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A B S T R A C T

A machine learning-based approach, RAFT-PIV, is used to measure with single-pixel resolution the flow field
around a microplastic fiber in a turbulent channel flow at a Shear Reynolds number of 1000. The results
reveal the interaction of the fiber with a hairpin vortex. The fiber rotation rate is correlated with slip velocity
distributions along the fiber length, demonstrating higher rotation rates with increased slip velocity gradients.
The fiber’s alignment with the spanwise direction during its trajectory is explained through its progressive
alignment with the head of a hairpin vortex, characterized by the swirling strength, shear strain rate, and
local flow velocity. Higher fiber rotation rates were found likelier in the presence of a vortical structure. These
findings highlight the potential of machine learning-enhanced PIV techniques to deepen our understanding of
fiber-turbulence interactions, essential for applications such as microplastic pollution mitigation.
1. Introduction

Understanding the dynamics of microscopic fibers in turbulent
flows is crucial for various environmental and industrial applications,
including pollution control, marine biology, and chemical engineer-
ing (Voth and Soldati, 2017). The anisotropy of these particles leads
to orientation-dependent drag coefficients, resulting in a resistance
tensor which promotes more complex modes of solid-body rotation in
comparison with spherical particle (Voth and Soldati, 2017).

In the specific case of oceanic pollution, microplastics have a size of
about one millimetre, a length-to-diameter aspect ratio of about 100,
and their dynamics depend on the forces and torques applied by the
smallest turbulence scales. Since no closed form of the drag on non-
spherical particles is currently available, the prediction of the dynamics
of anisotropic particles and in turn of their sedimentation and disper-
sion rates remains beyond current possibilities. To find such detailed
information field measurements are out of question, with controlled
experimental campaigns remaining the only viable option. In previous
works, we have described a channel facility in which controlled and
reproducible wall turbulence can be realized (Giurgiu et al., 2023), and
the optical techniques by which we can measure the dynamics of quasi-
inertialess high aspect ratio fibers longer than few tens Kolmogorov
length scales (Alipour et al., 2021; Giurgiu et al., 2024). However, to
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model fiber dynamics in turbulence it is necessary to measure simul-
taneously fiber motion and the motion of the surrounding fluid. This
study uses a machine learning approach to achieve precise (i.e., single-
pixel resolution) flow prediction around a fiber with higher resolution
than the traditional cross-correlation-based Particle Image Velocimetry
(CC-PIV) technique.

CC-PIV has been widely used to measure velocity fields in fluid
flows. The procedure involves seeding the fluid with tracing particles,
which are illuminated and imaged with a camera. Image pairs are
recorded at a known time separation during which the tracers are
displaced by the flow. The images are then divided into interrogation
windows, e.g. with a size of 16 × 16 px. The tracers’ displacement
within each window is determined using cross-correlation. By dividing
the measured displacement by the time separation, one velocity vector
for each window is obtained. This technique has been also used to
measure velocity fields in multi-phase flows, such as particle laden
flows. Hoseini et al. (2015) separated fibers and flow tracer particles
in image pre-processing and reconstructed the flow field with CC-PIV
on images containing only the tracers. They studied the effect of fiber
length on the difference between fiber and flow velocity in wall turbu-
lence. Capone et al. (2021) took a similar measurement and processing
approach and investigated the effect of the aspect ratio of fibers on
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Fig. 1. Flowchart of the present investigation: panel (a) two raw images separated in time by 0.68 ms, panel (b) close-up of spherical tracers and a fiber, and panel (c) and (d)
streawise velocity fields computed with cross-correlation-based PIV and a machine learning model - RAFT-PIV, respectively.
flow velocity moments up to the third order in a turbulent channel
flow. Baker and Coletti (2022) studied inertial spheres, disks, and fibers
with a Stokes number of (10) in a turbulent boundary layer and took
a similar processing approach. In their study, they measured the local
slip velocity between the particles and the flow, omitting to report and
discuss correlations between fiber rotation rates and flow quantities.
The spatial resolution of their velocity fields was 8 px, due to their
interrogation window size of 32 px and 75% overlap between windows.
The limits of the spatial resolution of classical PIV have been overcome
with a new method called single-pixel ensemble correlation (Westerweel
et al., 2004), which achieves single-pixel resolution by averaging the
spatial cross-correlation over multiple image pairs. This technique,
however, can be almost exclusively used in (quasi-) stationary or peri-
odic flows and provides only mean velocity fields, making it unsuitable
for measurements of time-resolved, local, turbulent flow-fields around
particles.

