
27 December 2024

Università degli studi di Udine

Original

Masked Transformer for Image Anomaly Localization

Publisher:

Published
DOI:10.1142/S0129065722500307

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1230667 since 2024-12-11T10:32:51Z



2nd Reading

June 15, 2022 18:48 2250030

International Journal of Neural Systems (2022) 2250030 (16 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129065722500307

Masked Transformer for Image Anomaly Localization

Axel De Nardin∗, Pankaj Mishra†, Gian Luca Foresti‡
and Claudio Piciarelli§

Department of Mathematics
Computer Science and Physics
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Image anomaly detection consists in detecting images or image portions that are visually different from
the majority of the samples in a dataset. The task is of practical importance for various real-life applica-
tions like biomedical image analysis, visual inspection in industrial production, banking, traffic manage-
ment, etc. Most of the current deep learning approaches rely on image reconstruction: the input image
is projected in some latent space and then reconstructed, assuming that the network (mostly trained on
normal data) will not be able to reconstruct the anomalous portions. However, this assumption does not
always hold. We thus propose a new model based on the Vision Transformer architecture with patch
masking: the input image is split in several patches, and each patch is reconstructed only from the sur-
rounding data, thus ignoring the potentially anomalous information contained in the patch itself. We
then show that multi-resolution patches and their collective embeddings provide a large improvement in
the model’s performance compared to the exclusive use of the traditional square patches. The proposed
model has been tested on popular anomaly detection datasets such as MVTec and head CT and achieved
good results when compared to other state-of-the-art approaches.

Keywords: Anomaly detection; vision transformer; image inpainting; self-supervised learning.

1. Introduction

The ability to identify anomalous instances in large
sets of data is of great importance in many differ-
ent fields of application. One typical example is rep-
resented by the need to detect and discard faulty
products in industrial production lines.1–3 The abil-
ity to do so in an automated and effective way rep-
resents a very important problem for manufacturing
companies. Another area where this type of problem
is of even greater importance is the one represented
by the analysis of biomedical data4–7 in which the

early detection of anomalies can make the difference
between life and death for a patient.

While for humans dealing with this kind of prob-
lem is a rather easy task, we cannot say the same
for machines. One main reason that makes it a dif-
ficult problem to address is the fact that, while it is
essentially a classification problem, classical classi-
fication approaches cannot be used because of the
nature of the data analyzed. When dealing with
anomaly detection problems, the data is often highly
unbalanced in favor of “normal” instances, while we

§Corresponding author.
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have very few examples representing the “abnormal”
ones.8 When dealing with images, we also have the
added problem of the high dimensionality of the
data which often leads to more classical methods for
anomaly detection, such as clustering techniques, to
achieve poor performance. For this reason, many of
the most recent approaches for image anomaly detec-
tion adopt a deep neural network model to map the
inputs into a latent feature space to which classi-
cal approaches can be applied more effectively or, in
most cases, which can be used to obtain an image
reconstruction which is then compared to the origi-
nal one to perform a self-supervised kind of training.
The idea behind these approaches is that, since the
model is usually trained only on the normal images,
there should be a larger difference between the recon-
structed and the original image for the anomalous
instances, and therefore we should be able to iden-
tify them effectively during the testing process.

Most of the models used in recent years to tackle
the anomaly detection problem make use of Convo-
lutional layers which exploit the typical characteris-
tics of images by detecting progressively more com-
plex features starting from the most basic ones (e.g.
edges). In particular, there are two kinds of architec-
tures, with their respective variations, which gained
a lot of popularity for their effectiveness in dealing
with this kind of problem, which are Autoencoders9

and Generative Adversarial Networks (GANs).10

One problem with classical image reconstruction
approaches though is that they use the information
extracted from the whole image to obtain the out-
put image, which can lead the model to be able to
reconstruct also the anomalies and therefore to not
be able to identify them.

In this paper, we propose a new approach a
novel method for image Anomaly Detection, called
Masked Transformer for image Anomaly Localiza-
tion (MeTAL), that adopts as its backbone the
recently presented Vision Transformer (ViT) archi-
tecture,11 which instead of leveraging the prior
knowledge granted by the use of convolutional layers,
is characterized by the adoption of a masked multi-
head self-attention mechanism that allows the model
to learn a relationship between different patches of
the input images. In particular, with this work, we
introduce two main novelties to the original architec-
ture. The first one regards a new masking component
we added to the multi-head self attention module

of the ViT encoder which allows us to reconstruct
each patch of the image without using any informa-
tion coming from the patch itself but using only the
information extracted from the surrounding patches
based on the importance given to each of them by
the attention module. The second idea we present
regards instead the way patches are generated from
the original image. In particular, instead of relying
on just the square patches as in the original work
presenting ViT, we introduce the idea of calculating
attention between patches of different shapes, which
are then combined to obtain the final image recon-
struction. As we will show in Sec. 4.4, both ideas
resulted in an improvement in performance over the
baseline model for the task at hand.

