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Abstract
Asbestos has been used extensively in several applications. Once it is known as a
dangerousmineral, its usage has been prohibited and its identification and reme-
diation play a very important role from the health safety point of view.Nowadays,
deep learning techniques are used in many applications, especially for image
analysis. They can be used to significantly reduce the time and cost of traditional
detectionmethods. In this paper, taking advantage of asbestos spectral signature,
a deep neural network is introduced in order to implement a completemethodol-
ogy to identify asbestos roofings starting from hyperspectral images in a regional
context. The novelty of the proposed approach is a dynamic mixing of models
with different features, in order to accommodate classifications on widespread
areas of both urban and rural territories. Indeed, the dataset used during the
experiments described in this paper is a large one, consisting ofmanywide hyper-
spectral images with a geometric resolution of 1 m and with 186 bands, covering
an entire region of approximately 8,000 km2. This is in contrast to other works
in the literature where the analyzed areas are limited in size and uniform for
physical features.

1 INTRODUCTION

The main purpose of this work is to propose a general
methodology to detect the presence of asbestos in roofings,
analyzing airborne acquired hyperspectral images. The
detection works both at the raster level (per pixel) and
at the vector level (GIS tools), in order to assess asbestos
materials in buildings.
Asbestos fibers have exceptional resistance to heat, fire,

and chemical agents; moreover, they have low thermal
and electrical conductivity, and materials containing
asbestos show high mechanical resistance. Hence, they
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have been extensively used in the past in several industrial
applications, the most popular being asbestos roofs.
However, asbestos is also known as a dangerous min-

eral fiber causing serious health hazards to those who are
exposed to it. As a consequence, the necessity to remove
asbestos from legacy buildings is also compelled by com-
mon regulations in several countries. For instance, in Italy
there is a plethora of laws and regulations about asbestos
since 1992 (Camera dei Deputati, 2022). Such rules are
then implemented at a local level in all Italian regions,
for example, in Friuli Venezia Giulia (FVG for short, the
region where the experiments described in this paper
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have been carried out) there is a strict legislation (Regione
Autonoma Friuli Venezia Giulia, 2023). Moreover, at a
higher level, in the European Union (EU), in order to
better safeguard the health of workers, the European
Parliament and the Council have recently approved Direc-
tive (EU) 2023/2668 (amending the previous Directive
2009/148/EC in a substantial way). Such directive, dated
November 22, 2023 and currently effective, sets a control
limit for asbestos at 0.01 fibers per cubic centimeter of air
(0.01 f/mL), which is 10 times lower than previously. EU
member countries now have 2 years (i.e., by December 20,
2025) to fully implement the directive.
Hence, it is critical to detect asbestos-containing mate-

rials (ACMs) accurately and in time in order to ensure
public safety and to execute efficient asbestos treatment
methods. Traditional asbestos detection procedures, such
as direct inspections on site and sample analysis are often
time-consuming, labor-intensive, expensive, and limited
in scope. To address these issues, scientists have resorted
to new technologies to improve the efficiency and accuracy
of asbestos detection.
Hyperspectral imagery (HSI) is an advanced remote

sensing technique capturing detailed spectral information
for each pixel in an image. In computer vision, it enhances
object recognition and classification by revealing specific
spectral characteristics, enabling the detection of subtle
differences and aiding in the identification of indistin-
guishable materials/objects. In our case, since the high
number of spectral bands in HSI, the spectral signature
that characterize asbestos can be used to distinguished it
from other materials.
These applications can benefit from recent develop-

ments in the research field of deep neural networks
(DNNs) applied to computer vision. Indeed, DNNs, a
subset of artificial intelligence and machine learning,
have demonstrated outstanding performance in a variety
of image processing applications. These models excel
at learning patterns and representations from complex
data, making them perfect for dealing with asbestos
detection challenges. DNNs may learn to recognize ACMs
with high precision and generalization by training them
on huge datasets of tagged images and can represent a
preliminary step to guide more focused field inspections
and laboratory analysis.
In this paper, a large and significant case study is

described about detecting asbestos roofs by applying
DNNs to high-resolution hyperspectral images. Indeed,
the underlying research goal is to use deep learning
techniques in conjunction with spectral data to produce
an accurate and efficient approach for identifying ACMs
in building roofings. As it will be shown in later sections,
the network’s learnt features and capabilities will be used
in differentiating asbestos-related materials by fine-tuning

a custom network using the dataset of the Autonomous
Region Friuli Venezia Giulia, which has been accurately
analyzed and annotated for asbestos identification.
The effectiveness of the developed DNN for asbestos
detection is evaluated using an on-map validation. In
addition, the limitations of the proposed methodology
and some related potential future work directions will be
highlighted.
In Section 2, other asbestos detection approaches in the

literature are discussed. Sections 3 and 4 describe the data
used in the experiments and the proposed methodology,
respectively. Then, Section 5 shows the carried out exper-
iments and, finally, conclusions and further works are
discussed in Section 6.

2 RELATEDWORK

Several studies concerning mapping roofing with ACMs
have been proposed in the literature. In this context, to
our knowledge, the most complete critical survey of the
state-of-the-art methods is proposed in Abbasi et al. (2022).
The authors review studies proposed from 2012 to 2022 and
summarize them according to the input imagery types and
image classification processes.

