based on
variational autoencoders to generate synthetic time series with anomalies. The idea is to learn
the latent space representation of real data and then to generate anomalies by sampling from
the outlier region of the latent space. The problem with such a naive approach is that when
the original data are characterized by complex manifolds, over-generalization is likely to
weaken the generation, as discussed in the introduction.

A (weakly) supervised framework based on the detection and generation of outliers is
proposed in [12]. The framework, called WALDO (Wasserstein Autoencoder for Learning
the Distribution of Outliers), combines the approach outlined in [31] (discussed above) with
Wasserstein autoencoders [21].

The basic assumption is that data are generated from an unknown and unlabeled mixture
of inlier and outlier distributions (Pu

X = (1−v)P i
X +vPo

X ) and the goal is to learn generating
distributions (inlier and outlier distributions) P i

G and Po
G which minimize the Wasserstein

Distances Wp(P i
X , P i

G) and Wp(Po
X , Po

G).
The approach requires that both examples from unlabeled and inlier distributions are

provided in the training phase.
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FenceGAN [19] extends the basic framework of GANs by observing that the generated
adversarial samples tend to overlap the true distribution. As a consequence, they propose
a modification of the underlying adversarial framework to devise a generator capable of
generating samples lying on the boundaries of the data distribution.

The resulting learning process yields a discriminator specifically tailored for “difficult”
outliers. The problem with such an approach is that the boundary is parameterized by a
threshold representing the discrimination uncertainty. The latter can be domain-dependent,
and as a consequence, tuning the relative threshold can be difficult.

3 Adversarial reconstruction networks

3.1 Preliminaries

We structure our approach within a probabilistic framework where, given x, y with x ∈ D
and y ∈ {0, 1}, we would like to devise a probability measure p(y|x) quantifying whether x
qualifies as anomalous (y = 1). Within a semi-supervised setting, we assume that observable
samples come from a distribution PD such that x ∼ PD is associated with y = 0 (i.e., x is
a normal sample). Our approach relies on three components. First, we devise a probabilistic
classifier pθ (y|x), which models the outlierness degree and is parameterized by θ . This is
the main expected outcome of our framework, which is modeled as a deep neural network
classifier. However, our approach relies on learning pθ (y|x) by only looking at samples from
PD .

The learning process is based on an outlier generator gφ(·), which starting from random
noise z produces an outlier x̃ upon which to train the classifier. In principle, within a standard
generative setting, it would suffice to jointly optimize φ and θ to maximize the likelihood

Ex∼PD

[
log pθ (0|x)

]
+ Ez∼N (0,I )

x̃∼gφ(z)

[
log pθ (1|x̃)

]
, (1)

stating that the distribution Pφ (the distribution related to gφ) differs substantially from
the distribution PD of real data. This simple approach has the shortcoming that a simple
solution would be a trivial generator gφ producing extreme values without any informative
value. By contrast, real-life anomalies can represent borderline situations, such as anomalous
combinations of eligible values within an observation. As an example in the cybersecurity
domain [46, 47], consider the case of stealthy attacks. The latter in fact are designed to
slightly alter legit metadata values within certain samples of legitimate traffic, in order to
exfiltrate secret information. Consequently, while these values persist as legitimate within the
communication, these subtle alterations allow to perform an attack. Essentially, a generator
gφ is informative when it is capable of generating realistic anomalies that force pθ to detect
relevant features from PD to be exploited for classification purposes.

3.2 Methodology overview

Based on the above intuition, we would like to devise a generator that, starting from an
x ∼ PD , generates a variant x̃ which resembles x although representing an outlier. This
can be done by resorting to an encoder that can summarize the relevant features of x , to be
exploited afterward for reconstructing a suitable variant. We adopt a probabilistic encoder
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qψ(z|x), which can be easily regularized to ensure stability to the learning process. The
objective function to maximize can hence be rewritten as:

L(θ, φ, ψ) = Ex∼PD

[
log pθ (0|x)

]
+ E x∼PD

z∼qψ (·|x)
x̃∼gφ(z)

[
log pθ (1|x̃)

]

+ E x∼PD
z∼qψ (·|x)
x̃∼gφ(z)

[
log p(x |x̃)

]
+ Reg(qψ) . (2)

The third term in the equation models the fact that it is possible to easily reconstruct x from
x̃ : In practice, this means that both x and x̃ are equally probable from the latent z. Therefore,
the intuition behind the proposed approach is that although x̃ is as close as possible to x
(i.e., x̃ is a variant of x , as deemed by the third term of the equation), the minimal changes
produced by the generation cause a reversed decision by the classifier (expressed second term
in the equation), whereas the original example x is still deemed as normal (i.e., associated
with label y = 0 in the first term in the equation). According to these properties, we call
x̃ a realistic anomalous counterpart of x . The fourth term refers to some regularization on
the model parameters. A formal justification for the above loss can be seen in a variational
setting [48]. Consider an observation x, y, and consider all possible variants x̃ of x for which
the response is anomalous (i.e., ỹ = 1), then:

log p(x, y) = log
∫

p(x, y, x̃, ỹ = 1) dx̃ = log
∫

p(x, y, x̃, ỹ = 1, z) dx̃dz . (3)