Furthermore, we show that the Vision Trans-
former architecture is a valid option for anomaly
detection problems and can be adopted effectively
even in scenarios where the amount of data available
is relatively small without necessarily relying on a
pre-training procedure.

The rest of this paper is organized as follows. In
Sec. 2, we give an overview of other recent works
related to the Anomaly detection problem, and we
give a brief introduction to the Vision Transformer
architecture. Then in Sec. 3, a detailed overview of
the training process is given together with a thor-
ough description of the proposed architecture. The
obtained results are outlined in Sec. 4, where a more
in-depth description of the adopted dataset is also
provided. Finally, in Sec. 5, we summarize our work
and discuss our ideas for future work.

2. Related Work

Many different approaches have been proposed to
tackle the problem of Unsupervised anomaly detec-
tion and segmentation on images, both involving tra-
ditional methods and, in recent years, deep neural
networks which, in most cases involve the use of con-
volutional modules.

In this section, we will focus mainly on the meth-
ods used as a reference by the authors of the MVTec
dataset12 which also represent our benchmark for
the present work. The first set of approaches used
for Unsupervised Anomaly Detection are based on
image reconstruction which is represented by GAN-
based models.13 A GAN network is typically com-
posed of two main components, a Generator which
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starting from a latent representation tries to gener-
ate images as close as possible to the one present in
the dataset used, and a Discriminator which receives
as input both the images generated by the Gener-
ator and the original ones and tries to discriminate
between the two. One way of performing anomaly
detection through the use of GANs is to train the
model only with “good” images so that during the
testing process it should be able to recognize them
but not the anomalous one and therefore it could be
used to discriminate between data with and without
anomalies. A different approach, which also allows
performing Anomaly localization, was proposed by
Schlegl et al. with the introduction of the AnoGAN
architecture.14 The main idea behind this model is
represented by the introduction of an additional com-
ponent which is trained to learn the inverse trans-
formation of the Generator in order to produce the
latent representation of the original images, which
can then be used to perform a reconstruction of
said images and thus compare it with the respec-
tive original ones. The main issue with this idea is
that the inversion process is very computationally
expensive. For this reason, another model, known as
faster AnoGAN (f-AnoGAN)15 was introduced. This
approach, compared to the original AnoGAN net-
work, provides much faster convergence thanks to the
introduction of an additional encoder network used
to learn a function that maps the original images
into their respective latent space, which makes the
expensive process of finding the inverse of the gener-
ator superfluous.

The second set of models, which also represents
the bulk of the current approaches for unsupervised
anomaly detection in images, is represented by Con-
volutional Autoencoders16 (AE). The idea behind
the AE architecture is to use an encoder to map
the inputs to a latent space that is much smaller
than the original one and which is then used as
the input for a Decoder which tries to learn how
to reconstruct the original input starting from this
latent representation. The assumption is that the
model should learn to map only the most important,
or more common, features regarding the instances
of the dataset leaving out every superfluous or spe-
cific information. Therefore, it should not be able to
properly reconstruct anomalies, leading to a greater
difference between input and reconstruction for this
class of instances compared to the normal ones. For

this reason, one possible approach to anomaly detec-
tion is to use an Autoencoder, usually trained only
on the normal instances, to obtain a latent repre-
sentation (which is typically much smaller than the
original one) for each element of the dataset and then
apply a clustering algorithm in order to discriminate
between the good and the anomalous ones. The limit
of this approach is that it cannot be used for the
localization of the anomalies but only for the detec-
tion. Many approaches based on AEs have been pro-
posed over time with different characteristics related
to their structure and type of loss functions adopted.
Recent works specifically focused on Anomaly Seg-
mentation17 in images showed the benefit of using a
structural similarity-based loss (e.g. SSIM) to assess
the quality of the reconstruction in substitution, or
addition, to the pixel-wise one (e.g. MSE) adopted
in the previous works.

Hereafter, we present some additional approaches
to anomaly segmentation developed in recent years.
Napoletano et al.18 proposed a region-based CNN
architecture, which we will refer to as CNN Fea-
ture Dictionary for consistency with the 2021 MVTec
paper which we used as a reference point for this
work, which extracts the training features from ran-
dom patches that are cropped out of the original
images and then uses a K-Means classifier to model
their distribution. Since this approach provides only
a binary decision on whether an image contains
a defect or not, the classification process must be
repeated multiple times over different patches of the
image in order to obtain a spatial anomaly map,
which becomes a very computationally expensive
process for large images. A different approach,19 uti-
lizing an ensemble of randomly initialized student
networks which are trained against regression tar-
gets obtained from a Teacher network pre-trained on
anomaly-free data (specifically ImageNet), has been
proposed under the name of student-teacher net-
work. The regions containing a defect are identified
thanks to the fact that the student networks are not
able to correctly predict the teacher’s descriptor for
them, thus yielding larger regression errors as well as
a higher predictive uncertainty.

