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Abstract: We present a pragmatic approach to the sparse identification of nonlinear dynamics
for systems with discrete delays. It relies on approximating the underlying delay model with
a system of ordinary differential equations via pseudospectral collocation. To minimize the
reconstruction error, the new strategy avoids optimizing all possible multiple unknown delays,
identifying only the maximum one. The computational burden is thus greatly reduced, improving
the performance of recent implementations that work directly on the delay system.
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1. INTRODUCTION

In the last decades, data-driven model discovery has
emerged as a lively research field due to an increased
availability of data and easy-to-access computational re-
sources (Brunton and Kutz, 2019). Under this paradigm,
techniques to recover from measurements of the governing
equations of an underlying dynamical system have gained
a prominent role. In particular, the use of Sparse Identifi-
cation of Nonlinear Dynamics (SINDy) has spread rapidly
from its introduction for Ordinary Differential Equations
(ODEs) in Brunton et al. (2016). Nowadays extensions
exist to treat more general classes of problems, from partial
(Rudy et al., 2017) to stochastic (Boninsegna et al., 2018)
differential equations, to name just a couple. Let us soon
recall that the backbone of SINDy consists in expressing
the Right-Hand Side (RHS) of the underlying dynamics
as a linear combination of functions from a chosen library,
and sparsity follows since in general only a few such func-
tions are necessary (Brunton et al., 2016).

Only recently extensions of SINDy to Delay Differential
Equations (DDEs) have been investigated, yet limited to
constant discrete delays. To the best of our knowledge,
Sandoz et al. (2023); Pecile et al. (2024); Wu (2023);
Köpeczi-Bócz et al. (2024) are the only available references
on the subject (a preliminary version of Pecile et al. (2024)
was first presented at IFAC TDS 2022, Breda et al. (2022)).
In particular, Sandoz et al. (2023); Breda et al. (2022)
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propose the natural idea of adapting SINDy to DDEs
by including delayed evaluations of the library functions.
Moreover, the case of an unknown delay is tackled by
minimizing the reconstruction error of SINDy over a set of
candidate delays, respectively by following a Brute Force
(BF) approach in Sandoz et al. (2023) (i.e., evaluating
all the candidates) and via Bayesian Optimization (BO)
in Pecile et al. (2024). An extension to multiple delays
and other unknown parameters has also been considered
in Pecile et al. (2024), always via BO on sets of candidates.
The problem of optimally selecting candidate delays has
also been analyzed in Köpeczi-Bócz et al. (2024), while Wu
(2023) proposes the use of parameterized library functions
to reduce the dimensionality issue (of a library ideally con-
taining all candidate terms) by optimizing the concerned
parameters via Particle swarm-based Optimization (PO in
the following).

In this work we follow on the same line of the above
contributions, focusing on effectively adapting SINDy to
the case of unknown delays, both in number and values.
We resume from the basic approach of identifying the
correct delays by externally minimizing the reconstruction
error of SINDy, first improving by using PO instead of BF
or BO in terms of the number of calls to SINDy by the ex-
ternal optimizer. Then, in order to overcome the problem
of dealing with intermediate multiple delays (i.e., those
besides the maximum one), we propose a novel approach
based on reducing the underlying DDE to an ODE via
pseudospectral collocation, following Breda et al. (2016a).
This leads to a pragmatic tool that asks to externally
optimize only the maximum delay, thus resorting to uni-
variate optimization rather than a demanding multivariate
one necessary to optimize all the intermediate delays. As
a partial drawback, this new approach does not recover
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propose the natural idea of adapting SINDy to DDEs
by including delayed evaluations of the library functions.
Moreover, the case of an unknown delay is tackled by
minimizing the reconstruction error of SINDy over a set of
candidate delays, respectively by following a Brute Force
(BF) approach in Sandoz et al. (2023) (i.e., evaluating
all the candidates) and via Bayesian Optimization (BO)
in Pecile et al. (2024). An extension to multiple delays
and other unknown parameters has also been considered
in Pecile et al. (2024), always via BO on sets of candidates.
The problem of optimally selecting candidate delays has
also been analyzed in Köpeczi-Bócz et al. (2024), while Wu
(2023) proposes the use of parameterized library functions
to reduce the dimensionality issue (of a library ideally con-
taining all candidate terms) by optimizing the concerned
parameters via Particle swarm-based Optimization (PO in
the following).

In this work we follow on the same line of the above
contributions, focusing on effectively adapting SINDy to
the case of unknown delays, both in number and values.
We resume from the basic approach of identifying the
correct delays by externally minimizing the reconstruction
error of SINDy, first improving by using PO instead of BF
or BO in terms of the number of calls to SINDy by the ex-
ternal optimizer. Then, in order to overcome the problem
of dealing with intermediate multiple delays (i.e., those
besides the maximum one), we propose a novel approach
based on reducing the underlying DDE to an ODE via
pseudospectral collocation, following Breda et al. (2016a).
This leads to a pragmatic tool that asks to externally
optimize only the maximum delay, thus resorting to uni-
variate optimization rather than a demanding multivariate
one necessary to optimize all the intermediate delays. As
a partial drawback, this new approach does not recover
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an interpretable RHS in the case of multiple delays, but
it rather returns a “black-box” ODE able to match the
given samples and to simulate the underlying dynamics
beyond the time span of the original data (anyway, note
that in general a successful matching of the true trajectory
by SINDy does not necessarily correspond to a correct
reconstruction, and hence interpretation, of the RHS).
As further contributions, we introduce a physics-informed
error; allow for both uniform and random distribution
of samples (with possible addition of noise); reconstruct
delayed and collocated samples by linear interpolation of
available data, so to avoid the constraint of uniformly
spaced samples as for the existing approaches.