In contrast, time-resolved velocity vector fields at single-pixel reso-
lution may be obtained from time-separated particle images with opti-
cal flow techniques, which estimate the two-dimensional displacement
field of patterns between successive images. These include classical
methods such as Horn-Schunck (Horn and Schunck, 1981) and Lucas-
Kanade (Lucas and Kanade, 1981), physics-based approaches such as
Liu-Shen (Liu and Shen, 2008), and hybrid methods enhancing the
resolution of cross-correlation PIV (Seong et al., 2019). Liu et al. (2015)
investigated the effect of particle displacement, velocity gradient, and
particle image diameter and density on the accuracy of a Horn-Schunck
optical flow method combined with a Liu-Shen estimator. Mendes
et al. (2022) benchmarked combined optical flow methods against
cross-correlation PIV on synthetic images generated from simple planar
flows. They found the high-performance range of the former broader
than correlation-based PIV. The authors underlined the necessity to
study their performance in turbulent flows and compare them to ma-
chine learning approaches. Cai et al. (2019) benchmarked an optical
flow method based on the Horn-Schunck algorithm and found it of
higher accuracy than both a cross-correlation PIV and their proposed
machine learning approach, PIV-LiteFlowNet-en, on synthetic images
generated from a direct numerical simulation of a turbulent channel
flow.
2 
A recent alternative is represented by machine learning techniques
which have demonstrated to achieve single-pixel resolution in time-
resolved velocity fields. Specifically, Lagemann et al. (2021b) intro-
duced a deep neural network-based approach called RAFT-PIV (Recur-
rent All-Pairs Field Transforms - Particle Image Velocimetry), based on
an optical flow architecture (Teed and Deng, 2020). This approach is
robust to common error sources, such as large displacements and their
gradients, seeding density, and peak-locking. Moreover, it matches at
least the accuracy of cross-correlation based PIV methods and even
resolves shorter displacement wave-lengths without requiring third-
order B-spline interpolation of sparse velocity fields onto single-pixel
grids (Lagemann et al., 2022a). RAFT-PIV was found to estimate the
displacement fields from a direct numerical simulation of a turbulent
channel flow with an error about 7 times lower than the Horn-Schunck
optical flow algorithm (Lagemann et al., 2021b).

Therefore, this study exploits the single-pixel resolution and accu-
racy of RAFT-PIV to measure the local time-resolved flow-field sur-
rounding fibers in a turbulent channel flow, aiming at correlating
the fiber rotation rates with vortical coherent flow structures. Fig. 1
shows the flow-chart of the present investigation. Panel (a) shows two
images, frame A and B, of spherical flow tracers and fibers which are
recorded with a set time separation. A close-up view of a 3 mm long
and 70 μm thick fiber is shown in panel (b). Classic, cross-correlation
PIV uses the tracers to resolve the flow-field around the fiber at 16 px
spatial resolution, which is shown in panel (c). Using RAFT-PIV, the
flow-field around the fiber is resolved with single-pixel resolution and
is shown in panel (d). The manuscript is organized as follows: Sec-
tion 2 describes the TU Wien Turbulent Water Channel facility, imaging
setup, experimental conditions, seeding and fiber characteristics, image
processing approach, and the machine learning technique used: RAFT-
PIV; Section 3 compares an instantaneous streamwise velocity field
obtained with cross-correlation PIV and RAFT-PIV and reports the mean
streamwise velocity profiles and Reynolds stress, shows the streamwise
and wall-normal slip velocity and swirling strength around a fiber
trajectory, characterizes a hairpin vortex overlapping it, and shows the
probability density function of fiber rotation rates conditioned on the
presence or absence of a vortical structure; and Section 4 draws the
conclusions.
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Fig. 2. Schematic of the TU Wien Turbulent Water Channel: (a) flow loop consisting of two reservoirs at atmospheric pressure, a centrifugal pump, a transparent channel, and a
test-section with a high-speed laser and camera. (b) close-up view of the planar imaging setup.
2. Methodology