2.1 Input imagery types

Hyperspectral imagery. Due to the rich spectral informa-
tion of HSI, it has been widely utilized as a reliable data
source in order to classify roofs containing asbestos by the
correspondent spectral wave (Cilia et al., 2015; Szabó et al.,
2014; Fiumi et al., 2012, 2014; Frassy et al., 2014). Never-
theless, despite the advantages of HSI, certain limitations
exist. Specifically, the high dimensionality can negatively
impact the classification process (Szabó et al., 2014; Hame-
dianfar et al., 2014): conventional classification algorithms
typically do not perform well with high-dimensional data.
Therefore, selecting bands and determining an optimal
resolution become critical tasks in the process (Hughes,
1968; Kavzoglu & Mather, 2002; Hountondji et al., 2006).
Multispectral imagery/panchromatic images. Consider-

ing that spatial resolution is oftenmore advantageous than
spectral resolution when extracting features such as ACM
roofs (Neupane et al., 2021), other studies have explored
the use of multispectral imagery (MSI) or panchromatic
images (de Pinho et al., 2012; Gibril et al., 2017; Tommasini
et al., 2019; Taherzadeh & Shafri, 2013; Abriha et al., 2018),
which have fewer bands compared to HSI, but more than
classical RGB images (Raczko et al., 2022; Krówczyńska
et al., 2020). Moreover, contrary to the past, MSI now
provides extremely high resolutions, is typically more
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affordable, and covers larger areas. In some instances, MSI
is also combined with LiDAR (Norman et al., 2020).

2.2 Image classification processes

As far as the processing algorithms are concerned, differ-
ent kind of solutions to detect ACM roofings have been
used in the literature.
Spectral angle mapper. The spectral angle mapper

algorithm is really common to solve this task. It is a
pixel-based approach; indeed, the algorithm evaluates
the similarity between spectral signatures by calculating
the angle between the spectrum under investigation and
the reference spectrum, in the n-dimensional space of
the bands (Marino et al., 2001; Fiumi et al., 2012, 2014;
Szabó et al., 2014; Frassy et al., 2014; Cilia et al., 2015;
Krówczyńska et al., 2016).
Maximum likelihood classifications. The maximum like-

lihood classifications differently define the reference
classes for each band so that their statistics follow a Gaus-
sian distribution. The probability that each pixel has of
belonging to a given class is then determined (Szabó et al.,
2014; Taherzadeh & Shafri, 2013).
Segmented pixels (objects) algorithms. However, as

remarked before, improvements of remote sensing
imagery resolution, have forced researchers to consider
alternative solutions with respect to per-pixel spectral-
based approaches, at least for classifying asbestos roofs.
The underlying observation is that per-pixel-based
approaches combined with traditional classifiers can lead
to unreliable classifications of images, due to the increas-
ing intraclass variability of classes with high-resolution
data. In Myint et al. (2011), the authors show that when
using high-resolution sensors it is common to observe
different features (e.g., roofs) on the surface of the Earth
that are made up of materials having comparable spectral
responses. Whence, a plethora of other algorithms seg-
ment images and use segmented pixels (called objects)
as units to process, taking into account both spatial and
spectral features (Hay & Castilla, 2008; Blaschke et al.,
2014; Navulur, 2006). Objects are handled by developing
a number of rules for classifying features such as texture,
size, and geometry (de Pinho et al., 2012).
Support vector machines. Among the most advanced tra-

ditional techniques, there is the support vector machines
(SVM), a supervised classification model belonging to
kernel-based methods, which allows a mapping of the
dataset from the features space to an higher dimensional
kernel (Szabó et al., 2014; Hamedianfar et al., 2014; Hame-
dianfar & Shafri, 2014; Norman et al., 2020; Gibril et al.,
2017). SVM, in particular, does not require an estimate
of the statistical distributions of the various classes but

defines the classification model by exploiting the concept
of maximizing the margins between the classes.
Random forests. The random forest, on the other hand,

is based on the use of decision trees (DTs) associated with
a criterion of purity of the indices: alongside a series of
sequential tests to separate the samples to obtain more
or less pure classes, various classifiers are used, built on
training data and creating, from time to time, DTs based
on the tests, assuming the one that receives the most votes
as themost reliable solution (Gibril et al., 2017; Tommasini
et al., 2019; Abriha et al., 2018; Hamedianfar et al., 2014;
Norman et al., 2020).
Neural networks. Finally, DNNs have achieved

admirable performance in a large number of applica-
tions. In particular, convolutional neural network (CNN)
models are popularly and successfully in computer vision
for object detection, segmentation etc., even in problem-
atic scenarios, for example, in underwater environments
(Foresti & Scagnetto, 2022), in emotional state analysis
(Olamat et al., 2022), in brain disorders detection (Ozdemir
et al., 2021), etc. The versatility of CNNs and convolutions
in general goes beyond the computer vision field, allowing
researchers to build models and applications in other
scenarios. For instance, in Duchesne et al. (2013), the
authors develop a survival analysis model to predict the
overall structural state of a sewer network. Other examples
are graph convolutional networks (GCNs), that is, models
where convolutions operate on graph-structured data.
Remarkable applications of GCNs are used, for instance,
in civil infrastructures contexts, supporting optimal repair
decisions for, for example, water distribution networks
(Fan et al., 2022).
Moreover, in recent years, CNNs produced state-of-the-

art results for pixel classification in HSI. The main reason
of their success relies upon the fact that the majority of
these methods examine both spatial and spectral channels
to extract features for classification, avoiding the accuracy
issues mentioned before. For instance, in Sarma and
Kakarla (2022), the authors propose a CNN which has
been tested on the publicly available HSI datasets with
good results.
In Kakarla (2020), the second author of Sarma and

