Journal of Scheduling (2022) 25:301-319
https://doi.org/10.1007/510951-022-00740-y

()

Check for
updates

Multi-neighborhood simulated annealing for the sports timetabling
competition ITC2021

Roberto Maria Rosati' - Matteo Petris?(® - Luca Di Gaspero'® - Andrea Schaerf’

Accepted: 3 May 2022 / Published online: 28 June 2022
© The Author(s) 2022

Abstract

We describe the solver that we developed for the Sports Timetabling Competition ITC2021, a three-stage simulated annealing
approach, that makes use of a portfolio of six different neighborhoods. Five of these neighborhoods are taken from the literature
on round-robin tournament scheduling, whereas the last one, denoted as PartialSwapTeamsPhased, is a novel contribution
and it is specifically designed for the phased version of the problem. We perform a comprehensive and statistically principled
tuning procedure to find the best combination of parameters for the competition instances. We dedicate specific focus to
evaluate the contribution given by the new neighborhood PartialSwapTeamsPhased, which yielded better results on most
phased instances. Overall, the final outcome is that the three-stage simulated annealing solver is able to find a feasible solution
on 44 out of 45 instances and ranked second in both the first competition milestone and the final round. We also propose an
Integer Linear Programming model implemented in CPLEX, which, unfortunately, did not produce significant results on the

instances of the competition.

Keywords Sport Scheduling - Simulated Annealing - ITC2021 - Timetabling

1 Introduction

Sports timetabling is an active research field, mainly due to
the commercial interest in the maximization of fan attendance
(in person or remotely) to sport events. Among the various
possible structures for sport competitions, the round-robin
tournament, where each team plays against each other, is the
most frequently used for most team sports.

Many variants of the round-robin tournament problem
have been discussed in the literature. We consider here the
version proposed for the International Timetabling Competi-
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tion ITC2021 (Van Bulck et al., 2021): a double round-robin
tournament (all teams play with each team twice), which
takes into account a very rich set of constraints and objec-
tives collected from real-world cases.

All versions of this problem have in common the fact of
being generally difficult to solve in practice. In fact, it is often
hard to find optimal (or near-optimal) solutions already for
instances of relatively small sizes, i.e., 16-20 teams, which
is indeed the typical size of national championships.

As mentioned above, the ITC2021 problem considers a
large set of constraints and objectives, also known as hard
and soft constraints, respectively. This formulation has the
peculiarity that every single specific constraint can be stated
as either hard or soft. Another characteristic of the ITC2021
formulation is that it has abandoned the classical mirrored
structure in which the second leg is identical to the first one,
with home and away positions swapped. That is, the structure
of ITC2021 instances is either completely free or phased. The
latter imposes that each team meets all other teams in each
leg, but not necessarily in the same order.

In this paper, we describe the search method employed
in our participation in the ITC2021. It is a three-stage simu-
lated annealing approach that uses a portfolio of six different
neighborhood structures. Five of them are classical ones,
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already proposed in the literature, whereas the sixth one,
named PartialSwapTeamsPhased, is a variant of one of them
that we specifically designed to deal with phased instances.
Simulated annealing has been used also by other authors
for sports timetabling with good results, suggesting that it
is particularly suitable for this type of problem (see Sect. 2
on related work). In addition, we have experienced promis-
ing results with multi-neighborhood simulated annealing also
on problems that show some similarities, like for example
Examination Timetabling (Bellio et al., 2021) or Minimum
Interference Frequency Assignment (Ceschia et al., 2021).

Our solver has many parameters, and it has been tuned
using the F-RACE procedure (Birattari et al., 2010), upon a
set of experimental configurations designed using the Ham-
mersley point set (Hammersley & Handscomb, 1964).

We also propose an Integer Linear Programming (ILP)
model for the problem. We implemented it in CPLEX, but,
unfortunately, it was able to solve systematically only small
artificially generated instances, and it did not produce signif-
icant results on the instances of the competition even after
long running times.

The paper is organized as follows. Section 2 is dedicated
to the discussion of previous work. Section 3 introduces a
mathematical model for the problem. Section 4 describes in
detail our approach, and its experimental results are illus-
trated in Sect. 5. Finally, conclusions and future work are
discussed in Sect. 6.

2 Related work

Interest in Sports Timetabling dates back to the 1970s. Ini-
tial research by Gelling 1973, Russell 1980, Wallis 1983, and
de Werra et al. 1990 focused on the relationship between 1-
factorizations of a complete graph and the Sports Timetabling
Problem. In sports timetabling, 1-factorizations take the
name of patterns and de Werra 1981 proposed an easy way
to generate a 1-factorization that has been named canoni-
cal pattern. Nevertheless, Rosa and Wallis 1982 and Dinitz
et al. 1994 warned about the complexity in the generation
of non-isomorphic 1-factorizations. Due to its complexity,
applications of metaheuristics to the Sports Timetabling
Problem date back to the 1990s, with contributions from
Costa 1995, Della Croce et al. 1999 and Hamiez and Hao
2000. In the 2000s Ribeiro and Urrutia 2004, Anagnostopou-
los et al. 2006, and Di Gaspero and Schaerf 2007 proposed a
set of new neighborhoods for local search-based metaheuris-
tics. They have been employed either with Tabu search or
simulated annealing and were particularly effective for the
solution of the Traveling Tournament Problem (TTP), pro-
posed by Easton et al. 2001.

In the last decade, Lewis and Thompson 2011, Costa et
al. 2012, and Januario and Urrutia 2016 worked on further
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heuristics and new neighborhoods for the solution of the
Sports Timetabling Problem. More recently, Van Bulck et
al. 2020b introduced a unified data format for the round-
robin sports timetabling, named RobinX, that synthesize 18
different constraints belonging to five different constraint
groups, and they published a large set of instances in the pro-
posed format. The RobinX format is employed in the Sports
Timetabling Competition ITC2021 (Van Bulck et al., 2021).

More complete bibliographic revisions for sports timetabling
can be found in Rasmussen and Trick 2008, and Kendall et
al. 2010. An up-to-date bibliography is also available online
and maintained by Knust 2010.

