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Abstract: In the study of materials and macromolecules by first-principle methods, the bond order
is a useful tool to represent molecules, bulk materials and interfaces in terms of simple chemical
concepts. Despite the availability of several methods to compute the bond order, most applications
have been limited to small systems because a high spatial resolution of the wave function and
an all-electron representation of the electron density are typically required. Both limitations are
critical for large-scale atomistic calculations, even within approximate density-functional theory
(DFT) approaches. In this work, we describe our methodology to quickly compute delocalization
indices for all atomic pairs, while keeping the same representation of the wave function used in most
compute-intensive DFT calculations on high-performance computing equipment. We describe our
implementation into a post-processing tool, designed to work with Quantum ESPRESSO, a popular
open-source DFT package. In this way, we recover a description in terms of covalent bonds from a
representation of wave function containing no explicit information about atomic types and positions.

Keywords: delocalization index; bond order; density-functional theory; high-performance computing

1. Introduction

The calculation of the ground-state electron density in an extended atomic system
is important in order to understand and guide the design of properties and functions
of materials and molecular assemblies. A method providing an excellent compromise
between computational cost and accuracy of the results is density-functional theory (DFT),
in which the electron density is represented in terms of effective one-electron Kohn–Sham
(KS) states [1]. DFT equations are frequently solved by expanding KS states into plane
waves (PW), embedded in the periodic representation of the sample of atoms. Atoms
are represented by means of the respective frozen atomic cores, via the pseudo-potential
approach, and the frozen cores act on a completely delocalized representation of valence
electrons. Such representation is natural for periodic systems such as crystalline solids,
but can be applied to liquid and disordered materials as well using large super-cells and
periodic boundary conditions, as in first-principle molecular dynamics simulations [2].
With these approximations, the calculation of the ground-state electron density can be
performed on high-performance computers for systems in the order of a thousand atoms.
This corresponds to a super-cell size of about 2 nm side, affordable to first-principle
molecular dynamics.
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The calculation of the various quantities describing the covalent bond order is a very
useful tool for analyzing first-principle results in terms of simple chemical concepts. The
importance of routine calculation of such quantities has been recently stressed [3]. In the
following, we will focus on the delocalization indices (DI) [4].

In DFT calculations using PWs, chemical bonds cannot be easily identified: in fact,
the PW basis set used to represent the electron density and KS states is delocalized and
does not explicitly depend upon atomic coordinates. As a consequence, the calculation
of DIs is traditionally based on localized, atom-centered basis sets and all-electron wave
functions. While highly accurate, such an approach is limited to isolated and relatively
small molecules. Interesting alternative analyses of wave function and related properties
are based on fuzzy atoms [5,6], ring current [7], and on Wannier functions [8,9]. These
techniques, however, are limited to aromaticity or suffer from some arbitrariness, and
require demanding additional calculations to those leading to the original wave function.

A few calculations of the bond order based on DFT calculations and PWs are known [9,10].
Both applications are limited to a few tens of atoms because they require post-processing
steps on high-resolution wave function and charge density. In the first case [10], projector-
augmented waves are used. For the largest-size application shown in this paper, a real-
space representation of the electron density requires a grid of about 216 points per side,
close to the limits of popular analysis codes like DGrid [11] or Critic [12]. In the second
case [9], the limitation due to the large size of the real-space grid is circumvented by the
additional use of maximally localized Wannier functions to optimize the compute-intensive
grid-based integration.

In this work, we describe a straight application that circumvents the numerical prob-
lems described above with no change in electron density representation. Our work extends
the implementation of the method for computing DIs, previously applied to small iso-
lated molecules [13], for all atomic pairs in an extended system. We provide the related
software as a post-processing tool for usage within the Quantum ESPRESSO (QE) distri-
bution [14,15]: an integrated suite of open-source computer codes for electronic-structure
calculations and materials modeling at the nanoscale. As an example of application, we
consider models of CO-coated Pt nano-clusters. Our implementation allows to quickly
compute DIs in super-cells containing up to 120 heavy atoms. The post-processing tools
added to QE measure the number of electrons shared between any pair of atoms, directly
from the ground state wave function represented on the basis of plane-waves and pseudo-
potentials. Atoms are assigned to atomic basins, which are regions of space including each
atomic core. Atomic basins are not uniquely identified, but the quantum theory of atoms
in molecules proposed by R. Bader [16,17] showed that a method based on the electron
density gradient is less sensitive to the wave function representation (basis-set) than other
types of assignments. We therefore used the numerical description of atomic basins as it is
implemented in the code developed by the group of G. Henkelman [18,19].