Kakarla (2022) published an implementation of a DNN
tested on the Pavia University dataset (Gamba, 2023).
Taking advantage of the open source Keras library, he
implemented his proposal in the Python language and
showed how the network works on the single Pavia Uni-
versity hyperspectral image, whose main features are the
following ones: 103 spectral bands, 610× 340 pixels, resolu-
tion 1.3m. Compared to the proposal in Sarma andKakarla
(2022), the network has a different architecture (without
convolutions and with only 89,574 total parameters against
the 2,460,065 parameters), but the accuracy results on the

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13376 by C
ochraneItalia, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 GUBIANI et al.

same dataset seem to be comparable. It includes 12 fully
connected or dense layers, two batch normalization layers,
and two dropout layers to yield a land cover classification.
Such model distinguishes between nine classes (asphalt,
bare soil, bitumen, gravel, meadows, painted metal sheets,
self-blocking bricks, shadows, and trees). Since also in
the case discussed in this paper there is a dataset of
urban areas hyperspectral images, such architecture has
been taken into consideration, with the required varia-
tions and integrations. Indeed, our dataset encompasses a
very wide geographic area, covered by a huge number of
images with a considerable variation of their features. All
details are described in the following sections (in particular
in Section 3), with specific considerations also introduc-
ing the proposed methodology (Section 4), and describing
the experiments (Section 5). Moreover, the distinguishing
aspects of the approach presented in this work rely on
an integrated methodology where the architecture of the
underlying DNN is not so important by itself, but as a
tool to generate a mixing of three models. In particular,
while the first two models are trained on global data, the
third one is trained dynamically on data similar to those of
the area to be processed. This allows to take into account
peculiar features of the candidate area which may not be
considered enough by the other two models.

3 DATA

In the following, the HSI dataset used throughout the
experiments will be introduced and illustrated in Section 5.
Differently from other HSI datasets publicly available on
the Internet and usually employed in published works
(see, e.g., those used in Sarma and Kakarla, 2022) which
refer to a single image with a limited landscape, the pro-
posed dataset is really a huge one. It consists of more
than 4000 hyperspectral images of approximately 5000 ×
2500 pixels with 186 bands, and a spatial resolution of 1 m
(approximately 10 GB/image).

3.1 Hyperspectral images

The regional hyperspectral survey was carried out in two
subsequent phases: initially, only the Province of Trieste
was acquired (the dataset was named Lotto Giuliano); at a
later stage, the rest of the regionwas taken over (the dataset
was named Lotto Unico). This work focuses on the images
of the latter dataset, which covers 95% of the regional
territory of FVG (which totally amounts to 7924 km2).
The hyperspectral images were acquired via a HySpex

VNIR 1800 sensor fixed on an aircraft at a flight altitude of
approximately 3000 m. At this height, the sensor guaran-

teed a final pixel spatial resolution of 1.0m. The acquisition
of the stripes was adapted according to the conditions and
morphological characteristics of the surveyed area (e.g.,
plain ormountain area) and the planning of the stripes pro-
vided for a lateral overlap of approximately 30%, in order
to guarantee a contiguous coverage even in the presence
of turbulence or sudden changes in the platform’s attitude.
The hyperspectral data are available partitioned by

acquisition stripe both in “original” format, corresponding
to the length of the single flight path (Figure 1a), and in
“reduced” form, by cutting the original stripes onto a unit
length of approximately 5000 m (Figure 1b).
Each hyperspectral image is available as a file in .bsq

(band sequential raster) format, a standard format that
allows simple sequential management and storage of
raster data. Alongside the .bsq, the information relating to
the georeferencing of the image, number of bands, pixel
dimensions, etc. is contained within a related .hdr file. A
raster image of this format can be displayed in any GIS
software (e.g., QGIS; https://www.qgis.org), by selecting
the triplet of 186 bands useful for video display. Figure 1b
shows an example.

3.2 Asbestos data

Starting from the previously described hyperspectral
images, a first identification of asbestos roofings in
the regional territory was carried out. The processing,
commissioned to an external company, involved 24munic-
ipalities in the area of Lotto Unico and integrated also ad
hoc local surveys carried out with a drone.
Such activity yielded as a result a vector layer (shape

format) containing the polygons related to the ACM roofs
identified in each of the 24 examined municipalities (red
layer in Figure 1c), in addition to the frames of the
drone flights. Each polygon is accompanied by a series of
descriptive attributes, including the asbestos status and the
uncertainty level.

3.3 Building roofings

Several information layers relating to existing buildings are
available from IRDAT.1 Among these, it is possible to have
the buildings of the CTRN.2 For instance, Figure 1c (black

1 The Regional Environmental and Territorial Data Infrastructure; in
Italian known as “Infrastruttura Regionale dei Dati Ambientali e Territori-
ali (IRDAT)” at https://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-
territorio/conoscere-ambiente-territorio/FOGLIA2/ (May 20, 2024).
2 The Technical cartography of the FVG Region available in scales 1:5,000
and 1:10,000; in Italian: “Carta Tecnica Regionale Numerica (CTRN).”
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F IGURE 1 Available hyperspectral data.
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6 GUBIANI et al.

layer) shows the CTRN buildings of the municipalities
considered in our experiments.
Regulations regarding asbestos were introduced in FVG

and throughout Italy with Law No. 257 of 1992. At the
regional level, the Regional Asbestos Plan3 was imple-
mented in 1996 and is periodically updated. Since a version
of the data from the CTRN produced in the 1990s is avail-
able, it can reasonably be assumed that no asbestos-cement
coverings have been installed after that period. There-
fore, it can be assumed that the buildings represented in
this version of the CTRN contain all potentially detectable
asbestos coverings and can thus be used as a filter to isolate
the data to be analyzed for our purposes.

