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A B S T R A C T

This article presents a systematic literature review (SLR) of empirical studies concerning Artificial Intelligence
(AI) in the field of Supply Chain Management (SCM). Over the past decade, technologies belonging to AI have
developed rapidly, reaching a sufficient level of maturity to catalyze transformative changes in business and
society. Within the SCM community, there are high expectations about disruptive impacts on current practices.
However, this is not the first instance where AI has sparked business excitement, often falling short of the hype. It
is thus important to examine both opportunities and challenges emerging from its actual implementation. Our
analysis clarifies the current technological approaches and application areas, while expounding research themes
around four key categories: data and system requirements, technology deployment processes, (inter)organiza-
tional integration, and performance implications. We also present the contextual factors identified in the liter-
ature. This review lays a solid foundation for future research on AI in SCM. By exclusively considering empirical
contributions, our analysis minimizes the current buzz and underscores relevant opportunities for future studies
intersecting AI, organizations, and supply chains (SCs). Our effort is also meant to consolidate existing research
insights for a managerial audience.

1. Introduction

The last couple of years have been characterized by mounting ex-
pectations around AI across sectors, industries, and domains (Dwivedi
et al., 2023; Mariani et al., 2023). The scope of the technology is very
broad, and generally refers to the “[…] mechanisms underlying thought
and intelligent behavior and their embodiment in machines” (definition of
the Association for the Advancement of Artificial Intelligence, as re-
ported by Helo and Hao, 2022, p. 2). Since the concept first hit the public
in the 1950s, its history has been characterized by waves of excitement
and phases of disillusionment (Manyika and Bughin, 2018). Starting
from early 2010s and even more since late 2022, after the release of
generative AI solutions for non-technical users (e.g., Chat GPT), there
has been a further surge of interest among researchers and practitioners
alike.

Whereas there is little doubt that the technology has taken a great
leap forward thanks to hardware innovation and cloud-based access
(OECD, 2017), it is also true that introducing AI in real-life contexts is
still challenging with implications that are still largely unknown. This is

not only because of unsolved technical issues, but also due to the com-
plexities of socio-technical systems requiring alignment of practices and
process innovation. When considering SCM applications, such com-
plexities are even more daunting due to (inter)functional and (inter)
organizational dependencies coupled with cross-level integration within
inherently open systems (Durach et al., 2017; Wieland, 2021). In this
sense, whereas the future speaks of autonomy and data-driven optimi-
zation of production and buyer-supplier processes (Calatayud et al.,
2019; Dolgui and Ivanov, 2022), reality is that companies today are just
experimenting with and mostly piloting AI amid the confusion and
roadblocks that have been documented by recent surveys (e.g., WEF,
2023; McKinsey, 2023). Similar messages come from empirical AI-re-
lated research in other disciplines (Brynjolfsson et al., 2021; McElheran
et al., 2021).

Against growing calls on theorizing on the disruptive impact of AI in
SCM (e.g., Hendriksen, 2023; Richey et al., 2023), the purpose of this
paper is to tamper potentially inflated expectations around the tech-
nology while still highlighting major discontinuities that are emerging.
Indeed, a solid understanding of the current state of AI in SCM is
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important to develop and elaborate theory in a context that is likely
characterized by fashion waves and managerial hypes (Culot et al.,
2024; Hanelt et al., 2021). To this end, the article presents a systematic
literature review of empirical studies published in peer-reviewed jour-
nals. The choice was motivated by the need to exclude unsubstantiated
narratives, anecdotical evidence, and ensure that the insights were
derived from studies developed under rigorous standards. In selecting
the scope of our review, we embraced a broad definition of SCM,
encompassing the management of flows within a firm (i.e., production
and related operations) and between independent organizations (i.e.,
suppliers, buyers, final customers) (Stock and Boyer, 2009). This rather
ample angle was balanced with a focus on the manufacturing industry,
so that we could report findings from a literature developed in contexts
characterized by similar challenges and opportunities. Indeed, prior
studies underline significant differences––for example––in healthcare,
humanitarian, and energy SCs (Abidi et al., 2014; van Donk, 2003;
Sarkar and Seo, 2021).

A total of 123 studies were analyzed to answer the following research
questions (RQ):

(RQ1) What are the key messages of extant empirical studies on AI in
SCM?

(RQ2) What research directions should be pursued for a better under-
standing of AI in SCM?

SLRs are crucial steps for advancing knowledge and are even more
important for topics at the intersection between academic domains in
order to enable distinct scholarly communities to converge on topics and
concepts (Durach et al., 2017; Webster and Watson, 2002). In this
perspective, our work enhances prior literature reviews in several re-
spects. First, it provides an updated picture including works published
until early 2024, whereas most previous reviews cover the period until
2020 (e.g., Toorajipour et al., 2021; Pournader et al., 2021). It also
provides deeper insights through full-text coding rather than biblio-
metric approaches (e.g., Dhamija and Bag, 2020). Second, our SLR fo-
cuses on AI only, and not on clusters of technologies normally subsumed
under the umbrella terms of “digital transformation” or “Industry 4.0”
(e.g., Culot et al., 2020; Dalenogare et al., 2018; Perano et al. 2023;
Pozzi et al., 2023; Rüßmann et al., 2015; Yavuz et al., 2023). Indeed, AI
might be implemented as a standalone solution not requiring integration
with sensors and network connectivity (e.g., Brintrup et al., 2023).
Moreover, several reviews on Industry 4.0 and related phenomena did
not specifically mentioned AI, as data could be potentially processed
through other (algorithmic) approaches (e.g., Rad et al., 2022; Lagorio
et al., 2022; Fatorachian and Kazemi, 2021; Raut et al., 2020; Ardito
et al., 2019). Third, the analysis includes studies concerning different AI
techniques and applications. Differently than reviews on specific solu-
tions (e.g., reinforcement learning – Rolf et al., 2023) or functional
subdomains (e.g., predictive maintenance, procurement, SC resilience,
sustainable SCM – Carvalho et al., 2019; Dalzochio et al., 2020; Deiva
and Kalpana, 2022a; Zamani et al., 2023; Naz et al., 2022), this choice
allows to clarify common topics in SCM. At the same time, by focusing
on AI in manufacturing SCs, we could ensure a greater specificity than
cross-sector studies (e.g., retail – Sharma et al., 2022). The selection of
empirical contributions and not conceptual, simulated, or lab-based
experiments, is a further differentiating element.

Our analysis uncovered four main research themes––data and system
requirements, technology deployment processes, (inter)organizational
integration, and performance implications––in addition to some
contextual dimensions. Based on a close examination of extant research,
we identify future directions and the potential need of new theoretical
perspectives as opposed to established ones in SCM. The resulting
research agenda contributes to the literature by providing a systematic
overview of opportunities based on the current state and understanding
of AI in SCM.

The rest of the paper is structured as follows. The next section

illustrates the methodology. Then, we present descriptive and thematic
findings. The Discussion identifies the core messages from extant liter-
ature and outlines future research directions. Finally, we conclude with
the contributions of our study.

2. Methodology

The research question was approached through a SLR to ensure
transparency and objectivity in the process while minimizing the im-
plicit bias of researchers (Webster and Watson, 2002). We built on the
methodological guidelines of Sauer and Seuring (2023), Seuring and
Gold (2012), Rousseau et al. (2008), and Tranfield et al. (2003), which
are widely recognized in managerial disciplines and specifically in SCM.
Fig. 1 summarizes the review process.

As a first step, we performed a formal keyword search in Scopus and
Web of Science. These databases were selected as they represent the two
most important repositories of academic research (Aria and Cuccurullo,
2017; Bretas and Alon, 2021; Kumar et al., 2021); many previous SLRs
used these two sources for articles retrieval (e.g., Vishwakarma et al.,
2023; Talwar et al., 2021; Mokhtar et al., 2019). Consistently with the
recommendations of Rowley and Slack (2004), we devised the search
string to guarantee that it accurately captured the entire scope of our
investigation, while excluding any irrelevant elements. To achieve this
result, we referred to previous studies on AI and SCM (e.g., Toorajipour
et al., 2021; Riahi et al., 2021; Guida et al., 2023a) and performed some
pilot searches. The resulting search string comprised two set of key-
words: one pertaining to AI and the other to SCM interconnected with an
AND operator (see Fig. 1 for the list). To ensure a good balance between
the breadth of data collection and the depth of analysis (Seuring and
Gold, 2012), the search targeted articles’ titles, abstracts, and keywords.
The time span was from 2010 to April 2024 (the date the search was
conducted); the starting year is justified considering when AI applica-
tions reached sufficient maturity for industry use (Babina et al., 2024;
Hendriksen, 2023; Manyika and Bughin, 2018). For what concerns the
inclusion criteria, we considered only articles in English published in
peer-reviewed Business, Management and Accounting (Scopus) and
Management and Business (Web of Science) journals listed in the As-
sociation of Business Schools Academic Journal Guide (2021). This list is
a widely recognized indicator of journal quality (e.g., Johnsen, 2009),
being based on a combination of citation metrics and scholarly evalua-
tion. This allowed us to build our review on highly reputed sources.
Duplicate contributions were identified with the help of the software
Zotero. The process yielded to pre-selecting 3,173 articles.