3 Problem formulation

We introduce here the ITC2021 problem through its Integer
Linear Programming (ILP) model, and we refer to Van Bulck
et al. 2021 for a comprehensive presentation.

Let 7 be an even number and 7 = {1, ..., n} be the set of
teams of a sport league. In a double round-robin tournament,
eachteami € 7 plays a game againsteach otherteam j € 7,
J # i, twice, once at home and once away. We identify the
home and away games of team i against team j, respectively,
with the pairs (i, j) and (j, 7). Hence, the set of games that
have to be scheduled in the league is G = {(i, j) € T x 7 :
i # j}. In addition, in a time-constrained tournament the
number of rounds available to schedule the games of G has
to be minimal. Then, R = {1, ...,2(n — 1)} is the set of the
available rounds in a double round-robin tournament and, at
every round r € R, each team plays exactly once, either at
home or away. A timetable is an assignment of exactly one
round of R to each game in G. We say that a timetable is
phased if the season is split in two legs, where each team
plays against all the other teams exactly once: team i and
J cannot play both their mutual games ((i, j) and (j,i)) in
the same leg. We suppose that the first leg occurs in rounds
1,...,|R|/2, whereas the second one in rounds |R|/2 +
..., IR

Sport timetables usually consider several additional con-
straints. Specifically, we consider five groups of constraints.
Capacity constraints regulate the number of home games,
away games or games that a team or a subset of teams can play
in a given subset of rounds. Game constraints fix or forbid
specific assignments of games to rounds. Break constraints
are used to limit the number of breaks, that is the number
of consecutive home or away games for a team. Breaks are
mostly undesired in a fair timetable. Fairness constraints
limit the difference of home games played by two teams
after each round. Finally, separation constraints ensure that
the mutual games of two teams are separated by a given num-
ber of rounds. We call C the set of these constraints. Set C
contains hard and soft constraints: the former express fun-
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damental properties of the timetable and must be satisfied,
whereas the latter express preferences and can be violated.
We denote by Charqg and Csofy the subsets of C containing,
respectively, the hard and soft constraints. For each soft con-
straint ¢ € Cy,f, We denote by w, the weight associated with
its violation.

For each game (i, j) € G and each round r € R, we
introduce a binary variable xj;; defined as follows

1 if game (i, j) is played in round r
Xijr = .
0 otherwise.

For each soft constraint ¢ € Cgofr, Wwe include a non-
negative continuous variable d. representing the deviation
triggered if the constraint is violated.

The model, denoted by M, reads as follows.

min Y wede (1)

c€Csoft
Z)ﬁjr=1 Y(i,j)eg 2)
reR

Z Xijr+xip <1 VieT,VreR (3)

JET j#i

Yo xptxp=1 VG j)egi<] (4)
reR,r<|R|/2

Objective function (1) minimizes the weighted violation of
the soft constraints. Constraints (2) and (3) define a timetable
for the games in G in the rounds of R. Specifically, Con-
straint (2) imposes that every game is played, i.e., it is
assigned to exactly one round, and Constraint (3) ensures that
each team plays at most one time per round. Finally, Con-
straint (4) guarantees that the timetable is phased, if required.

In the following, we list the constraint types considered in
set C. We first discuss the hard version of these constraints.
Some additional notation, such as subsets of teams or rounds
and parameters, may be required for each constraint ¢ € C.
For example, if constraint c is identified by a team i € 7, we
denote by 7 (i) and/or R (i), respectively, the subsets of teams
and rounds considered by the constraint itself: the depen-
dency on c is dropped to lighten the notation. Furthermore,
we explicit the correspondence between the constraints in
set C and those considered in Van Bulck et al. 2021 to avoid
ambiguities.

— Capacity Constraints (CA)

ki)=Y > xip <kG) VieT 5)
JET (i),j#i reR(i)

r+7(i)
K< Y Y k@) VieT Vr=1,.., IR|
JET @) j# r'=r
— ) +1 (6)

k<Y > Y xp<k VILT'cT,VR'cR. (7)
ieT jeT", j#ireR’!

Constraints (5) (CA1 and CA2 in Van Bulck et al., 2021)
impose that team i plays at least k(i) and at most k@)
home games against the teams in subset 7 (i) € 7 in the
rounds of set R(i) € R. These constraints can be used to
model the so-called place constraints that forbid a team
to play at home in a given round and the so-called top
team and bottom team constraints which avoid bottom
teams to play all the initial games against top teams. Then,
Constraint (5) (CA3 in Van Bulck et al., 2021) forces
team i to play at least k(i) and at most k(i) home games
against the teams in subset 7 (i) € 7 in each sequence
of 7 (i) rounds. Finally, Constraint (7) (CA4 in Van Bulck
et al., 2021) imposes that the number of home games of
teams in 7" against teams in 7" in the rounds of R’ has
to be between k and k. These constraints are used, for
example, to limit the total number of home games per
round between teams that share the same venue. Similar
constraints can be imposed in case of away games or
games.

Game Constraints (GA)

k=< > > xip<k

(i,j))eg' reR’

VG C G, VR'CR. (8

Given a subset of games G’ C G and a subset of rounds
R’ € R, Constraint (8) (GA1 in Van Bulck et al., 2021)
imposes a lower bound k and an upper bound k on the
number of games of G’ that can be played in the rounds
of R'.