4 METHODOLOGY

The work proposed in Kakarla (2020) is a good start-
ing point. However, since its approach cannot be directly
applied to the context taken into consideration, several
modifications and integrations were carried out, in order
to deal with our large dataset and to correctly identify
asbestos roofings.
Indeed, the large set of hyperspectral images includes

more than 4,000 images to cover the entire Region FVG
(about 7900 km2) with a resolution of 1 m. Each image has
about 5000 × 2500 pixels organized in different ways (ver-
tical, horizontal, or oblique), each one associated with 186
bands, for approximately 10 GB/image. The georeferenc-
ing and temporal resolution of the images play a relevant
role. The images are georeferenced (RDN2008/UTM zone
33N (N-E), EPSG:6708) and spatial location is relevant both
for combining different images, which have about 30% of
overlap, and for connecting to buildings. For temporal res-
olution, due to the spatial extension of the region, surveys
have been carried out on different days and hours, with dif-
ferent flight directions, light and weather conditions that
influence band values. A more extended list of features is
summarized in Table 1.
Moreover, our goal is not a simple supervised classifica-

tion, but the identification of asbestos pixels, in order to
detect asbestos roofings. The final result cannot be a mere
raster map but has to be postprocessed to obtain a final
vector layer that includes polygons representing asbestos
roofing of buildings.
Starting from these considerations, the proposed

methodology is based on two successive steps as resumed
graphically in Figure 2. The first step works at the raster
level. It is based on a neural network that returns raster
classification maps (Section 4.1). The second step passes
from the raster level to the vector one. It combines classi-

3 In Italian: “Piano Regionale Amianto (PRA).”

TABLE 1 Features of hyperspectral images (Lotto Unico).

Feature Description
Format files .bsq + .hdr

Number of bands 186
Band format Decimal
Spatial resolution 1 m
Dimension of images About 5000 × 2500 pixels organized in

different ways (vertical, horizontal, or
oblique)

Size of images About 10 GB/image
Number of images More than 4000
Spatial extension Images covering almost the entire

region Friuli Venezia Giulia about 7900
km

2 divided into plains, hills, and
mountains

Temporal resolution Different by day and flight hours
Additional features Georeferenced and overlapped images,

presence of pixel no-data

fication maps with the building vector layer and returns
a vector layer with buildings identified with asbestos
roofings (Section 4.2).

4.1 The first step: A neural network for
a raster classification

Starting from several preliminary analyses carried out on
various ground truth datasets, it is clear that many mod-
els differ quite a lot in making predictions. In particular,
some models are either more or less “generous” than oth-
ers in terms of identifying asbestos class pixels; moreover,
the pixels belonging to buildings recognized as asbestos
by a greater number of models actually corresponded to
real asbestos coverings. Building upon these observations,
it was decided to opt for the use of a combined solution
that compares the results of predictions based on different
models against each other.
Hence, the first phase of raster data processing was

structured into the following steps:

1. Training multiple models and making predictions with
them, yielding raster images for each prediction (for
each processed image);

2. Combining different predictions, yielding a “final”
raster image obtained from the integration of the single
predictions (for each processed image).

The proposed network, adapted from the one made
available in Kakarla (2020), is implemented in Python
using the open-source library KERAS (https://keras.io)
for machine learning and neural networks. Therefore, it
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GUBIANI et al. 7

F IGURE 2 Methodology of input preprocessing and classification.

was possible to extend and integrate the available code
to achieve the desired results. The main implemented
aspects can be summarized as follows:

∙ The use of the libraries SPECTRAL.IO.ENVI and
RASTERIO allowed the management of hyperspectral
images in .bsq/.hdr format and the georefer-
encing of the classification maps returned by the
network;

∙ specific functions were implemented to work on subsets
of pixels (rectangular matrices of variable size), accord-
ing to the specific sampling needs of the ground truth,
stored in .h5 format (using the H5PY library), and then
combined in different ways, according to the different
needs;

∙ processing functions for image strip bands (250/1,000
rows of pixels, depending on the type of strip) were
implemented to avoid overloading memory and to com-
pute multiple models in the shortest possible time,
reducing the number of image-loading operations.

4.2 The second step: From raster
classification to building roofings

Due to the need of identifying asbestos roofings based
on raster results obtained from different processed mod-
els, the second step of the proposed methodology focuses
on the considered buildings and allows the transition
from raster maps obtained during the first phase to a
final vector result that identifies buildings with asbestos
roofings.
The second phase of processing is therefore focused on

the vector layer of buildings and consists of the following
steps:

1. Zonal analysis: For each prediction, vector files are
created for the entire municipality under examina-
tion and there is the computation of the average
asbestos/nonasbestos class value (1/0) of the pixels
contained in each individual building.

2. Combination of different zonal analyses: A vector file
is created for the entire municipality, and it is derived
from joining the various files obtained in the previous
step and computing the average of the averages.

3. Automatic classification: The previous file is extended
with an attribute of automatic classification into
three classes (nonasbestos, unclear/doubtful, asbestos),
whose value is determined based on thresholds defined
on the averages of each individual prediction and on the
average of the averages.

4. Manual refinement in postprocessing: The results of
automatic classification are checked, allowing to pos-
sibly modify the classification.

The automatable steps of the second phase of the
methodology have also been implemented in Python,
working in this case in the QGIS environment (https://
www.qgis.org).
The last point, which is not automatable, in this phase

makes use of the GIS tools leveraging available maps,
and, in particular, of the true orthophoto available at the
regional level with a resolution of 10 cm (related to a sur-
vey in the years 2017–2020), and of the potential availability
of images from Google StreetView. With this processing,
the aim is to verify unclear/doubtful cases and to obtain a
classification of coverings at the vector level that includes
the following classes: nonasbestos, likely nonasbestos,
unclear/doubtful, likely asbestos, and asbestos.