This work aims at describing the implementation of the method, while a deeper
analysis of DIs and their possible correlation with stability conditions and electronic
properties will be the subject of further studies.

2. Computing Electron Sharing
2.1. Delocalization Indices

The equation for the delocalization index δ between each atom pair is well known [4]
and involves the integral, in the space spanned by each of the atomic basins, of the overlap
between all pairs of different KS states:

δ(A, B) = 2 ∑
i,j

[ni,αnj,α + ni,βnj,β]Si,j(A)Si,j(B) , (1)

where i and j run over all the occupied KS states, Si,j(A) are overlap integrals of the i-th
and j-th KS states, integrated within the region of space identified as the basin of atom A.
The numbers ni,α are the occupations of each spin orbital. The latter occupations can be
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fractional for metallic systems, or for molecular systems with a degenerate ground state.
The localization indices λ are defined as

λ(A) = ∑
i,j

[ni,αnj,α + ni,βnj,β]Si,j(A)2. (2)

Equations (1) and (2) hold for general spin unrestricted single-determinant wave
function (Hartree–Fock level), like it is the case in Kohn–Sham spin collinear approximation.
In our applications, we consider only spin-restricted cases. The generalization to spin-
unrestricted cases is straightforward and was actually used in the first calculation of DIs of
ref. [13], for the CO dissociation. The crucial quantities for the calculation of DIs are the
overlap integrals Si,j:

Si,j(Ω) =
∫

Ω
ψ∗i (~r)ψj(~r)d~r , (3)

where the ψi’s are the KS states and Ω indicates the integration basin for the chosen atom.
KS states in periodic systems are in general Bloch states and are characterized by a wave
vector~k in addition to the band index. For large super-cells, however, we may limit them
to the Γ (~k = 0) point only. In such a case, the ψi(~r) functions are real and the complex
conjugate can be dropped. In the following, we postpone the identification of the basins to
Sections 4.2 and 4.3 and focus on the calculation of the integrand in Equation (3).

2.2. Ultra-Soft Pseudo-Potentials

Many DFT calculations based on PWs employ ultra-soft pseudo-potentials for their
computational efficiency [20]. In the ultra-soft pseudo-potential scheme, the charge density
is given by the following expression:

ρ(~r) = ∑
i

(
|ψi(~r)|2 + ∑

l,m
∑
µ

qlm,µ(~r− ~Rµ)〈ψi|βl,µ〉〈βm,µ|ψi〉
)

(4)

where the ψi’s are represented as linear combinations of PWs, 〈. . .〉 is the scalar product
in Dirac notation, ~Rµ is the atomic position for the µ-th atom, the qlm,µ functions are
augmentation charges, and the βl,µ functions (projectors) define the non-local part of the
pseudo-potential. KS states are subject to a generalized normalization condition of the form:

〈ψi|Ô|ψj〉 ≡
∫

ψ∗i (~r)ψj(~r)d~r + ∑
l,m

∑
µ

Qlm,µ〈ψi|βl,µ〉〈βm,µ|ψj〉 = δij, (5)

where
Qlm,µ =

∫
qlm,µ(~r)d~r. (6)

It is important to notice both augmentation charges qlm,µ and projectors βl,µ are short-
range functions, centered around atom µ at site ~Rµ.

Overlap integrals Si,j in the ultra-soft pseudo-potential framework can be recast under
the form:

Si,j(Ω) =
∫

Ω

(
ψ∗i (~r)ψj(~r) + ρUS

i,j (~r)
)

d~r , (7)

where the augmentation contribution is written as

ρUS
i,j (~r) = ∑

l,m
∑
µ

qlm,µ(~r− ~Rµ)〈ψi|βl,µ〉〈βm,µ|ψj〉. (8)

In practice, plane-wave components ψi(~G) are computed up to a suitable kinetic
energy cut-off Ew. KS states and their products ψ∗i ψj are quickly and easily computed on a
discrete real-space grid of points via Fast Fourier transform (FFT). The integral becomes a
sum over grid points belonging to the basin of each atom. We remark that it is customary
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and convenient to use a denser real-space grid for the augmentation terms than the one
used to compute the products of KS orbitals. The latter must contain PWs up to a larger
kinetic energy cut-off, Ec = 4Ew, while the “dense” grid contains PWs up to an even larger
cut-off, typically Ed = 8÷ 12Ew.