Consider now the decomposition p(x, y, x̃, ỹ = 1, z) ≈ p(y|x) p(ỹ=1|x̃) p(x |x̃) p(x̃ |z)
p(z) and a proposal variational distribution q(z|x). By way of the Jensen inequality [49], we
have:

log p(x, y) ≥
∫

q(z|x)p(x̃ |z) log p(y|x) dx̃ dz

+
∫

q(z|x)p(x̃ |z) log{p(ỹ = 1|x̃)p(x |x̃)} dx̃ dz

−
∫

q(z|x) log q(z|x)
p(z)

dz

= log p(y|x) + Ez∼q(·|x)
x̃∼p(·|z)

[
log p(ỹ = 1|x̃)

]

+ Ez∼q(·|x)
x̃∼p(·|z)

[
log p(x |x̃)

]
− KL [q(z|x)‖p(z)] .

(4)

We finally obtain Eq. 2 by averaging over all possible x ∼ PD . KL stands for Kullback–
Leibler divergence [50]. Figure 1a summarizes the components of the model and the main
flow in the learning process: Given an observation x ∼ PD , we encode it in a latent code z
upon which a reconstruction x̃ can be obtained that the classifier should in principle classify
as negative, while still resembling the original x as much as possible.

3.3 Adversarial learning

A problem with Eq. 2 is the presence of two apparently contrasting objectives within the
same function. By simultaneously optimizing θ , φ andψ , the learning process has to face the
problem of generating an observation x̃ which should be classified as positive, while at the
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Fig. 1 ARN compared to other generative adversarial approaches

same time penalizing any departure from the original observation x . Again, this can result in
an unstable learning process, which can be solved by alternating optimizationwith competing
objectives: the generator and encoder aiming at obtaining the best possible reconstruction,
and by contrast the classifier aiming at spotting all possible differences. In practice, the
learning process can be restructured into an adversarial game with associated discriminator
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loss

LD(θ |φ,ψ) = Ex∼PD

[
log pθ (0|x)

]
+ E x∼PD

z∼qψ (·|x)
x̃∼gφ(z)

[
log pθ (1|x̃)

]
(5)

and generator loss

LG(φ, ψ |θ) = E x∼PD
z∼qψ (·|x)
x̃∼gφ(z)

[
log pθ (0|x̃)

]
+ E x∼PD

z∼qψ (·|x)
x̃∼gφ(z)

[
log p(x |x̃)

]

− KL
[
qψ(z|x)‖p(z)] .

(6)

By using Eqs. 5 and 6, we generate for each normal sample x , a counterpart x̃ , i.e., a
sample that resembles x (see the first two terms in Eq.6), and at the same time, x̃ is classified
as anomalous (second term in Eq.5), while the original sample is recognized as normal
(first term in Eq.5). Thus, the entire process allows the generation of synthetic but realistic
anomalies that enable the training of the outlier detector (the discriminator). Indeed, the aim is
to improve the abilities of the discriminator, which can devise a boundary between normality
and abnormality, only exploiting the normal samples. In this way, the detector can identify
existing anomalies without needing explicit information about them.

Figure 1 shows the differences between the proposed ARN and two similar approaches
from the literature. FenceGAN([19], Fig. 1c) uses the typicalGANarchitecturewithmodified
loss functions to generate samples that lie at the boundary of the real data. The discriminator
score is directly used as an anomaly score. Like FenceGAN, ARN builds realistic outliers by
training the discriminator to recognize evenminimal discrepancies from normality. However,
within ARN the generation phase relies on a faithful reconstruction, thus correlating outliers
to negligible noise relative to the true distribution. In other words, the contrasting objective
that x̃ must be scored as an outlier, despite the fact that it resembles the true x as faithfully as
possible, forces the discriminator to capture the true essence of the original data manifold.
GANomaly ([11], Fig. 1b) is a GAN-based model that also exploits faithful reconstructions,
but the anomaly score relies on the difference in the reconstruction. The last encoder is
used to map the reconstruction of the decoder in the latent space in order to have the best
input representation. The anomaly score is defined as the difference between GE (x) and
E(GD(GE (x))). While this is not an issue on outliers coming from substantially different
distributions, minimal differences would map in the same latent space and hence they would
be difficult to identify. Another substantial difference between ARN and the other adversarial
approaches lies in the fact that, for each x ∼ PD , the generator produces an outlying variant
x̃ ∼ gφ(z), given z ∼ qψ(z|x). Since qψ(z|x) approximates the true posterior p(z|x), the
entire manifold is efficiently explored, thus avoiding the mode collapse that typically affects
adversarial approaches.

3.4 Unbalanced learning

The above framework can be easily adapted to cope with partial supervision provided by a
limited number of samples from theminority (outlier) class.When y is known for both normal
and anomalous samples (and consequently PD represents the entire domain D, including x
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related to y = 1), ARN can be trained with the objective

max
θ

min
φ,ψ

Ex,y∼PD

[
log pθ (y|x)

]
+ E x,y∼PD

z∼qψ (·|x)
x̃∼gφ(z)

[
log(1 − pθ (y|x̃))

]

+ E x∼PD
z∼qψ (·|x)
x̃∼gφ(z)

[
log p(x |x̃)

]
+ KL

[
qψ(z|x)‖p(z)] ,

(7)

stating that the generator should be aimed at opposing the true class, while at the same
time maintaining the best possible reconstruction (that is to say, by introducing the minimal
changes that cause a reversal in the classification). In practice, the adversarial game introduces
a synthetic resampling mechanism that allows to build a robust classification.