5 EXPERIMENTS

As mentioned before, the experiments focused on the
area covered by the “Lotto Unico,” which encompasses
over 95% of the regional territory and includes data
related to asbestos detection previously acquired in
24 municipalities.
Four municipalities (yellow ones in the left map in

Figure 1c) have been involved during this experimental
phase. They all are characterized by rather different
features:
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8 GUBIANI et al.

TABLE 2 Properties of municipalities.

Municipalities Area (𝐦𝟐)
Buildings
(𝐦𝟐)

Density
(%)

Andreis 26,880,823 47,941 0.18
Lignano Sabbiadoro 15,623,500 1,339,710 8.57
Staranzano 18,464,945 390,409 2.11
Torviscosa 48,152,322 460,622 0.95

109,121,590 2,238,682 2.05

∙ Andreis (detailed map in the upper right in Figure 1c)
is a mountain municipality in the west area of the FVG
region: it is a small town surrounded by an extended area
without buildings;

∙ Lignano Sabbiadoro (detailed map in the bottom
right in Figure 1c) is a tourist municipality in the
extreme southwest of the region, located on a hor-
izontal peninsula facing south on the upper Adri-
atic Sea and north on the Marano lagoon. It does
not have a very large area but has a high den-
sity of buildings with respect to other considered
municipalities;

∙ Torviscosa is a municipality located at the center of the
lower Friulian plain;

∙ Staranzano is a municipality located in the southeast
zone of the region, at the right of the Isonzo rivermouth,
overlooking the sea, but full of green areas.

The dimensions of the four municipalities in terms of
territorial and built area is summarized in the left columns
of Table 2.
All the experiments have been performed on a machine

with the following configuration, running the Linux
Ubuntu 22.04 operating system:

∙ Dual Xeon 2678 V3 CPUs, with a total number of 24
cores/48 threads,

∙ 128 GB RAM,
∙ 1 TB SSD storage,
∙ three dedicated graphics cards Nvidia GTX 1080 Ti with
11 GB RAM each.

Due to the large amount of images to handle, a
workspace on a 10 TB network drive was also used.

5.1 Classes and ground truth
assessment

The first experiments were carried out with a classification
scheme similar to that proposed in Kakarla (2020). There
was not a comprehensive class set, but the activity was
focused on distinguishing the presence of asbestos from

different types of roofings. Thus, a classification with six
classes was initially defined, including

1. asbestos,
2. vegetation (grasslands, trees, forests, fields, areas with

vegetation, etc.),
3. asphalt (anthropogenic elements outside buildings,

such as roads, sidewalks, parking lots, etc.),
4. red coverings (red roofings),
5. non-red roofings (gray and other roofings, no red or

asbestos),
6. no-data, considering the presence of no-data pixels as

visible in Figure 1b, each image includes two exter-
nal zones where data are not available and to combine
different images these areas have to be recognized.)

As shown in Figure 3a,b, for the assessment of the
ground truth, rectangular subareas were identified
within the available strips (at least one for each of the
24 municipalities for which we had data from the previ-
ous identification of asbestos roofings), identifying areas
where asbestoswas present in higher quantities. Each indi-
vidual asbestos polygon, excluding uncertain cases, was
verified and manually adjusted to avoid including “dirty”
pixels in the training dataset by checking hyperspectral
images displayed through RGB bands. We remark that the
selection and analysis of the training and test areas was
made on all the municipalities where a greater presence
of asbestos was highlighted (examples in Figure 3a).
Notice that an automatic generation of the ground truth

assessment was not possible for several reasons. First, the
hyperspectral images are not truly orthorectified; there-
fore, they may present significant deviations from the
polygons corresponding to asbestos roofings (especially
when they are at a certain height). Additionally, the pres-
ence of vegetation or different artifacts covering the roofs,
even partially, would have “contaminated” the training set.
Similarly, polygons corresponding to the other consid-

ered classes were in turn identified. The vector data of the
ground truth in different areaswas rasterized and prepared
for subsequent use in the training phase.
The classification actually used for the final process-

ing was not the one described so far, but an automatic
reorganization into only three classes:

1. asbestos;
2. non-asbestos (class including all extra-asbestos);
3. no-data.

However, the classification into six classes was crucial
for the control and cleaning of the assessment of the
ground truth. Indeed, through the analysis of spectral
signatures for each class, a series of pixels presenting
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GUBIANI et al. 9

F IGURE 3 Training and test.

problems (burned pixels on some bands) or not respecting
the spectral signature associated with the corresponding
class were identified and excluded from the ground truth.
The overall ground truth assessed upon the 24 munici-

palities is given by a set of 7,148,809 pixels (+ no-data) of
which 614,924 pixels belong to the asbestos class.

5.2 Neural network and classification
maps

For the processing of the first phase of the proposed
methodology, several trainings and tests were carried
out on different subsets of the ground truth previously
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10 GUBIANI et al.

assessed for the 24 municipalities for which there was
available asbestos data. In any case, the ground truth data
were split into a training set and a test set with a ratio
of 70/30.