The work is structured as follows. In Section 2 we sum-
marize the basic SINDy approach for DDEs, treating both
known (Section 2.1) and unknown (Section 2.2) delays. In
Section 3 we present the novel SINDy approach, recalling
the pseudospectral collocation (Section 3.1) and presenting
its application in the SINDy framework (Section 3.2).
In Section 4 we illustrate via experimental comparison
on several DDEs the performance of all the mentioned
approaches, in terms of both SINDy itself and the ex-
ternal optimization (via BF, BO and PO) of unknown
delays/parameters. We conclude in Section 5 with a short
overview on possible future directions.

2. BASIC SINDY AND EXTENSIONS

SINDy is a tool based on linear regression for data-driven
model discovery originally introduced for ODEs in Brun-
ton et al. (2016). In order to grasp how it works, let us
consider the problem of identifying the RHS f : Rn → Rn

defining an n-dimensional system of ODEs x′ = f(x),
starting from the measurements of x(t) at m time instants
t1, . . . , tm organized in a matrix X ∈ Rm×n such that
xi,j = xj(ti), i = 1, . . . ,m, j = 1, . . . , n. SINDy assumes
that f is well approximated by the linear combination of
the functions θℓ, ℓ = 1, . . . , p, of a predefined library (con-
taining say 1, x, x2, . . . , sinx, . . .). Componentwise, this
amounts to fj(x(ti)) ≈

∑p
ℓ=1 ηℓ(x(ti))ξℓ,j , i = 1, . . . ,m,

j = 1, . . . , n. Since f(x(ti)) = x′(ti), once derivative
samples have been collected or approximated from the
available measurements to form a matrix X ′ ∈ Rm×n, the
above equations can be gathered in the linear system

X ′ = Θ(X)Ξ, (1)

where Θ(X) ∈ Rm×p represents the library functions
evaluated at the samples and the unknown Ξ ∈ Rp×n

has components ξℓ,j , ℓ = 1, . . . , p, j = 1 . . . , n. As a rule
m > p, so that (1) is overdetermined and typically solved
columnwise for Ξ by minimizing ∥X ′−Θ(X)Ξ∥2+λ∥Ξ∥1.
The regularization through λ > 0 enhances sparsity in Ξ
since frequently f is the combination of just a few functions
(Brunton et al., 2016). Next, summarizing from Sandoz
et al. (2023); Pecile et al. (2024), we address the case
of DDEs with discrete delays, assumed to be known in
Section 2.1 and unknown in Section 2.2.

2.1 Extension to DDEs with known delays: E-SINDy

Consider a DDE with k constant discrete delays

x′(t) = f(x(t), x(t− τ1), . . . , x(t− τk)) (2)

for some f : Rn(k+1) → Rn. When both the number
and the values of the delays are known, Sandoz et al.
(2023); Pecile et al. (2024) extend SINDy for identifying
f by integrating the library functions with delayed copies.
Hence (1) is replaced by X ′ = Θ(X,Xτ )Ξ(τ), where Xτ is
a shortcut for Xτ1 , . . . , Xτk with each Xτi containing the
delayed samples x(t− τi) and the notation Ξ(τ) highlights
the dependence of the sparse solution Ξ on the given vector
of delay values τ := (τ1, . . . , τk)

T . Note that in both works
the delayed samples are assumed to be available among
the measurements, owing to the hypothesis that each delay
is a multiple of a uniform sampling time. Here we avoid
this assumption by getting delayed samples via linear
interpolation of the original measurements, thus allowing
both irrational delays and randomly distributed samples.

Let us remark that the above extension of SINDy to
DDEs in the class (2) assumes the available knowledge
of both the number and the values of the concerned
delays. Imagining that this uncommon case is driven by a
certain amount of modeling expertise (w.r.t. the capability,
e.g., of interpreting the available data), we name this
approach E-SINDy, where E stands for “Expert”. Note
indeed that E-SINDy operates directly on the underlying
DDE once assumed it has the form (2). Moreover, it
potentially aims at recovering the RHS f in view of, e.g.,
model interpretation and simulation beyond the time span
of available data. As for the latter, note again that a
successful matching of the true trajectory cannot exclude
a failure in recovering the RHS.