4 Experimental assessment

We conduct an extensive empirical evaluation of the proposed model on real-world datasets.
Our goal is to answer to the following research questions:

• RQ1. Does the outlier generator produce realistic outliers? In other words, does the output
of the data generator produces data with meaningful, realistic and non-trivial anomalies?
How does it affect the predictive power? (Sect. 4.1)

• RQ2. In real-world scenarios, can the classifier component be used to predict unobserved
anomalies? How does its predictive power compare to other state-of-the-art approaches?
(Sect. 4.2)

• RQ3. How is the accuracy affected by contamination in the learning process? In what
degree a limited amount of supervision helps the learning process? (Sect. 4.3)

• RQ4. Which components of the model contribute to the overall quality? How do the
architectural choices affect the accuracy of the resulting predictions? (Sect. 4.4)

• RQ5. How efficient is the learning process of ARN compared to the other state-of-the-art
approaches? (Sect. 4.5)

We implemented ARN using the PyTorch framework [51]. All the technical details about
ARN, its variants and competitors, are described in the Supplementary material. In order
to foster reproducibility, we publicly release all the data and code necessary to replicate
our experiments.1 Among the specific implementation details, it is worth noticing that, dur-
ing model learning, the sampling x̃ ∼ gθ (z) has to be properly arranged in a way that
avoids breaking the backpropagation of the gradient. Numerical attributes are modeled by
Gaussian distributions, unless otherwise specified. The sampling can hence follow the usual
reparametrization trick. For binary/discrete attributes, we explore two choices. The first one
is to model such attributes as numeric and resort to the standard sampling for numerical
attributes. Alternatively, we can adapt the framework described in [52], by exploiting the
GumbelDistribution and devising aStraight-Through (ST)GumbelEstimatorwith the further
trick of annihilating the temperature during the training process. We call the two alternative
instantiations, respectively, ARNN and ARNG .

In both cases, the component p(x |x̃) within the loss is modeled as a Gaussian reconstruc-
tion probability, i.e., log p(x |x̃) ≈ −γ ‖x − x̃‖2, with γ representing a weighting constant.

1 https://github.com/arnwg/arn.
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4.1 Outlier generation

In a first set of experiments, we answer to RQ1 and specifically we evaluate the capability of
the generator to produce data with meaningful, realistic and non-trivial anomalies. For this,
we use both real and synthetic data.

4.1.1 Experiments on real data

A first evaluation is performed on MNIST,2 a dataset of handwritten digits. Each instance
consists of a 28 × 28 grayscale image representing a digit in the interval {0, . . . , 9}. The
objective of the analysis is twofold: On one side, we would like to get a visual perception of
the changes that the generator produces on the input data; on the other side, we want to show
how these changes affect the resulting prediction of the discriminator. To do so, we binarize
the input data and then train ARN on the whole set of images. The graphs in Fig. 2 describe
a stable learning process, with both LD and LG achieving convergence. Concerning LG the
term representing the loss in reconstruction consistently converges, while the loss on the
adversarial component increases: A clear sign that, despite the efforts by the generator, the
classifier progressively refines its capability of discriminating between normal and generated
samples.

The results of the generation are illustrated in Fig. 3. The first row represents the original
(greyscale) image, from which the binary representation (on the third row) is sampled. The
images in the second row represent, for each image, the parameters of the reconstructed
Gumbel distribution, from which x̃ is sampled (fourth row). We can notice that despite the
strong similarity between the first two rows (and the last two as well), the last row exhibits
some artifacts. Such artifacts allow for minimal modifications that lead ARN to classify the
instance as anomalous. Indeed, the generated point x̃ represents a sample that is similar to the
normal one x , while lying outside the original (normal) data distribution. Consequently, the
classifier recognizes x as normal and x̃ as abnormal. In practice, the small variations do not
affect the semantic of the image (a humaneye can easily still recognize the number represented
in x̃), but the few artifacts (either missing or redundant white pixels) are recognized by the
classifier as anomalous.

In order to quantify the quality of the reconstruction, we compute a variant of the Fréchet
inception distance (FID) [53]. In practice, we consider a traditional variational autoencoder
trained on the original data. This autoencoder is then exploited to produce a latent represen-
tation of both the original images and the generated variants produced by ARN. The FID is
then computed on these latent representations. Let f and f̃ be the latent representation of
the original images and the generated variants, respectively, the Fréchet inception distance
is defined as follows:

FID = ‖μ f − μ f̃ ‖2 − Tr(� f + � f̃ − 2� f � f̃ ) (8)

whereμ f ,μ f̃ ,� f and� f̃ are the means and the covariance matrices of the vectors f and f̃ ,
respectively. Figure 4 shows how FID progressively decreases during the training process.