The experiments are conducted in the TU Wien Turbulent Water
Channel, a facility designed to study particle dynamics in turbulent
wall-bounded flows (Giurgiu et al., 2023). Fig. 2 shows a sketch of the
facility. Water is recirculated from the downstream reservoir having
a capacity of 3000 L to the upstream reservoir by a centrifugal volute
pump, capable of a maximum flow rate of 175 m3 h−1, generating a
maximum Shear Reynolds number of 1580. Precise and repeatable
experiments are enabled through the control system of the hydraulic
circuit which maintains a Shear Reynolds number constant within ±1%
by monitoring the flow rate and temperature and adjusting the pump
voltage in real-time (Giurgiu et al., 2023). The flow is subsequently
driven by gravity through the channel with an inner height 2ℎ = 80 mm
and width 𝑤 = 800 mm, dimensions which ensure negligible side-wall
influence on center-span measurements. The test section is located
8.5 m downstream from the inlet, where the statistical properties of
the turbulent flow field are comparable to direct numerical simulations
(DNS) of stream-wise periodic channels (Giurgiu et al., 2023). The
transparent channel allows optical access for imaging techniques such
as Particle Image Velocimetry and Particle Tracking Velocimetry (PTV).

The present experiments are performed at a temperature of 24.1 ◦C
and a Shear Reynolds number 𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈 = 1000, where 𝑢𝜏 =
22.8 mm s−1, and 𝜈 = 0.91 mm2 s−1 (e. V., 2013) are the friction velocity,
and kinematic viscosity, respectively. In these conditions, the viscous
length scale is 𝛿𝜈 = ℎ∕𝑅𝑒𝜏 = 40 μm and viscous time scale is 𝜏 = 𝜈∕𝑢2𝜏 =
1.76 ms.

The imaging and illumination system is composed of a high-speed
Phantom VEO 340L camera equipped with 100 mm Tokina AT-X Pro
Macro optics, a Litron LD25-527 PIV laser, and optical lenses expanding
the laser beam. The camera observes perpendicular to the side-wall
the laser illuminated plane, which is normal to the bottom wall and
aligned with the stream-wise direction. The acquisition frequency is
1478 Hz and the optical magnification is 35.25 px/mm. The images are
1792 × 1152 px large, resulting in a field of view of 50.8 × 32.7 mm2 in
the stream-wise 𝑥 and wall-normal 𝑦 directions, respectively. Spherical
Polyamide particles with a diameter of 𝑑𝑠 = 20 μm and a density of
𝜌𝑠 = 1150 k g m−3 are used for seeding. The particle image density is 0.03
particles-per-pixel. With respect to the viscous time, their translational
Stokes number is 𝑆 𝑡+ = 𝜌 𝑑2∕(18𝜈 𝜌)∕𝜏 = 0.016, with a water density of
𝑠 𝑠 𝑠
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𝜌 = 997.3 k g m−3 (e. V., 2013). The dispersed phase in the flow consists
of Polyamide fibers with a density of 𝜌𝑓 = 1150 k g m−3, diameter of 𝑑𝑓 =
70 μm, and length of 𝑙𝑓 = 3 mm. Their aspect ratio is 𝜆 = 𝑙𝑓∕𝑑𝑓 = 43. In
these flow conditions, their Stokes number is (Bernstein and Shapiro,
1994):

𝑆 𝑡+𝑓 =
𝜌𝑓𝑑2𝑓
18𝜈 𝜌

𝜆 ln
(

𝜆 +
√

𝜆2 − 1
)

√

𝜆2 − 1
1
𝜏
= 0.87 .

The raw images captured by the camera are pre-processed to reduce
background noise, improving the contrast of tracers and fibers. A
raw and a pre-processed image of a fiber and tracers around it are
shown in Fig. 3(a) and (b). The later has been produced by subtracting
the minimum light intensity in each pixel within 13 frames to avoid
imaging static optical defects. A sliding minimum in a window of 7 × 7
px is subtracted from each pixel to reduce the fiber image diameter.
Finally, the image is normalized with the local average over all frames
within a window of 500 × 500 px. The pre-processed image is binarized
with a threshold of 20% of the maximum light intensity. Fibers are
identified as connected regions of pixels with a length above 50 px and
are subtracted to obtain the tracer images shown in Fig. 3(c). These
are used to extract the flow velocities around the fiber with RAFT-PIV.
The fiber image shown in Fig. 3(d) is used for fiber tracking with a
nearest-neighbor approach using a 30 px search radius between time-
steps. Built fiber trajectories contain the center-of-mass positions and
fiber orientation, which is defined as the angle between the streamwise
direction and the eigenvector corresponding to the highest eigenvalue
of the inertia tensor of the fiber image. Positions and orientation angles
are filtered with a Robust Locally Weighted Scatterplot Smoothing
(‘rlowess’) (Cleveland, 1979) filter with a kernel of 4𝜏. The temporal
derivative of the fibers’ center-of-mass positions and of orientation
angles are approximated with a 5-point stencil finite difference scheme
to obtain translational and rotational velocities.