In the second step, two authors independently reviewed the titles,
abstracts, and keywords of the papers to ensure alignment with our
study’s aim. The exclusion criteria were defined to remove from our
sample:

- Articles on non-manufacturing SCs, namely studies on other sectors
such as retail, healthcare, construction, and energy.

- Conceptual articles, such as purely theoretical papers, literature re-
views, and editorial commentaries.

- Articles superficially mentioning AI without structured analysis/
discussion.

- Articles presenting AI applications outside SCM, focusing on areas such
as new product development, venture financing, and business model
innovation.

- Articles not using real-world data, namely studies that relied on syn-
thetic datasets, simulations, or laboratory experiments which do not
accurately represent the complexities and unpredictable nature of
real-world SC environments.

In this way, 262 articles were pre-selected. Their full text was read in
light of the abovementioned exclusion criteria. Their references were
checked for additional pertinent works via forward/backward citation
analysis (Webster and Watson, 2002), resulting in a final list of 123
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articles (see the Online Appendix).
The third phase consisted in the analysis. Each article was classified

by year, journal, methodology, underpinning theory, country, industry,
Supply Chain Operations Reference (SCOR) process, adopted AI models,
and used data. Subsequently, we performed a content analysis using an
inductive approach. Namely, after a provisionary coding of themes,
categories were derived through an iterative process of comparison
between materials and the emerging coding framework (Seuring and
Gold, 2012). The result is presented in Fig. 2. We identified four main

cross-cutting themes, with the addition of a series of contextual factors
affecting them all. All the articles were then coded again independently
by two researchers (Duriau et al., 2007). To facilitate the comparison
and retrieval of text passages and support manual coding, the software
MAXQDATA was used. The few cases of inter-coder disagreement were
resolved through formal discussion.

Finally, we analyzed the results, calculating indicators for the
descriptive characteristics of the articles and the proportion of studies
covering each theme and category. Moreover, the research team

Fig. 1. Review process.

Fig. 2. Coding framework.
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discussed commonalities and differences to formulate a future research
agenda.

3. Findings

3.1. Descriptive findings

The characteristics of the 123 journal articles included in the review
have been analyzed to clarify the evolution of the empirical research on
AI in SCM (Fig. 3 and Online Appendix – Tables A1-A6). Given the aim of
the review, three aspects appear particularly relevant: 1) methodology
and empirical context (country and industry), 2) SCOR process, and 3) AI
approach, purpose, technique, and analyzed data.

First, for what concerns the methodology, most articles built on single
case study analyses either quantitative (e.g., using company data) or
qualitative (e.g., based on interviews). Several contributions also relied
on survey-based approaches. A small number of studies adopted mixed
qualitative/quantitative methods (e.g., Bodendorf et al., 2023). As for
the empirical context, the prevalent focus was on European and Asian
companies with some studies covering multiple countries (e.g., “indus-
trialized countries” – Kinkel et al., 2023) or regions (e.g., Middle East
and North Africa – Al-Surmi et al., 2022). In terms of industry, most of
the contributions referred to the automotive sector, followed by elec-
tronics, metalworking, food, and machinery. Some studies examined
more than one industry (e.g., automotive and telecommunications –
Meyer and Henke, 2023; aerospace and electronics – Usuga-Cadavid
et al., 2022) or generally considered manufacturing firms (e.g., Leoni
et al., 2022).

Second, in terms of the SCOR process considered in the articles, many
studies revolve around the "Make" and "Enable" phases, investigating the
use of AI to optimize production activities (e.g., quality control, pre-
dictive maintenance, cost reduction and time saving, resource use
optimization), improve the performance of the SC (e.g., flexibility/
agility, innovation), or shed light on the factors affecting AI adoption.
Additionally, significant attention is directed towards the "Plan" (e.g.,

demand forecasting, inventory level definition) and "Source" (e.g., sup-
pliers scouting and selection, purchasing cost analysis) phases.
Conversely, the "Return" (e.g., warranty claims forecasting) and
"Deliver" (e.g., logistic management) processes represent rather pe-
ripheral areas of research. Interestingly, some studies consider more
phases together like "Source-Deliver" (e.g., overall SC resilience),
"Source-Make-Deliver", "Source-Make", and the whole processes of
"Plan-Source-Make-Deliver-Return" (e.g., Manimuthu et al., 2022a;
Cannas et al., 2023).

Finally, with respect to the AI approach, most studies present Ma-
chine Learning (ML) solutions. Several contributions (42) engage with
supervised learning, 5 with unsupervised learning, 1 with semi-super-
vised learning, and 10 with a combination of supervised and unsuper-
vised learning. The purpose was mainly regression (26 contributions)
and classification (15) or a combination of both (6). Other relevant
applications referred to clustering (2) and anomaly detection (2). For
what concerns the specific techniques, the most common were Random
Forest (18 contributions), Artificial Neural Network (12), Linear
Regression (12), Support Vector Machine (10), Extreme Gradient
Boosting (8), K-nearest Neighbors (7), and Support Vector Regression
(7). To conclude, in terms of analyzed data, inputs were related to pro-
duction and related activities (e.g., process parameters, production
schedule – 30 contributions), product features (e.g., transportation/
manufacturing costs, relevance for the company – 21), demand (e.g.,
orders, discounts – 17), sourcing metrics (number of transactions, lead
times, order volume – 14), machine statistics (maintenance frequency,
number of failures – 8), after-sales (e.g., number of warranty requests –
3), as well as macroeconomic indicators (e.g., exchange rates – 3) and
social media trends (e.g., number of tweets – 2). In most cases, these data
have been used in combination.

3.2. Thematic findings

This section presents the results of the coding process and the key
messages from the papers. Each subsection corresponds to a theme of the

Fig. 3. Main characteristics of the articles included in the review.
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coding framework (Fig. 2). See the Online Appendix for the full articles
categorization.

3.2.1. Data and system requirements
The first theme (1. Data and system requirements) is covered by the

majority of the articles (94, 76 %). This refers to data that are fed into AI
and system/technological characteristics needed for this purpose; it is
composed by three coding categories, which are illustrated in the
following paragraphs.

1A. Accessing data (79 articles, 64%)– Several studies stress the
importance of data availability, quality, and volume as AI effectiveness
depends on what is fed into the model (‘garbage in-garbage out’
assumption; Brock and von Wangenheim, 2019; Demlehner et al.,
2021). This is particularly relevant for ML solutions as training data in
high-dimensional spaces are required to ensure adequate sampling
combinations (Brintrup et al., 2020; El Garrab et al., 2023). Large
datasets are indeed related to higher analytical accuracy (Ji et al., 2021).
Whenever AI is used for autonomous decision-making and process
implementation, large-scale real-time and historical data are required
(Budak and Sarvari, 2021; Cadden et al., 2022; Hu et al., 2023). Notably,
data volume doesn’t compensate for quality whenever large datasets
present missing/incomplete values (Loyer et al., 2016; Perno et al.,
2023; Sen et al., 2023). AI has the ability to deal with incomplete
datasets and adapt to different levels of data availability (Msakni et al.,
2023; Senoner et al., 2022; Takeda-Berger and Frazzon, 2024). How-
ever, this requires shaping the approach upfront and choosing simpler
techniques whenever the data amount/quality is suboptimal
(Sohrabpour et al., 2021; Vanderschueren et al., 2023). Moreover,
limited data availability might often require human intervention
(Burger et al., 2023; Oberdorf et al., 2021).

Firms lacking confidence in data quality might be reluctant to
implement AI (Meyer and Henke, 2023; Nayal et al., 2022). Companies
that have built data management capabilities are better positioned
(Brock and VonWangenheim, 2019). Significant challenges come in fact
from setting up extensive data collection (Ko et al., 2017; Kosasih et al.,
2022), while poor data quality might lead to costly mistakes, particu-
larly in buyer-supplier relationships (Cannas et al., 2023). In this regard,
Bodendorf et al. (2022a) indicate three major issues in (inter)organi-
zational settings, namely data availability, trustworthiness, and
normalization; noting that 50–80 % of project time is dedicated to data
collection and cleaning. Similarly, Hasija and Esper (2022) stress that in
large organizations data reside across several functions, making it
necessary to network and build data pipelines. As highlighted by Bok-
rantz et al. (2023) and Manimuthu et al. (2022b), data quality needs to
be reassessed over time because information used for training might no
longer correspond to reality; for instance, due to data corruption (e.g.,
error in data capturing/transfer) or stochastic changes in system
behavior.