Figure 5 illustrates how both generated and real data are mapped in the latent space on
an example training process, where the autoencoder is learned with a latent size K = 2. The
shaded dots represent the manifold of the original (normal data), with each color representing
a different digit. We also plot some sample images and their corresponding variant produced

2 http://yann.lecun.com/exdb/mnist.
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Fig. 2 Stability of the learning process

Fig. 3 Anecdotal evidence of Outlier generation on MNIST

through the generator. Within the graph, original samples are represented with fully opaque
circlemarkers, and the corresponding variants (exhibiting the same color)with the ‘+’marker.
We can see that the variants lie in a neighborhood of the original images: Still, they diverge
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Fig. 4 FID between x and x̃ along the training process

Fig. 5 Representation of real and generated images on a two-dimensional latent space

from them and sometimes they even cross the boundaries of the corresponding regions within
the manifold.

4.1.2 Experiment on synthetic data

In order to further strengthen the findings in the previous section, we study the behavior of
ARN in a more controlled environment where the data are synthetically generated and the
underlying generation patterns can be observed. In particular, we generate a dataset with
m = 32 features and n = 12000 samples, where each point is randomly sampled by choosing
from two separate multivariate Gaussian distributions. The whole dataset is split into X1, S1
(sampled from the firstGaussian) and X2, S2 (sampled from the second one). Specifically, the
cardinality of X1 and X2 is 6000 and 4000, respectively, whereas those of S1 and S2 are 1000
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Fig. 6 Experiments on synthetic data. The generated adversarial examples (S̃1 and S̃2 in the figure) are clearly
separated from the reference data points that generated them

and 1000, respectively. Figure6 represents these points on two latent spaces, respectively,
generated by using PCA and t-SNE transformations. We use X1 and X2 to train ARNand
use S1 and S2 to generate adversarial samples (denoted as S̃1 and S̃2 in the figure). We can
observe that the adversarial examples are clearly out of the main distributions, represented
by the clusters of inlier points generated from the Gaussian priors.
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4.2 Outlier detection

In this section, we answer to RQ2 and specifically we study the predictive accuracy of ARN
in comparison with other approaches in the literature.

4.2.1 Datasets

The experiments focus on seven different standard benchmark datasets, described below.

• KDDCUP993 consists in a collection of network activity data, with each instance describ-
ing statistics relative to a connection (a sequence of TCP packets exchanged between two
peers). Each connection is labeled as either normal or attack. There are 22 different types
of attacks (with frequency ranging from popular to extremely rare), grouped in four
macro-categories. We consider the reduced version of the dataset that contains 10% of
the instances. In the experiments, we consider three variants. The first one (KDDCUP99)
representing all possible attacks. This version is extremely unbalanced toward the anoma-
lous class. KDDCUP99Rev is a subset of KDDCUP99 where the majority classes (smurf
and neptune) are removed. The rationale for the latter is that, without these attacks, the
dataset exhibits a more realistic unbalance (∼ 98%) toward normal connections. Finally,
KDDCUP99I nv is a version where normal and anomaly classes are reverted. This inter-
pretation of the dataset is adopted in several baselines, and hence, it is worth being
considered in the comparisons.

• NSL-KDD4 is a refined version of KDDCUP99. It is introduced in [54] to solve some of
the inherent problems of KDDCUP99 dataset. In particular, it does not include redundant
examples (which could bias both the learning process and the evaluation) and exhibits a
balance between the classes.

• DoH5 is a dataset describing packet flows representing benign and malicious DoH (DNS
over HTTPS) traffic along with non-DoH traffic. The dataset is characterized by 28
features describing flow properties, such as number of bytes sent/received and stats on
packet length and packet time. We only focus on DoH traffic and use the “benign” and
“malicious” classes. Since DoH is unbalanced toward the “malicious” class label, we
also consider its reverted variant that we call DoHI nv in the following.

• CoverType6 is a multiclass classification dataset that is used in predicting forest cover
type from cartographic variables only. Instances in this dataset represent areas within
the Roosevelt National Forest of northern Colorado. Each area is associated with a type,
relative to the underlying ecological processes. There are 7 classes. In our study, instances
from classes 1, 2 and 3 are considered as normal points and instances from the remaining
classes, representing less typical types, are considered anomalies.

• CreditCard7 [55] is a dataset representing online transactions occurred in a time span of
two day, labeled either as legit or fraud. The dataset only contains numerical attributes
and is highly unbalanced, since the transactions labeled as fraud represent only 0.17%
of all transactions.

3 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
4 https://www.unb.ca/cic/datasets/nsl.html.
5 https://www.unb.ca/cic/datasets/dohbrw-2020.html.
6 https://archive.ics.uci.edu/ml/datasets/covertype.
7 http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.

123

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/dohbrw-2020.html
https://archive.ics.uci.edu/ml/datasets/covertype
http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata


A. Liguori et al.

• Bank8 is a dataset relative to direct marketing campaigns of a banking institution [56].
Each instance describes a prospective customer with a label describing whether the
customer buys the product or not. Again, the dataset is unbalanced with the number of
“yes” being a minority. In addition, all attributes are categorical.