Break Constraints (BR) A teami € 7 has a home/away
break in round r € R \ {0} if i has a home/away game
in rounds r — 1 and r. To model these constraints, we
introduce two binary variables yihr and y{ for each team
i € 7 and eachround r € R \ {0}:

n _ )1 ifteami has a home break in round r
Vi 0 otherwise
and

a { 1 if teami has an away break in round r
Yie =

0 otherwise.
The break constraints read as follows.
W= ST xpdagor Vie TV e R\ (0)

JeT (). j#i
9
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Wz Y i txp—r YieT,VreR\{0)
JET @), j#i
(10)
Z < k() VieT
reR(i)
(11)
D vk < k) VieT
reR()
(12)
D okl <kG) VieT
reR(i)
(13)
oS yhyn <k VT' € T,VR' C R.
ieT'reR/

(14)

Constraints (9) and (10) define binary variables yi’; and
i, respectively. For each team i € 7, Constraint (11)
(BRI in Van Bulck et al., 2021) imposes an upper bound
on the number of home breaks of i in the rounds of
R(i) € R. The same is imposed by Constraints (12)
for the away breaks and by Constraints (13) for the total
breaks. Finally, given a subset of teams 7" and a subset
of rounds R/, Constraint (14) (BR2 in Van Bulck et al.,
2021) fixes the overall number of home and away breaks
of the teams in 7" in the rounds of R’ to be at most k.

— Fairness Constraints (FA)

.
—kG, )< D D xw — X < kG, )

1€T\(i.j} r'=1
Vi,jeT,i#j,VreR. (15)

For all pairofteamsi, j € 7,i # jandallroundsr € R,
Constraint (15) (FA2 in Van Bulck et al., 2021) ensures
that the difference between the home games played by
i and those played by j is at most k(i, j) after round r.
Analogous constraints can be applied for the away games
or games.

— Separation Constraints (SE)

> X X < 1 — G+ x50) VG, J) €6,
r'eR(,j)
i <j,Vr eR, (16)

where R(i,j) = {r e R :r —k(i,j) <r <r+
ki, YU e Ror <r—kG, j)vr' =r+kG, j)).
Constraint (16) (SE1 in Van Bulck et al., 2021) ensures
that if one of the two mutual games (i, j) or (j, i) of two
teams i, j € 7 is assigned to round r, then the other one
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cannot be assigned to the rounds of R (i, j): games (i, j)
and (j, i) are separated by at least k(i, j) and at most
k(i, j) rounds.

All constraints presented so far can be handled also in
their soft version. Here, we discuss in general terms how
their deviation is computed (see Van Bulck et al., 2020b, for
a detailed description). We remark that all constraints ¢ € C
have the same structure, i.e., they impose a lower and/or an
upper bound on a linear expression:

Ibe < fo(x,y", y*) < ub,,

where f.(x, y", y?) is a linear expression in the variables
Xijr» yi}; and y; and [b. and ub, are, respectively, a lower
and upper bound imposed on f.(x, y", y*). Except for the
fairness and separation constraints, the deviation triggered if
one of these constraints is violated is given by the following
two constraints

de > Ibe — fuo(x, y", y%) (17)
de > fo(x,y", y*) — ube. (18)

For example, if c is a capacity constraint which imposes a
lower and an upper bound, respectively, k(i) and k(i), on
the number of home games that a team i € 7 can play in
the rounds of set R(i) (Constraint (5)), then the deviation
triggered by c is equal to the number of home games of i in
the rounds of R(i) less than k(i) or more than k(7).

Finally, let us discuss how the deviation of the fairness
and separation constraints is computed. A fairness constraint
limits the difference of home (away or any) games between
teamsi € 7 and j € 7 aftereachround r € R.However, the
deviation triggered when it is violated is equal to the maximal
difference in home (away or any) games more than kG, j)
played by i and j over all the rounds of R (see Van Bulck
et al., 2021). Hence, to express such deviation, we need to
include a non-negative continuous variable z;; storing the
maximal difference in home (away or any) games between i
and j. For the case of home games, the deviation is computed
by including the following constraints.

,
W= Y, D K — X (19)

1€T\{i.j} r'=1
r
%j = Z Z Xji' — Xily! (20)
1€T\{i.j} r'=1
de = zij — k(i, J). 2D

Now, let ¢ be a soft version of a separation constraint, which
require that the two mutual games of teams i, j € 7,i < j
are separated by atleastk(i, j). The deviation triggered if c is
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violated has to be equal to the difference between k(i, j) + 1
and the number of rounds between games (i, j) and (j, i):

de= Y 1 =l 4 X+ e F e — 1D (22)
reR,J)

The case where the two mutual games have to be separated
by at most k(i, j) rounds can be treated similarly.

4 Solution method

We designed a three-stage multi-neighborhood simulated
annealing for the solution of the problem. The multi-
neighborhood is a hexamodal neighborhood made up by a
portfolio of six different local search neighborhoods, which
are specifically tailored for the sports timetabling problems.
The metaheuristic method employed for the search of the
solution is a slightly modified version of the classical simu-
lated annealing defined by Kirkpatrick et al. 1983. The search
is executed in three distinct sequential stages, characterized
by different parameter values of the metaheuristic and differ-
ent restriction of the search space. In this section, we explain
first of all the general features of the search space and the
method employed for the generation of the initial solution.
Next, we discuss thoroughly the multi-neighborhood and the
simulated annealing metaheuristic. Finally, we illustrate the
characteristics of the three stages of execution of the algo-
rithm.

4.1 Search space

Given the structure of the problem described in Sect. 3,
as search space we consider the set of all two-leg round-
robin timetables. This means that every possible round-robin
timetable, though not necessarily feasible, is a solution in the
search space. Thus, in every solution, each team plays with
every other team twice (home and away), and all teams play
exactly one match at every round.

For the instances that require a phased timetable, we allow
the algorithm to visit states that break the phase structure.
Since the formulation of the problem does not provide an
explicit phase constraint, we added an artificial tenth cost
component that measures the number of matches that violate
the phase requirement. This number is then multiplied for
a suitable weight, and the resulting value is assigned to the
new cost component. This mechanism, which is applied only
to phased instances, makes phased violations possible but
penalized in the cost function.

A solution is internally described as a matrix of size |7 | x
|R|. Each cell (z, r) contains the index of the opponent of ¢
at the match r. The value is positive if # plays at home at the
match r, negative otherwise. Figure 1b provides an example

of this encoding, which is used also in the figures in Sect. 4.3
for the explanation of the multi-neighborhood.