The evaluation of the augmentation term, Equation (8), is the time-consuming step.
The typical way (implemented in QE) to deal with augmentation charges is to compute
them in ~G-space:

ρUS
i,j (~r) = ∑

~G

ρ̃US
i,j (

~G)ei~G·~r. (9)

~G-space components are in turn written as

ρ̃US
i,j (

~G) = ∑
l,m

∑
µ

qlm,µ(~G)e−i~G·~Rµ〈ψi|βl,µ〉〈βm,µ|ψj〉. (10)

The calculation of Equation (10) is straightforward: the scalar product between β
functions and ψ KS states in the PW basis set reduces to a matrix–matrix multiplication,
while qlm,µ(~G) and βl,µ(~G) are atomic functions in Fourier space and are easily computed.
ρ̃US

i,j (
~G) is then transformed back to real space (on the dense grid) using inverse FFT and

added to Equation (7).
This algorithm was used in [13] and is mathematically exact for a given PW basis set,

but it is also computationally heavy. The number of needed floating-point operations is
O(M2npNatNPW), where M is the number of KS states, np the number of projectors per
atoms, Nat the number of atoms, and NPW the number of plane waves. Apart from np, a
number ∼ O(10) depending upon the atomic species, all other factors grow linearly with
the size of the super-cell. The computational workload thus grows as the fourth power of
the super-cell size. For super-cells containing more than a few tens of atoms, the calculation
becomes much heavier than the solution of DFT equations.

2.3. Faster Algorithm

In order to obtain a faster algorithm, one needs to exploit the short-range character of
augmentation charges and of projectors in real space. By computing Equation (7) in real
space, instead of going through reciprocal space, one might gain a rather large factor: the
ratio between the total number of grid points and the number of grid points for which the
augmentation charges are nonzero. While actually available in QE, such an algorithm is
rather complex and not well suited for parallel execution.

Here, we present an even simpler algorithm that increases the speed of the calculation
while exploiting existing parallelization schemes (see Section 4.4). The price to pay is that
the calculation of Equation (7) is no longer exact, but the results are still very close to exact
ones, as shown in the reported application (see Section 3).

We first compute Ôψi, where Ô is defined in Equation (5), and bring it to real space
using FFT. Both operations are already present in QE and can be easily re-used. We then
compute

S̃i,j(Ω) ≡
∫

Ω
ψ∗i (~r)

(
Ôψj

)
(~r)d~r. (11)

Such quantity differs from overlap integrals Si,j(Ω) as defined in Equation (7). In fact,

S̃i,j =
∫

Ω

(
ψ∗i (~r)ψj(~r) + ∑

lm,µ
ψ∗i (~r)βl,µ(~r− ~Rµ)Qlm,µ〈βm,µ|ψj〉

)
d~r (12)

6=
∫

Ω

(
ψ∗i (~r)ψj(~r) + ∑

lm,µ
qlm(~r− ~Rµ)〈ψi|βl,µ〉〈βm,µ|ψj〉

)
d~r. (13)

Since, however, both q(~r− ~Rµ) and β(~r− ~Rµ) are short-range and centered around
an atom, the integral over the atomic basin Ω includes only the core region of the atom in
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Ω. Under the hypothesis that the core region is completely included into the atomic basin,
and remembering Equation (6), one realizes from Equations (12) and (13) that S̃i,j ' Si,j.

The calculation of DIs with the algorithm sketched above is much faster and easier
to code than the exact calculation of the previous section. The number of needed floating-
point operations is O(MnpNatNPW) for Ôψi, O(MNPW log NPW) for the FFTs, O(M2NPW)
for Equation (11), and grows no faster than the cube of the super-cell size.

3. Applications to an Extended System with Unusual Bonds

We choose a paradigmatic extended system as a test for applying the DI equation. The
system has been chosen in the frame of CO-metal clusters, since they present different types
of bonds shared by isolated clusters and extended, up to periodic, systems [21,22]. We
built models of a CO-isolated Pt nano-clusters, composed by a number of planar Pt3(CO)6
clusters stacked in the direction of the Pt3 plane of each cluster. The general molecular
formula of these clusters is [Pt3(CO)6]n

2 – (n = 1–10), where n is the number of layers,
containing a single [Pt3(CO)6] unit, that the cluster consists of. These individual units stack
on top of one another and arrange into a trigonal prismatic fashion along a pseudo-C3 axis.
What is observed with increasing n is a lengthening molecular wire of repeating molecular
units. It has been found that at low nuclearity, n 6 4, the cluster always crystallizes
adopting ionic 0-D packings, with the anions and cations separated by normal van der
Waals contacts. On the other hand, for n > 5, the oligomers tend to self-assemble and can
form infinite nano-wires [23–25]. For this reason, we modeled the series of compounds
[Pt3(CO)6]n

2 – with n = 1, 2, 4, 8. The n = 1 case represents the monomer; the n = 2, 4
cases represent isolated oligomers; the n = 8 case represents the infinite nano-wire. The
compounds have been minimized in a routinely used DFT model, starting with a super-cell
of 2 nm× 2 nm×2.56 nm, with variable Lz in the latter case (see Section 4.1). We computed
the DIs for all atom pairs in the series.