• Finally, MNIST is already described in Sect. 4.1. This dataset was used by some com-
petitors, and hence, it is useful to consider.

• Pump-Sensor9 is a sequential dataset related to failure in a water pump in which the
period of observation is of 5 months, sampled each 1min. The dataset consists of raw
(numerical) values collected from 52 sensors. The normal operation system is indicated
with the class “normal”; when a failure occurs, the status “broken” is reported, after that
the dataset presents the status “recovering.” The status “broken” and “recovering” are
considered as anomalous class.

For each of the above datasets, we identify a normal and an anomalous class. For MNIST,
we consider multiple instantiations where each class (digit) is considered anomalous and the
others are instead considered normal. The objective is to train ARN on the normal samples in
order to obtain a classifier that is able to correctly discriminate between normal and anoma-
lous. Table 1 summarizes the description of each dataset. For each dataset, data preprocessing
includes one-hot encoding for categorical attributes and min-max scaling on all numerical
attributes.

4.2.2 Evaluation protocol

In our experiments, from each dataset we sample train Dtr , test Dte and validation Dv

subsets. Training data only contain normal samples, whereas validation and test contain both
normal and anomalous samples. We assume that training examples are normal as in real-
world scenarios, most of the available data resembles normal behaviors; anomalies are rare
events and mostly we are not aware of the nature of the data. Moreover, the intuition of our
work is to build a detector that can accurately separate normal and abnormal behavior without
having access to the anomalous data. Therefore, the assumption is that only normal data are
available and in an ideal situation, training examples are normal. Beyond the ideal situation,
we also consider a setting where normal data could be contaminated, i.e., a small amount of
anomalous data is contained in the dataset, but it is still considered as normal. Details about
this experiment are reported in Sect. 4.3.

The sampling process is structured to guarantee that (i) the normal/anomalous proportions
are kept consistent in the test and validation sets and (ii) all samples in the minority class
are exploited. The ratio N/A (where N and A represent the total number of normal and
anomalous samples, respectively) is maintained in both test and validation.

First of all, anomalous samples are split into two subsets (to enable the contamination
process, as we will discuss in Sect. 4.3). Next, we consider the two cases that can occur with
the datasets described in Table 1: Either the normal samples are less than the anomalous
samples or the normal samples are greater than the anomalous ones. In the first case, the
normal samplesmaintain the 80/15/5 proportions on train/test/validation, and the anomalous
samples 15/5, respectively. In the second configuration, the anomalous samples maintain the
75/25 proportions on test/validation and the normal samples 15/5 on test/validation with
respect to the entire sample (i.e., the total number of normal and anomalous samples). The
rest of the normal samples are included in the train set.

8 https://github.com/GuansongPang/anomaly-detection-datasets.
9 https://www.kaggle.com/datasets/nphantawee/pump-sensor-data.
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To evaluate the performance of our model and to compare with the baseline methods,
we compute the area under the curve (AUC) [57] as well as the area under the precision–
recall Curve (AUPRC) [58]. All the experiments are performed on 20 runs, and the average
values are reported, with statistical significance computed at 95% confidence. To guarantee
sample variability in each run, the above described sampling process only considers half of
the abnormal examples.

4.2.3 Baselines

We choose the state-of-the-art anomaly detection methods shown in Fig. 1: FenceGAN [19],
which uses the typical GAN architecture with modified loss functions to generate samples
that lie at the boundary of the real data manifold, and GANomaly [11], a GAN-based model
structured into an encoder–decoder–encoder network. In addition, we compare with OC-
SVM [8], for its flexibility and capability to identify a wide range of nonlinear boundaries
separating classes of data in both a supervised and unsupervised way.

We also introduce a simple baseline that exploits an autoencoder trained on normal data
to achieve low MSE reconstruction error. The error can be used to identify whether an
example is abnormal or not, as discussed in Sect. 2. Specifically, we compute the probability
that a sample is abnormal as p(x) = exp−MSE(x). Although autoencoding-based anomaly
detection is not suitable for generating outliers, it is worth investigating how ARN and other
baselines compare to this simple approach in detection ability.

4.2.4 Results

Table 2 reports the results of the evaluation on the first six datasets.We include both theARNG

and ARNN variants, which consistently exhibits suitable values of AUC and AUPRC on all
datasets. On datasets where the anomalous class balances with the normal class, the results
are comparable with those of the competing methods. However, with class imbalance, ARN
tends to have a better response in terms of precision, and in general there is a consistent gain in
performance. This can also be appreciated on theMNIST dataset in Fig. 7, where we compare
ARNwith FenceGANandGANomaly on each class (digit) (as opposed to all the other classes
which are hence deemed normal). We can see that ARN clearly outperforms the competitor
by consistently achieving higher AUC andAUPRC. Additionally, we also performed two sets
of experiments in which we considered two classes that are easily interchangeable with few
pixel changes. Specifically, in the first set of experiments, we considered classes 1 and 7, and
in the second one, the classes 8 and 9. Each set is composed by two rounds of experiments,
where at turn each class is considered as anomalous. The results are, respectively, reported
in Figs. 8 and 9: ARN shows a better performance in terms of AUC and AUPRC compared
to its competitors in almost all configurations, except for the one where the number 9 serves
as the anomalous counterpart to the number 8.