Another aspect to consider concerns data security and confidentiality.
Security involves protecting data and networks from harm, while
confidentiality is the right of protecting personal/organizational infor-
mation. Effective management of these aspects––often addressed
through formal policies and definition of tasks and responsibilities
(Chatterjee et al., 2023; Leberruyer et al., 2023)––is critical for tech-
nology adoption (e.g., Sodhi et al., 2022; Yadav et al., 2020).

Related to previous points, researchers explicitly flag issues related to
(inter)organizational data-sharing. This is a long-lived issue in SCM
(Kembro and Näslund, 2014) and several roadblocks persist today in
terms of limited trust issues and the size of the investment (Bodendorf
et al., 2022b; Cannas et al., 2023). These barriers can be overcome
through long-term relationships and by sharing the benefits with the
involved partners (Cadden et al., 2022; Chatterjee et al., 2023). Simi-
larly, it appears more likely for AI to be introduced in SCs already
characterized by data integration (Nayal et al., 2022; Yadav et al.,
2020). Novel forms of (inter)organizational data-sharing are also re-
ported. Guida et al. (2023b) mention that buyers and suppliers share

procurement-related data via third-party intermediaries (e.g., digital
platforms) ensuring restricted access.

The last coding category concerns new data sources and methods to
reduce data dependency. AI can in fact process unstructured data (e.g.,
from the web) (Bodendorf et al., 2022b; Brintrup et al., 2023; Chatterjee
et al., 2023). This can alleviate the need for (inter)organizational
data-sharing by inference from alternative sources (e.g., supplier-related
newsfeeds – Pessot et al., 2022). The approach appears viable for
planning, demand forecasting, and risk management (Chuang et al.,
2021; Modgil et al., 2022). Moreover, AI can create synthetic/semi--
synthetic data to mimic real datasets, allowing algorithm training before
formal data collection (Vanderschueren et al., 2023). Finally, Zheng
et al. (2023) and Manimuthu et al. (2022a) testified the application of
federated learning approaches for risk prediction, namely applying edge
devices on data servers for collaborative analysis on private data.

1B. Developing the technological backbone (25 articles, 20 %)–
Extant research indicates that AI needs an adequate technological infra-
structure, computational resources, and information system integration.
Despite the low cost of computing power, AI still demands substantial
resources (Bokrantz et al., 2023). Many companies lack hardware,
software, and broadband connectivity (Bodendorf et al., 2022a; Cannas
et al., 2023). Leberruyer et al. (2023) and Merhi and Harfouche (2023)
argue that companies should reflect upfront on their technological
infrastructure to ensure data flows. Helo and Hao (2022) and Xia et al.
(2022) highlight two complementary aspects: infrastructures for data
collection/storage and computing power. Firms need to implement and
integrate manufacturing execution system (MES), supervisory control
and data acquisition (SCADA) system, and programmable logic
controller system (PLC) on individual machines (Oberdorf et al., 2021).
However, there might be challenges in integrating legacy systems (Brock
and VonWangenheim, 2019; Zhu et al., 2021), which are more severe in
(inter)organizational settings because of multi-party compatibility
(Cadden et al., 2022; Cannas et al., 2023). Interoperability, standardi-
zation via common schema and data dictionaries, and semantic infor-
mation exchange across organizational units and firms are preconditions
along SCs (Ji et al., 2021; Kosasih et al., 2022; Pillai et al., 2022).
Moreover, the importance of data makes the presence of cybersecurity
systems crucial. It has been noted that, behind organizational measures,
companies often adopt specific system solutions like intrusion detection
and disaster recovery mechanisms (Allal-Chérif et al., 2021; Brock and
Von Wangenheim, 2019).

1C. Adopting complementary technologies (45 articles, 37 %)– AI
in manufacturing SCs is often associated with broader digital trans-
formation initiatives and the Industry 4.0 phenomenon (e.g., Agrawal
and Narain, 2023; Hopkins, 2021). Even if AI can be adopted as a
standalone technology (Brintrup et al., 2023), many times it comes
together with other technologies for data gathering/processing and
automation. Most studies refer to the Internet of Things and machine
connectivity, especially for applications related to quality management
(e.g., Sen et al., 2023; Song et al., 2023), smart maintenance (e.g.,
Hoffmann et al., 2021; Kaparthi and Bumblauskas, 2020), and real-time
logistics management (Chen et al., 2021). The second most mentioned
technology is cloud computing, valued for its scalability and rapid
deployment of computing power (Bodendorf et al., 2022a; Xia et al.,
2022). It also facilitates data storage and processing, and collaboration
among SC actors (Perno et al., 2023; Pessot et al., 2022). Another
complementary technology is the blockchain in cross-organizational
settings (Rodríguez-Espíndola et al., 2022; Yadav et al., 2020). Finally,
studies report complementarities with technologies applied in factory
and logistics operations, like automation, robotics, and drones (e.g., Pillai
et al., 2022), wearables and virtual/augmented reality (e.g., Perno et al.,
2023), and additive manufacturing (e.g., Song et al., 2023).

3.2.2. Technology deployment process
The second theme (2. Technology deployment process – 92 articles,

75%) addresses topics related to how AI is integrated in real-world SC
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environments through the development, testing, and monitoring of
specific solutions. The following three categories emerge from the
literature.

2A. Defining the AI strategy and approach (33 articles, 27 %)–One
core issue concerns investments and resource allocation. The perceived
cost (Pillai et al., 2022) and the lack of resources/financing appear
among the main barriers to AI implementation (Mohiuddin et al., 2022;
Sodhi et al., 2022). This is challenging especially for innovative and
factory-wide applications (Demlehner et al., 2021; Gonçalves et al.,
2021). Most resources are however not absorbed by AI itself, but rather
in the development of the technological backbone and in the adoption of
complementary technologies (Gupta et al., 2022; Hopkins., 2021).

Defining the AI strategy and approach depends on business leaders’
direct engagement and support. Their role is crucial, for instance, in setting
a vision for AI, allocating resources, and fostering a supportive organi-
zational climate (Hasija and Esper, 2022; Merhi and Harfouche, 2023).
Conversely, limited support is related to low adoption and assimilation
(Meyer and Henke, 2023; Mohiuddin et al., 2022). There is moreover a
need for a strategic alignment with business requirements. Brock and Von
Wangenheim (2019), Merhi and Harfouche (2023), and Meyer and
Henke (2023) underline the necessity of a digital strategy over un-
planned or tactical approaches. In this respect, firms structure their
approach to pursue competitive differentiation (Demlehner et al., 2021)
and to address environmental uncertainties (Pillai et al., 2022; Zhu
et al., 2021). Importantly, AI adoption can lead to strategic shifts,
enabling new business and operating models (Chen et al., 2022). Early
alignment of strategic vision, processes, and technology is thus impor-
tant both within individual organizations (Sodhi et al., 2022) and among
business partners (Bodendorf et al., 2022a; Pessot et al., 2022).

In this phase, cost-benefit assessment emerges as a necessary but
daunting task. Managers seem to mostly base their judgment on per-
ceptions (Dora et al., 2022; Merhi and Harfouche, 2023), only few
develop structured business cases to justify investments and determine
priorities (Manimuthu et al., 2022b; Mohiuddin et al., 2022). Consid-
ered metrics include operational costs, return on investment, net cash
flow, payback periods, and qualitative indicators based on bench-
marking (Meyer and Henke, 2023; Sodhi et al., 2022). Costs include not
only AI acquisition/implementation but also information system inte-
gration and technical support (Zhu et al., 2021). Quantifying in-
vestments and estimating returns is difficult due to limited data from
past projects (Bodendorf et al., 2022a; Cannas et al., 2023). Some studies
suggest an incremental roll-out due to abovementioned uncertainties and
potential changes required (Brock and Von Wangenheim, 2019; Meyer
and Henke, 2023).

2B. Designing the technological solution (65 articles, 53 %)– Many
studies address the accuracy of the analytical approach. Some researchers
develop and compare different approaches to identify the most apt to the
analytical challenge at hand (e.g., by assessing prediction accuracy –
Abualsauod, 2023), while others confront firms’ performance metrics
prior to AI introduction (e.g., Perno et al., 2023) and across multiple
case studies (e.g., Sen et al., 2023). The literature also shows activities of
tradeoff resolution whereby desired accuracy levels need to be balanced
with the required computational power (Gonçalves et al., 2021; Hasija
and Esper, 2022). This is reflected in the algorithm semantics and the
choice of measures, which should be considered early in the project
(Bokrantz et al., 2023; Chuang et al., 2021). Other tradeoffs concern
approaches to available data (e.g., balancing sample size/quality –
Nikolopoulos et al., 2016) and error tolerance (e.g., the business cost of
false positives/negatives – Flath and Stein, 2018).