Another interesting approach has been pre-
sented with the PIADE architecture20 which focuses
on multi-scale feature representation through the
adoption of a pre-trained ResNet-18 followed by
a set of pyramidal pooling layers which allow
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the image feature to be analyzed at different
magnifications.

Latent Space Autoregression (LSA)21 represents
yet another approach to AEs for anomaly detection,
combining the reconstruction loss obtained from a
deep convolutional Autoencoder to the maximiza-
tion of the likelihood of the latent space represen-
tation through an autoregressive density estimator
in order to minimize the entropy of these represen-
tations while preserving the quality of the recon-
structed images.

Variational AEs have also been adopted in works
regarding the anomaly segmentation problem such
as the work by Baur et al.22 which focused on
the detection of anomalous regions in Brain MR
Images, where they achieved state-of-the-art perfor-
mance even if not improving by a large margin over
regular CAEs.

Furthermore, there are also examples of frame-
works trying to combine both AEs and GANs to
exploit the potential of both architectures. One such
example is represented by OCGAN23 which com-
bines four main components in order to attempt to
force the model to reconstruct abnormal inputs as
normal ones. The four components are, namely, a
denoising AE, a Latent Discriminator that forces
each instance of the latent space to represent an
image from the corresponding class, a Visual discrim-
inator which is used to force each produced image to
come from the same image space distribution as the
given class and finally an Informative-negative Min-
ing component which is used to actively seek regions
of the latent space and force the generator to produce
good in-class images even for these instances.

There are also alternative approaches that com-
pletely bypass the reconstruction step of AEs and
focus more on the embedding component. One exam-
ple of this category of approaches is represented
by the Geometric Transformation framework (GT)24

which proposes a model trained as a multi-class clas-
sifier on different geometric transformations of the
normal images, with the idea that by learning to dis-
criminate between them the features learned by the
model will be very ones which allow to efficiently
detect novelties at test time.

A different idea is provided by Salehi et al.25

where they train a cloner network that learns to
mimic the comprehensive behavior of a larger pre-
trained expert network (e.g. a VGG-16 network), by

learning its knowledge regarding normal data and
discarding all superfluous filters. Anomaly detection
is then performed by analyzing the discrepancies in
behavior at test time.

Finally, we present VT-ADL26 which, to our
knowledge, is the only approach to this date focusing
on the use of the ViT architecture to tackle the image
anomaly detection problem. VT-ADL performs an
embedding of each patch obtained from the origi-
nal image into a latent space in which the positional
information of the patches is also considered. These
embeddings are then fed into two different modules,
which allow the model to perform the anomaly detec-
tion and localization tasks. The first of the two mod-
ules is represented by a convolutional decoder which
aims to reconstruct the original image starting from
the patch embeddings while the second one is a Gaus-
sian Mixture Density Network which is used to model
the distribution of the normal data in the latent
space in which the patches are embedded.

2.1. Vision transformers

The Vision Transformer is a deep neural net-
work architecture proposed by Dosovitskiy et al.11

as an alternative to convolutional-based architec-
tures for computer vision applications. This model
builds upon the idea of Self-Attention introduced in
the original Transformer paper,27 which has since
become the model of choice for Natural Language
Processing (NLP) Applications, replacing Recurrent
Neural Networks.

Architecture.

The Vision Transformer architecture (Fig. 1) dif-
fers from the original transformer one in the fact
that it only uses the encoder module leaving out
the Decoder. The encoder module, which takes as
its input a set of flattened representations of the dif-
ferent patches composing the image we are trying
to analyze, consists of a Stack of N identical Lay-
ers each containing two sub-layers: the first one is a
multi-head self-attention block while the second one
is a fully connected feed-forward layer. Around each
of the two blocks, a residual connection is applied,
followed by a layer normalization step. The role of
the encoder module in the ViT architecture is that of
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Fig. 1. Vision transformer architecture.a

learning a correlation between the different patches
composing an image. In order to preserve the spa-
tial information regarding the position of the differ-
ent patches, a positional embedding is added to the
patches representations before feeding them to the
ViT encoder. The positional embedding can be fixed
or learned alongside the other parameters.

Multi-head Attention.

The attention mechanism can be described as a func-
tion that maps triplets of vectors (represented by a
query (Q) and key-value (K, V ) pairs) to an out-
put which is computed as a weighted sum of the
values where the weights of each value are com-
puted based on a compatibility relationship between
a query and the corresponding key. In Vision Trans-
formers instead of performing the self-attention step
only once for each set of queries, key and value, we
project them in h different spaces via learned linear
projections. Attention is then calculated for each of
these different projections and the final outputs are
concatenated and projected again to obtain the final
values. The whole self attention calculation process

aImage taken from https://github.com/google-research/

vision transformer.

can be summarized by the following equation:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V. (1)

This approach allows the model to consider differ-
ent representation subspaces when calculating atten-
tion between different parts of the image.