Figure 10 shows how the generation process provides realistic samples with minimal but
substantial deviations from their original that characterize the generated samples as anoma-
lous. In fact, generated samples tend to share similarities with anomalous samples, in terms
of discrepancy from the normal samples, since only few tens of features differ over 120.

It is worth mentioning that the modeling choices regarding the categorical attributes do
not seem to indicate a clear winning strategy. By looking at the results for CoverType and
Bank, we see that the

responses are comparable since the confidence intervals of the two strategies overlap.
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Table 2 Comparative analysis Dataset Model AUC AUPRC

KDDCUP99 ARNG 0.99 ±0.00 0.99 ± 0.00

ARNN 1.00 ±.00 0.99 ± 0.00

FenceGAN 0.99 ± 0.00 0.99 ± 0.00

GANomaly 1.00 ±.00 1.00 ±0.00

OC-SVM 0.96 ± 0.00 0.97 ± 0.00

Baseline 1.00 ±0.00 1.00 ±0.00

KDDCUP99Rev ARNG 0.97 ±0.01 0.95 ± 0.02

ARNN 0.99 ± 0.00 0.95 ± 0.02

FenceGAN 0.84 ± 0.01 0.77 ± 0.01

GANomaly 0.92 ± 0.01 0.86 ± 0.01

OC-SVM 0.81 ± 0.00 0.71 ± 0.00

Baseline 0.91 ± 0.01 0.87 ±0.01

KDDCUP99I nv ARNG 1.00 ±0.00 1.00 ±0.00

ARNN 1.00 ±0.00 1.00 ±0.00

FenceGAN 0.92 ±0.03 0.72 ± 0.08

GANomaly 0.91 ± 0.04 0.90 ±0.03

OC-SVM 0.95 ± 0.00 0.82 ± 0.00

Baseline 1.00 ±0.00 1.00 ±0.00

NSL-KDD ARNG 0.99 ±0.00 0.99 ±0.01

ARNN 0.99 ±0.00 0.98 ±0.01

FenceGAN 0.96 ± 0.00 0.97 ± 0.00

GANomaly 0.97 ± 0.01 0.97 ± 0.01

OC-SVM 0.96 ± 0.00 0.97 ± 0.00

Baseline 0.99 ±0.00 0.98 ±0.00

DoH ARNG 0.99 ±.01 1.00 ±0.00

ARNN 0.99 ±0.01 1.00 ±0.00

FenceGAN 0.88 ± 0.02 0.97 ± 0.00

GANomaly 0.99 ±0.00 1.00 ±0.00

OC-SVM 0.88 ± 0.00 0.97 ± 0.00

Baseline 0.96 ± 0.00 0.99 ± 0.00

DoHI nv ARNG 0.98 ± 0.01 0.97 ± 0.02

ARNN 1.00 ±0.00 1.00 ± 0.00

FenceGAN 0.89 ± 0.02 0.44 ± 0.05

GANomaly 1.00 ±.00 0.98 ± 0.01

OC-SVM 0.90 ± 0.00 0.49 ± 0.01

Baseline 0.99 ± 0.00 0.91 ± 0.04

CoverType ARNG 0.94 ± 0.01 0.95 ± 0.01

ARNN 0.92 ± 0.04 0.93 ±0.03

FenceGAN 0.70 ± 0.03 0.41 ± 0.02

GANomaly 0.56 ± 0.05 0.30 ± 0.04

Bold (resp. italic) values represent models with statistically higher (resp.
lower) scores
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Table 2 continued Dataset Model AUC AUPRC

OC-SVM 0.73 ± 0.02 0.43 ± 0.02

Baseline 0.53 ± 0.02 0.28 ± 0.02

CreditCard ARNG – –

ARNN 0.99 ±.01 0.59 ± 0.06

FenceGAN 0.90 ± 0.01 0.51 ± .03

GANomaly 0.84 ± 0.02 0.36 ± 0.05

OC-SVM 0.92 ± 0.01 0.57 ± 0.01

Baseline 0.99 ±0.00 0.76 ± 0.01

Bank ARNG 0.77 ± 0.06 0.63 ± 0.09

ARNN 0.69 ± 0.07 0.50 ± 0.11

FenceGAN 0.56 ± 0.01 0.23 ± 0.01

GANomaly 0.53 ± 0.02 0.22 ± 0.02

OC-SVM 0.60 ± 0.00 0.28 ± 0.00

Baseline 0.65 ± 0.00 0.32 ± 0.01

Bold (resp. italic) values represent models with statistically higher (resp.
lower) scores

Fig. 7 Comparison between ARN , FenceGAN and GANomaly on MNIST
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Fig. 8 Comparison between ARN, GANomaly and FenceGAN on MNIST by considering only the classes 1
and 7, which are extremely close in the pixel space

Fig. 9 Comparison between ARN, GANomaly and FenceGAN on MNIST by considering only the classes 8
and 9, which are extremely close in the pixel space