2.2 Extension to DDEs with unknown delays

In the more realistic case of unknown delays, a possible
approach first considers the map

τ → ϵ(τ) := ∥X ′ −Θ(X,Xτ )Ξ(τ)∥2 (3)

giving the reconstruction error of E-SINDy. Then, for
the case of a single unknown delay, Sandoz et al. (2023)
proposes BF to select the value of τ minimizing ϵ(τ) over
a finite discrete set of candidate values. In Pecile et al.
(2024) this approach is improved in terms of calls to E-
SINDy by resorting to BO. Therein, a multivariate BO is
also invoked to minimize (3) over multiple delays, as well
as for other unknown parameters (due, e.g., to specific
nonlinear functions in the library as for the Mackey-Glass
equation, see Section 4.2). In general, we call “external
optimization” the minimization of (3) – opposite to the
“internal optimization” that SINDy performs for sparse
regression (here we adopt sequential thresholded least-
squares as in Brunton et al. (2016)). As a final remark,
in the following we replace (3) with

ϵ(τ ;w) :=w1∥X ′ −Θ(X,Xτ )Ξ(τ)∥2
+w2∥X − SDDE(Θ(X,Xτ )Ξ(τ))∥2,

(4)

where w = (w1, w2)
T is a couple of weights and

SDDE(Θ(X,Xτ )Ξ(τ)) indicates the trajectory of the DDE
recovered by E-SINDy simulated via any available numer-
ical routine (we use MATLAB’s dde23).

3. A PRAGMATIC SINDY APPROACH

E-SINDy for unknown delays as presented in Section 2.2
requires to externally optimize (via BF or BO) a prescribed



110 Bozzo Enrico  et al. / IFAC PapersOnLine 58-27 (2024) 108–113

number k̄ of delays assuming k̄ ≥ k where k is the true
number of delays in (2). If k̄ > k and E-SINDy is suc-
cessful, k̄ − k coefficients in the returned sparse matrix Ξ
will be null. Multivariate optimization is computationally
demanding, so we propose a new approach where only the
maximum delay (say τ̄ := τk) is externally optimized. As a
partial drawback, it will be clear from the following section
that one renounces to recover an interpretable RHS, yet
obtaining a “black-box” ODE matching the original data
and correctly simulating the expected trajectory beyond
the measurements time span. Moreover, we adopt PO to
further improve computational efficiency. We name this
new approach P-SINDy, where P stands now for “Prag-
matic”, following the terms coined in Breda et al. (2016b).
Indeed, opposite to an “expert” approach that deals di-
rectly with a DDE exploiting some prior knowledge, this
new methodology relies on first reducing the DDE to
a finite-dimensional system of approximating ODEs via
pseudospectral collocation as originally proposed in Breda
et al. (2016a). The reduction procedure is consolidated,
easy to implement and acting on ODEs goes back to the
standard SINDy approach of Brunton et al. (2016). Above
all, P-SINDy does not require any prior knowledge on
the number and values of possible multiple (intermediate)
delays. Yet one could legitimately argue that the number
of state variables is increased due to the discretization of
the original infinite-dimensional state space of (2) (despite
its finite “physical” dimension n). Actually, as we illustrate
next, P-SINDy works on just n variables as E-SINDy does.

3.1 Pseudospectral collocation

Consider a generic DDE Initial Value Problem (IVP)
x′(t) = F (xt), t ≥ 0,

x(η) = φ(η), η ∈ [−τ̄ , 0],
(5)

where xt(η) := x(t + η), η ∈ [−τ̄ , 0], represents the
state at time t of the associated dynamical system on
the state space X := C([−τ̄ , 0],Rn), φ ∈ X and
F : X → Rn is a smooth RHS (note that F (ψ) =
f(ψ(0), ψ(−τ1), . . . , ψ(−τk)) gives (2)). (5) is equivalent
to the abstract IVP in X

u′(t) =A(u(t)), t ≥ 0,

u(0) = φ,

where A : D(A) ⊆ X → X given by A(ψ) = ψ′ with
domain D(A) = {ψ ∈ X : ψ′ ∈ X and ψ′(0) = F (ψ)}
is the infinitesimal generator of the strongly continuous
semigroup {T (t)}t≥0 of solution operators T (t) : X → X ,
T (t)φ := xt. The equivalence is given by u(t) = xt for
φ ∈ D(A) and in a mild sense otherwise since D(A) is
dense in X (Diekmann et al., 1995). To reduce the DDE
in (5) to a system of ODEs, let ηi := τ̄

2
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�
iπ
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− 1


,

i = 0, 1, . . . ,M , be the M + 1 Chebyshev extremal nodes
in [−τ̄ , 0]. Correspondingly, let XM := Rn(M+1) be the
finite-dimensional counterpart of X and consider relevant
restriction and prolongation operators

RM : X → XM , RMψ := (ψ(η0), ψ(η1), . . . , ψ(ηM )),

PM : XM → X , PMΨ :=
M

j=0 ℓjΨj

for {ℓ0, ℓ1, . . . , ℓM} the Lagrange basis for {η0, η1, . . . , ηM}.
Then A is discretized by AM : XM → XM given as
[AM (Ψ)]0 = F (PMΨ) and [AM (Ψ)]i = [RM (PMΨ)′]i, i =
1, . . . ,M . Consequently, the IVP (5) is approximated by

the IVP for the blockwise system of M + 1 n-dimensional
ODEs in XM




U ′
0(t) = F (PMU(t)),

U ′
i(t) =DMU(t), i = 1, . . . ,M,

Ui(0) = φ(ηi), i = 0, 1, . . . ,M,

(6)

where U(t) = (U0(t), U1(t), . . . , UM (t))T ∈ XM and DM ∈
RnM×n(M+1) has n × n block entries di,j := ℓ′j(ηi)In,
i = 1, . . . ,M , j = 0, 1, . . . ,M (In is the identity on Rn).
Above, Ui(t), i = 0, 1, . . . ,M , approximates xt(ηi) = x(t+
ηi) for t ≥ 0. The interest is in U0(t) ≈ x(t), which however
depends on all U via the interpolation polynomial PMU .