Another core topic in technology design is model update and main-
tenance. Regular retraining and updates are necessary against changes in
the real environment (Helo and Hao, 2022; Brock and VonWangenheim,
2019) and maintenance costs are higher for complex models (Bodendorf
et al., 2022a). Whereas model update andmaintenance can go in parallel
with AI usage (Burger et al., 2023; Gauder et al., 2023), Bokrantz et al.
(2023) argue that maintenance should be a specific phase in AI projects;

this is to avoid the risk of overlooking important tasks such as moni-
toring input signals, notifying when changes have occurred, and
retraining the model with new data. These activities should be per-
formed regularly over time, preferably involving experts (Flath and
Stein, 2018; Hasija and Esper, 2022). In some cases, however, the
technology allows for self-design and updating as, for example, mainte-
nance can be integrated into cloud platforms for automatic data
extraction and retraining in the presence of process changes (Perno
et al., 2023).

2C. Accessing competencies and expertise (45 articles, 37 %)– One
core topic is the availability of technical expertise in data science and data
engineering, the latter being relevant once the data pipeline is defined
(Bodendorf et al., 2022a; Budak and Sarvari, 2021). Dedicated staff
should be skilled in operating AI-enabled programs across imple-
mentation stages (Manimuthu et al., 2022b; Mohiuddin et al., 2022).
The integration of technical experts within functional teams and the
development of basic digital literacy across the workforce are also
emphasized (Burger et al., 2023; Hasija and Esper, 2022). Moreover,
companies need skills in cybersecurity, user experience, and hardware
technologies (e.g., sensors and actuators – Kinkel et al., 2022; 2023). The
availability of technical expertise is a critical aspect hindering AI
adoption and successful implementation (Demlehner et al., 2021; Guida
et al., 2023b), especially whenever firms lack the resources to attract
talent (Babina et al., 2024; Dey et al., 2023; Hopkins, 2021).

Complementary, several studies highlight the need of domain
competence (i.e., the specialized knowledge required for variable selec-
tion/feature engineering). Designing AI solutions requires interpreting
data in light of the specific characteristics and properties of the phe-
nomena under investigation (Brintrup et al., 2020; El Garrab et al.,
2023; Kang and Kang, 2021). In this perspective, Chuang et al. (2021)
note the value of academic knowledge in SCM to illuminate the imple-
mentation journey.

AI prompts firms to seek collaborations with technology providers
and universities to gain external expertise. This is due to the novelty of the
technology, the presence of specialized vendors, and opportunities
arising from applying AI to data from multiple firms (Cannas et al.,
2023; Meyer and Henke, 2023).

3.2.3. (Inter)organizational integration
One important theme is AI integration within organizations and

along SCs (3. (Inter)organizational integration – 91 articles; 74%). It
revolves around the interplay between the technology and (inter)orga-
nizational social systems, entailing the following categories.

3A. Managing acceptance and sensemaking (35 articles, 28 %)– As
organizations are still experimenting with and adapting to AI (Sodhi
et al., 2022), organizational culture and change management play a sig-
nificant role forming a foundation of shared values and beliefs
(Chatterjee et al., 2021; Merhi and Harfouche, 2023). Brock and Von
Wangenheim (2019) and Meyer and Henke (2023) specify the need for a
“failure culture” for experimentation and risk acceptance. Other works
point to a “data-driven culture” whereby employees are used to man-
aging and analyzing data (Dey et al., 2023; Oberdorf et al., 2021).
Change management programs with incentives for new tools adoption
and proactive communication are recommended (Dora et al., 2022;
Leberruyer et al., 2023). Importantly, cultural elements are also re-
ported for (inter)organizational AI applications which are easier in
contexts characterized by stable relationships and trust (Cadden et al.,
2022; Pessot et al., 2022).

Reliability perception and “black-box” issues emerge as key elements.
Practitioners need to understand the workings of the specific AI solution
in practice (Guida et al., 2023b; Nikolopoulos et al., 2016). Major issues
emerge with black-box models, which, unlike white-box models, display
more accurate results but lack transparency (Flath and Stein, 2018).
Transparency, however, can increase acceptance and trust in the tech-
nology, especially in fully automated processes (Burger et al., 2023;
Merhi and Harfouche, 2023). Potential mitigation actions relate to
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supplementing models with explanations (Kosasih et al., 2022), estab-
lishing clear responsibility for the results when AI makes incorrect de-
cisions or predictions (Hasija and Esper, 2022), educating employees
about AI mechanisms (Meyer and Henke, 2023), and involving future
users in development and evaluation cycles (Oberdorf et al., 2021). At
any rate, trust can develop naturally over time by experimenting with
the technology (Bodendorf et al., 2022a).

Some contributions stress workforce fears and job engagement. There
seems to be challenges whenever employees fear of being replaced by AI
and in case the high number of automated decisions diminishes the job
content (Cadden et al., 2022; Mohiuddin et al., 2022). Blue collars are
the most susceptible to potential automation (Hasija and Esper, 2022),
whereas individuals might experience lower job engagement (Braganza
et al., 2022). This might negatively affect performance (Chatterjee et al.,
2022b). Managerial understanding of technology potential/advantages
emerges thus as key to stimulating AI adoption and guiding organiza-
tional change (Guida et al., 2023b; Rodríguez-Espíndola et al., 2022).

3B. Redefining the job content (26 articles, 21 %)–This category
includes task/job automation, job redefinition, and workforce skills and
retraining. Task/job automation refers to activities of data collection and
analytics, as well as shopfloor and logistic operations (Brock and Von
Wangenheim, 2019; Xia et al., 2022). For example, purchasing de-
partments can automate analytics, supplier scouting, negotiation/con-
tracting activities, and use voice-enabled cognitive assistants to answer
questions asked by internal/external contacts (Cannas et al., 2023;
Meyer and Henke, 2023). Several studies refer to automation of plan-
ning and forecasting (Nikolopoulos et al., 2016). Moreover, SC config-
uration decisions can be automatized to rapidly cope with potential
disruptions (Hopkins, 2021; Modgil et al., 2022). While standard ac-
tivities are more easily automated, human-in-the-loop solutions (i.e.,
systems where human judgment is integrated into automated processes)
are necessary for processes with high variability (Mohiuddin et al.,
2022; Oberdorf et al., 2021). Moreover, even when technically feasible,
companies need to consider the risks of dehumanization (Allal-Chérif
et al., 2021). Increasing automation naturally implies a job redefinition
because employees leave behind purely operational tasks to focus on
strategic matters (Bodendorf et al., 2022a; Nikolopoulos et al., 2016). AI
can augment human capabilities, assisting in activities like dealing with
suppliers in other languages, planning activities, and risk detection
(Allal-Chérif et al., 2021; Modgil et al., 2022). This necessitates specific
user interfaces (Hasija and Esper, 2022; Perno et al., 2023) and new job
profiles (Hopkins, 2021; Mohiuddin et al., 2022), as humans and AI are
integrated into “hybrid works” that take advantage of their respective
strengths (Burger et al., 2023). In this perspective, organizations are
increasingly embracing technology-human collaboration, including
AI-enabled robots on shopfloors (Chen et al., 2022; Xia et al., 2022).

Consequently, workforce upskilling and retraining are needed. On a
basic level, employees require training for each new tool adopted
(Burger et al., 2023; Chatterjee et al., 2021). Beyond initial training,
continuous education and systematic upskilling are essential to facilitate
AI integration and promote data-driven environments (Dey et al., 2023;
Hasija and Esper, 2022). Structured training can also improve accep-
tance and assimilation (Bag et al., 2021; Dora et al., 2022). However,
challenges exist due to digital skills gaps which are higher in oper-
ations-related settings and the significant investment required
(Mohiuddin et al., 2022; Sodhi et al., 2022).

3C. Structure and processes design (67 articles, 54 %)– One core
implication of adopting AI appears related to process digitalization and
standardization. On the one hand, previous studies indicate this to be a
precondition for AI adoption (Bodendorf et al., 2022a). Companies
leveraging digitalized interfaces, embracing management systems, and
focusing on lean manufacturing can be facilitated (Leoni et al., 2022;
Yadav et al., 2020). On the other hand, process digitalization and
standardization are identified as consequences of AI adoption and a
necessary complement to reap its benefits (Bokrantz et al., 2023). For
example, Allal-Chérif et al. (2021) and Guida et al. (2023b) note that AI

solutions in purchasing lead to practice homogenization, process stan-
dardization, and communication streamlining. Firms can also progres-
sively redesign their processes, starting with specific phases until
complete digitalization (Loyer et al., 2016; Mohan et al., 2023); the
planning process is often one of the first to be reshaped (e.g., Take-
da-Berger and Frazzon, 2024).