Systems are composed by 15, 30, 60, and 120 atoms, respectively, with 46, 91, 181, and
363 filled KS states, respectively. The number of points in the real-space representation of
density and KS states is 192×192×243. All calculations were performed with QE v.6.6. The
minimal energy configuration obtained for the infinite nano-wire is displayed in Figure 1.

The values of DI for the monomer, the isolated (n = 2,4) oligomers and for the infinite
(n = 8) nano-wire are reported in Table 1 for the pairs of atoms that are shared among all
monomers and for the additional Pt–Pt pairs where Pt are the closest atoms of different
monomers. The values are averaged over the equivalent bonds, and atoms in each bond are
labeled, for the monomer, as in Figure 2. According to the analysis of PW-based calculation
of DI reported in the previous application to simple molecules [13], the error on DI, with
this type of approximations, is 0.1 units. Because of this estimated accuracy, we do not
report DIs smaller than 0.1 in all of our applications described below. For instance, in the
monomer, the DI for atom pairs that are close in space, like Ct2–Cb4 in Figure 2 (3.0 ÷
3.1 Å), is 0.056 ± 0.002. Other pairs, like Ot3–Ob5 have DIs smaller than 0.05. The main
message of Table 1 is that 3 covalent bonds appear between Pt atoms belonging to different
stacks (Pt1-Pt16), with minimal change in the covalent bond distribution among each stack
involved in the interaction between Pt3 planes. The availability of electrons shared between
different planes is due to the removal of electrons when planes are stacked one over each
other. The major change within each assembled monomer is the decrease of DI for Pt–Ct
pairs, from 1.5 in the isolated monomer to 1.3 in the nano-wire. This point will be discussed
in more detail below.
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Figure 1. Structure of infinite nano-wire [Pt3(CO)6]8
2 – in a periodic cell, drawn in blue. The energy

is minimized with no counterions and the total charge q = −2. The nano-wire direction is along the z
axis (blue). Pt, C and O atoms are represented as ochre, gray and red spheres, respectively. Atomic
and bond radii are arbitrary. Bonds are drawn when the distance between atoms is shorter than 2.1 Å.
The VMD program [26] is used for all molecular drawings.

Table 1. DIs for types of atomic pairs as indicated in Figure 2. Pt1 indicates Pt of the displayed
monomer, while Pt16 indicates the closest Pt atom of the nearby monomer in the stack. These values
are obtained with no counterions, using the minimal energy configurations obtained with total charge
q = −2 in all cases.

Pair Type n
1 2 4 8

Pt1-Ct 1 1.5 1.4 1.3 1.3
Pt1-Ot 2 0.25 0.24 0.23 0.22
Pt1-Cb 3 0.88 0.85 0.81 0.78
Pt1-Ob 4 0.16 0.16 0.15 0.14
Pt1-Pt1 5 0.55 0.48 0.47 0.46
Pt1-Pt16 6 - 0.35 0.34 0.28
Ct-Ot 7 1.6 1.6 1.6 1.6
Cb-Ob 8 1.5 1.5 1.5 1.6
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Pt1
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Figure 2. Atom indices within each Pt3(CO)6 stack, used throughout the description of DIs. Indices
of other stacks in dimers and in the nano-wire are incremented by 15, the number of atoms in each
stack. Pair type 6 involve Pt atoms of different Pt3 stacks.

As for computational resources and performance: with the original algorithm of
Section 2.2, the calculation of DIs for the infinite nano-wire model (120 atoms) takes 37 h
of wall-time running over 144 nodes with 3 tasks per node (because of memory limits).
The total number of tasks is 432, and is matched in this particular case by the number
of KS states (359 states with occupation 2, 4 states with fractional occupation, 69 empty
states), allowing an ideal distribution of one state per task. The new algorithm presented in
Section 2.3 for the same model takes only 43 s of wall-time running over 16 nodes with 27
tasks per node. The total number of parallel tasks is therefore the same as in the the original
algorithm, but more tasks can share the same memory on each node. The performance
of the new algorithm is thus much better and may allow an almost real-time on-the-fly
calculation.

