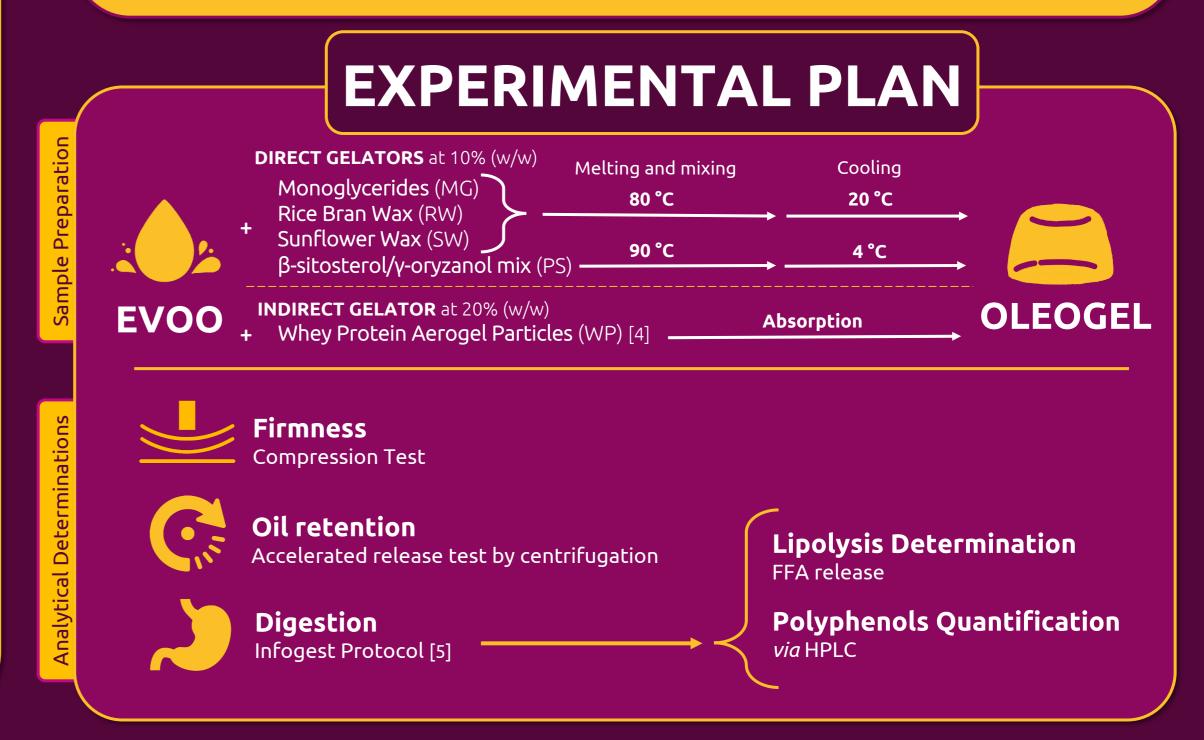


OIL STRUCTURING FOR IMPROVING HEALTHY AND SUSTAINABLE DIETS: The Case Study Of Extra Virgin Olive Oil Oleogelation

Francesco Ciuffarin (ciuffarin.francesco@spes.uniud.it) Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy Tutor: Sonia Calligaris

BACKGROUND

The development of a SUSTAINABLE FOOD SYSTEM to favor the TRANSITION TO HEALTHIER AND MORE SUSTAINABLE DIETS is one of the major challenges of the modern food industry [1].



Oleogelation could be a strategy to face the challenges associated with fat consumption. In fact, this approach allows to convert liquid oils into solid-like materials. This could **ENHANCES THE NUTRITIONAL**

AIM


To **GEL EVOO** from different gelators and understand oleogels impact on the **LIPOLYSIS EXTENT** and **POLYPHENOLS' BIOACCESSIBILITY** upon *in vitro* gastrointestinal digestion

PROFILE of lipid-containing food **BY LOWERING SATURATED FAT** levels while maintaining the same technological functionalities [2].