Several studies explicitly indicate the integration of AI into decision-
making processes. These contributions often present AI as a tool
enhancing managerial decisions through new analytical dimensions and
faster (potentially real-time) data processing (e.g., Abualsauod, 2023;
Paul et al., 2015). AI can offer managers new insights from previously
unavailable data sources (e.g., Deiva and Kalpana, 2022b), advanced
scenario analysis (Al-Surmi et al., 2022; Modgil et al., 2022), prioriti-
zation algorithms (e.g., Islam et al., 2021), adaptive models (e.g., Usu-
ga-Cadavid et al., 2022), and consideration of more variables than it was
possible in the past (e.g., Kim, 2023). These can be applied for internal
operation as well as in sourcing and distribution (Hasija and Esper,
2022; Detwal et al., 2023). Moreover, AI can mimic decision-makers
behavior (Belhadi et al., 2022). The literature also presents instances of
firms adopting decision support tools offered by commercial vendors (e.
g., in purchasing); alongside the benefits of a quicker turnaround of
tasks, some limitations emerge concerning innovativeness (Allal-Chérif
et al., 2021). At any rate, managers mostly remain responsible for
enforcing decisions following firms’ leadership guidance, building on
previous know-how, and combining traditional methods with AI-based
approaches (Bodendorf et al., 2022a; Burger et al., 2023; Leberruyer
et al., 2023).

Another aspect concerns organizational design. Whereas AI appears
more apt for flat organizations with highly decentralized decision-
making (Xia et al., 2022), it is also true that decentralization might lead
to conflicts and data silos, potentially limiting AI effectiveness (Guida
et al., 2023b). When implementing AI, firms would often consider
changing their organizational structure (Meyer and Henke, 2023) or
implementing cross-functional/unit coordination mechanisms assisted
by the technology itself (Bodendorf et al., 2022a; Sodhi et al., 2022).
Moreover, new organizational units dedicated to digitalization might
also be needed (Bokrantz et al., 2023; Leberruyer et al., 2023).

3D. Adapting the SC structure/relationships (24 articles, 20 %)–
Effective AI applications in SCM often require data sharing and align-
ment of actions across organizations (Dora et al., 2022; Pessot et al.,
2022), so that (inter)organizational coordination mechanisms with sup-
pliers, competitors, and customers are needed. Here, success factors
include early agreement on common objectives and benefits (Olan et al.,
2022; Zhu et al., 2021) while maintaining open communication and
feedback loops (Meyer and Henke, 2023). AI is also linked to a redefi-
nition of the SC structure in terms of characteristics/number of suppliers
and location of outsourced/insourced production. This can be explained
considering that AI aids in identifying new suppliers beyond the usual
network (Allal-Chérif et al., 2021), influences production geographies
by detecting SC risks (Wong et al., 2022), and can lead to reshoring due
to automation and the need of specific capabilities (Kinkel et al., 2023).

3.2.4. Performance implications
The literature extensively discusses the benefits of AI adoption (4.

Performance implications – 89 articles, 72 %). Most articles report evi-
dence from single applications (e.g., Kang and Kang, 2021; Senoner
et al., 2022) and multiple case study analysis (e.g., Burger et al., 2023;
Helo and Hao, 2022). Benefits are often reported as expectations or
perceived outcomes. Empirical validation is limited, with surveys pri-
marily gathering expert opinions rather than direct company experi-
ences with AI (e.g., Cadden et al., 2022; Sodhi et al., 2022). Secondary
data analyses are reported by Babina et al. (2024). Two ways of looking
at performance implications emerge, which are summarized in the
following categories.

4A. Improving operational performance (66 articles, 54 %)–
Studies range from aggregated/generic operational performance
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measures (e.g., Chatterjee et al., 2022; Leoni et al., 2022) to specific
aspects like cost and efficiency improvements. Enhancements are led by
process optimization; for example, in production, it enables smart
maintenance and real-time adjustments thus maximizing machine use
(Mjimer et al., 2023; Msakni et al., 2023). Additionally, AI models can
include targeted cost functions (Manimuthu et al., 2022a; 2022b) and
help reduce defective products, leading to savings in logistics and
disposal (Leberruyer et al., 2023). In planning, AI enhances prediction
accuracy minimizing inventory requirements and improving stock
rotation, with positive impacts on working capital and return on assets
(Chuang et al., 2021; Gonçalves et al., 2021; Feizabadi, 2022). At stra-
tegic level, managers take more informed decisions proven to affect
implementing firms’ overall profitability (Budak and Sarvari, 2021;
Senoner et al., 2022). Albeit to a lesser extent, the literature also men-
tions positive effects of AI-enabled automation (Hopkins, 2021; Sodhi
et al., 2022). In production, this allows firms to shift their focus from
labor-intensive activities and upgrade their operating model
(Demlehner et al., 2021; Xia et al., 2022). In procurement, AI-based tools
foster process digitalization reducing the costs of non-standard opera-
tions, for example by placing orders for families of items and simplifying
the management of multiple suppliers (Allal-Chérif et al., 2021; Burger
et al., 2023). Automatic systems remove the inefficiencies of looking for
the right expertise within organizations (Oberdorf et al., 2021).

AI adoption is also associated with time improvements. This stems
from the streamlining of internal processes, including supplier selection,
cost analysis, bidding, and order management (e.g., Bodendorf et al.,
2022c; Budak and Sarvari, 2021). Moreover, AI allows near real-time
(inter)organizational coordination (Sodhi et al., 2022; Wong et al.,
2022), particularly in logistics (Al-Hajj et al., 2020; Chen et al., 2021).
These improvements result in reduced lead times and better on-time
delivery rates (Bodendorf et al., 2022a; Burger et al., 2023). AI allows for
the automatic adjustment of machine parameters (Hu et al., 2023; Xia
et al., 2022) and provides functions for optimizing delivery times (El
Garrab et al., 2023; Manimuthu et al., 2022a; 2022b). It also operates
robots and assembly lines, saving time in the moving sequence (Cannas
et al., 2023; Yang and Lu, 2010).

Benefits in terms of quality and process reliability are highlighted. AI-
based methods are proposed for detecting defective products (e.g.,
Msakni et al., 2023), identifying production line failures (e.g., Crespo
et al., 2020), and analyzing the root-causes (e.g., Kang and Kang, 2021).
Overall, automation reduces output deviation from the expected stan-
dard (Mohiuddin et al., 2022; Sodhi et al., 2022). In quality inspection,
the main benefits are higher accuracy (Dengler et al., 2021; Song et al.,
2023), adaptive quality management (Gauder et al., 2023), and the full
automation of activities allowing the shift from sampled quality control
to full inspection (Helo and Hao, 2022). Moreover, AI tools can be used
for defect classification and analysis, so that initiatives aimed at process
improvements are prioritized (Senoner et al., 2022; Xia et al., 2022).
Although most studies focus on quality in production, this is also
experienced in documental management (Helo and Hao, 2022) and
procurement activities (Burger et al., 2023) due to predictive purchasing
anticipating potential supplier failures (Allal-Chérif et al., 2021).

In terms of flexibility, namely the ability to quickly adapt to supply
and demand changes, it is enabled by the joint application of AI and
automation technologies, like robots and drones (Demlehner et al.,
2021; Enrique et al., 2022). Along SCs, the use of AI-based tools sim-
plifies supplier switching (Burger et al., 2023) and allows to predict
supplier capacity to promptly allocate orders (Brintrup et al., 2020; Dey
et al., 2023). Similarly, AI helps companies to anticipate and adapt to
changes like regulatory shifts and demand fluctuations (Gupta et al.,
2023; Wong et al., 2022).

4B. Enhancing capabilities (58 articles, 47 %)– One key aspect
refers to risk management and resilience. This can indeed be a driver for AI
adoption (Chen et al., 2022) to augment the capabilities of organizations
to deal with unexpected circumstances (Leoni et al., 2022). In
manufacturing plants, AI helps avoiding risky situations through the

timely identification of anomalies and accurate predictions on potential
faults (Kaparthi and Bumblauskas, 2020; Leukel et al., 2023). AI-enabled
planning also reduces the risks coming from high demand volatility
(Gonçalves et al., 2021; Manimuthu et al., 2022a, 2022b). Considering
logistics, AI facilitates real-time monitoring and automatic vehicle
re-routing following unexpected events (Chen et al., 2021; Gupta et al.,
2022). When dealing with first-tier suppliers, AI can process public and
private information sources and automatize the enforcement of risk
management policies (Allal-Chérif et al., 2021; Brintrup et al., 2020).
This translates fewer blind spots and faster responses to disruptions
(Burger et al., 2023; Nayal et al., 2022). Additionally, buyers can use AI
to collaboratively assess risks by jointly processing supplier data
(Kosasih and Brintrup, 2022; Zheng et al., 2023). In multi-tier supply
networks, the technology can be used to manage disruptions and fraud
(Deiva and Kalpana, 2022b; Hopkins, 2021), uncover hidden SC in-
terdependencies (Kosasih et al., 2022), and formulate what-if scenarios
and stress tests (Modgil et al., 2022). Moreover, AI can structure oper-
ating rules for SC reengineering (Belhadi et al., 2022) and support SCs’
financial resilience (Gupta et al., 2023; Olan et al., 2022).