4.2 Initial solution generation

The initial state can be generated either randomly or through a
greedy algorithm. The random procedure consists in different
permutations of teams and rounds on the canonical pattern
(see, e.g., de Werra, 1981). It produces a double round-robin
tournament, but it does not provide any feasibility guarantee
regarding the hard constraints of the problem, which is then
restored by the simulated annealing procedure.

Given an input instance with |7 | teams and | R| rounds, the
random initial solution is generated performing the following
steps:

1. A single-leg canonical pattern for the |7| teams with
|R|/2 rounds is generated. Each team meets every other
team exactly once.

2. A random permutation is performed on the |7 | teams.

3. The timetable is mirrored in order to obtain a two-leg
tournament. At this moment, the second leg is identical
to the first one, except for the home-away order that is
inverted.

4. If the instance is not phased, a random permutation is
executed on the |R| rounds. Otherwise, if the instance
is phased, two random permutations are executed. The
first one involves the rounds {0, ..., |R|/2 — 1}, and the
second one is performed on the rounds {|R|/2, ..., |R|—
1}. Hence, the initial random solution does not violate the
phase constraint.

Also the greedy algorithm is based on the canonical pat-
tern, which is used as a reference for the constructive steps.
The idea behind the greedy algorithm is to generate and test
the addition of candidate rounds that are constructed on the
basis of a reference tournament of femplate rounds obtained
as in the random procedure. These rounds are templates
instead of actual ones since all their possible perturbations,
according to some of the symmetries that are inherent in
round-robin tournaments, are produced in the generation pro-
cess. In detail, the symmetries used are those among rounds
(i.e., permuting the order of the rounds does not violate
the round-robin tournament property) and those among the
venues of each game.

Starting from an empty initial solution, the greedy pro-
cess selects, at each step, the best candidate to be added
to the current solution according to its contribution to con-
straint violations. Since the solution is incomplete, the check
is restricted to only those constraints that can be (at least
partially) evaluated in the current partial solution once it has
been extended with any of the candidate rounds.
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Fig.1 Example of the internal
solution representation of a

roundg roundj

rounds rounds rounds rounds roundg round; roundg roundg

. ] 2-0 4-0 3-0 0-5 0-1 0-3 0-4 0-2 5-0 1-0

tlmetablefora}round—robln 1-3 2.1 5.1 1.4 5.9 1.5 1.9 3.1 4-1 2.5

tournamentw1th6tea1psand10 1.5 3.5 4-9 3.9 3.4 2.4 3.5 5.4 2.3 4.3

games: the upper part is the

listing of the actual games in the (a) An example tournament with |T| = 6

tournament, while the lower part

reports its encoding roundg round; rounds rounds roundy rounds roundg roundy roundg roundg
teamg -2 -4 -3 +5 +1 +3 +4 +2 -5 -1
team +3 -2 -5 +4 -0 +5 +2 -3 -4 +0
teamo +0 +1 -4 -3 -5 +4 -1 -0 +3 +5
teams -1 -5 +0 +2 +4 -0 +5 +1 -2 -4
teamy +5 +0 +2 -1 -3 -2 -0 -5 +1 +3
teams -4 +3 +1 -0 +2 -1 -3 +4 +0 -2

(b) Internal representation of the previous tournament

In Fig. 2 we exemplify a step of the greedy process in case
of |T| = 6 teams in a non-phased setting. In the example,
the current solution consists of four assigned rounds and six
remaining template rounds (denoted by x;), which are still
available from the initial canonical pattern. Different situa-
tions arise, for instance, in the generation of round candidates
for the x; and x; templates.

As for the template x 1, which has not been included yet in
the solution, there is full freedom in deciding the home-away
status of the games; therefore, all possible venues permuta-
tions can be generated and evaluated. Conversely, since one
copy of the x» template has been already included in the
solution (namely in round 1), among all the possible venues
permutations only the one that mirrors the already included
copy of the template is possible. This is however inherent in
the fact that the reference tournament for the round templates
is created through a concatenation of two single round-robin
canonical patterns.

Each generated round candidate is tried for the completion
of the current solution, and the partial cost of this addition
is computed. For example, in the figure, the constraint BR1 !
reported above the current solution requires that no more than
2 breaks occur for team 5 during periods 1-5. This constraint
can be partially checked for its cost (which is zero, since there
are no more than 2 breaks) for the periods 1-3 already added
to the solution, whereas it cannot be checked yet for period
4 and the possible candidate addition.

Among all the possible candidates, the one that achieves
the minimum (partial) cost is selected and the corresponding
template is removed from the set of available ones. Possible
ties in the cost value are randomly broken.

In the case of a phased tournament the greedy procedure
is adapted to ensure that the two legs of the tournament are
separated. In order to achieve this goal, the tournament used
as a reference for the first leg consists of a single round-robin
tournament template and after the first leg is completed the

I Refer to (Van Bulck et al., 2020a) for the comprehensive explanation
of all constraints employed in the competition.

@ Springer

second leg is constructed with another (possibly different, in
terms of team permutations) single round-robin tournament
using the full generation of combinations but pruning those
that overlap with the games already included in the first leg.

Finally, to obtain numerous diverse initial solutions also
with the greedy procedure, the indexes of the teams are
randomly permuted. That is, before starting the process, a
random permutation of the indexes is drawn and the mapping
between the teams in the candidate round (i.e., the logical
indexes) and the actual teams is computed by applying this
permutation. To enhance the randomness, in the case of the
phased tournament two distinct permutations are computed
for the first leg and the second leg assignments.

As discussed further in Sect. 5.2, this choice seems to
mildly outperform the random initial solution. Nevertheless,
the improvement margin is not considerably large, so we
decided to keep both possibilities in our algorithm, leaving
to the user the possibility to choose the start method through
an input parameter.