Images containing only the spherical tracers are used to obtain the
flow velocity fields with the software PaIRS-UniNa 0.1.11. (Astarita and
Cardone, 2005; Astarita, 2007, 2009) for comparison. A multi-pass ap-
proach has been used, with a final interrogation window of 32 × 32 px
which together with a 50% overlap has yielded velocity fields at 16px
resolution, corresponding to a vector pitch of 0.45 mm. The chosen final
interrogation size ensures at least 8 tracer images within. At the chosen
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Fig. 3. Raw image of a fiber with tracers (a) and pre-processed image (b). The images containing only the tracers and only the fiber are shown in panels (c) and (d), respectively.
acquisition frequency the most-probable stream-wise displacement is
10 px/frame.

RAFT-PIV is a recently introduced deep optical flow network
(Lagemann et al., 2021b) which is specifically designed for the use
case of PIV images and loosely inspired by the famous RAFT architec-
ture (Teed and Deng, 2020). In a variety of test applications ranging
from standard turbulent boundary layer and channel flows (Lagemann
et al., 2023) to more challenging transonic airfoil buffet measure-
ments (Lagemann et al., 2022b, 2024c), blood flow investigations in the
human cardio-vascular tract (Lagemann et al., 2024b), and the analysis
of highly turbulent flow in internal combustion engines (Lagemann
et al., 2022a), it has shown a new level of output resolution accuracy.
Moreover, it enables a precise analysis of small-scale flow features and
near-wall quantities, e.g., friction velocity and the wall-shear stress,
which are typically challenging to measure from standard PIV exper-
iments using established cross-correlation based processing methods.
Here, it is noteworthy that these quantities can be analyzed in a
spatially and temporally resolved fashion without applying any further
modeling assumption or interpolation as typically required by other
methods making it an valuable PIV processing method for the analysis
of the present multiphase flow.

RAFT-PIV requires a graphical-processing-unit (GPU) with a large
video memory compared to cross-correlation PIV, which usually runs
on a central-processing-unit (CPU) with low memory requirements. For
comparison, CC-PIV processed an image pair with a size of 1792 × 1152
px obtaining 111 × 71 vectors in about 2 s on an Intel Core i9-
12900K CPU. In contrast, RAFT-PIV computes displacement fields at a
16 times higher spatial resolution, i.e. 1792 × 1152 vectors, but requires
for a single particle image pair approximately 2 min on a standard
NVIDIA RTX 3060 16 GB GPU. However, using more powerful GPUs,
e.g. NVIDIA A100 GPUs which have been used in the present study,
can reduce the compute time to approximately 20 s.

Overall, RAFT-PIV is designed to learn the mapping from input
particle image pairs to the corresponding displacement fields. During
training, the network minimizes a loss function that quantifies the
discrepancy between the predicted and the ground-truth displacement,
generated with, for example, a DNS of a turbulent channel flow (Lee
and Moser, 2015). The general architecture of RAFT-PIV consists of
the following stages: a feature and a context extracting block, the
computation of a pixelwise correlation volume using an all-pairs corre-
lation, and iterative updates based on a ConvGRU as shown in Fig. 4.
In particular, the shared feature encoder computes high-dimensional
latent representations 𝑬𝟏, 𝑬𝟐 of size (𝑀 ×𝑁 ×𝐷) for each input image
individually using three convolutional neural network modules. These
encoding steps transform the input particle images into a dense feature
representation with 𝐷 dimensions. Broadly speaking, each channel of
these high-dimensional feature maps contains an extract of the most
relevant image patterns like edges or simple textures which become
more complex patterns with increasing network depth. The context
encoder leverages the same architecture as the feature encoder, but
is only applied to the first particle image to derive anchoring context
features for later network stages.
4 
Fig. 4. Main components of RAFT-PIV comprising a shared feature encoder (I), the
context encoder using the same topology as the feature encoder (III), an All-Pairs
correlation layer (II), a correlation pyramid (IV), and the update operator (V) which
recurrently updates the optical flow estimates using a convolutional GRU.