5.2.1 Training and test of the neural network

The base neural network, as implemented in Kakarla
(2020), has 12 fully connected or dense layers, two batch
normalization layers, and two dropout layers. In our case,
working with 186 bands, there is a total number of 100,431
parameters (100,059 parameters are trainable).
The model uses rectified linear unit as activation func-

tion, categorical cross entropy as loss function, and the
chosen optimizer is the Adam optimization algorithm.
Indeed, the latter is known to have many benefits, for
example, computational efficiency and being well suited
for problems with many data and/or parameters (as in the
case of hyperspectral images). Accuracy is used as a met-
ric, and there are two callbacks for early stopping (when
there is no improvement), and for savingmodel/weights at
some interval, in order to continue the training later from
the saved state.
The trainings have shown good levels of accuracy

already from the early epochs of execution. For instance,
the first epoch of training in the case of the three classes on
the data of the 24 municipalities highlighted the following
results:

Train: loss: 0.0558 - accuracy: 0.9800 and
Validation: loss: 0.0419 - accuracy: 0.9841.

Such results improved during the next 15 epochs, as
depicted in Figure 3c, yielding the following:

Train: loss: 0.2221 - accuracy: 0.9841 and
Validation: loss: 0.0300 - accuracy: 0.9878.

In the training phase, a high number of epochs was set
but never reached due to the implementation of “early
stopping” (set to 15 epochs), which stops the training
after a certain number of epochs without improvements.
This indicates how the abundance of information available
through the 186 available bands allows for a good discrim-
ination among the considered classes. Notice that this also
implies that the training loss values oscillate a lot even
when themodel converges to high values of accuracy, since
the network must adapt its weights to new inputs (never
seen before). Hence, if such inputs are “similar” to previ-
ous ones the train loss will be low, otherwise there can be
even high spikes like in the mentioned figure (loss: blue
curve).

The initial tests, useful for understanding the neural
network’s functioning on the examined data, focused on
the area of the Municipalities of Udine and San Giovanni
al Natisone. Subsequently, they expanded to the areas of
the Municipalities of Azzano Decimo and Fiume Veneto
to verify the combination of ground truths derived from
flights carried out on different dates and over more dis-
tant territories (over 50 km). The training dataset was then
gradually expanded until reaching the entire ground truth
created for the 24 available municipalities.
It is worth noticing that the original algorithm, which

inspired this work, was applied to a single hyperspec-
tral image of relatively small dimensions (less than 0.5
km

2), and the data were “uniform” within it. Conversely,
in the present case, the analyses covered a much larger
surface area, with significant territorial differences from
one area to another. These differences were further high-
lighted by the fact that the flights were performed on
different dates, with different times, lighting conditions,
and weather conditions.
From the several tests carried out, it became evident

that extending the training set generally led to a slight
reduction in the network’s performance, both in terms of
validation and particularly at the testing level. In any case,
the models trained on the 24 municipalities showed an
overall accuracy on validation of 97–98%. It decreases dur-
ing the tests but anyway, in particular for the three-class
model, it remains over 92% (as visible in Figure 3d). Fur-
thermore, upon analyzing the data related to the asbestos
class (our main interest), such as the general accuracy
parameter, even the values of precision, recall, andF1-score
appear to have better values in the case of the three-class
model (Figure 3d right side), compared to the six-class
model4 (Figure 3d left side). This observation was made
across various training tests, and therefore, the subse-
quent processing was focused on the three-class models.
The six-class classification was eventually used to verify
specific situations.
In addition, another ground truth of smaller dimension

was created. Although it referred to the same 24 munici-
palities for which the previous asbestos identification was
known, it was acquired on different areas with respect
to those used previously. The tests carried out on this
ground truth (on which pixel cleaning was not performed,
but issues were present in a very limited number) yielded
generally slightly lower results with respect to those on
validation on the previous data, varying depending on the
training dataset.
As expected, the closer the training dataset is to these

data, the better the results. For this reason, a methodology

4 This observation occurred after the identification and cleaning of pixels
that showed issues within the ground truth.
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GUBIANI et al. 11

F IGURE 4 Comparison between three models: an example about the classification maps related to an industrial area (left) with some
details combined with the vector layer (right).

based on the use of different training/models was
developed, one of which was specifically chosen with
characteristics closest to the municipality under exami-
nation: same flights, same days, or at least with similar
territorial characteristics.
In order to process eachmunicipality in a thoroughway,

the network was trained on different datasets, yielding
three different models, according to the selection made on
the training sets:

∙ total training (data from 24 municipalities);
∙ partial training (data from four municipalities, where
preliminary tests were carried out and on which good
results were verified);

∙ adapted training (data from municipalities close to or
“similar to” the municipality under investigation).

For instance, the example area shown in Figure 4 refers
to the case of the Municipality of Torviscosa. In this case,
the adapted model was created starting from the ground
truth data available for the Municipalities of Tavagnacco,
Udine, and Pradamano with whom it shared flights and
whose strips cover a large part of the municipal terri-
tory (same days, fairly uniform time slots, and predictably
similar weather conditions).
As it is shown in Figure 4, in the upper part of the image,

the classifications obtained starting from the three differ-
ent training sessions are in general quite similar to each
other (the same consideration also applies to the other
municipalities considered, albeit with minor differences
from case to case). Starting from these results, a map is cre-
ated, assigning colors to the pixels based on the number of
models that identify each specific pixel as asbestos:

0. no model identifies the pixel as asbestos (white);
1. only one of the models identifies the pixel as asbestos
(yellow);

2. two out of three models identify the pixel as asbestos
(orange);

3. all three models identify the pixel as asbestos (red).

As visible in the bottom part of Figure 4, there is a the
prevalence of white pixels, that is, identified as asbestos
by none of the models, and red pixels, that is identified as
asbestos by all three models.