4.3 Multi-neighborhood relations

We propose a multi-neighborhood composed by the union of
different neighborhoods. Five of them, called SwapHomes,
SwapTeams, SwapRounds, PartialSwapTeams, and Partial-
SwapRounds, are adaptations of classical ones from Ribeiro
and Urrutia 2004, Anagnostopoulos et al. 2006, and Di
Gaspero and Schaerf 2007. In addition, we introduce a novel
neighborhood called PartialSwapTeamsPhased, specifically
designed to deal with phased instances. Experimental results
highlight that the usage of the novel neighborhood allows us
to reach better solutions in terms of objective function and to
achieve feasibility on certain large phased instances, which
would be, otherwise, very hard to tackle. All the neighbor-
hoods ensure that the double round-robin structure of the
tournament is conserved, but they do not provide any guar-
antees on the feasibility of the solution.

The multi-neighborhood is designed to be employed
by the simulated annealing metaheuristic, described in
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A constraint on rounds 1

5

<BR1 teams="5" intp="2"
mode2="HA" slots="123 4
5" type="SOFT"/>

roundg round; rounds,” rounds \V roundy
7 N \
. 1-5 | 0-5 | |3-5 Trying candi-
Current solution ) Y] 51 date addition,
computing
B-4) 3-2 0-1 partial cost
X1 X2 X3 X4 A5 X6

Available round
templates from the
canonical pattern

X1o11  X1loo Xlio1 X111
2-5) (2-5) (2-5) (2-5) (5-2) (5-2] (5-2) (5-2
1-3||1-3||3-1|[3-1||1-3||1-3]|3-1]|[3-1
0-4) (4-0) (0-4) (4-0) (0-4) (4-0) 0-4] [4-0
X200 X2001 - X2010  X2011 - X2100 - X2101 - X210 X211
{0-5110-51,0-51,0-51(5-0)/5-0115-0115-0
Plo4yt1-4, 41, 41y |1-4t1-4y 41, 41,
\2:3;18-2712-3,(3-2,(2-3) (3-2,.2:3, 32,
X6ooo  XBoor  X6oio X601z X610 X6i01 X610 X6inn
'3-5,/3-5,1/3-5,/3-5115-3,/5-3, /5-3, (5-3
124, 12-4,14-2, 14-2, 12-4,,2-4,14-2, |4-2
0-1,(1-0,(0-1,{1-0,0-1;{1-0;(0-1,[1-0

Fig.2 One step of the greedy constructive procedure in the case of a non-phased tournament: the procedure tries to complete the partial solution

with the best possible combination of template assignment and game ven

Sect. 4.4, that randomly draws a move from the multi-
neighborhood at every iteration. A desirable feature of the
multi-neighborhood is to give higher frequency of execu-
tion to those moves that belong to neighborhoods that, on
average, lead to the most significant improvements of the
solution. So, an essential property of the multi-neighborhood
is that each neighborhood is associated with a probability.
The draw of the move in the simulated annealing is then
executed into two steps. The first step is the random selec-
tion of one of the six neighborhoods, according to the given
probabilities. The second step is the random selection of a
move inside the neighborhood. The probability of the move
inside the neighborhoods is shaped as a uniform random vari-
able.

The values of the probabilities are defined through a tuning
procedure discussed in Sect. 5.2, while the six neighborhoods
and their specifications are illustrated hereafter.

4.3.1 SwapHomes

The move SwapHomes takes as attributes two teams t;, 1; €
T, t; # tj, and it is denoted as SH(t;, t;). It swaps the

ues

home/away position of the two games between #; and ¢;.
Figure 3 shows the execution of the move.

4.3.2 SwapTeams

The move SwapTeams takes as attributes two teams #;, t; €
T,t # tj, and it is denoted as ST (t;, t;). It swaps the
positions of #; and ¢; throughout the whole timetable. Figure
4 shows the execution of the move.

4.3.3 SwapRounds

The move SwapRounds takes as attributes tworounds r;, r; €
R, ri # rj, and it is denoted as SR(r;, r;). It swaps the
two rounds in the timetable. That is to say, all the matches
assigned to 7; are moved to r;, and vice versa. Figure 5 shows
the execution of the move.

4.3.4 PartialSwapTeams

The move PartialSwapTeams takes as attributes two teams
ti,tj € T,t; # t;, and a set of rounds Ry = {r, ..., 7},
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-2 4 3+5+1+3+4+2 -5 -1
+3 -2 -5+4 -0+5+2 -3 -4+0
+0+1 -4 -3 -5+4 -1 -0+4+3 +5
-1 -54+0+2 -4 -0+4+5+1 -2+4
+5+0+4+2 -143 -2 -0 -541 -3
4+3+1 -0+2 -1 -3+4+40 -2

2 4 3+5+1+3+4+2 5 -1
+3 -2 -5+4 -0+5+2 -3 -440
+0+1 -4 -3 -5+4 -1 -0+3+5
-1 -54+0+244 -04+5+1 -2 -4
+5+0+4+2 -1 -3 -2 -0 -541+43
-443+1 042 -1 -3+440 -2

Fig.3 Execution of the SwapHomes move SH(3, 4). The figure on the left shows the state before the move, and figure on the right represents the

new state. Changes are marked in bold and colored

-2 -4 -34+54+1434+44+2 -5 -1
+3 -2 -54+4 04542 -3 -4 40
+0+1 -4 -3 544 -1 -04+3 +5
-1 -54+0+244 -04+541 -2 -4
+5+04+2 -1 -3 -2 -0 -5+4+143
-443+1 -0+2 -1 -34440 -2

-2 -3 -4+5414+443+2 -5 -1
+4 -2 543 -04+5+2 -4 -3 +0
+0+1 -3 -4 543 -1 -04+4 +5
+5+0+4+2 -1 -4 -2 -0 -5+1+44
-1 -54+0+243 -04+54+1 -2 -3
-34+4+1 042 -1 -443 +0 -2

Fig.4 Execution of the SwapTeams move S7 (3, 4). Figure on the left shows the state before the move, and figure on the right represents the new

state. Changes are marked in bold and colored

-2 4 -3454+14+34+4+2 -5 -1
+3 -2 -5+4 -0+5+2 -3 -4 +0
+0+4+1 -4 -3 -5+4 -1 -043 +5
-1 -540+2+4 -04+541 -2 4
+5+4+0+4+2 -1 -3 -2 -0 -541 +3
44341 042 -1 -34+4+0 -2

-2 -4 -545+4+143+4+4+2 -3 -1
+3 -2 -4+4 -0+5+2 -3 -5+0
+0+143 -3 -5+4 -1 -0 -4+5
-1 -5 -24+2+4 -04+54+14+0 -4
+5+04+1 -1 -3 -2 -0 -542 +3
44340 -0+4+2 -1 -34+4+1 -2

Fig.5 Execution of the SwapRounds move SR (2, 8). Figure on the left shows the state before the move, and figure on the right represents the new

state. Changes are marked in bold and colored

Rs C R. The move is denoted as PST (t;, t;, Ry). It swaps
the positions of #; and #; on the set of rounds in R;. As the
name suggests, it works similarly to SwapTeams, with the
main difference that the move is not executed on the whole
timetable, but only on a subset of rounds.