3.2 Extended collocation library: P-SINDy

Most of the ODEs in (6) (those with block-index i =
1, . . . ,M) comes from the differentiation action of A,
so they are basically independent of the specific DDE
in (5) if not for the maximum delay τ̄ affecting the
collocation nodes. The only (n-dimensional) ODE affected
by the original RHS F through the boundary condition
in D(A) is the first one. As a consequence, we employ
SINDy to recover only this ODE, via sparse regression
on X ′ = Θ(X,Xη)ΞM (τ̄), where now Xη is a shortcut
for Xη1

, . . . , XηM
with each Xηi

containing the collocated
samples x(t + ηi) and the notation ΞM (τ̄) highlights the
dependence of Ξ on τ̄ and on the collocation degreeM . It is
now clear that the resulting P-SINDy acts on the physical
dimension n as E-SINDy does, while it has no requirements
concerning possible intermediate delays in (0, τ̄).

Regarding reconstruction and validation, given that for P-
SINDy the only unknown delay is the maximum one, we
introduce

ϵM (τ̄ ;w) :=w1∥X ′ −Θ(X,Xη)ΞM (τ̄)∥2
+w2∥X − SODE(Θ(X,Xη)ΞM (τ̄))∥2

(7)

accordingly to (4). Now SODE(Θ(X,Xη)ΞM (τ̄)) indicates
the trajectory of the full system of ODEs in (6) recovered
by P-SINDy as far as the first block is concerned and then
completed with the known differentiation part, as a whole
simulated via any available numerical routine for ODEs
(we use MATLAB’s ode45). The term “pragmatic” is thus
further justified, given that tools for ODEs are way more
available and consolidated than those for DDEs. Let us
remark again that while E-SINDy can in principle return
an interpretable RHS thanks to the direct exploitation of
the form (2), P-SINDy does not (unless k = 1). Neverthe-
less, from a “pragmatic” point of view we claim that the
latter does not represent a true drawback, given that in
general SINDy can give a good reconstruction error (and
hence satisfactory trajectory matching) even in the pres-
ence of a loose RHS reconstruction. Finally, we underline
that the external optimization of unknown delays for E-
SINDy works on k variables, while for P-SINDy it works
on just one variable, thus greatly enhancing the overall
performance as experimentally confirmed next.

4. NUMERICAL EXPERIMENTS

We compare the performance of both E-SINDy and P-
SINDy on four different DDE models, together with BF,
BO and PO as external optimizers of unknown delays
(or parameters). All the tests were run on a Windows
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number k̄ of delays assuming k̄ ≥ k where k is the true
number of delays in (2). If k̄ > k and E-SINDy is suc-
cessful, k̄ − k coefficients in the returned sparse matrix Ξ
will be null. Multivariate optimization is computationally
demanding, so we propose a new approach where only the
maximum delay (say τ̄ := τk) is externally optimized. As a
partial drawback, it will be clear from the following section
that one renounces to recover an interpretable RHS, yet
obtaining a “black-box” ODE matching the original data
and correctly simulating the expected trajectory beyond
the measurements time span. Moreover, we adopt PO to
further improve computational efficiency. We name this
new approach P-SINDy, where P stands now for “Prag-
matic”, following the terms coined in Breda et al. (2016b).
Indeed, opposite to an “expert” approach that deals di-
rectly with a DDE exploiting some prior knowledge, this
new methodology relies on first reducing the DDE to
a finite-dimensional system of approximating ODEs via
pseudospectral collocation as originally proposed in Breda
et al. (2016a). The reduction procedure is consolidated,
easy to implement and acting on ODEs goes back to the
standard SINDy approach of Brunton et al. (2016). Above
all, P-SINDy does not require any prior knowledge on
the number and values of possible multiple (intermediate)
delays. Yet one could legitimately argue that the number
of state variables is increased due to the discretization of
the original infinite-dimensional state space of (2) (despite
its finite “physical” dimension n). Actually, as we illustrate
next, P-SINDy works on just n variables as E-SINDy does.