We notice that in this form the calculation of DIs scales nearly linearly with the number
of computational tasks (see Section 4.4). The high number of tasks that is required is about
5–10 times that required for the calculation of ground state wave function in about the same
real time. For example, the calculation of the ground state wave function for the infinite
nano-wire (120 atoms) takes 260 s of wall-time using 48 tasks running over one modern
many-cores node. The calculation of DIs takes 1/5 of the wall-time using about 10 times
the tasks. Therefore, the post-processing of wave function on modern high-performance
computing architectures is affordable with a moderate effort, but avoiding either large
movement of data and changes in the wave function representation.

The price paid for the greater computational efficiency of the new algorithm is shown
in Figure 3 for the monomer. The DI values calculated with the new algorithm (y axis) are
compared to those obtained with the original algorithm (x axis). Different colors identify
different groups of theoretically equivalent bonds, according to the scheme in Figure 2.
The deviation between the two sets of results is within the DI error (0.1). The largest
error is shown in the dispersion of DIs corresponding to bonds that are in theory identical
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by symmetry, irrespective of the algorithm used. This is particularly evident for pairs
Ct–Ot and Cb–Ob, that change by 0.4 units (gray and brown circles). This unexpected
variation is concentrated at the periphery of the cluster. The reason of this deviation is
the low definition of atomic basins in the region of space where the electron density is
low and flat, i.e., where there are no atoms. This region can be, in theory, assigned to an
additional vacuum basin, but such correction will be included in a further study. A better
understanding of this issue is discussed below for dimers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
ew

 D
I

Original DI
Figure 3. Comparison between DI in the monomer computed with the original (x axis) and the new
algorithm (y axis). Different colors are used for atom pairs indicated in Figure 2: black—Pt1-Ct
(pair type 1); red—Pt1-Ot (pair type 2); blue—Pt1-Cb (pair type 3); green—Pt1-Ob (pair type 4);
orange—Pt1-Pt1 (pair type 5); brown—Ct-Ot (pair type 7); gray—Cb-Ob (pair type 8).

3.1. Dimers

We performed calculation of DIs and of charge integrated within the atomic basins
connected by DIs, for the same configuration of the dimer obtained by energy minimization
with total charge q = −2. Assuming that q = −2 is the optimal charge to stabilize
the monomer, the approach between two monomers keeping their respective charge is
destabilized by the electrostatic repulsion. Therefore, the oxidation of the dimer upon the
assembling process is required to reduce repulsion while keeping enough electrons to be
possibly shared within each assembled monomer as in the isolated monomer. On the other
hand, the oxidation can perturb the stability of each monomer because electrons can be
partially removed by covalent bonds that are essential to seal the monomeric cluster. These
bonds are Pt–Pt bonds, but also the C-O bonds that keep the isolating layer made of CO
molecules. As a compromise between these effects, the ideal electron removal should not
perturb the distribution of electrons compared to the monomer. By observing the change in
molecular geometry upon energy minimization (Figure 4), it can be noticed that O terminal
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atoms (Ot and Ob) increase the relative distance when the O atoms of O–O pairs belong to
different facing monomer. Conversely, Pt atoms become closer, strengthening the covalent
nature of a little Pt6 cluster isolated by CO bound molecules. The latter CO ligands, being
highly polarized, tend to repel each other while keeping the Pt cluster isolated.

Figure 4. Geometry of dimer with charge q = −2 before (top) and after energy (bottom) minimiza-
tion.

The comparison of DIs of isolated monomers and of assembled dimers is displayed in
Figure 5, where the top panel displays the values for the isolated monomer with charge
q = −2. The bond types 10 and 11 are long-range pairs intra-monomer and inter-monomer,
respectively. These types of bonds become significantly populated when the total charge of
dimer achieves the value q = −2 (B). The recovery of values of DI(Pt–Ct), DI(Pt–Cb), and
DI(Pt–Ob) corresponding to the monomer when the negative charge of dimer becomes −2
(panel B) indicates that bonds around Pt are restored as in the monomer, with no significant
change of DI(Pt1–Pt16), thus showing a change of the local Pt environment compared to
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the isolated monomer. Therefore, we argue that the 2-electron oxidation of the dimer (panel
B) represents a state with intra-monomer bonds similar to the isolated monomer, with part
of excess electrons shared by Pt–Pt bonds connecting different facing monomers, and the
remind of excess electrons pushed as far as possible away from the molecule. The large
values of DIs for pairs of type 10 (intra-monomer, up to 1.2) when charge is −2 (panel B)
indicates that there are no ways to share excess electrons away from monomers (Pt1-Pt16
and bond types 11). This is an indication that for small oligomers when the total charge
is negative (−2) electron density is compressed in separated stacks, with no relaxation of
electron-electron repulsion. The addition of a positive hole like a Mg atom, keeping the
total charge zero (panel C) shows that the consequent change of electron density gradient
allows a better definition of the region where the excess of electrons is spread. The many
DIs of types 10 and 11 disappear and no electron sharing between CO and Mg is measured.