During the second stage, the similarity of both image feature rep-
resentations 𝑬1 and 𝑬2 is computed using a full correlation volume
between all pairs of both feature maps. Mathematically, the similar-
ity between two pixel embeddings (𝐄𝑖,𝑗 ,𝐄𝑘,𝑙) is measured by the dot
product between two individual feature vectors

𝑖𝑗 𝑘𝑙 =
𝐷
∑

𝑑=1
(𝑬1)𝑖𝑗 𝑑 ⋅ (𝑬2)𝑘𝑙 𝑑 (1)

with 𝑖, 𝑗 denoting pixel coordinates in the image embedding 𝑬1 and
𝑘, 𝑙 in 𝑬2. In this context, all-pair correlation indicates that every pixel
is correlated with every other pixel. Hence, (𝑖, 𝑗 , ∶, ∶) represents a
similarity map of pixel (𝑖, 𝑗) in 𝑬1 with all pixels of the second image
𝑬2. Afterwards, a 4-layer correlation pyramid is formed (see Fig. 4)
pooling the last two dimensions of  sequentially from level to level
(equivalent to kernel strides of 1, 2, 4, 8).

Please note that this correlation pyramid is pre-computed once, and
during the update process, only small neighborhoods around specific
target locations are extracted. For clarification, let us suppose we have
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Fig. 5. Contour of an instantaneous streamwise velocity field measured with cross-correlation PIV (a) and RAFT-PIV (c). The wall is highlighted by the black dashed line. Panels
(b) and (d) show the mean streamwise velocity and Reynolds stress profiles, respectively, computed using cross-correlation PIV, RAFT-PIV, and DNS (Lee and Moser, 2015) at
𝑅𝑒𝜏 = 1000.
the optical flow for the 𝑖th update step and we want to associate
each pixel in 𝑬1 with its estimated location in 𝑬2. To determine
the valid index for the correlation volume, an index operation is
applied across all levels of the correlation pyramid which extracts a
small neighborhood around the estimated location in 𝑬2. The intuition
behind this complex operation can be formulated as follows: for a
specific target location (𝑖, 𝑗) in encoding 𝑬1, the corresponding value
in the correlation volume expresses the similarity of a pixel embedding
at position (𝑘, 𝑙) in encoding 𝑬2 and its level-specific neighborhood.
Consequently, this means that the higher the pyramid level of the
extracted patch, the more spatial information of the original image
features is covered, but the coarser the resolution of the correlation
information becomes. Leveraging this multi-scale approach, RAFT-PIV
can effectively handle large displacements of small particles. The final
output is then a concatenation of the extracts of every pyramid level
which forms the so-called motion feature.

It is subsequently decoded in the ConvGRU (Siam et al., 2017)
to obtain a new optical flow update. This recurrent neural network
maintains hidden state information from previous time steps to mod-
ulate a limited content memory. In simpler words, by considering
observations from earlier steps, it estimates future predictions. The
key difference between a ConvGRU and a standard recurrent neural
network lies in the presence of update and reset gates. When applied in
our work, the ConvGRU takes previous flow data, updated correlation
information, and the context representation as input. It then produces a
new hidden state, denoted as 𝐡𝑡. This 𝐡𝑡 is subsequently passed through
two convolutional layers, resulting in the flow update 𝛥𝑽 . Hence, the
final flow prediction emerges as a combination of residual flow updates
and balances predictions based on earlier optical flow estimates and the
current hidden state. The final output of the ConvGRU, i.e., the optical
flow update, is a high-resolution velocity field at the original image
resolution.