3.1 Pseudospectral collocation

Consider a generic DDE Initial Value Problem (IVP)
x′(t) = F (xt), t ≥ 0,

x(η) = φ(η), η ∈ [−τ̄ , 0],
(5)

where xt(η) := x(t + η), η ∈ [−τ̄ , 0], represents the
state at time t of the associated dynamical system on
the state space X := C([−τ̄ , 0],Rn), φ ∈ X and
F : X → Rn is a smooth RHS (note that F (ψ) =
f(ψ(0), ψ(−τ1), . . . , ψ(−τk)) gives (2)). (5) is equivalent
to the abstract IVP in X

u′(t) =A(u(t)), t ≥ 0,

u(0) = φ,

where A : D(A) ⊆ X → X given by A(ψ) = ψ′ with
domain D(A) = {ψ ∈ X : ψ′ ∈ X and ψ′(0) = F (ψ)}
is the infinitesimal generator of the strongly continuous
semigroup {T (t)}t≥0 of solution operators T (t) : X → X ,
T (t)φ := xt. The equivalence is given by u(t) = xt for
φ ∈ D(A) and in a mild sense otherwise since D(A) is
dense in X (Diekmann et al., 1995). To reduce the DDE
in (5) to a system of ODEs, let ηi := τ̄
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i = 0, 1, . . . ,M , be the M + 1 Chebyshev extremal nodes
in [−τ̄ , 0]. Correspondingly, let XM := Rn(M+1) be the
finite-dimensional counterpart of X and consider relevant
restriction and prolongation operators

RM : X → XM , RMψ := (ψ(η0), ψ(η1), . . . , ψ(ηM )),

PM : XM → X , PMΨ :=
M

j=0 ℓjΨj

for {ℓ0, ℓ1, . . . , ℓM} the Lagrange basis for {η0, η1, . . . , ηM}.
Then A is discretized by AM : XM → XM given as
[AM (Ψ)]0 = F (PMΨ) and [AM (Ψ)]i = [RM (PMΨ)′]i, i =
1, . . . ,M . Consequently, the IVP (5) is approximated by

the IVP for the blockwise system of M + 1 n-dimensional
ODEs in XM




U ′
0(t) = F (PMU(t)),

U ′
i(t) =DMU(t), i = 1, . . . ,M,

Ui(0) = φ(ηi), i = 0, 1, . . . ,M,

(6)

where U(t) = (U0(t), U1(t), . . . , UM (t))T ∈ XM and DM ∈
RnM×n(M+1) has n × n block entries di,j := ℓ′j(ηi)In,
i = 1, . . . ,M , j = 0, 1, . . . ,M (In is the identity on Rn).
Above, Ui(t), i = 0, 1, . . . ,M , approximates xt(ηi) = x(t+
ηi) for t ≥ 0. The interest is in U0(t) ≈ x(t), which however
depends on all U via the interpolation polynomial PMU .

3.2 Extended collocation library: P-SINDy

Most of the ODEs in (6) (those with block-index i =
1, . . . ,M) comes from the differentiation action of A,
so they are basically independent of the specific DDE
in (5) if not for the maximum delay τ̄ affecting the
collocation nodes. The only (n-dimensional) ODE affected
by the original RHS F through the boundary condition
in D(A) is the first one. As a consequence, we employ
SINDy to recover only this ODE, via sparse regression
on X ′ = Θ(X,Xη)ΞM (τ̄), where now Xη is a shortcut
for Xη1

, . . . , XηM
with each Xηi

containing the collocated
samples x(t + ηi) and the notation ΞM (τ̄) highlights the
dependence of Ξ on τ̄ and on the collocation degreeM . It is
now clear that the resulting P-SINDy acts on the physical
dimension n as E-SINDy does, while it has no requirements
concerning possible intermediate delays in (0, τ̄).

Regarding reconstruction and validation, given that for P-
SINDy the only unknown delay is the maximum one, we
introduce

ϵM (τ̄ ;w) :=w1∥X ′ −Θ(X,Xη)ΞM (τ̄)∥2
+w2∥X − SODE(Θ(X,Xη)ΞM (τ̄))∥2

(7)

accordingly to (4). Now SODE(Θ(X,Xη)ΞM (τ̄)) indicates
the trajectory of the full system of ODEs in (6) recovered
by P-SINDy as far as the first block is concerned and then
completed with the known differentiation part, as a whole
simulated via any available numerical routine for ODEs
(we use MATLAB’s ode45). The term “pragmatic” is thus
further justified, given that tools for ODEs are way more
available and consolidated than those for DDEs. Let us
remark again that while E-SINDy can in principle return
an interpretable RHS thanks to the direct exploitation of
the form (2), P-SINDy does not (unless k = 1). Neverthe-
less, from a “pragmatic” point of view we claim that the
latter does not represent a true drawback, given that in
general SINDy can give a good reconstruction error (and
hence satisfactory trajectory matching) even in the pres-
ence of a loose RHS reconstruction. Finally, we underline
that the external optimization of unknown delays for E-
SINDy works on k variables, while for P-SINDy it works
on just one variable, thus greatly enhancing the overall
performance as experimentally confirmed next.

4. NUMERICAL EXPERIMENTS

We compare the performance of both E-SINDy and P-
SINDy on four different DDE models, together with BF,
BO and PO as external optimizers of unknown delays
(or parameters). All the tests were run on a Windows

11 OS (CPU 5GHz, RAM 16Gb) by using our MATLAB
implementations for SINDy (codes available at http://
cdlab.uniud.it/software, MATLAB version R2024a)
and MATLAB built-in BO and PO optimizers, respec-
tively bayesopt.m from the statistics and machine learn-
ing toolbox and particleswarm.m from the global op-
timization toolbox. We worked on m uniformly spaced
samples obtained by integrating (5) with initial function
φ with MATLAB’s dde23 on the time window [0, T ],
using the first 60% portion for training and the remaining
for validation via simulation. In the results (figures and
tables) the letter E refers to E-SINDy and the letter P
refers to P-SINDy (used with M = 5, 10 and 15, denoted
respectively by P5, P10 and P15). Values for m, φ and
T will be specified for each model in the relevant section,
together with the reference values of the parameters to be
recovered by SINDy, the reference values for the unknown
delays/parameters to be optimized externally, as well as
the features of the adopted SINDy library (polynomial
degree and possible non-polynomial terms).