3. Methods

3.1. Data preparation

As far as data preparation is concerned, we tried
to adopt a very minimal approach. The only way
the images themselves are pre-processed is through
a resizing process that brings them all to the same
final size, which is 128× 128 for all the classes. This
step was necessary in order to have a consistent num-
ber of patches when dividing the images in the next
steps and it was also helpful for reducing the overall
complexity of the model. The only other operation
applied to the dataset before training is a shuffling
of the instances in order to avoid any potential bias
for the model based on their order.

3.2. Model description

The model on which the work for this paper is based
on the classical Vision transformer architecture is
presented in the previous section.

In this work, however, we introduce two very
important changes the aforementioned architecture
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which we will describe in detail in the present sec-
tion. The first change is represented by a masking
process by which we try to remove the focus of each
patch of the original image on its own features, redi-
recting the attention to the remaining ones. While
the second idea we introduced regards the division of
the original images in multi-shaped and multi-scale
patches, as opposed to relying only on the traditional
square patches presented in the original work.

3.2.1. Masking process

While many of the image-reconstruction-based mod-
els for anomaly detection work on the entire image,
this approach leads to a very common problem.
Since the model uses all the information available
in the input it tends to learn how to reconstruct
correctly the anomalous images as well as the nor-
mal one which, of course, is not the desired behav-
ior since the goal is to discriminate between the two
classes. For this reason, the idea behind our pro-
posed method is to mask out some of the informa-
tion of the original image and use only the remaining
data to perform the reconstruction. This as we will

show, greatly reduces the problem mentioned in the
previous paragraph. More specifically, we decided to
work on patches representing nonoverlapping subsets
of the original image and to reconstruct each of these
patches based only on the content of the remain-
ing ones. For this purpose, we decided to adopt the
ViT architecture as a baseline for our model, which
as we have previously shown, allows finding a cor-
relation between different parts of an image by cal-
culating an attention score between its patches. In
its basic form, though, the ViT model provides for
each patch an embedding obtained by processing
the whole information of the original image, includ-
ing the patch itself. For this reason, we altered the
concept of self-attention introduced by the original
model in order to mask out this piece of information.
In order to do so, we added a masking module in the
multi-head self-attention component of the original
architecture which forces the dot product between
the key generated for each patch and the respective
query to be set to 0, as shown in Fig. 2. In other
words, after obtaining the n × n (where n is the
number of patches) matrix in which the cell in posi-
tion ij represents the correlation between patches

Fig. 2. Illustration of the masking process performed in the self-attention module of our model. In the example, we are
calculating the attention values for patch #1, therefore we set the dot product between Query #1 and Key #1 to 0 in
order to take into account only the attention values of the remaining patches.
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Fig. 3. Overview of our model in its basic form: the original image is split into patches of the same size which is used
as the input of a Multi-Layer Perceptron (MLP) in order to get the corresponding embedding. Then, to each patch
embedding, a position embedding is added. The resulting tensor is then processed through a masked ViT encoder module
in order to obtain the final embedding which will be used to reconstruct the respective patch by using an MLP Decoder.

Fig. 4. Overview of the proposed model using horizontal stripes only, in addition to the square patches.

i and j, we set its diagonal, representing the inter-
nal information of each patch, to 0 in order to use
only external information for its reconstruction. An
overview of the model described so farb is given in
Fig. 3.

3.2.2. Multi-shape patch structure

Another direction in which we expanded the original
idea of the ViT model regards the way the patches
fed to it are obtained from the original image. While
the use of square patches is a common choice, it is
ultimately an arbitrary one, for this reason, we intro-
duced in our model a set of patches with different
shapes, in particular horizontal and vertical stripes,
each of which was processed in the same way as the
square ones. The encodings of the different types of
patches have then been concatenated to form the

bSource code available at: https://git.dimi.uniud.it/axel.

denardin/metal.

final representation for each patch which has then
been used for its reconstruction. The reconstruction
process involved the use of a simple MLP Decoder
which worked on each patch embedding singularly
to reproduce the respective patch. This process has
been carried out by ensuring that the masking prop-
erty of the network was held true, to do so the con-
catenation between patches of different shapes has
been carried on based on their spatial location in
the original image so that each square patch was
fully contained in the respective horizontal (or verti-
cal) stripe patch. Furthermore, in order to keep the
final embedding size as small as possible, we split the
embedding of each stripe into p segments of the same
size, where p = N/K (with N =size of the image
and K =size of the square patches) is the number
of square patches contained in each stripe, and then
concatenated each of these segments to the embed-
ding of a different patch thus forcing the model to
learn specific information about each of them in dif-
ferent locations of the stripe embedding (Fig. 5). A
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Fig. 5. Illustration of the process carried out for the
concatenation of the patch embeddings. Two components
are concatenated together, the first one is the embedding
obtained trough the self attention process performed on
square patches, while the second one is a subset of the
embedding resulting from the self-attention process car-
ried out on strip patches.

high level overview of our final model is provided in
Fig. 4.