4.2.5 Experiments on sequential data

In order to assess experiments on sequential data, we provide a sequential version of our
model, called SARN. SARN is composed by a generator and discriminator in which a recur-
rent neural network (RNN) [59] is adopted. In our implementation, we decide to instantiate
the RNN as long short-term memory (LSTM) [60]. Since the competitors are not suited for
sequential datasets, we also provide a sequential version of them (i.e.,SAE,SGANomaly and
SFenceGAN that are the sequential versions of the Baseline, GANomaly and FenceGAN,
respectively). The sequential models work on sequences of temporally sorted events, so we
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Fig. 10 Real and generated anomalies in KDDCUP99Rev . The x-axis enumerates the data attributes that
exhibit a deviation from normality higher than 10−3, the y-axis normalizes the attribute values in the [0, 1]
interval. Orange dots are attribute values for a random real normal sample; green stars are related to its
generated anomalous counterpart; finally, black crosses represent a random real anomaly

applied a sliding window procedure to generate a set of fixed-size observation windows. The
goal is to identify anomalous sequences, i.e., sequence containing events that are significantly
different from the other events of the sequence.

Formally, we assume that the data are organized as a sequence of events X = {x1, . . . , xN }
in which each event xt is composed by features describing the t-th event in chronological
order within X . For a given window [t − w, t] where w is the window size, the window is
anomalous if it contains an expected event, i.e., an event xi significantly different from its
neighbors xt−w, . . . , xi−1, xi+1, . . . , xt . The considered dataset, i.e., Pump-Sensor, is split in
training, test and validation set. The training and validation set are composed by only normal
windows and we have 19,962, 2218, respectively. The test set is composed by 5546 normal
windows and 678 anomalous ones. The results on the sequential data are reported in Table 3,
showing that our model is comparable with the competing methods.
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4.3 Robustness

Besides the ideal situation where all training examples are actually normal, we consider other
two specific experiments.

• Contamination, in which we contaminate the training samples by adding a percentage of
anomalous data that are still considered normal. The idea is that, in a truly unsupervised
situation, little is known about the true distribution of the data. A model is deemed robust
when the accuracy is tolerant to a moderate amount of abnormality.

• Weak supervision, where a limited amount of examples are known to belong to theminor-
ity class. Since in principle our approach is also capable of exploiting such supervision
(as explained in Sect. 3.4), it is important to see whether the generation process is aided
by a limited amount of tuples actually labeled as anomalous.

In order to measure robustness, we contaminate the training data with a percentage of
anomalous tuples expressed as p = A/N , where N and A are the amounts of normal and
anomalous tuples in the training set, respectively. Table 4 reports the results in terms of AUC.
We split the analysis in two tables: The first one focuses on imbalanced datasets and compares
the response to contamination with GANomaly, for the values p = 1% and p = 5%.
The second table reports the results concerning ARNG for balanced datasets, with a higher
contamination ranging from 0% to 50%. We can see that as we increase the contamination,
the accuracy tends to decrease steadily. This decrease is lower than GANomaly which by
contrast seems to be more heavily affected by contamination.

For the weak supervision, we compare ARN with WALDO [12], an approach that
combines Wasserstein autoencoders to detect and generates both inliers and outliers. This
experiment is only illustrated on KDDCUP99Rev and Bank in Table 5, presenting the results
in terms of AUC. We can see a substantial improvement on the baseline performance, even
with a minimal amount of supervision. The advantage over WALDO is substantial, which
by contrast does not seem able to efficiently exploit the small portions of anomalous data to
improve the detection accuracy.

For completeness, we also examined the prediction accuracy of ARN across different
sizes of normal samples. Specifically, we maintained a fixed percentage of anomalous
samples, i.e., 3%, while varying the percentages for normal samples within the set
{1, 2, 4, 6, 8, 10, 25, 50, 75, 100}. The results presented in Table 6 highlight the robustness
of ARN, demonstrating its ability to effectively distinguish between normal and abnormal
behaviors even under conditions of limited training data.

4.4 Ablation study

In a final set of experiments, we study the contribution of each component of the model to
the accuracy. Table 7 presents the results in terms of AUC. We already discussed the effects
of modeling discrete attributes with either a Gumbel distribution or a continuous relaxation.
We next evaluate two more aspects: the importance of regularization and of the adversarial
learning process over a standard ELBO optimization.Within Table 7, ARNX−KLD represents
model ARNX trained without regularization, and ARNGE represents ARNG trained by opti-
mizing the ELBO in Eq. 2. The regularization seems to play a prominent role in guaranteeing
robust reconstructions. Also, the adversarial learning provides a substantial advantage in the
learning process, as we can see by comparing ARNG and ARNGE .
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Table 5 Weak supervision: Comparison with WALDO

Datasets Method 0% Anomalies 1% Anomalies 3% Anomalies
AUC AUC AUC

KDDCUP99Rev ARNN 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

ARNG 0.97 ±0.01 0.99 ±0.00 0.99 ±0.00

WALDO – 0.80 ±0.01 0.80 ±0.01

Bank ARNN 0.69 ±0.07 0.70 ±0.06 0.96 ±0.02

ARNG 0.77 ±0.06 0.83 ±0.06 0.90 ±0.04

WALDO – 0.56 ±0.01 0.56 ±0.01

Table 6 Weak supervision: Assessment of the predictive capability of ARN across varied training data sizes,
keeping fixed the percentage of anomalous samples to 3%