5.3 From raster to buildings

Zonal analysis is a classic operation of the GIS environ-
ment: it allows one to calculate the statistics of a raster
layer for each element of an overlapping polygonal vec-
tor layer. In our specific case, this allowed us to connect
the individual classificationmaps to the polygons available
within the buildings layer at our disposal.
In particular, during the experiments the calculation

of the average of the values of the asbestos/nonasbestos
(Boolean map) has been carried out within each individ-
ual building, in relation to each individual classification.
The averages obviously take a value between 0 and 1,
where 0 indicates that no pixel belonging to the geometry
was recognized as asbestos and 1 indicates that all pix-
els were recognized as asbestos. For intermediate values,
however, the following occurs: the closer the value is to
0, the less likely the presence of asbestos is, the closer the
value is to 1, the more likely the presence of asbestos is.
The result of this processing is available in a vector layer
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12 GUBIANI et al.

where each building has associated the average of each sin-
gle model and their average as visible in some examples in
Figure 4.
In particular, in the example on the right-top with a sin-

gle model, three buildings are visible and one can see how
the two buildings on the left, almost completely covered by
pixels recognized as asbestos (blue pixels), have associated
an average value close to 1, while the building on the right
with no pixels recognized as asbestos has an average of 0.
In the examples on the right-bottom, it is instead visible
how the combination of the different classifications has a
different effect on the averages.
In all the cases shown in the right examples in Figure 4,

it is also possible to see how the non-true orthorectifica-
tion of the images leads to a certain deviation between
the polygons of the building and the corresponding pix-
els in the classification which obviously has different
effects depending on the situation. This highlights how
the processing must take into account a certain level of
imprecision in order to identify buildings with asbestos
roofing. These were fundamental observations towards the
definition of thresholds able to automatically produce an
automatic classification between buildings with asbestos
or non-asbestos roofing.
On the basis of checks and tests on statistical data for

single and combined classification, two conditions with
respective thresholds were identified which made it pos-
sible to automatically distinguish in a first step between
buildings with asbestos and non-asbestos roofs:

∙ non-asbestos roofings have a relatively low asbestos
pixel count:
- single models: mean < 0.1;
- combination of models: mean < 0.33;

∙ asbestos roofings have a relatively high asbestos pixel
count:
- single models: mean > 0.6;
- combination of models: mean > 0.83.

The automatic classification thus defined has already
made it possible to obtain a good discrimination between
asbestos situations (from 1% to 8% of buildings depending
on the municipality considered) and non-asbestos situ-
ations (from 84% to 96% of buildings). Only a portion
ranging from 3% to 10% of the buildings considered, based
on themunicipality analyzed, remained outside the condi-
tions previously described and was assessed as a doubtful
case. This fact reduces more than 10 times the effort/time
of a complete check on all buildings.
Starting from these doubtful cases, but carrying out

more general checks on the different situations, a series
of inspections was carried out with the support of GIS
tools through the use of hyperspectral images, regional

RGB orthophotos and, where possible, with verification on
Google StreetView images.
This “manual” analysis made it possible to confirm

many of the roofings identified as asbestos (an example in
Figure 5a) and not asbestos. It also highlighted particular
situations that requiredmanual interventions on the data:

∙ roofs partially covered by vegetation (examples in
Figure 5a,b): due to the part hidden by vegetation it
was not possible to correctly classify the asbestos auto-
matically. However, if a part of the coverage is visible
and identified by the classification, through a visual
check on the map, manual intervention can correct the
classification (Figure 5b);

∙ buildings with different roofs in which one part is
clearly identified as asbestos and one is not (examples
in Figure 5a,b): the building is represented in the vec-
tor layer as a single polygon but has different roofs
or appears to be an aggregate of different buildings.
Given the clear distinction at the classification map
level, a visual check on the map allows one to ver-
ify these situations. In this case, a partitioning of the
original polygon is required for correct classification
(Figure 5b);

∙ false positives (an example in Figure 5b): in some cases,
the spectral signature of asbestos can be confused with
that of spectrally similar materials (such as the case of
fiber cement) and only an in-depth analysis in the field
by experts in the sector can allow the resolution of such
situations;

∙ in some cases, asbestos roofs have already been removed
and are therefore no longer detectable. In these cases,
if the building no longer exists, it is excluded from the
results.

5.4 Results

Table 3 shows the results obtained from the processing.
Assuming that the role of the operator can influence the
results and that the final classification requires a more
detailed investigation on the territory by experts, the final
check using GIS tools allowed us to carry out a first level
of verification of the results that can be defined positive.
Although it was not possible to verify several situations

because they were not visible or could not be assessed by
eye, in general 45% of the doubts and unclear situations
could be resolved and some other cases could be confirmed
or modified.
Comparing the accuracy parameters of the different

trained models, the identified asbestos seems to be higher
than the real asbestos roofs. However, this is not a problem
in our context, since the proposed methodology allows to
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GUBIANI et al. 13

F IGURE 5 Examples of roofs partially covered by vegetation.

TABLE 3 Summary of results.