The original RAFT-PIV architecture was trained on a purely syn-
thetic dataset in a supervised fashion. However, due substantially vary-
ing particle image conditions in the present experimental setup, a
distribution shift between the datasets of training and inference phase
was observed. Therefore, we augmented the training pipeline by a
5 
self-supervised training phase as outlined in Lagemann et al. (2024a)
to fine-tune our initial network weights in the present measurement
conditions. The loss objectives of this unsupervised learning step are
purely based on geometric penalty terms and, hence, no ground truth
is required. In line with Lagemann et al. (2021a) and Lagemann and
Schröder (2023), the applied loss objective comprises the general-
ized Charbonnier loss to penalize photometric differences between
source and warped target image, an adaptive loss objective to ad-
dress forward/backward flow inconsistencies, an adaptive second-order
smoothness objective, and an adaptive robust loss entity which regu-
larizes differences between the teacher and student predictions. As a
consequence, the RAFT-PIV network can be fine-tuned directly on our
experimental measurement data which reduces drastically the occur-
rence of outliers and spurious vectors. A reference implementation of
RAFT-PIV is available as an open-source tool and can be accessed at
https://github.com/cl126162/WSSflow.

3. Results

The same pair of two consecutive tracer images are processed
with PaIRS-UniNa (CC-PIV) and RAFT-PIV to obtain the instantaneous
streamwise velocity fields shown in Fig. 5(a) and (c), respectively.
Both are spatially filtered with a Gaussian kernel of 41 px and tem-
porally with a ‘rlowess’ (Cleveland, 1979) filter with a kernel of 4𝜏.
They exhibit the same general large-scale features, however the field
obtained with RAFT-PIV has a 16 times higher spatial resolution, both
in the horizontal and vertical directions, resulting in 256 times more
velocity vectors, feature which is exploited in this study to resolve the
flow field around the fibers. Moreover, this also allows the flow field
measurement closer to the wall, which is shown in panels (a) and (c)
with a dashed line at 𝑦 = 0 mm. The left (inlet) part of the RAFT-PIV
field exhibits outliers, which are typical for optical flow methods due
to occlusions at image boundaries. In the computation of the following
results, this region of 16 px has been disregarded. Panel (b) compares as
a function of the wall-normal direction, the mean streamwise velocity
measured with CC-PIV and RAFT-PIV and computed with DNS (Lee

https://github.com/cl126162/WSSflow
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Fig. 6. An example of a fiber trajectory interacting with a hairpin vortex. The instantaneous orientation of the fiber is coupled with the contour maps of the two components of
the slip velocity (𝑢− 𝑢𝑓 in (a), 𝑣− 𝑣𝑓 in (b)) and the swirling strength, 𝜆𝑐 𝑖 (c). Overlain dots indicate the center of mass of the fiber along its trajectory and their color represents
the spanwise rotation rate normalized by the mean track rotation rate, |𝜔𝑧| = 815◦ s−1.
and Moser, 2015) at the same 𝑅𝑒𝜏 = 1000. Across the whole chan-
nel half-height, an excellent agreement is found between the three
profiles. However, the profile obtained with CC-PIV starts at 11𝑦∕𝛿𝜈
away from the wall. RAFT-PIV provides 7 measurement points within
the viscous sub-layer (𝑦∕𝛿𝜈 < 5), the first one located at 0.35𝑦∕𝛿𝜈 ,
which corresponds to 14 μm and is equivalent to 0.5 px. Measurements
in the viscous sub-layer enable the quantification of the wall-shear
stress (Lagemann et al., 2024b), which can be used to conduct drag-
reduction studies with different fiber concentrations. Panel (d) shows
the streamwise Reynolds stress over the wall-normal direction com-
puted with cross-correlation PIV, RAFT-PIV, and DNS (Lee and Moser,
2015). A good agreement is observed between the three profiles at wall-
normal locations above ≈80𝑦∕𝛿𝜈 . The CC-PIV and RAFT-PIV profiles
overlap above 20𝑦∕𝛿𝜈 . The CC-PIV profile fails to predict a peak in the
Reynolds stress with the point at 11𝑦∕𝛿𝜈 overestimating the DNS. RAFT-
PIV shows a clear peak, however shifted to a slightly lower wall-normal
distance and reduced by 10% with respect to DNS. The attenuation
of fluctuations between 8 and 80𝑦∕𝛿𝜈 is present both in CC-PIV and
RAFT-PIV and might be explained by the large laser sheet thickness of
about 3 mm used to obtain long fiber trajectories. The RAFT-PIV profiles
shows an excellent agreement with DNS above 2 and below 8𝑦∕𝛿𝜈 .
Note that, in general, RAFT-PIV displays higher errors than CC-PIV in
streamwise mean velocity and Reynolds stress at signal-to-noise (SNR)
ratios, defined as the ratio between the maximum particle intensity and
the background intensity, below 2 (Lagemann et al., 2022a). However,
the images used in this study before background noise subtraction had
an SNR of 13.