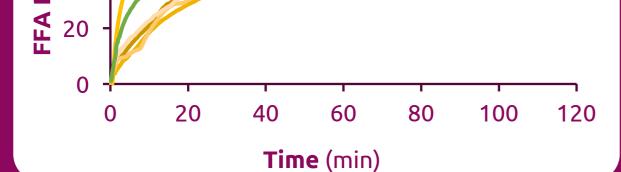
In this context, the use of extra virgin olive oil (EVOO) as a target oil to be gelled would be particularly interesting due to its WELL-RECOGNIZED HEALTH-PROMOTING CAPACITY [3].

RESULTS & DISCUSSION

All the considered gelators presented good performances in structuring EVOO (Figure 1 and Table 1). However, as expected based on the literature, the diversity in network nano- and micro-structure led to a different macrostructure. PS formed a tubular-like network with the highest firmness. Among crystalline network, SW was the strongest gel followed by RW and MG. The WP-based gel, made of a proteins network, showed low firmness. Table 1. Oil retention and firmness of MG-, RW-, SW-,PS-, WP-based oleogels.

Sample	Oil retention (%)	Firmness (g)
MG	99.97 ± 0.01 ^a	33.6 ± 2.5 ^e
RW	100.0 ± 0.00 ^a	115.0 ± 3.0 ^d
SW	99.97 ± 0.03 ^a	532.7 ± 23.8 ^b
PS	99.96 ± 0.01 ^a	2534.0 ± 71.6 ^a
WP	100.0 ± 0.00^{-a}	96.7 ± 6.8 ^c

Superscript letters (a–e) indicate significant differences among oleogels (p < 0.05).



The oil lipolysis kinetics was affected by oleogelation. Direct gelators reduced lipolysis probably by acting as a physical barrier to lipase. On the other side, the oil entrapped in the WP network showed an increased digestibility considered a consequence of the destructuring behavior of

Samples	Hydroxytyrosol (%)	Tyrosol (%)
MG	7.0 ± 1.75 ^b	26.1 ± 0.97 ^{bc}
RW	5.4 ± 0.49 ^b	22.8 ± 1.77 ^c
SW	5.3 ± 0.66 ^b	31.6 ± 3.25 b
PS	1.2 ± 0.08 c	25.6 ± 1.81 ^c
WP	17.0 ± 4.50 $^{\mathrm{a}}$	52.3 ± 1.96 $^{\text{a}}$
Oil	рd	48 1 + 3 38 ª

Digestibility

Oleogel

Figure 2. FFA release of MG-, RW-, SW-, PS-, WP-based oleogels and unstructured EVOO upon *in vitro* digestion.

proteins in gastrointestinal conditions (Figure 2).

Even polyphenol bioaccessibility was impacted

11.0. 48.1 ± 3.38

Superscript letters (a–c) indicate significant differences among oleogels (*p* < 0.05). "n.d." means "not detected".

by oleogelation. PS, MG, and waxes-based oleogels showed similar polyphenol bioaccessibility, in any case, lower than unstructured oil. Differently, WP-based oleogel demonstrated an increase in bioaccessibility (Table 2). Being polyphenol surface-active molecules, different interactions among polyphenols and gelators can be hypothesized in affecting gastrointestinal fate.

CONCLUSIONS

The entrapment of EVOO into oleogel with different network structures allowed the **modulation** of **FFA release** and **polyphenol bioaccessibility** during *in vitro* digestion. Oleogels can thus represent a promising strategy to tailor lipid digestibility and polyphenols absorption.

REFERENCES

- [1] European Commission. *Farm to Fork Strategy*.; 2020.
- [2] Marangoni AG, Garti N. *Edible Oleogels: Structure and Health Implications*. Elsevier Inc.; 2011.
- [3] A. Romani et al., "Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of olea europaea L.," Nutrients, vol. 11, no. 8, 2019.
- [4] Plazzotta, S., Calligaris, S., & Manzocco, L. (2020). Structural characterization of oleogels from whey protein aerogel particles. Food Research International, 132, 109099.
- [5] Brodkorb A, Egger L, Alminger M, et al. *INFOGEST static in vitro simulation of gastrointestinal food digestion*. Nature Protocols. 2019;14(4):991-1014.

26th Workshop on the Developments in the Italian Ph.D. Research on Food Science Technology and Biotechnology