Datasets Normal sizes (%) Method
ARNN ARNG

AUC AUC

KDDCUP99Rev 1 1.00 ± 0.00 0.98 ± 0.02

2 1.00 ± 0.00 1.00 ± 0.00

4 1.00 ± 0.00 1.00 ± 0.00

6 1.00 ± 0.00 1.00 ± 0.00

8 1.00 ± 0.00 1.00 ± 0.00

10 0.98 ± 0.01 0.98 ± 0.00

25 0.99 ± 0.00 0.99 ± 0.00

50 0.99 ± 0.00 1.00 ± 0.00

75 0.99 ± 0.00 0.99 ± 0.00

100 0.99 ± 0.00 0.99 ± 0.00

Bank 1 0.90 ± 0.03 0.71 ± 0.07

2 0.96 ± 0.01 0.89 ± 0.04

4 0.98 ± 0.01 0.93 ± 0.03

6 0.98 ± 0.01 0.91 ± 0.05

8 0.98 ± 0.00 0.91 ± 0.02

10 0.77 ± 0.05 0.84 ± 0.06

25 0.86 ± 0.02 0.88 ± 0.05

50 0.91 ± 0.03 0.95 ± 0.02

75 0.95 ± 0.03 0.92 ± 0.04

100 0.96 ± 0.02 0.90 ± 0.04

4.5 Architecture and learning

For the last research question concerning the efficiency of ARN, we discuss here the archi-
tectural details and their effects on the computational efficiency of the learning process. First,
ARN is learned via an alternate maximization algorithm. To stabilize the learning process,
we progressively inject noise on the discriminator labels as suggested in [61]. As a result,
the learning phase is generally smooth (as also illustrated in Fig. 2). All the models were
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Table 7 Ablation study

Dataset ARNG ARNN ARNG−KLD ARNN−KLD ARNGE

AUC AUC AUC AUC AUC

KDDCUP99 0.99 ±0.00 1.00 ±0.00 0.98 ±0.02 0.98 ±0.02 0.74 ± 0.09

KDDCUP99Rev 0.97 ±0.01 0.99 ±0.00 0.98 ±0.01 0.96 ±0.00 0.83 ±0.05

KDDCUP99Inv 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.88±0.04

NSL-KDD 0.99 ±0.00 0.99 ±0.00 0.99 ±0.01 0.98 ±0.00 0.74 ±0.07

DoH 0.99 ±0.01 0.99 ±0.01 0.73 ±0.01 0.79 ±0.02 0.99 ±0.01

DoHInv 0.98 ±0.01 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.83 ±0.04

CoverType 0.94 ±0.01 0.92 ±0.04 0.94 ±0.01 0.94 ±0.01 0.77 ±0.08

CreditCard – 0.99 ±0.01 – 0.96 ±0.05 0.75 ±0.06

Bank 0.77 ±0.06 0.69 ±0.07 0.74 ±0.07 0.63 ±.07 0.62 ±.04

Fig. 11 Running times in minutes (log scale)

trained using the Adam optimization. We also adopt different learning rates for the discrim-
inator and the generator. Throughout the experiments described in Sect. 4.2 through 4.4, we
devised simple architectures for both the generator and the discriminator, based on linear
layers equipped with batch normalization. The architecture in 4.1 also exploits convolutional
layers in order to learn better representations for the MNIST images. All experiments were
performed on an NVIDIA DGX equipped with 4 V100 GPUs. Figure 11 summarizes the
running times for each model on the datasets described in 4.2. Here, we can notice that ARN
is the second last performer in almost all the datasets. However, the order of magnitude is
comparable for all models except for OC-SVMwhich clearly requires much longer execution
times with respect to all the other evaluated algorithms.

5 Conclusion

The adversarial reconstruction network (ARN) is a twofold neural architecture aimed at
generating and identifying anomalies in data sets. The learning scheme consists in an adver-
sarial game between a generator and a discriminator, respectively, designed as a variational
encoder–decoder structure and a supervised network. Its peculiarity lies in its data genera-
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tion approach: Anomalies are generated by observing non-anomalous samples based on two
guiding principles. First, generated data are reconstructed from original input samples to lie
in the same boundaries of the data manifold. Second, the reconstruction is guided to high-
light elements that characterize the generated sample as anomalous. We showed that such
an approach is effective in detecting outliers, robust to noise in the training data and easily
adaptable to weak supervision. Furthermore, it is capable of generating realistic outliers.

The proposed approach requires prior knowledge of at least the samples labeled as normal.
However, in principle, the nature of the adversarial approach to reconstruction does not
necessarily require knowledge concerning the prior class distribution. In fact, the latter could
be directly inferred in the learning process (e.g., by exploiting Bayesian inference), thus
allowing a generalization of the proposed approach toward a fully unsupervised setting. We
believe that this is an intriguing challenge and a direction worth further investigation that we
plan to cope as future work.
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