Several tests have been performed beyond those presented
next to, investigate the role of the weights w = (w1, w2)

T

in (4) and (7), as well as that of the samples’ distribution
and of possible additional noise. We did not appreciate
any particular effect of these features on the overall re-
sults, so that in what follows we used uniformly spaced
samples, absence of noise and w1 = w2 = 1. We remark
that the uniformly spaced samples do not constrain the
values of the unknown delays, as linear interpolation for
reconstructing delayed samples is adopted as anticipated.

4.1 The delay logistic equation

We consider the delay logistic equation (Hutchinson, 1948)

x′(t) = rx(t)(1− x(t− τ)) (8)

with reference parameter r = 1.8 and a single unknown
delay of true value τ = 1, using m = 100, T = 30 and
φ(η) = cos(η). Figure 1 shows relevant trajectories; Figure
2 shows the reconstruction errors (4) and (7) obtained via
BF on 1 000 uniform candidate delays in [0.1, 1.5]; Figure
3 shows the behavior of the same errors when minimized
via BO and PO vs the number of calls to SINDy. All the
external optimizers returned the correct value of the true
delay, yet with slightly different accuracy, Table 1. Note
that the accuracy of BF is dictated by the cardinality of
the candidate set; BO stops at a fixed number of calls
to SINDy given in advance; PO stops when a desired
accuracy is reached. Consequently, we fixed this accuracy
to 10−3, chose the candidate set for BF accordingly and
fixed the number of evaluations in BO in order to safely
reach the minimum possible error. Both E-SINDy and P-
SINDy gave back the correct sparse vector Ξ with accuracy
similar to that of the optimized value of τ , Table 1,
using a polynomial library of degree 2. Correspondingly,
the relevant trajectories are indistinguishable, both for
training and validation, separated by the vertical thin
green line in Figure 1. Therein, besides E-PO, we show
only P10-PO as there is no remarkable difference in using
M = 5, 10 or 15, which means that a low collocation
degree is sufficient to get a reasonable accuracy in such a
data-driven context. Relevant numbers of calls to SINDy
and CPU times are collected in Table 2, Section 4.5, and

Fig. 1. Trajectory reconstruction for (8), see text.

Fig. 2. Errors ϵ and ϵ10 for (8) with BF.

Fig. 3. Errors ϵ and ϵ10 for (8) with BO and PO.

commented therein together with the similar outcome for
the other DDEs.

Table 1. Values and error returned for (8).

SINDy optimizer r τ ϵ or ϵM

E BF 1.8000 0.9997 6.0243e-5
P5 BF 1.8001 0.9997 2.4373e-5
P10 BF 1.8000 0.9997 1.2565e-6
P15 BF 1.8000 0.9997 8.8321e-6

E BO 1.8001 0.9998 5.6233e-3
P5 BO 1.7999 1.0001 4.4588e-3
P10 BO 1.8000 1.0000 3.4849e-6
P15 BO 1.8000 1.0000 6.3592e-7

E PO 1.7999 1.0000 8.1706e-5
P5 PO 1.8100 1.0000 2.9017e-5
P10 PO 1.8000 1.0000 5.1410e-7
P15 PO 1.8000 1.0000 4.0167e-8

4.2 The Mackey-Glass equation

We now consider the Mackey-Glass equation (Mackey and
Glass, 1977)

x′(t) = β
x(t− τ)

1 + x(t− τ)α
− γx(t) (9)
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Fig. 4. Trajectory reconstruction for (9), see text.

Fig. 5. Trajectory reconstruction for (10), see text.

with reference parameters β = 4 and γ = 2 and unknown
delay and exponent with reference values τ = 1 and α =
9.6, using again m = 100, T = 30 and φ(η) = cos(η). The
polynomial library has degree 2 and includes the rational
term 1/(1 + Xα

τ ). In Figure 4 we show the trajectories
obtained with P10-BO and P10-PO, for which τ and
α are simultaneously optimized. The relevant values are
collected in Table 3 of Section 4.5: the final accuracy of
BO is in general worse than that of PO, as it is evident
from the resulting trajectories. The same can be said for
E-SINDy instead of P-SINDy, but we avoid to plot the
corresponding trajectories in favor of clarity. Comments
on the number of calls to SINDy and CPU times are left
to Section 4.5, where for BF we used 100 candidate delays
in [0.1, 2] and 100 candidate exponents in [0.1, 20].