A second cluster of organizational capabilities concerns innovation
and customer relationships. AI is associated with increased customer focus
and sales (Cadden et al., 2022; Hopkins, 2021) because of its analytical
strength in segmentation, targeting, and after-sales quality monitoring
(Helo and Hao, 2022; Ko et al., 2017). AI aids in market insight acqui-
sition and new product development (Babina et al., 2024; Mohiuddin
et al., 2022; Pessot et al., 2022). The use of advanced analytics helps in
defining optimal pricing strategies (Budak and Sarvari, 2021). More-
over, AI-based automation in relationships can reduce human error
(Chatterjee et al., 2023). Integrating AI into requirements management
and sales configurator tools increases accuracy and speeds up the
quoting process (Helo and Hao, 2022). Chatbots and intelligent assis-
tants enhance customer interfaces (Wong et al., 2022).

Finally, some papers underline that firms can increase their capa-
bility to manage social and environmental sustainability. In particular, the
use of AI enhances environmental sustainability by improving recycling
quality (Cannas et al., 2023), reducing waste (Demlehner et al., 2021),
and incorporating energy controls to lower emissions (Manimuthu et al.,
2022a). Similarly, supplier selection tools can incorporate ’green’
criteria (Kuo et al., 2010). In terms of social sustainability, studies show
that hazardous task automation and the use of co-bots enhance workers’
safety (Cannas et al., 2023). More generally, surveys link AI data pro-
cessing with circular economy practices, leading to sustainable
manufacturing (Dey et al., 2023; Yadav et al., 2020).

3.2.5. Contextual factors
The last theme (5. Contextual factors – 40 articles, 33 %) reflects the

nature of the reviewed articles (i.e., a prevalence of single-case appli-
cations) resulting in a research that is inherently context specific. Under
this premise, it is however important to underline some elements iden-
tified in prior studies that emerge across the themes presented in the
prior subsections. First, the competitive environment emerges as a key
factor. Industry-specific competitive pressures prompt firms to adopt AI.
The choice of specific tools (Chatterjee et al., 2021; Dora et al., 2022)
and approaches is often tailored to specific business goals (e.g., cost--
based vs. quality competition) (Al-Surmi et al., 2022; Kinkel et al.,
2022). Second, some papers relate AI to the COVID-19 crisis. Companies
leveraging AI proved to be more effective in managing business opera-
tions and SC finance (Gupta et al., 2022; Olan et al., 2022). In addition,
AI-based solutions were specifically created/repurposed to tackle
pandemic challenges (Raghuram et al., 2023; Zheng et al., 2023). Third,
AI implementation is influenced by institutional factors, policies, and
regulations. Institutions are related to cultural contexts that facilitate the
experimentation/adoption of emerging technologies (Dey et al., 2023).
Similarly, the existence of policies, incentives, and clear regulatory
frameworks for AI and data handling (e.g., data residency) encourage
firms’ investments (Bag et al., 2021; Dora et al., 2022). Finally, firms’
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size represents an important contingency determining technological
readiness and investment availability as well as talent attraction and
performance (Babina et al., 2024).

4. Discussion and research agenda

The aim of this study was to investigate empirical studies of AI in
SCM to provide a solid understanding of the current state and emerging
discontinuities brought about by the technology (RQ1). In this section,
we first discuss the results of the SLR in this respect and then move on in
outlining a series of potential research directions (RQ2).

Regarding RQ1, the key messages from the SLR are summarized in
Fig. 4. Here we reflect on the emerging elements for each theme and
coding category to identify those elements that seem more specific to AI
and that entail a potentially disruptive impact on the theory and practice
of SCM (right-hand side). We also recap for each theme the messages
that can be extended to the introduction of other technologies in SCs or
to digital transformation/Industry 4.0 trends in general (left-hand side).

Four insights emerge from our analysis. These are:

1. AI needs to be fed with adequate data (quality/volume); there are
emerging approaches to overcome ongoing limitations in data
quality and (inter)organizational data sharing.
Data access––especially in (inter)organizational con-

texts––represents a major challenge for the implementation of digital
technologies in SCs (e.g., Culot et al., 2024; Kembro and Näslund,
2014). A major step change comes from the fact that AI can still
operate with low-quality/volume data from internal operations,
derive SC-specific insights from third-party sources, and analyze data
in federated learning modes (e.g., Brintrup et al., 2023; Bodendorf
et al., 2022b; Zheng et al., 2023).

2. AI is deployed through a structured process entailing strategic,
business, and technological dimensions; these activities continue
after AI introduction and can be partially automatized.
Differently than other technologies, AI requires ongoing mainte-

nance and adaptation while its value increases over time as more

data inform learning processes towards ever more accurate results
(Bokrantz et al., 2023; Hasija and Esper, 2022). There are opportu-
nities to automatize AI design and updating through third-party
services where, alongside potential benefits, risks also emerge (Perno
et al., 2023).

3. AI is impacting (inter)organizational processes at multiple levels
with technological agency being more complex to manage for black-
box/automation approaches.
AI is not the only technology implying some form of automation

(Culot et al., 2020; Frank et al., 2019); however, it is the one that
most of all implies humans to attribute not only tasks but also
decision-making rights to technological agents (Belhadi et al., 2022;
Hasija and Esper, 2022). This aspect becomes estremely complex for
AI approaches that are more autonomous/less explicable (e.g.,
black-box approaches), especially in (inter)organizational settings
(Guida et al., 2023b).

4. AI brings to the table new/enhanced/complementary capabilities.
The range of capabilities impacted by AI is very broad, spanning

from innovation to risk management (Babina et al., 2024). The
impact on performance––both at organizational and SC level––might
depend on how/where technology is integrated in existing activities
and processes.

Overall, these insights point to the fact that AI has indeed several
elements that develop in continuity with other SC technologies. Simi-
larly, the SLR uncovered some dynamics that characterize the current
wave of innovation in general, as previously illustrated in reviews on
digital transformation and Industry 4.0 (e.g., Dalenogare et al., 2018;
Perano et al. 2023; Pozzi et al., 2023). There are nevertheless some
peculiarities that ought greater focus.

Based on these considerations and the SLR results, the following
paragraphs provide an answer to RQ2. Aa highlighted by scholars in
other managerial disciplines (e.g., Hanelt et al., 2021; Gama and Mag-
istretti, 2023), any research on novel phenomena and potentially
disruptive technologies needs to start from assessing whether and how a
shift is required in the current thinking and in established theoretical

Fig. 4. Key messages of extant empirical studies on AI in SCM.
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Table 1
Emerging AI trajectories and Research agenda.

Cross-cutting theme Established SCM perspectives compared with emerging AI trajectories Possible
Research Directions

1.
DATA AND SYSTEM
REQUIREMENTS

1A. Accessing data
Perspective – (Inter)organizational data-sharing entails several complexities despite the potential benefits
(Kembro and Näslund, 2014)
• Fears of opportunistic behaviors and confidentiality concerns.
• Costs of sharing technologies, issues in multi-tier sharing initiatives.

SLR results – Data availability and (inter)organizational data-sharing emerge as a precondition for
applying AI; however, AI allows access to new sources of data and new forms of data pooling:
• Processing of unstructured data (e.g., social media, the Internet, public sources)
• Forms of federated learning approaches (e.g., raw data are not shared but jointly analyzed)

- What kind of (inter)organizational data-sharing is required for AI in SCM? What challenges
emerge? What approaches?

- When and how unstructured data can substitute/complement (inter)organizational data-sharing?

- What drivers, barriers, and setups characterize new forms of data pooling for AI-enabled analytics
in SCM (e.g., federated learning)? When and how competitors join forces in such initiatives?

1B. Developing the technological backbone
Perspective – The adoption of information systems requires companies to invest in hardware technologies
and technological compatibility in terms of data formats and interfaces. These actions are normally driven
by few dominant firms within an industry (Sodero et al., 2013). This might engender power dynamics and
lock-in effects (Webster, 1995).

SLR results –Most firms embracing AI need substantial investments to develop the necessary technological
backbone. Cross-functional and (inter)organizational system integration/interoperability appear as a
precondition, as well as the implementation of cybersecurity solutions. The literature shows approaches
requiring lower investment levels, for example by accessing AI as a service and improving AI solutions that
compensate for existing system gaps.