A fiber trajectory with a duration of 35𝜏 and the surrounding flow
field obtained with RAFT-PIV are shown in Fig. 6. The flow field
in panel (a) is shown in terms of streamwise slip velocity, i.e., the
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difference between the flow velocity and the velocity of the fiber’s
center of mass, 𝑢 − 𝑢𝑓 . The positions of the fiber’s center of mass are
shown as circles colored by the absolute fiber rotation rate normalized
by its track mean, |𝜔𝑧|∕|𝜔𝑧|. Initially, the fiber is almost aligned parallel
to the zero streamwise slip velocity isoline. This implies that no torque
can be applied by the streamwise slip velocity distribution along the
fiber. However, the fiber starts rotating clock-wise due to the torque
applied by the wall-normal slip velocity, 𝑣 − 𝑣𝑓 , distribution along the
fiber, which is shown in panel (b). The fluid around the left part of the
fiber is moving upwards and around the right part downwards relative
to the fiber’s center of mass. The difference between the upward and
downward flow velocity is (0.01 m s−1). The resulting reorientation of
the fiber increases the differences in streamwise slip velocity along
its length, which are of (0.1 m s−1), enabling a higher torque. In
consequence, the fiber rotation rate increases, reaching up to 2.5|𝜔𝑧|

in the last instance. Finally, Fig. 6(c) shows the swirling strength, 𝜆𝑐 𝑖,
around the fiber at the same three instances as previous panels. The
swirling strength, 𝜆𝑐 𝑖, is used to identify vortical flow structures and is
the imaginary part of the complex eigenvalue of the velocity gradient
tensor (Zhou et al., 1999):

∇𝐮 =
⎡

⎢

⎢

⎣

𝜕 𝑢
𝜕 𝑥

𝜕 𝑢
𝜕 𝑦

𝜕 𝑣
𝜕 𝑥

𝜕 𝑣
𝜕 𝑦

⎤

⎥

⎥

⎦

,

which is approximated by a finite difference central scheme. During
the whole trajectory, a vortex with a size of about half the fiber
length overlaps the fiber. The projected image of the fiber in the
first time-step is 2.8 mm long suggesting the fiber, having a nominal
length of 3 mm, being almost parallel to the 𝑥–𝑦 plane. However, during
its trajectory, the fiber becomes increasingly more aligned with the
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Fig. 7. Contour of the shear strain rate, �̇�, measured with RAFT-PIV around the fiber
from Fig. 6 at the last time instance. The colorbar saturates at 100 s−1 for visualization
purposes. Overlain black vectors indicate the flow velocity field after subtracting 16.1𝑢𝜏
from the streamwise velocity. Only every tenth vector is shown. The top left inset
indicates the scale of the velocity vectors. White text and sketched arrows, lines, and
circles indicate the signature components of a hairpin vortex: compact head, an ejection
(Q2) and a sweep (Q4) event, an inclined shear layer, and a stagnation point (Adrian,
2007).