4. Evaluation

4.1. Datasets

To test our framework, we relied on two popular
datasets, namely, MVTec which is currently one of
the most popular and heterogeneous datasets in the
context of anomaly detection for industrial quality
control, and HeadCT which is instead a dataset rep-
resenting a collection of X-Ray head scans in which
the anomalies are represented by the presence of
hemorrhages. While the use of larger datasets is usu-
ally preferable, the options available in the context
of anomaly detection are still very limited. MVTec
already represents a big step forward when it comes
to size and heterogeneity of datasets in this area of
research compared to the ones that were available
before it and, combined with the HeadCT dataset,
we believe they provide and reliable option for the
evaluation of the proposed approach.

4.1.1. The MVTec dataset

The dataset we used for both the training and test-
ing of our model is the MVTec Anomaly Detec-
tion dataset,12 which has become a common bench-
mark in recent works on anomaly detection and
localization. This dataset consists of 3629 train-
ing images and 1725 testing images divided into
15 classes, five of which represent different textures

and the remaining ones covering a set of products
with heterogeneous characteristics, some of them
present a rigid structure, others are deformable or
present natural variations in their appearance. Fur-
thermore, the way in which the images are captured
is also heterogeneous, for some of the classes, all
the instances belonging to the present the product
in a roughly aligned fashion while for some oth-
ers a random rotation is introduced. Since grayscale

Fig. 6. Sample for each of the classes present in the
MVTec dataset. For each of them is provided a normal
instance (top row), an instance containing an anomaly
(middle row), and a zoomed view on the defect (bottom
row).
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Table 1. MVTec dataset details.

Train Test Test
Class (Normal) (Normal) (Anomaly) Image side

Textures Carpet 280 28 80 1024
Grid 264 21 57 1024
Leather 245 32 92 1024
Tile 230 33 84 1024
Wood 247 19 60 1024

Products Bottle 209 20 63 900
Cable 224 58 92 1024
Capsule 219 23 109 1000
Hazelnut 391 40 70 1024
Metal nut 220 22 93 700
Pill 267 26 141 800
Screw 320 41 119 1024
Toothbrush 60 12 30 1024
Transistor 213 60 40 1024
Zipper 240 32 119 1024

images are also a common occurrence in industrial
settings, three classes are made available only as
single-channel images. The testing set is also highly
heterogeneous in its composition, providing a wide
variety of anomalies. In total, 73 different types of
defects are provided, 5 for each category on mean. To
make the testing procedure possible, pixel-accurate
labels for all the defective regions in each image are
also provided by the authors. An overview of the dif-
ferent classes of textures and products in the dataset,
together with an anomalous example for each of them
is provided in Fig. 6. Furthermore, in Table 1, the
details regarding each class are reported. As we can
notice there are no anomalous instances in the train-
ing set, this is because usually the anomaly detection
models are trained only on normal data.

4.1.2. Head CT dataset

As a further benchmark for our model, we used
the Head CT dataset,28 which we selected because
of its medical nature and because of its relatively
small size, which allowed us to prove the potential
of the Vision Transformer architecture even in this
particularly challenging type of setting. The head
CT dataset is, in fact, composed of a total of 200
images 100 of which represent head CT of healthy
individuals while the remaining 100 represent scans
of patients with a head hemorrhage. For the pur-
pose of this study, we adopted 80 normal images for
the training of the model, while the remaining 120

Fig. 7. Samples of anomalous (top row) and normal
(bottom row) images from the Head CT dataset.

instances (20 normal, 100 with an hemorrhage) were
used in the testing process. Some samples represent-
ing normal and anomalous images from the dataset
are reported in Fig. 7.

4.2. Training setup

The training of the model was performed in a self-
supervised fashion, using only the normal images
of the dataset, over a maximum of 3000 epochs
with an early stop introduced after epoch 500 which
would trigger when the performance of the model
on the validation set did not improve in the pre-
vious 50 epochs. The validation set was composed
of 10% of the images present in the training data
of the datasets. While often larger percentages are
used, both MVTec and HeadCT are relatively small
datasets, which led us to prefer keeping as much data

2250030-9
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as possible for the training of the model. The total
loss function we used is obtained by summing the L1
loss and the negative of the SSIM Similarity,29 calcu-
lated between the original image given as input and
the reconstructed image returned as the output of
the model. A formal description of the two functions
is given hereafter as follows:

L1(X, X̂) =
h−1∑
i=0

w−1∑
j=0

|Xij − X̂ij |. (2)