4.3 A scalar DDE with two delays

The DDE (Ji et al., 2021)

x′(t) = a2x
2(t− τ1) + a3x

3(t− τ2) (10)

is tested with reference parameters a2 = a3 = −1 and
unknown delays with reference values τ1 = 0.65 and
τ2 = 1.2, using alwaysm = 100, T = 30 and φ(η) = cos(η).
The polynomial library has degree 3. In Figure 5 we show
the trajectories reconstructed with E-PO and P1O-PO,
which are again indistinguishable (as those obtained with
BO, omitted for clarity). Comments on the number of calls
to SINDy and CPU times are left to Section 4.5, where
for BF we used 100 candidate delays for both τ1 and τ2,
respectively in [0.1, 1] and in [0.5, 1.5]. This choice amounts
to 10 000 calls to SINDy for E-BF, as E-SINDy requires to
optimize both τ1 and τ2. For P-SINDY we used just 1 000
candidate values for τ2, ensuring the same accuracy of PO.

4.4 A delayed Rössler system

The Rössler system with two delays (Wu, 2023)

Fig. 6. Orbit reconstruction for (11), see text.



x′(t) =−y(t)− z(t) + α1x(t− τ1) + α2x(t− τ2),

y′(t) = x(t) + β1y(t),

z′(t) = β2 + z(t)(x(t)− 1)

(11)

is tested with reference parameters α1 = 0.2, α2 = 0.5,
β1 = β2 = 0.2 and unknown delays with reference
values τ1 = 1.5 and τ2 = 2, using m = 100, T = 30
and φ(η) = (1.5, 0.4, 0.9)T . The polynomial library has
degree 2. The candidate delays are obtained by uniformly
sampling [0.1, 2] for both τ1 and τ2 with 100 candidates.
Relevant orbits in the physical state space R3 are depicted
in Figure 6, obtained with P10-BO and P10-PO. Note
that, as for (9), PO performs better than BO, as the latter
does not reach the same accuracy when optimizing the
unknown delays. For further comments see Section 4.5.

4.5 General comparison and discussion

In this section we summarize all the experiments, ad-
ditionally collecting for all the SINDy methods (E, P5,
P10, P15) and all the external optimizers (BF, BO, PO)
the relevant number of calls to SINDy and CPU times
in Table 2, as well as the reconstructed values of the
unknown delays/parameters in Table 3 (made exception
for BF which gave the worst accuracy). The CPU times
are given in seconds unless the total computation required
more than an hour (in which case we simply write “hrs”).
The latter case occurred typically when using E-BF on
two delays, as the cost scales w.r.t. the product of the
cardinalities of the candidate sets and both delays are
optimized (while P optimizes only the maximum one). The
same happened also for P-SINDy for (9) due to optimizing
both τ and α. In general one can observe that the cost of
P-SINDy increases with the collocation degree M , as it is
reasonable to expect. Good results are anyway obtained in
general already with M = 5, so that compared to E-PO,
P5-PO is outperforming in terms of calls to SINDy, still
balancing or even improving the CPU time. Only for (9) we
noted that M = 5 was not enough to get a good trajectory
reconstruction, most probably due to the possible presence
of chaos (yet M = 10 revealed sufficient, and still P10-PO
required less evaluations in a comparable amount of time).

Summarizing, P-SINDy with PO improves the overall
performance of both E-SINDy and BO. This superiority,
already evident for only one intermediate delay, further
scales with the number of unknown delays.

5. CONCLUSIONS

We introduced the Pragmatic Sparse Identification of Non-
linear Dynamics (P-SINDy), a novel approach for the
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Fig. 4. Trajectory reconstruction for (9), see text.

Fig. 5. Trajectory reconstruction for (10), see text.

with reference parameters β = 4 and γ = 2 and unknown
delay and exponent with reference values τ = 1 and α =
9.6, using again m = 100, T = 30 and φ(η) = cos(η). The
polynomial library has degree 2 and includes the rational
term 1/(1 + Xα

τ ). In Figure 4 we show the trajectories
obtained with P10-BO and P10-PO, for which τ and
α are simultaneously optimized. The relevant values are
collected in Table 3 of Section 4.5: the final accuracy of
BO is in general worse than that of PO, as it is evident
from the resulting trajectories. The same can be said for
E-SINDy instead of P-SINDy, but we avoid to plot the
corresponding trajectories in favor of clarity. Comments
on the number of calls to SINDy and CPU times are left
to Section 4.5, where for BF we used 100 candidate delays
in [0.1, 2] and 100 candidate exponents in [0.1, 20].

4.3 A scalar DDE with two delays

The DDE (Ji et al., 2021)

x′(t) = a2x
2(t− τ1) + a3x

3(t− τ2) (10)

is tested with reference parameters a2 = a3 = −1 and
unknown delays with reference values τ1 = 0.65 and
τ2 = 1.2, using alwaysm = 100, T = 30 and φ(η) = cos(η).
The polynomial library has degree 3. In Figure 5 we show
the trajectories reconstructed with E-PO and P1O-PO,
which are again indistinguishable (as those obtained with
BO, omitted for clarity). Comments on the number of calls
to SINDy and CPU times are left to Section 4.5, where
for BF we used 100 candidate delays for both τ1 and τ2,
respectively in [0.1, 1] and in [0.5, 1.5]. This choice amounts
to 10 000 calls to SINDy for E-BF, as E-SINDy requires to
optimize both τ1 and τ2. For P-SINDY we used just 1 000
candidate values for τ2, ensuring the same accuracy of PO.