A fundamental requirement for the construction of R is
that each team 7, playing against teams #;, ¢; in the rounds
in Ry, must play against both #; and ¢; exactly the same
amount of times. If R satisfies the precondition, the swap of
t; and t; in the rounds in R leads to another correct round-
robin timetable. In practice though, large subsets R are not
particularly desirable, because they considerably slow down
the generation of the move with a negative impact on the
overall time performance of the algorithm. For this reason,
we impose a limitation on the maximal size of the set R
during the move generation procedure. Figure 6 shows the
execution of the move.

4.3.5 PartialSwapRounds

The move PartialSwapRounds takes as attributes two rounds
ri,rj € R,ri #rj,andasetofteams 7y = {t1,...,%},7; C
7. The move is denoted as PSR(7Zy, i, r;). It produces the
swap between r; and r; of the matches including teams in 7.
As the name suggests, it works similarly to PartialRounds,
with the main difference that the move is not executed on the
whole set of matches in the two rounds, but only on a subset
of matches.

@ Springer

A fundamental requirement for the construction of 7 is
that every team f;, € 75 plays only with teams from 7 in
the two rounds 7; and r;. In practice though, large subsets
7, are not particularly desirable, because they considerably
slow down the generation of the move with a negative impact
on the overall time performance of the algorithm. For this
reason, we impose a limitation on the maximal size of the
set 7 during the generation of the move. Figure 7 shows the
execution of the move.

4.3.6 PartialSwapTeamsPhased

The move PartialSwapTeamsPhased is anovel neighborhood
that we designed with the main motivation to deal with the
phased version of the problem. The five neighborhoods dis-
cussed so far, indeed, work well on the non-phased instances,
but turned out to be insufficient for obtaining good results
on the phased ones. The neighborhood PartialSwapTeams,
in particular, has quite disruptive side effects on the phase
structure of the timetable that are only sporadically bene-
ficial to the search. PartialSwapTeamsPhased, on the other
hand, allows to reach new solutions through partial swaps of
teams without variations of the current state of the phase. We
discuss in this section the fundamentals of the neighborhood,
and we forward the reader to Sect. 5.4 for an analysis of the
experimental data.

As the name suggests, PartialSwapTeamsPhased takes
inspiration from the above-mentioned PartialSwapTeams.
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-2 443 -145 -3+4+142 -5+4
+4 -3 54042 -2 -0+5 -4+43
+045 443 -1 +144 -0 -3 -5
+5+4+1 -0 244 +0 -5 -4 +2 -1
-140+2 -5 -3+45 -24+3+1 -0
-3 -2+1+4 -0 -443 -1+40+2

-2 443 -145 -34+142 -5+4
+4 -3 54043 -2 -0+5 -44-2
+0+4+5 -4434+44+1 -5 -0 -3 -1
+5+4+1 -0 -2 -1 4044 -4+2 -5
-1 4042 -5 -2 +5 -3 +3+1 -0
-3 -2+1+4 -0 -442 -1+4043

Fig.6 Execution of the PartialSwapTeams move PST (3, 4, {4, 6, 9}). Figure on the left shows the state before the move, and figure on the right

shows the new state. Changes are marked in bold and colored

-2 443 -145 -34+14+2 -5+4
+4 -3 54042 -2 -045 -4 43
+045 443 -1+1+4 -0 -3 -5
+5+1 -0 -2+44+0 -5 -4+2 -1
-14+40+2 -5 -345 24341 -0
-3 24144 -0 -4+3 -1 +0+2

-2 443 -145 -3+142 544
+5 -3 54042 -2 -044 -4+3
+0+4+5 443 -14+14+4 -0 -3 -5
-4+1 -0 -2+4+40 -5+5 +2 -1
+3+0+2 -5 -3+5 -2 -1 +1 -0
-1 24144 -0 -4+3 -3 +0+2

Fig. 7 Execution of the PartialSwapRounds move PSR({1,5, 3, 4}, 0, 7). Figure on the left shows the state before the move, and figure on the

right shows the new state. Changes are marked in bold and colored

An example of the disruptive effect of PartialSwapTeams
on the phase structure is given in Fig. 6. Before the execu-
tion of the move, the phase structure is respected. After the
move is applied, matches between teams 2 and 4 are both exe-
cuted during the first phase of the tournament, and matches
between teams 3 and 4 are both executed in the second phase
of the tournament, which constitute two violations of the
phase constraint. To overcome this issue, the new neighbor-
hood PartialSwapTeamsPhased makes use of a new concept
of mixed phase that allows the new move to be invariant with
respect to the phase.

We define as mixed phase of a two-leg round-robin tour-
nament the partition of the timetable in two subsets, named
mixed legs, where each couple of teams play together, respec-
tively, for the first and for the second time. Hence, the first
mixed leg is the set of all the matches where teams meet with
each other for the first time, and the second mixed leg is the
set of all the matches where teams meet for the second time.
This definition is independent from the current satisfaction of
the phase constraint. It might happen that mixed phase and
actual phase correspond: this is the case when the phased
constraint is respected.