(A)
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(B)

 0
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 1.4

 1.6
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D
I

(C)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  2  3  4  5  6  7  8  9  10  11

D
I

Pair type

Figure 5. DI (y axis) for different atom pairs (see list below and Figure 2) for the isolated monomer
(A) and for the dimer (B), both with total charge q = −2. Panel (C) is with the addition of Mg far
from molecule (total charge zero). List of atom pairs: 1—Pt1-Ct; 2—Pt1-Ot; 3—Pt1-Cb; 4—Pt1-Ob;
5—Pt1-Pt1; 6—Pt1-Pt16; 7—Ct-Ot; 8—Cb-Ob; 10—different from above, but intra-monomer; 11—as
in 10, but inter-monomer.

3.2. Nano-Wire

As for the extended nano-wire, we computed the DIs for several snapshots along with
the variable-cell energy minimization in the presence of mobile cations like Na+. When
Na atoms are far from the nano-wire, the charge integrated over the Na atomic basins is
close to 1, showing that in this case the charge separation is correctly modeled. When the
Na cations become free to move, they rapidly approach the negatively charged nano-wire.
This process is displayed in Figure 6, where the evolution of some geometrical parameters
is reported along with the variable-cell energy minimization. The first 50 points of the
energy minimization were performed with Na atoms fixed in space. The minimal distance
between the Na atoms and the nano-wire (O atoms) is larger than 5 Å. At the beginning



Molecules 2021, 1, 0 11 of 18

(conf. zero), the structure of the nano-wire is that of the minimal energy configuration
obtained with cell charge −2 and with fixed cell sides. Keeping the Na position fixed while
allowing the cell side relaxation, the reduction of nano-wire periodicity is the major struc-
tural change (panels A and C, black curve): all the Pt–Pt inter-monomer distances regularly
adapt to the neutrality of the cell. The release of constraints acting on Na atoms (point 50)
allows Na to reach the nano-wire and, when the minimal Na-O distance achieves 5 Å, the
energy starts decreasing rapidly. After the first encounter between Na and O atoms (point
80), a slow settling of interactions between Na and O atoms occurs. The final collected
configuration (point 150) is displayed in Figure 7. The corresponding evolution of the Pt–Pt
inter-monomer minimal distances are displayed in Figure 6C. This plot shows that the in-
teractions between Na and the nano-wire significantly affect the distance between the stack
of monomer Pt3 planes. The regular inter-monomer distance displayed by configuration
50 is altered and slowly settled to a range of values 3.1 ÷ 3.25 Å (configuration 150). This
effect clearly shows that the approach of small cations towards the nano-wire modifies the
regular inter-monomer distance, introducing a little structural defect. We are now in the
position to monitor the effect of such defects on the electron sharing between Pt3 stacks.