LSSIM(X, X̂)

= − (2μXμX̂ + c1)(2σXX̂ + c2)
(μ2

X + μ2
X̂

+ c1)(σ2
X + σ2

X̂
+ c2)

. (3)

L(X, X̂) = L1(X, X̂) + LSSIM(X, X̂), (4)

where

• X is the original image
• X̂ is the reconstructed image
• h, w are the height and width of the image in pixel
• μx is mean value of image x
• σ2

x is variance of image x
• σxy is the covariance of x and y
• c1 = (k1L)2&c2 = (k2L)2 are two variables

used to stabilize the division with weak denomi-
nator

• L is the dynamic range of the pixel-values (usually
2#bitsperpixel − 1)

• k1&k2 are two constants set to 0.01 and 0.03,
respectively.

It is important to notice that the SSIM function rep-
resents a similarity measure defined in the interval
[−1, 1] where 1 means that the two images being
compared are identical. For this reason, to use it as
a loss function, it needs to be negated.

The use of an L1 loss instead of a more classical
MSE loss is motivated by the fact that it reduces
blurriness and color artifacts in the reconstructed
images.30

The hyperparameters adopted during the train-
ing process are shown in Table 2. We tried to keep the

structure of the TF encoders as shallow as possible
and actually noticed that increasing the number of
blocks improved the performance of the model only
marginally for the texture classes while for the prod-
uct classes did not help at all. A possible reason for
this is that by increasing the depth, the model would
become too complex for the relatively small dataset
we used for training and evaluation and thus would
lead to overfitting.

Another important hyperparameter that needs
to be selected when adopting a ViT architecture is
the size of the patches in which the image needs to
be divided. Following the original ViT paper with
adopted 16×16 patches as the baseline for our model,
whose empirical tests confirmed to be a proper value
for the task considered. In general, the idea to keep in
mind during patch size selection is that Vision Trans-
formers tend to work better with a high number of
sequences as their input, for this reason the size of the
patches needs to be kept relatively small compared to
the image size. Furthermore in the context of the pro-
posed approach, it was important not to use patches
that are too small, as this would make much more
frequent the presence of anomalies crossing multiple
patches, which are easier to reconstruct since they
can be inferred from the surroundings of the current
patch analyzed and, therefore are more difficult to
detect. The size of the short side of the stripes was
selected to match the square patches sizes, while the
long side is determined by the image size.

4.3. Metrics

For the evaluation of our model, since our objective
is to assess its anomaly segmentation capabilities,
we opted to use the Area Under the ROC Curve
(AUROC), which plots the False Positive Rate ver-
sus the True Positive Rate and is a very commonly
used metric for this type of problems. In order to
obtain consistent results with those presented by the
authors of the MVTec dataset, the values of the met-
ric are computed up to a False Positive Rate of 0.3.
The reason behind this choice is that thresholds that

Table 2. Model hyperparameters.

Classes LR Batch Img size Patch size Stripe size Emb. size #Heads #Blocks

Textures 1eˆ-4 64 128 × 128 16 × 16 128 × 16 128 4 2
Products 1eˆ-4 64 128 × 128 16 × 16 128 × 16 128 4 1
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Fig. 8. (Color online) Illustration of the thresholded
AUROC metric. The red line represents the selected
threshold while the yellow region is the area taken in
consideration for the evaluation of the model.

yield to a high FPR lead to meaningless segmenta-
tion results, especially for industrial scenarios where
such results would lead to wrongly rejecting prod-
ucts not presenting any defects. An illustration of
the thresholding process is provided in Fig. 8.

4.4. Results

All the values presented in this section for our mod-
els have been obtained by first generating the recon-
structed images, patch by patch, for each of the
instances in the test set of the MVTec dataset, each
of them has then been compared to the respective
original image by applying a pixel-wise MSE loss
(the deltas over the three channels of each pixel have
been summed), in order to obtain a heatmap that
highlighted the largest differences between the two,
thus revealing the potentially anomalous regions. A
Gaussian filter has also been applied to the map to
smooth out anomalous regions and reduce noise.

In Table 3, the results for our ablation study, in
which we compare the performance of our model
when applying the masking process and different
combinations of patch shapes, are reported. As
we can see, the approach, which relies solely on
the traditional square patches, is outperformed by
every other method using a combination of different
shapes. In particular, we show that the best perform-
ing approach is the one represented by a combination

of the square patches with horizontal, or vertical
stripes, which leads to an improvement in the pixel-
wise AUROC value of more than 4% compared to the
baseline approach. As we can see the orientation of
the stripes combined with the square patches did not
affect the overall performance of the model, which
achieved, on mean, the same performance when using
horizontal or vertical ones. On the other hand, we
can see how using both orientations together leads
to a decrease in the performance of the model. Our
guess is that in this scenario the model becomes too
complex compared to the relatively small dataset
we used and therefore becomes too specialized on
the training set, leading to overfitting. Finally, we
can notice how completely removing the square
patches and relying only on the horizontal and verti-
cal stripes also affects the model performance nega-
tively. A possible explanation for this behavior is that
the square patches are able to provide some more
locally specific information that the model needs to
perform the reconstructions of the single patches
effectively.