Figures 8 and 9 visually explain the concept. Both figures
contain two boxes: the box on the left is the representation of
the current tournament timetable, and the box on the right is
the corresponding mixed phase. The first and second mixed
legs are denoted, respectively, by means of zeros and ones.
Figure 8 describes the situation of a timetable that satisfies
the phase constraint, and Fig. 9 represents a timetable where
the phase constraint is violated. Matches where teams meet
each other for the first time belong to the first mixed leg and
are denoted by zeros in the box on the right, and matches
where teams meet each other for the second time belong to
the second mixed leg and are denoted by ones.

Therefore, the move PartialSwapTeamsPhased takes as
attribute two teams t;, t; € T,t; #t j» and a set of rounds

Rs = {r1,...,rs}, Ry C R. The essential prerequisite is
that the set of matches involved in the move must all belong
to the same mixed leg, according to the definition provided.
The move is denoted as PSTP(t;, t;, Ry), and, similarly
to the move PartialSwapTeams, it produces the swap of the
positions of #; and ¢; on the set of rounds in R ;. Consequently,
the maximum size of the set R corresponds to the size of a
mixed leg, which is |Rs| < |R]|/2.

4.4 Metaheuristic

The metaheuristic employed is basically the traditional sim-
ulated annealing defined in Kirkpatrick et al. 1983.

At each iteration, a random move is drawn as explained
in Sect. 4.3, and its corresponding variation of cost A is
computed. The move is always accepted if it is improving
or sideways, i.e., A < 0, and it is accepted with probability
e~/ if A > 0 (the Metropolis acceptance criterion).

The temperature T starts from an initial value 7y and
decreases according to a geometric cooling scheme after a
given number of iterations m, until it reaches the final tem-
perature Tpi,. That is, every m iterations weset T (=« - T,
where « is the cooling rate.

We make use of a curoff mechanism to limit the num-
ber of evaluated moves at each temperature level (Johnson
et al., 1989). Given a current temperature 7 and a cutoff
value of y, when an amount of y - m solutions have already
been accepted at temperature 7', the algorithm stops evaluat-
ing moves at the current temperature and passes to the next
temperature. The purpose of the cutoff is to reduce the com-
putational time spent on chaotic states, commonly at high
temperatures, when most moves are accepted.

In our version of the simulated annealing we do not use
a timeout, but we fix a priori the number M of total moves
evaluated. To keep the total number of iterations fixed inde-
pendently of the values of the parameters, we do not fix m,
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Fig.8 Mixed phase and actual phase correspond. The box on the left shows in different colors the mixed legs on the timetable, while the box on
the right shows the internal representation where mixed legs are denoted, respectively, by zeros and ones
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Fig. 9 Mixed phase and actual phase differ, the phase constraint is not respected. The box on the left shows in different colors the mixed legs on
the timetable, while the box on the right shows the internal representation where mixed legs are denoted, respectively, by zeros and ones

and instead, we compute it based on the values of T, Tinin
and «.

Given the cutoff mechanism, the temperature might drop
below Ty, as the iterations saved in the early stages are got
back at the end.

Summarizing, the parameters of the metaheuristics are:
the start temperature 7y, the final temperature Tpip, the cool-
ing rate o, and the cutoff rate y.

4.5 Stages of the algorithm

The algorithm is structured into three distinct stages, that
consist in three independent runs of the Simulated Anneal-
ing procedure described in Section 4.4. The first stage starts
its search either from a random or from a greedy solution,
the second and the third stages are warm-started with the out-
put of the previous stage as initial solution. The differences
between the stages consist in the restrictions applied to the
search space, and in the exclusion or inclusion of certain
constraints (see Table 1).

Stage 1: Hard constraints are included in the cost function,
and soft constraints are not considered. The objec-
tive of Stage 1 is to rapidly find a feasible solution.
In our experiments, this stage shows its effective-
ness specifically on large phased instances, where
the metaheuristic faces most problems in finding
a feasible timetable.

All constraints are applied and both feasible and
infeasible regions are explored. The costs asso-
ciated with hard constraints and phased cost
component are multiplied by suitable weights.
The goal of Stage 2 is to find a good solution in
terms of objective function.

All constraints are applied, but moves that vio-
late hard constraints are not allowed and only the
feasible region is explored. The goal of Stage 3

Stage 2:

Stage 3:

@ Springer

Table 1 Description of the features of the three stages

Constraints

Hard Soft
Stage 1 As cost component Not used
Stage 2 As cost component As cost component
Stage 3 Violation not allowed As cost component

is to reach the best possible solution that can be
achieved from the best state found in Stage 2,
through the exploration of the feasible region only.
If the outcome of the previous stages is not a fea-
sible solution, Stage 3 is not performed (Table 1).

5 Experimental results

In this section, we discuss the experimental setting of the
simulated annealing algorithm and the results obtained by
applying it to the instances proposed for the ITC2021 com-
petition. We also assess the performances of Model M by
running it on CPLEX within a time limit. For this latter exper-
iments, we consider the instances of the competition and
some others of smaller size obtained by performing reduc-
tions on the competition instances.

Our code was developed in C++ and compiled with GNU
g++ version 9.3.0 on Ubuntu 20.04.2 LTS. The tuning phase
was partially performed on a cluster of virtual machines pro-
vided by the CINECA consortium. All the other experiments
presented in this section were run on a machine equipped with
AMD Ryzen Threadripper PRO 3975WX processor with 32
cores, hyper-threaded to 64 virtual cores, with base clock
frequency of 3.5 GHz, and 64 GB of RAM. In both settings,
one single virtual core is used for each experiment.
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Table 2 List of instances from
the ITC2021 competition with
indication of some general
features and overall number of
hard and soft constraints

Table 3 Details of the number
of constraints in each instance

Instance Features Instance Features
Phased Teams Hard Soft Phased Teams Hard Soft