The pattern of DIs for different pair types is displayed in Figure 8 for several snapshots,
along with the variable cell relaxation. The selected snapshots are indicated as circles in
Figure 6A. In panel A, corresponding to the negatively charged nano-wire separated from
the two Na cations, we notice that no DIs are measured for pair types 10 and 11 (see
Figure 5C). This confirms the requirement of avoiding the assignment of space points to
atoms in regions of space where electron density is low and flat. This can be easily done
with counterions. We notice here that DI(Pt–Ct) is lower in the nano-wire (1.2) than in
the monomer (1.5) (see Table 1 and Figure 5A). The electron sharing of the nano-wire is
similar to the dimer when the total charge is zero (Figure 5B), because of the spreading of
the excess negative charge of the nano-wire among 8 monomers. When Na atoms become
close to CO ligands, a significant electron sharing appears involving Na basins (panel B),
even if the charge assigned to Na atoms is still approximately 1 (0.95) and this value is
maintained during the following Na settling around the CO ligand atoms. The charges
integrated over atomic basins do not change appreciably, especially when summed over
monomers. This indicates that the charge distribution is not affected by the interactions
between the negatively charged wire and the positively charged counterions. The largest
DI occurs for Na–Ob pairs (up to 0.6, panel B), while the largest value for Na–Ot pair is 0.3.
The electrons shared between Na and Ob atoms are extracted by Pt–Pt pairs (pair types 5
and 6) where the perturbation of symmetry becomes evident after the first Na-O encounter
(panels C-D). However, the effect on electron sharing within the nano-wire of the Na-O
interactions at the periphery is extremely small, showing that the CO insulating effect is
particularly strong.
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Figure 6. Evolution of geometrical parameters of the nano-wire along with the variable-cell energy
minimization. The first 50 configurations are obtained with Na atoms fixed in space. Panel (A)—cell
length along the z direction (Lz, left axis) and total energy (E, right axis, zero is for the initial value);
circles emphasize the configurations analyzed in Figure 8; panel (B)—distances between the two Na
atoms and the closest O atoms of the nano-wire (the monomer number is indicated within brackets);
panel (C)—inter-monomer shortest Pt distances.
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Figure 7. Final configuration (conf. 150 in Figure 6). Na atoms are displayed as blue spheres. The
shortest distances between Na and O atoms in the nano-wire are displayed. For clarity, bonds are
drawn when distance between atoms in the pair are shorter than 1.6 Å.
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Figure 8. DI (y axis) for different atom pairs (see list below and Figure 2) along with the approach
of Na towards the molecule: (A) initial configuration (conf. 30 in Figure 6); (B) first-encounter
configuration (conf. 100 in Figure 6); (C) minimal energy configuration (conf. 148 in Figure 6); (D)
settled configuration (conf. 150 in Figure 6 and Figure 7). List of atom pairs: 1—Pt1-Ct; 2—Pt1-Ot;
3—Pt1-Cb; 4—Pt1-Ob; 5—Pt1-Pt1; 6—Pt1-Pt16; 7—Ct-Ot; 8—Cb-Ob; 10—different from above, but
intra-monomer; 11—as in 10, but inter-monomer; 12—Na-molecule.
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4. Materials and Methods
4.1. Ground-State Electron Density and Energy Minimization

The ground-state electron density was computed by using Vanderbilt ultra-soft
pseudo-potentials [27] and the PBE exchange-correlation functional [28]. Electronic wave
function was expanded in plane waves up to an energy cut-off Ew = 30 Ry, while a cut-off
Ed = 250 Ry was used for the expansion of the augmented charge density in the proximity
of the atoms, as required in the ultra-soft pseudo-potential scheme (see Section 2.2. Periodic
boundary conditions were applied in the three direction of space. The Pt3 plane was always
initially parallel to the cell xy plane and cell side Lx = Ly =2 nm. Lz was initially set to
2.48 nm. All calculations were performed under spin-restricted conditions, i.e., with each
Kohn–Sham orbital filled with two electrons of opposite spin. A Gaussian spreading of KS
occupation was used to prevent problems in self-consistency convergence. The energy was
minimized using a tolerance of 10−6 Ry. The energy and atomic forces are corrected for the
effects of cells with net charge different from zero [29,30].

DFT–D3 dispersion interactions [31] were included for energy and force calculations
in order to correct for the lack of such interactions in the PBE approximation to DFT.
The energy minimization was performed with the Broyden–Fletcher–Goldfarb–Shanno
algorithm until all force components were smaller than 10−4 Ry/bohr. In the variable-cell
energy minimization, only Lz was allowed to relax, while Lx and Ly were kept fixed to
2 nm. The number of steps required by energy minimization did not exceed 150.

4.2. Including All Electrons

The frozen-core contribution of every atom is added to the valence electron density in
the real-space representation. This is needed because, in a pseudo-potential framework, the
charge density, which is also pseudized, is very small in the region close to the nucleus and
may cause the atomic basin identification algorithms of Section 4.4 to fail. Since we do not
need an accurate all-electron charge density reconstruction, we have resorted to a simple
method, implemented as a new option of the QE post-processing tools. The charge of each
frozen core is built according to the Zener–Slater approximation of isolated atoms [32,33].
The radial part of each one-electron effective state is:

R(r) = R0r(n
∗−1) exp

[
− (Z− s)

r
n∗a0

]
, (14)

where r is the distance from the nucleus, a0 is the Bohr radius, Z is the atomic number, s
and n∗ are screening parameters, and R0 is a normalization constant. The parameters are
tabulated in textbooks [34]. The charge assigned to each grid point in the dense real-space
representation of valence electron density is augmented by the frozen core charge, averaged
over a sub-grid of 16×16×16 regularly spaced points in a cube surrounding each grid
point. Only points within the core radius of each pseudo-potential (in the range of 3 bohr)
contribute. This procedure allows a smooth spreading of core charge among the cells in the
dense-grid representation of electron density. The correctness of integrals of the all-electron
density in all cases was checked to be within 1%.