Automatic classification Modifications (%) Final classification
Classes Roofs Andreis Lignano S. Staranzano Torviscosa Total Roofs Classes
Asbestos 685 0 34 12 3 20 541 Asbestos

145 Likely asbestos
Doubt 1,486 33 50 40 29 45 874 Doubt
No asbestos 15,025 1 2 30 26 10 590 Unlikely asbestos

15,098 No asbestos
17,196 2 6 5 5 6 17,248

drastically reduce the number of buildings/roofs to check,
in order to focus the investigations on the whole territory.
With our experiment, starting from a set of 17,196 buildings
and focusing on roofs classified as asbestos, likely asbestos
or doubt, the initial set can be reduced to 2171 buildings

(less than 13%) automatically and to 1560 buildings (about
9%) after the manual check on the map.
On the other side, even if only part of the roof is visible

in the hyperspectral images, the manual check on the
map can also identify specific situations where vegetation
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14 GUBIANI et al.

covers roofs or errors in the building layer. In addition to
the doubtful cases, some of the above-mentioned cases
(with vegetation coverings) can be identified in buildings
that are automatically identified as no-asbestos and,
therefore, changed to doubtful or probable asbestos.
Moreover, the municipality of Lignano Sabbiadoro

shows the highest number of manual modifications
on roofs automatically identified as asbestos (34%) and
doubtful (50%). This may be due to three main aspects: (i)
the high presence of buildings (generally also of a certain
age) compared to the other municipalities considered,
(ii) the large pine forest covering many buildings, and,
probably, (iii) the effect of sand and pine needles spreading
everywhere and interfering with the values detected by
the hyperspectral instrument.

6 CONCLUSION

Our work had the goal of experimenting the use of a DNN
for the classification of hyperspectral images, in order to
identify and map the asbestos-cement roofings existing in
some municipalities of the Region FVG in Italy.
Starting from a neural network used for other purposes

and made available by Kakarla (2020), the appropriate
code additions were carried out to adapt the algorithm to
the available hyperspectral data. Thanks to the help of spe-
cific open-source libraries, it was possible to manage the
network until acquiring a certain level of knowledge of the
results proposed by the output predictions. An engineer-
ing of the image processing pipeline was applied: starting
from the hyperspectral raster data and the analysis of the
spectral signatures, then passing through the manual clas-
sification and training phase, up to the execution of the
network prediction itself, and to the vectorization and
postprocessing phases.
The main novelty is the proposed methodology which

leverages on threemodels to carry out the classification (in
the specific case, this amounts to detect asbestos roofings).
In particular, the technique of combining a model trained
on a partial initial dataset (with good verified results) with
a model trained on the whole dataset, and an adaptive
model related to areas similar to that under investigation
allowed an accurate classification of a wide territory with
different features. According to our knowledge, there are
not so widespread experiments in the scientific literature
about HSI datasets.
Indeed, comparing the results depicted in Figure 3d

with the other works in the literature about asbestos
detection from airborne HSI datasets (see Section 2), the
only study which is comparable to ours, in terms of the
extension and variety of the territory considered, is Frassy
et al. (2014), which covers about one half of geographical
surface with respect to our case (3263 km2 vs. 7924 km2).

Also the difference in accuracy is noteworthy (80% vs.
93% in our worst case with six classes and 98% with three
classes). All the other proposals, besides consideringmuch
smaller areas, show lower performances: (Cilia et al., 2015
with an average accuracy of 86–89%, Fiumi et al., 2012
with an average accuracy of 89.1%, Fiumi et al., 2014 with
an average accuracy of 75%, Szabó et al., 2014 with an
accuracy of 85%, and Hamedianfar et al., 2014 with an
overall accuracy of 93.42% and 88.36%).
In particular, the proposed methodology, thanks to the

information assets of the hyperspectral data and the avail-
ability of the metadata about the chosen 24municipalities,
allowed a significant saving of both money and time,
compared to the first survey carried out with the pre-
cise integration supplied by a drone. Indeed, while the
latter has been certainly more specific and detailed, it
also resulted in much more significant logistical costs and
less coverage.
The results obtained for the pilot municipalities are

a demonstration of how the methodology can be used
on a regional scale. For this reason, as future work, the
proposed procedure adopted for the search for asbestos
roofings will be extended to the other municipalities in the
region with a further economy of scale.
Since the wide regional territory and its difference, the

idea is to periodically extend the ground truthwith verified
data of the new processed municipalities in order to better
adapt training dataset for the third model.
Since one of the experiments has been carried out with

six classes (see Section 5.2.1), it is worth noticing that
the proposed architecture may be applied to HSI datasets
in other scenarios (not only for binary cases of pres-
ence/absence of a material), for example, to detect other
materials and/or to segment a given geographical area
according to its composition in terms of vegetation, water,
roads etc. (think, e.g., of construction and/or archaeolog-
ical sites). Moreover, it could be interesting to study how
to combine the proposed methodology with other models
and datasets accounting how people move across points
of interests in geographical areas like, for example, Pavan
et al. (2017). Thus, local authorities could use the proposed
methods to check if crowded places are at risk because of
the presence of dangerous materials.
From Section 2, it clearly appears that the state-of-art

method of asbestos detection (in particular for airborne
HSI) is not very up to date with recent developments in
machine and deep learning, still relying on classic algo-
rithms such as SVM. Our approach goes in the direction
of proposing something new, by combining three mod-
els out of a training on a large dataset, in the spirit of
dynamic ensemble methods. Indeed, the choice of the
third model varies from instance to instance, according
to the features of the area to be classified. Of course, as
explained in Section 4, the idea is based upon the dataset
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GUBIANI et al. 15

exploration by GIS-domain experts, previous experiments,
and repeated trials and errors. It would be interesting
as a future research direction to apply novel dynamic
ensemble learning algorithms like, for example, the one
proposed in Alam et al. (2020), which has already been
successfully applied in medical real-world classification
problems. Moreover, due to the high dimensionality of
HSI, a major improvement could be achieved by apply-
ing algorithms and techniques for automatic discovering
and selection of feature spaces (Rafiei & Adeli, 2017), and
for self-supervised learning (Rafiei et al., 2024). Finally,
finite element machine approaches in the line of Pereira
et al. (2020) could be explored in order to allow for
real-time implementations.
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