4.4 A delayed Rössler system

The Rössler system with two delays (Wu, 2023)

Fig. 6. Orbit reconstruction for (11), see text.


x′(t) =−y(t)− z(t) + α1x(t− τ1) + α2x(t− τ2),

y′(t) = x(t) + β1y(t),

z′(t) = β2 + z(t)(x(t)− 1)

(11)

is tested with reference parameters α1 = 0.2, α2 = 0.5,
β1 = β2 = 0.2 and unknown delays with reference
values τ1 = 1.5 and τ2 = 2, using m = 100, T = 30
and φ(η) = (1.5, 0.4, 0.9)T . The polynomial library has
degree 2. The candidate delays are obtained by uniformly
sampling [0.1, 2] for both τ1 and τ2 with 100 candidates.
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in Figure 6, obtained with P10-BO and P10-PO. Note
that, as for (9), PO performs better than BO, as the latter
does not reach the same accuracy when optimizing the
unknown delays. For further comments see Section 4.5.

4.5 General comparison and discussion

In this section we summarize all the experiments, ad-
ditionally collecting for all the SINDy methods (E, P5,
P10, P15) and all the external optimizers (BF, BO, PO)
the relevant number of calls to SINDy and CPU times
in Table 2, as well as the reconstructed values of the
unknown delays/parameters in Table 3 (made exception
for BF which gave the worst accuracy). The CPU times
are given in seconds unless the total computation required
more than an hour (in which case we simply write “hrs”).
The latter case occurred typically when using E-BF on
two delays, as the cost scales w.r.t. the product of the
cardinalities of the candidate sets and both delays are
optimized (while P optimizes only the maximum one). The
same happened also for P-SINDy for (9) due to optimizing
both τ and α. In general one can observe that the cost of
P-SINDy increases with the collocation degree M , as it is
reasonable to expect. Good results are anyway obtained in
general already with M = 5, so that compared to E-PO,
P5-PO is outperforming in terms of calls to SINDy, still
balancing or even improving the CPU time. Only for (9) we
noted that M = 5 was not enough to get a good trajectory
reconstruction, most probably due to the possible presence
of chaos (yet M = 10 revealed sufficient, and still P10-PO
required less evaluations in a comparable amount of time).

Summarizing, P-SINDy with PO improves the overall
performance of both E-SINDy and BO. This superiority,
already evident for only one intermediate delay, further
scales with the number of unknown delays.

5. CONCLUSIONS

We introduced the Pragmatic Sparse Identification of Non-
linear Dynamics (P-SINDy), a novel approach for the

Table 2. Calls to SINDy and CPU times [s].

DDE SINDy BF BO PO

calls CPU calls CPU calls CPU

(8) E 1 000 204 300 494 308 67
P5 1 000 217 300 438 241 70
P10 1 000 449 300 485 179 100
P15 1 000 1 032 300 692 152 163

(9) E 10 000 hrs 300 561 284 92
P5 10 000 hrs 300 682 153 94
P10 10 000 hrs 300 1 080 51 102
P15 10 000 hrs 300 1 728 245 837

(10) E 10 000 hrs 300 569 644 225
P5 1 000 658 300 515 173 189
P10 1 000 1 406 300 1 325 188 390
P15 1 000 2 697 300 2 143 288 1 111

(11) E 10 000 hrs 300 576 220 197
P5 1 000 1 359 300 750 36 112
P10 1 000 2 130 300 1 310 41 194
P15 1 000 hrs 300 2 376 31 214

Table 3. Optimized unknown values.

DDE SINDy BO PO

τ α τ α

(9) E 0.9996 9.4969 1.0000 9.6001
P5 1.0502 9.2328 0.9994 9.4421
P10 1.0001 9.6134 1.0000 9.6001
P15 0.9999 9.6001 1.0000 9.6000

τ1 τ2 τ1 τ2

(10) E 0.6478 1.2050 0.6500 1.2000
P5 - 1.2001 - 1.2000
P10 - 1.2000 - 1.2000
P15 - 1.2000 - 1.2000

(11) E 1.5912 1.9684 1.5000 2.0000
P5 - 2.0000 - 2.0000
P10 - 2.0000 - 2.0000
P15 - 2.0000 - 2.0000

sparse identification of time-delay systems with discrete
delays using pseudospectral collocation, which implicitly
assumes to work with an ODE approximating the underly-
ing DDE model. The results show that P-SINDy effectively
handles unknown multiple delays by optimizing only the
maximum one, thus significantly reducing computational
demands. The method’s ability to predict system dynamics
beyond the available data using black-box simulations is
particularly suitable when model knowledge is limited.

For future developments, we aim at further improving P-
SINDy by integrating a piecewise pseudospectral collo-
cation, with the consequent possibility of optimizing the
collocation mesh. This is seen as a first step towards
the challenge of identifying distributed delay terms via
quadrature. Indeed, the latter would create several multi-
ple intermediate delays (at the quadrature nodes), which
can be efficiently handled by P-SINDy, while it would
be prohibitive for standard SINDy implementations (as
E-SINDy). These improvements would broaden the use
of SINDy to more complex dynamical systems, including
fundamental classes of models for structured population
dynamics, driven in general by coupled delay and renewal
equations (Diekmann et al., 2008).
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