4.3. Atomic Basins Identification

Approximated all-electron densities were analyzed with the approach known as
quantum theory of atoms in molecules [16,17]. The method assigns the set of points in
space confined within the surfaces of zero flux of the electron density gradient to the atom
within the respective surface. This analysis was performed with the algorithm initially
proposed by Sanville et al. [18]. The version 1.03 of the code was used in this work.
Once the atomic basins Ω were identified, the integral for each DI in Equation (3) was
computed simply by summing over the set of elementary cubic volumes identified by each
of the atomic basin Ω. Therefore, the implementation of Equation (3) requires the simple
collection of 3D grids of the valence electron density and of the set of KS molecular orbitals
representing it, in whatever representation.
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The electron density was collected in real space on the dense 3-D grid used in PW
calculations with ultra-soft pseudo-potentials. The final 3-D representation of electron
density has a finite-element side that depends upon the energy cut-off Ed. For the Ed = 250
Ry cut-off we used, the finite-element side is about 10 pm. By increasing Ed, a finer
real-space grid is obtained. The convergence of Equation (3) can thus be assessed by
increasing the resolution of electron density. In all cases, the valence electron density was
complemented with the core electron density by the procedure described above.

4.4. Parallelization

The calculation of DIs requires a large amount of memory, since the real-space repre-
sentation of all valence KS states must be kept in memory for the calculation of overlap
integrals in the different atomic basins. This memory requirement limits the size of sys-
tems for which the calculations of DIs is possible, even with high-performance computing
hardware. With the parallelization scheme of QE, we could perform the calculation of DIs
for 120 atoms, without storing the KS states on disk, a strong limitation of our previous
post-processing code [13].

QE has several ways to distribute tasks in parallel architectures. Products, scalar
products, sums over the ~G and~r grids, as well as three-dimensional FFTs, can be easily
parallelized using the available “plane-wave” parallelization of QE.

For the calculation of DIs, it is convenient to resort to “band parallelization”, where
groups of KS states are managed by independent computational tasks (the index i of KS
states ψi is distributed). In order to exploit band parallelization without replicating arrays
over all processors, we resort to the following algorithm.

The N processors are divided into nb “band groups” of N/nb processors each. Initially,
each band group contains Mb = M/nb KS states ψi (from i = (ib − 1)Mb + 1 to i = ib Mb
for band group ib). The~r and ~G components of all needed arrays are distributed across the
processors inside each band group.

ρus
i,j is first computed for i, j = (ib − 1)Mb + 1, . . . , ib Mb. The FFTs, products and scalar

products are parallelized inside each band group and the various contributions to the
integrals are summed.

Band group ib then sends a copy of ψi to band group ib − 1, receives the copy sent
from processor ib + 1 (odd numbered processes send first, receive later; even-numbered
processes receive first, send later).

It is now possible to compute ρus
i,j for i = (ib − 1)Mb + 1, . . . , ib Mb and j = ib Mb +

1, . . . , (ib + 1)Mb. The procedure is iterated until each band group has a complete slice of
ρus

i,j for all values of j. The partial results for each band group are then collected to yield the
final result.

5. Conclusions

The concept of covalent bond is here fully recovered by properly analyzing density-
functional theory calculations performed in a basis set that does not depend upon atomic
positions and type. This is the case of plane waves, frequently used for condensed phases
with periodic boundary conditions. Delocalization indices, measuring electron sharing
between any pair of atoms, can thus be computed in extended systems made of more
than one hundred of atoms. Our method takes profit of the short-range character of
augmentation charge and of the double-grid method to compute the required overlap
integrals in a quick and effective way. The new method to compute delocalization index
is applied to a Pt nano-wire isolated by CO molecules, where different extents of electron
sharing are observed, like charge polarization of CO ligands and metal–metal bonding.

The algorithm is fast, reliable, and is provided as a routine tool within the Quantum
ESPRESSO open-source package, to better understand electron distribution in complex
materials.
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