In Table 4, we provide a comparison between
our methods and other approaches. In particular,
we focus on the methods proposed in the MVTec
paper31 as our benchmarks and on VT-ADL as
the only other approach using a ViT architecture
for anomaly localization. For the latter, the results
shown have been calculated by us as the original
paper did not provide the values for the AUROC
metric, while for every other model the result has
been gathered from the original paper. As we can
see our approach vastly outperforms the previous
method based on ViTs represented by VT-ADL,
in particular, by referring back to Table 3, we can
see that even the approach relying solely on square
patches still achieves better results than VT-ADL
by improving over its results by almost an 12% mar-
gin, therefore proving the effectiveness of the mask-
ing process introduced in the Self-attention mod-
ule of our model. As for the remaining models, we
show that while our approach performs worst than
the best one from the MVTec paper, represented
by the student-teacher architecture (7.8% AUROC
score difference), it outperforms every other method
by a margin going from 1% to 37%. One impor-
tant aspect to notice is that the two top-performing
methods presented in the MVTec paper, namely, the
student-teacher and the Feature Dictionary models
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Table 3. Results of the ablation study in which we show the effect of using different combinations of patch shapes
on the model performance. All the values reported representing the normalized area under the ROC curve up to
an mean FPR per-pixel of 30%.

Only squares Only squares Squares +
Class (No mask) (Masked) Squares + Rows Squares + Cols Rows + Cols Rows + Cols

Carpet 0.495 0.510 0.712 0.723 0.755 0.661
Grid 0.814 0.835 0.884 0.883 0.800 0.817
Leather 0.734 0.792 0.976 0.905 0.723 0.723
Tile 0.727 0.754 0.771 0.772 0.659 0.690
Wood 0.701 0.757 0.836 0.851 0.808 0.840
Bottle 0.796 0.812 0.850 0.847 0.821 0.842
Cable 0.683 0.715 0.701 0.701 0.753 0.700
Capsule 0.863 0.895 0.891 0.885 0.889 0.893
Hazelnut 0.927 0.951 0.953 0.945 0.951 0.942
Metal nut 0.712 0.721 0.773 0.779 0.865 0.806
Pill 0.815 0.835 0.852 0.852 0.806 0.850
Screw 0.770 0.818 0.901 0.905 0.903 0.903
Toothbrush 0.926 0.949 0.975 0.966 0.967 0.971
Transistor 0.848 0.855 0.841 0.860 0.866 0.865
Zipper 0.783 0.805 0.750 0.770 0.634 0.720

Mean 0.773 0.8 0.844 0.843 0.814 0.815

Table 4. Normalized area under the ROC curve up to an mean false positive rate per-pixel of 30% for each dataset
category. The values in bold represent the best scores overall, while the underlined ones represent the best scores
between the models not using extra data.

Feature Student Texture Variation
Class f-anoGan dictionary teacher l2-AE SSIM-AE inspection model VT-ADL Ours

Carpet 0.251 0.943 0.927 0.287 0.365 0.874 0.162 0.549 0.712
Grid 0.550 0.872 0.974 0.741 0.820 0.878 0.488 0.569 0.884
Leather 0.574 0.819 0.976 0.491 0.356 0.975 0.381 0.817 0.976
Tile 0.180 0.854 0.946 0.174 0.156 0.314 0.304 0.589 0.771
Wood 0.392 0.720 0.895 0.417 0.404 0.723 0.408 0.682 0.836
Bottle 0.422 0.953 0.943 0.528 0.624 0.454 0.667 0.687 0.850
Cable 0.453 0.797 0.866 0.510 0.302 0.512 0.423 0.751 0.701
Capsule 0.362 0.793 0.952 0.732 0.799 0.698 0.843 0.615 0.891
Hazelnut 0.825 0.911 0.959 0.879 0.847 0.955 0.802 0.926 0.959
Metal nut 0.435 0.862 0.979 0.572 0.539 0.135 0.462 0.711 0.773
Pill 0.504 0.911 0.955 0.690 0.698 0.440 0.666 0.748 0.852
Screw 0.814 0.738 0.961 0.867 0.885 0.877 0.697 0.771 0.901
Toothbrush 0.749 0.916 0.971 0.837 0.846 0.712 0.775 0.878 0.975
Transistor 0.372 0.527 0.566 0.657 0.562 0.363 0.601 0.689 0.860
Zipper 0.201 0.921 0.964 0.474 0.564 0.928 0.209 0.683 0.750

Mean 0.472 0.836 0.922 0.590 0.584 0.656 0.526 0.683 0.844

which are the only ones exceeding an mean AUROC
score of 0.7, both rely on feature extractors pre-
trained on much larger datasets such as the popu-
lar imagenet one32 while our model is trained from
scratch on the MVTec dataset making it the best

performing model not relying on extra data for train-
ing and thus showing the possibility of adopting
transformer-based models, typically considered very
heavy, even to scenarios where we have a relatively
small amount of data available.