𝑧 direction, evident from the reduction of the projected fiber image
to 1.5 mm in the last instance. To determine whether the increasing
spanwise fiber orientation implies an alignment with the axis of the
vortical structure identified through 𝜆𝑐 𝑖, the vortex must be first char-
acterized. This is essential because, in Fig. 6c, only the projection of
the vortex is available, which does not directly imply that the axis of
the vortex is oriented spanwise. To this aim, Fig. 7 shows the shear
strain rate, �̇� = 𝜕 𝑢∕𝜕 𝑦 + 𝜕 𝑣∕𝜕 𝑥 (Kundu et al., 2015) around the fiber
shown in Fig. 6 at the last time instance of its trajectory. A strong
shear is measured below 30𝑦∕𝛿𝜈 due to the presence of the wall. More
importantly, an inclined shear layer is observed. Moreover, overlain
vectors quantify the velocity field after subtracting a streamwise ve-
locity of 16.1𝑢𝜏 . This allows the identification of a compact rotational
region close to the fiber, a strong ejection event (Q2) and a weaker
sweep event (Q4) which generate a stagnation point and the previously
observed inclined shear layer. These are the signature components of
a hairpin vortex (Adrian, 2007), a temporally and spatially coherent
structure typical of wall-bounded turbulent flows most common in
the logarithmic layer. It is an omega-shaped vortex with a compact
head with its axis oriented spanwise and quasi-streamwise oriented
legs. The head of the structure identified in Fig. 7 is located 100𝛿𝜈
away from the wall, which is the typical height of a hairpin vortex
head (Adrian, 2007). Moreover, its streamwise length is about 200𝛿𝜈
from the beginning of the inclined shear layer to the head, which is
also typical for hairpin vortices (Adrian, 2007). This evidence suggests,
that the axis of the vortex near the fiber identified in Fig. 6c is indeed
oriented spanwise, because it is the head of a hairpin vortex. This
implies that the fiber shown in Fig. 6 starts perpendicular to the head
of hairpin vortex and increasingly aligns its axis with the one of the
vortex during its trajectory lasting 35𝜏. These findings are consistent
with previous studies which also observed an alignment of fibers with
vortical structures in homogeneous isotropic turbulence (Picardo et al.,
2020; Ni et al., 2014, 2015) - DNS and experiments - and in turbulent
channel flow at 𝑅𝑒𝜏 = 180 (Cui et al., 2021) - DNS.

The increase in fiber rotation rates with increasing alignment of the
fiber principal axis with a vortical structure, demonstrated by one fiber
trajectory shown in Fig. 6, warrants further study. To this aim, the
effect of the presence of a vortex close to fibers on their rotation rate is
investigated in Fig. 8. The presence of a vortical structure is identified
by a threshold value on the mean swirling strength, 𝜆𝑐 𝑖, obtained as an
average inside a circle with a radius of 1.4 mm and centered around
the fibers’ center of mass. The inset of Fig. 8 shows the probability
7 
Fig. 8. Main panel: pdf of the fiber rotation rate conditioned on the presence of a
vortex. The shaded regions indicate resulting variations when changing the vortex
identification threshold by ±60%. Inset: pdf of swirling strength obtained with RAFT-PIV
and averaged inside a circle (radius of 1.4 mm) centered around the fibers’ center of
mass. The threshold for vortex identification is shown by the vertical black line.

density function (pdf) of 𝜆𝑐 𝑖. A vortex is considered present within
the circle if the mean swirling strength exceeds the chosen value of
195◦ s−1. Note that 𝜆𝑐 𝑖 for the fiber at the three time instances in Fig. 6
is 814, 854, and 928◦ s−1. The main panel of Fig. 6 shows the pdf of the
absolute fiber rotation rate with and without a detected vortex near the
fiber. The lowest fiber rotation rates are more than twice as likely to
occur if no vortical structure is present. Fiber rotation rates higher than
400 ◦ s−1 are likelier to occur when a vortex is present, which suggests
a positive correlation between 𝜆𝑐 𝑖 and |𝜔𝑧|. The results in Fig. 8 have
been obtained from about 2300 fiber trajectories totaling 2 × 105 data
points.

4. Conclusions

Proper quantification of oceanic microplastic pollution requires
accurate estimates of transport, sedimentation rates, and rotational
dynamics of elongated microplastic fibers interacting with turbulent
flows. This work demonstrated how RAFT-PIV, an open-source machine
learning-based technique, can be used to measure the local time-
resolved flow field around microplastic fibers in a turbulent channel
flow at a Shear Reynolds of 1000. This approach produced flow fields
with 16 times higher resolution, both in the horizontal and vertical
directions, resulting in 256 times more velocity vectors than cross-
correlation-based PIV. RAFT-PIV was able to reconstruct a hairpin
vortex, a typical topological feature of wall-bounded turbulence, al-
lowing the observation of the interaction of a fiber with this vortex.
Statistical analysis showed that higher fiber rotation rates were more
likely in the presence of a nearby vortical structure compared to when
it was absent. In the future, an in-depth statistical analysis will help to
generalize the observed behaviors and further validate the correlation
between fiber rotation and vortical structures.
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