- How do firms assess and prioritize technological investments in hardware/software technologies
that are required to adopt AI in SCM?What are the advantages/drawbacks of using legacy systems?

- What role can lead firms assume to develop the technological backbone across their SCs, including
small firms? What role is played by large digital players? What are the implications?

- What solutions can AI support to overcome current challenges in interoperability and
cybersecurity? What is their effectiveness?

1C. Adopting complementary technologies
Perspective – Technologies are part of bundles that include legacy and new technologies, rather than as
standalone solutions (Cagliano and Spina, 2000). These are classified in typologies and taxonomies based
on different criteria (e.g., technological complementarity, application area, performance objectives,
technology-related capabilities) (e.g., Culot et al., 2020; Battaglia et al., 2023).

SLR results – AI is often adopted with technologies that characterize the Industry 4.0/digital
transformation phenomenon (e.g., the Internet of Things, cloud computing, blockchain technologies).

- What possible typologies of emerging technologies include AI in SCM? What is the rationale?

- What possible taxonomies emerge of adopters of AI in SCM? What are the characteristics of the
different possible clusters of firms?

2.
TECHNOLOGY
DEPLOYMENT
PROCESS

2A. Defining the AI strategy and approach
Perspective – Strategic choices can be analyzed through configurational lenses (Mikalef et al. 2015). In
SCM, the debate has focused on the link between corporate and manufacturing strategy (Swink and Way,
1995). Similar efforts have characterized research in the information technology field for the alignment
between firms’ strategic objectives and technological solutions (e.g., Raymond and Bergeron, 2008).

SLR results – Successful adoption of AI in SCM is characterized by strong strategic alignment with the
business and leadership involvement. Moreover, adopting AI implies decisions on investments and resource
allocation despite the lack of proven cost-benefits assessment tools. This, coupled with the novelty of the
technology, prompts companies to pursue an incremental roll-out, rather than defining upfront a long-term
strategy.

- How companies formulate decisions in the business, technology, and manufacturing strategy
domains when adopting AI in SCM? What possible alignment pathways emerge at the intersection
among the three areas?

- What are the motivations and consequences of a poor/high alignment between the business,
technology, and manufacturing strategy domains when adopting/developing AI in SCM?

-What functions are involved in decisions concerning the adoption of AI in SCM?What is the role of
organizational leaders? What are the characteristics of the decision process? What planning
horizons emerge?

- What cost-benefit assessment tools can firms deploy for AI in SCM?

2B. Designing the technological solution
Perspective –When considering the introduction of technologies in a manufacturing environment, there is
a range of systematic methodologies that prescribe a sequence of interrelated process phases (Buede and
Miller, 2016).

SLR results – A series of phases characterize the design of AI solutions. A key activity is the evaluation of
the accuracy of proposed approaches, also considering tradeoffs. Some studies address technology

- What engineering methodologies and process guidelines can support the design of AI solutions in
SCM?

- What decision process models can be used to decide on tradeoffs when designing AI solutions in
SCM? How functional managers and technology specialists interact in such decisions?

(continued on next page)
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Table 1 (continued )

Cross-cutting theme Established SCM perspectives compared with emerging AI trajectories Possible
Research Directions

maintenance and update. One article (Bokrantz et al., 2023) specifically focuses on adapting engineering
methodologies.

2C. Accessing competencies and expertise
Perspective – Innovation develops both within and outside organizational boundaries and is subject to:
• The exposure of firms to external knowledge within their environment (e.g., exposure to suppliers of
state-of-the-art technologies and research institutions) (Kostopoulos et al., 2011).
• Learning processes that take place for identifying SC partners’ knowledge and converting it into value for
the firm (Saenz et al., 2014).
• The level of dependence between the business partners, which affects innovation outcomes and
appropriation of results (Jajja et al., 2017)

SLR results – Implementing AI in SCM requires the integration of technical and domain competence.
Access to technical competence might be a challenge for manufacturing firms; collaborations with
technology providers and universities are sought after.

- What (inter)organizational relationships are taking shape when adopting AI in SCM?What criteria
manufacturing companies adopt when selecting external partners?

- How are the core competencies of manufacturing firms changing when adopting AI in SCM? How
can the collaboration with technology providers/universities facilitate the acquisition of such
competencies?

- How do the collaboration with different partners (e.g., technology giants, start-ups, academic
institutions) affects innovation at manufacturing firms? How can this facilitate the acquisition/
development of competencies that are relevant for AI in SCM?

3.
(INTER)
ORGANIZATIONAL
INTEGRATION

3A. Managing acceptance and sensemaking
Perspective – The adoption of SC technologies is determined by:
• Individual-level acceptance in terms of cognitive approval and sensemaking (Venkatesh and Bala, 2008)
• Organizational-level acceptance including considerations on cost, availability, and vendor reputation (
Autry et al., 2010)
• Network-level diffusion dynamics (Patterson et al., 2003).

SLR results – AI acceptance and productive use depends on cultural elements of the organization/SC,
which can be addressed through change management programs and leadership engagement. There can be
differences depending on the technological characteristics of AI:
• Black-box models are more difficult to accept than white-box models.
• AI-enabled automation generates more fears and skepticism in the workforce than solutions aimed at
employees’ assistance.

- What are the differences in individual-/organizational-level technology acceptance based on AI
technological features (e.g., white-box vs. black-box models, AI-enabled automation)?

- What cultural characteristics enable the adoption/use of AI in SCM? How does this affect
performance improvements? What actions are firms undertaking on organizational culture prior,
during, and after AI adoption?

- What are the diffusion patterns of AI across SC networks?

3B. Redefining job content
Perspective – SCs encompass people who use technologies within dynamic work systems (Gattorna and
Pasmore, 2022). When implementing a new technology, it is thus important to consider also organizational
design issues (Sony and Naik, 2020). Key topics include job and work design (Trist, 1981). This is also
important to sustain employee motivation (Walton, 1985).

SLR results – AI automates several tasks (e.g., documental management, analytics) and jobs (e.g., chatbots
and virtual assistants). Together with a redefinition of jobs, training and upskilling are necessary.

- How are work systems designed when integrating AI-enabled autonomous agents? How can
responsibility be assigned on AI-generated outcomes?

- How is employee motivation affected based on the level of assistance provided by AI?

- What is the impact on employment when adopting AI in SCM? What roles are displaced? What
roles are created?

- How are employees’ competencies changing due to AI in SCM? What differences emerge among
different roles?

3C. Aligning (inter)organizational processes and design
Perspective – Several process standardization initiatives characterize SCM (e.g., Supply-Chain Operations
Reference Model – SCOR) as well as specific areas (e.g., quality, environmental, risk management) (Neiger
et al., 2009; Uzumeri, 1997). These are characterized by a common focus on information and
evidence-based decision-making. This is also in line with lean management, six sigma, and similar
managerial approaches (Näslund, 2008). Some research already connects the implementation of Industry
4.0/digital transformation with process standardization initiatives (Bittencourt et al., 2021)

SLR results – When adopting the technology, firms are mostly revising their processes and organizational
design. Companies already adopting standardized processes are in a better position to reap the benefits of
AI in SCM.

- How is AI integrated into standardized management systems and lean organizations? What
changes are necessary?

- What approaches to process flexibility emerge when introducing AI in SCM? How is the locus of
decision-making changing within implementing organizations?

- How is the governance of AI implementation in SCM? What are the coordination mechanisms?

(continued on next page)
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Table 1 (continued )

Cross-cutting theme Established SCM perspectives compared with emerging AI trajectories Possible
Research Directions

3D. Adapting the SC structure/relationships
Perspective – Technologies affect the governance of transactions along SCs by determining the
convenience/inconvenience of external sourcing (Ketokivi and Mahoney, 2020) and facilitating
coordination between the involved parties (Cao and Lumineau, 2015). Technologies can also enable remote
coordination driving SC geographic dispersion (Ancarani and Di Mauro, 2018). These dynamics are
complex and several factors are at play (Culot et al., 2020).

SLR results – AI can support a reconfiguration of SC structures and reshoring choices. New coordination
mechanisms are enacted among business partners.

- What governance mechanisms characterize the relationships among the parties involved in (inter)
organizational implementation of AI in SCM? How can AI automate governance-related activities?
What are the implications?

- What are the effects of adopting AI in SCM in terms of in-/outsourcing and the location of
production?

- To what extent SC configuration decisions can be automated and implemented?