2250030-12



2nd Reading

June 15, 2022 18:48 2250030

Masked Transformer for Image Anomaly Localization

Fig. 9. Qualitative results. Column 1: the original image used as input; 2: the ground truth mask showing the location
of the anomaly in the original image; 3–11: the anomaly maps generated by our model and the competitors.

Finally, in Fig. 9, we provide some qualita-
tive results of our model by showing a compari-
son between the original images and ground truth
anomaly maps with the reconstructed images and
anomaly maps generated by our model. As we can
see, the model is able to effectively mask out the
smaller anomalies from the reconstructed images,
leaving only small artifacts in their places. As for
larger anomalies that are spread through different
regions of the original images, the model is usu-
ally not able to completely remove them as it can
infer their structure from the surrounding patches.
Nonetheless, in many cases, the defective part has a
more “washed out” appearance in the reconstructed
image which allows for its localization.

Furthermore, we present the results for the Head
CT — hemorrhage dataset. In particular, since this
dataset does not provide masks for the instances
anomalies, we use as a comparison metric the images
ROCAUC score. We report our results, together with
the ones presented by Salehi et al.25 which, as far
as we know, are the best ones available online for
the head CT dataset, in Table 5. As we can see our
model, even in its most basic configuration, achieves

Table 5. AUROC for anomaly detection on Head
CT dataset.

AUROC Head CT (%)

OCGAN23 51.20 ± 0.358

LSA21 81.67 ± 3.626

GT24 49.5 ± 3.873

MKD25 80.4 ± 0.006
MeTAL (Squares Only) 81.35 ± 1.153
MeTAL (Squares+Rows) 86.32 ± 4.03

results comparable to the State of the Art, while
when horizontal stripes are added it is able to sur-
pass the other presented approaches by a significant
margin showing the effectiveness of the presented
approach even for scenarios when the data available
is very limited. The downside, however, is that the
increased complexity of the model appears to make it
less stable as we can observe from the higher variance
characterizing the results achieved by this configura-
tion.

For completeness, we also provide a compari-
son of the model sizes for the different approaches,
expressed in number of parameters defining their
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Table 6. Comparison of the number
of parameters defining the compared
models architectures.

# of parameters

l2-AE/SSIM-AE 1.2M
f-AnoGAN 24.6M
Feature dictionary 11.5M
Student teacher 26M
VT-ADL 25M
MKD 15M
Ours (Products) 17.8M
Ours (textures) 26.3M

structure (Table 6). As we can see, the proposed
approach size is generally comparable to the ones
of the other frameworks, excluding the most sim-
ple ones being represented by the two autoencoders
variations which, however, achieve very poor perfor-
mances on the selected dataset.

5. Conclusions and Future Work

In this paper, we investigated the use of a frame-
work based on the Self-Attention mechanism intro-
duced by the Vision Transformer model. In partic-
ular, we proposed an image Inpainting approach to
anomaly detection which leverages the ability of the
ViT encoder to find correlations between different
regions of a given image in order to reconstruct each
of them based only on the information contained in
the surrounding ones. Furthermore, we have shown
that the model’s performance is affected positively
by the use of heterogeneous shapes for the subsets
into which the original image is split. Our opinion
is that this approach allows the model to learn cor-
relations between patches at different scales of the
image, therefore increasing the quality of the gen-
erated reconstructions. Finally, we have shown how
the ViT model, while usually considered a heavy
architecture, can be used effectively even on a rel-
atively small dataset without the need to rely on
extra data from external sources, achieving the best
performance compared to other model’s trained in a
similar setting on the MVTec dataset.

Nonetheless, as future work, we believe it would
be interesting to explore our model’s capabilities
when pre-trained on a larger dataset before fine-
tuning it on the final task’s data and we would

also like to investigate the possibility of a more gen-
eral approach to the multi-scale patch acquisition we
introduced in this work.

As another line of research we believe it would be
also worth investigating the adoption of ideas intro-
duced in other recent works present in the litera-
ture,33–36 in order to try to further improve the per-
formance of the proposed architecture.

Furthermore, we believe that the main limita-
tion of the proposed approach regards the ability
to handle large-scale anomalies, since these can be
inferred from the context of the image even when no
information is available for the specific patch we are
reconstructing. For this reason, in future works, we
would like to investigate more sophisticated mask-
ing approaches that allow for a better generalization
of the model to different anomalies scales. Finally in
the future, we will also extend our idea to process
3D applications.37
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