4.
PERFORMANCE
IMPLICATIONS

4A. Improving operational performance
Perspective – Operational performance is affected by the technologies that are adopted in internal and SC
operations:
• Firms can reach a maximum level of performance based on their setup (i.e., technologies, managerial
practices, and the nature of inputs) (Frohlich and Westbrook, 2001; Schmenner and Swink, 1998).
• There is a relationship between the different operational performance dimensions (i.e., performance
improvements can be cumulative/sequential or generate tradeoffs – Gupta and Boyd, 2008; Schroeder
et al., 2011).
• In SC relationships, there might be an asymmetric value appropriation (Cox, 2001; Ellegaard et al., 2014).

SLR results – There is still limited empirical evidence of the impact of AI on operational performance. Cost,
quality, and time appear with a similar frequency in the analyzed literature. As far as value appropriation is
concerned, there has been a limited debate so far.

- What are the effects of adopting AI in SCM on the operational performance of implementing firms?
Does it determine a new performance frontier? What are the differences depending on the kind of
application?

- What is the relationship between the different dimensions of operational performance (i.e., cost,
time, quality, and flexibility) in AI adopters? Are there any dark sides or tradeoffs?

- What are the operational performance implications of AI-enabled SCs? What value appropriation
dynamics emerge among SC partners?

4B. Enhancing organizational capabilities
Perspective – Different theories commonly used in SCM can help explaining why a specific lever (i.e.,
technology adoption) can generate performance improvements (Denyer et al., 2008; Pilbeam et al., 2012).
For example, performance improvements can be motivated by lower transaction costs, accumulation of
distinctive resources, higher responsiveness to stakeholder demands, development of distinctive
capabilities (Chicksand et al., 2012).

SLR results – The literature indicates that adopting AI affects (inter)organizational capabilities in risk
management and resilience, customer insights and relationships, and environmental and social
sustainability management. However, the reasons of these improvements are not clarified.

- Which conceptual categories can explain the performance improvements of adopting companies?
Do current theories offer an adequate explanatory framework or is theoretical advancement
required?

- What specific capabilities are related to AI in risk management and resilience, customer insights
and relationships, and environmental and social sustainability management?
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models (Post et al., 2020). As clarified in the Introduction, this should
start from a deep understanding of extant empirical research to mitigate
the risk of confusing expectations and unrealistic scenarios. For each
cross-cutting theme, we thus reflected on the consistency between SLR
results and established assumptions in SCM and formulated a series of
future research avenues (Table 1). Established assumptions are derived
from reviews and seminal papers that are central to the academic debate
on the specific issues. Given the relative novelty of the phenomenon, the
list of possible research directions is long and varied to encompass
different possible aspects relevant for the debate intercepting the in-
terest of various groups within the broader SCM community.

Given the lack of strong theoretical anchoring in extant research (see
Section 3.1), we believe it is important for future studies to draw on
established frameworks. These are the ones normally and most broadly
uses in the discipline (Halldórsson et al., 2015; Storey et al., 2006).
Several RQs can be approached indeed from perspectives like Trans-
action Cost Economics, Resource-based View, Contingency Theory,
Dynamic Capabilities, Absorptive Capacity. Future research should
adhere to these lenses to better understand what is truly new about AI in
SCM and determine whether theoretical constructs require refinement
or new kinds of relationships posited (Busse et al., 2017). Moreover,
researchers can leverage configurational theorizing to understand the
complex mix of factors influencing emerging setups of AI in SCM,
thereby accounting for the interrelationships between technological,
functional, and (inter)organizational aspects (Furnari et al., 2021). In
this respect, in addition to what is illustrated in Table 1, there is the
opportunity to consider contextual factors that affect technology adop-
tion, implementation and performance. Although contingencies repre-
sent an important dimension of technology in SC context (Søgaard et al.,
2019), the results of the SLR highlight a still limited understanding in
this respect.

Although there is value for SCM researchers to approach AI through
proven paths, there are also opportunities to leverage pertinent theo-
retical advances in neighboring fields like General Management and
Information Systems, particularly the debate on Data Network Effects in
AI-based digital platforms (Clough and Wu, 2022; Gregory et al., 2021):
the idea is that the more AI can learn from the data it collects, the more
valuable it becomes to each user. The validity and implications of these
concepts beyond the consumer sector have not been explored yet and the
dynamics might be very different in SC business relationships charac-
terized by data confidentiality and power dynamics. Similarly, the In-
formation Ecology Theory formulated for digital innovation ecosystems
could be interesting (Wang, 2021). This suggests that digital technolo-
gies enable multi-scaled and coherent integration among independent
parties operating within an innovation ecosystem. In particular, these
perspectives might prove interesting to investigate the peculiarities of AI
in terms of learning patterns and third-party services and data usage (see
Fig. 4).

To conclude, two important methodological suggestions emerge
from a critical review of extant research. First, as AI encompasses
various technologies, an excessive level of detail can be confusing for
managerial scholarship and hinder the formulation of a general under-
standing; a pragmatic approach is recommended based on broad clas-
sifications (e.g., black-box vs. white-box models). Second, in terms of
methodologies, explorative research is still needed to clearly understand
the unique facets of this phenomenon and is consistent with the fact that
many firms are still experimenting with AI.

5. Conclusions

This study presents a SLR (123 papers) of empirical studies regarding
AI in SCM, deriving cross-cutting themes and topics that inform the
formulation of a comprehensive research agenda. Our focus was moti-
vated by the need to discriminate between the promise and reality of AI
in order to enable a solid theorizing on the topic.

Naturally, there are some limitations that should be clarified. We

reviewed a body of knowledge that is rapidly developing following real-
life applications that are still in a state of flux. In this respect, while we
advance studies that have completed just a few years back (e.g., Toor-
ajipour et al., 2021; Pournader et al., 2021) and hope that our effort can
illuminate current issues and research opportunities, we also urge for
frequent updates as time goes by.

Moreover, besides the usual drawbacks of manual selection and
coding––which we believe are compensated by the depth of the findings
that are reported––we acknowledge that relevant information for the
purpose of our study could have been found in conference papers, books,
and in the gray literature. This body of knowledge has not been included
in the SLR due to its vastity––which would have required bibliometric
data processing rather than a formal content analysis––and the need to
ensure rigor by including only articles published in peer-reviewed
journals. Specifically, regarding books, there are several titles for class
use (e.g., Vermeulen, 2019) and others describing architectural frame-
works and AI technical solutions without real-world applications (e.g.,
Chatterjee et al., 2022a; Vermesan and Marples, 2024; Karim et al.,
2023). Further, some books present insights into specific themes (e.g.,
legislation, sustainability, security – Munoz and Maurya, 2022; Kumar
et al., 2023; Motahhir and Maleh, 2022), industries (e.g., apparel/textile
– Wong et al., 2013), and SCM challenges (e.g., production scheduling –
Bär, 2022). Finally, there are several books that provide a brief overview
of AI for SCM that can still be used to gain a high-level understanding of
the issues at hand (e.g., Vermesan et al., 2022; Chand et al., 2023;
Sharma and Jain, 2022; Perumal et al., 2022).

In terms of contributions to the literature, this article has three major
implications. First, we provide a systematic overview of the state-of-the-
art of AI research in SCM. This allows a consolidation of current un-
derstanding while supporting early alignment on themes emerging
across application areas and research foci, which have been expounded
in earlier works (e.g., Carvalho et al., 2019; Dalzochio et al., 2020).
Against a new technological trajectory, this effort enables a better un-
derstanding of the depth and breadth of new dynamics. In this respect,
the exclusion of purely conceptual papers ensures that findings are
grounded in substantive verification. Moreover, differently than previ-
ous reviews (e.g., Culot et al., 2020; Dalenogare et al., 2018), our work
specifically focuses the novel elements that are specific of AI and those
that are common with current technological trajectories towards greater
digitalization and automation of SCs.

Second, we formulate a detailed research agenda that compares SLR
findings with established perspectives in SCM. Again, this approach is
instrumental to derive a solid understanding of the phenomenon. We
provide a comprehensive list of possible research directions. Some of
them reflect specific interests within SCM, other are more general and
provide a springboard for broader conversations within the community.
Moreover, we introduce some recent theoretical developments in
neighboring fields that might reasonably applied and adapted. This
approach is in line with influential reviews in other disciplines (e.g.,
Hanelt et al., 2021)

Third, we advance some methodological recommendations. Specif-
ically, we urge for a sharper operationalization of AI in empirical
studies, which should balance out the need of differentiating among
approaches and techniques with pragmatic considerations.

This study also provides valuable insights to managers. While AI has
become a top priority for SCM executives, several implementation
challenges hinder its successful adoption (e.g., WEF, 2023; McKinsey,
2023). By providing a comprehensive synthesis of common factors and
contextual conditions, we trust to have drawn attention to the most
salient issues. Similarly, the results of our review should caution man-
agers against over-optimistic expectations as to the performance impli-
cations of AI, which still require empirical verification. Moreover, the
study shows that technology itself is rarely sufficient, as organizational
and (inter)organizational factors play a major role.
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