Early_1 Yes 16 83 113 Middle_9 No 18 94 201
Early_2 Yes 16 53 114 Middle_10  Yes 20 198 714
Early_3 Yes 16 148 186 Middle_11 Yes 20 176 1048
Early_4 Yes 18 164 268 Middle_12 Yes 20 63 241
Early_5 Yes 18 207 587 Middle_13 No 20 219 350
Early_6 Yes 18 192 797 Middle_14  No 20 63 817
Early_7 No 18 175 1159 Middle_15 No 20 95 133
Early_8 No 18 70 582 Late_1 No 16 235 542
Early_9 No 18 90 102 Late_2 No 16 246 1077
Early_10 Yes 20 246 1015 Late_3 No 16 127 439
Early_11 No 20 246 1108 Late_4 Yes 18 96 34
Early_12 Yes 20 179 35 Late_5 Yes 18 176 747
Early_13 No 20 100 432 Late_6 Yes 18 163 159
Early_14 No 20 56 56 Late_7 No 18 126 738
Early_15 No 20 187 1224 Late_8 Yes 18 110 195
Middle_1 Yes 16 144 993 Late_9 No 18 102 402
Middle_2 Yes 16 246 1231 Late_10 Yes 20 233 694
Middle_3 No 16 237 1212 Late_11 Yes 20 52 366
Middle_4 Yes 18 97 168 Late_12 No 20 244 1009
Middle_5 Yes 18 151 197 Late_13 No 20 169 134
Middle_6 Yes 18 162 154 Late_14 No 20 116 993
Middle_7 No 18 141 476 Late_15 No 20 51 41
Middle_8 No 18 62 224
Name CAl CA2 CA3 CA4 BR1 BR2 GAl SE1 FA2

H S H S H S H S H S H S H S H S H S
El 25 17 10 O 0 0 0 8 35 0 1 0 2 10 0 1 0 1
E2 33 30 0 O 2 8 0 0 12 0 1 0 0 1 0 0 0 1
E3 24 0 72 21 0 112 0 O 18 0 0 1 34 51 0 0 0 1
E4 0 32 0 235 0 O 8 0 4 0 I 0 34 0 0 1 0 O
ES 41 27 36 331 2 111 81 117 23 O I 0 23 0 0o 1 0 0
E6 38 31 71 591 2 54 81 115 0 0 O 1 0o 3 0O 1 0 1
E7 42 31 30 620 1 112 84 340 12 O 1 0 5 5 0 1 0 0
E8 19 8 57 0O 112 0 339 39 0 0 O 73 0 0 0 1
E9 39 0 14 0 0 8 0 0 23 10 0 1 14 2 0 0 0 1
E10 42 32 72 620 2 23 85 339 44 1 0 0o 0 0o 1 0 O
Ell 42 32 72 620 2 112 85 340 44 O 1 0 0o 3 o 1 0 O
El12 37 0 72 0 2 20 31 0 20 13 0 1 17 1 o 0 0 0
El13 41 31 27 257 1 110 0 O 20 10 1 0 10 24 0 0 0 O
El4 5 30 0 0 0 0 0 0 17 24 0 1 34 0 0 0 0 1
El15 42 0 72 620 2 112 71 340 0 24 0 1 0 126 0 0 0 1
Ml 0 32 14 620 0 O 85 340 44 0 1 0 0 0 0 1 0 0
M2 42 32 72 620 2 112 85 340 44 O 1 0 0 126 0 1 0 0
M3 42 0 72 617 2 107 8 338 36 21 0O 1 0 126 0 1 0 1
M4 31 18 17 0 1 0 0 41 23 24 0 O 25 8 O O O O
M5 41 24 40 33 0 12 0 O 4 0 0 1 26 126 0 O O 1
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Table 3 continued

CA3

CA4 BR1 BR2 SE1 FA2

1%
jas)
©
jas)
1%
T
1%
T
©
T
12
jan)
©

Name CAl CA2
H S H S H
M6 39 0 41 0

M7 0 30 0
M8 16 0 0 27
M9 42 0 0 37

355

L13 14 32 72 15
L14 42 0 72 390
L15 5 0 0 O

2

1

2

1
MI10 41 15 71 363 O
Mi1T 7 0 71 612 2
MI12 0 32 28 168 1
MI13 42 29 72 242 1
M14 5 18 11 319 2
M15 12 0 23 0 0
L1 42 32 72 198 1
L2 42 0 72 620 2
L3 42 0 72 326 1
L4 0 32 0 0 0
L5 0 19 69 614 2
L6 0 32 0 125 0
L7 42 32 40 601 1
L8 37 15 0 14 0
L9 40 0 20 250 2
L10 0 31 67 447 2
L11 6 0 16 274 0
L12 40 32 72 620 2

2

2

0

111 30 27 4 13 0 1 6 1 0o 1 0 0
0 78 51 28 21 O 1 34 17 0 1 0 O
108 0 34 32 14 0 O 12 41 0 0 0 O
100 19 39 28 23 0 1 4 0 0 0 0 1
0 46 2062 39 0 1 O O 74 O O O O
88 8 340 12 0 O O O 7 0 0 0 1
130 0 29 21 0 1 5 4 0 1 0 1
0 8% 76 12 0 O O 7 2 0O 1 0 O
112 0 338 38 10 1 O 6 19 0 0 0 1
7 0 O 37 10 0 1 23 4 0 1 0 O
1382 283 3 0 O O O 15 0 0 O 1
112 8 340 4 0 1 O O 5 0 0 0 O
43 0 60 12 0 0 1 0o 7 0 1 0 1
0 18 0 4 0 0 O 34 1 0O 1 0 O
0 81 109 0 O 1 0 23 4 0 0 0 1
0 8 0 4 0 0 1 34 0 0 1 0 O
61 0 O 37 0 1 O 5 43 0 1 0 O
111 0 0 41 24 0 1 3229 0 1 0 O
112 0 0 40 20 0 1 o 18 0 0 0 1
0 85 205 44 1 0 34 10 0 1 0 O
8 0 0 12 0 1 0 17 3 0 0 0 1
16 8 340 4 0 1 O O O 0 1 0 0
0 81 71 0o 0 0 1 o 13 0 1 0 1
112 0 340 0 24 0 O O 126 0 O O 1
15 0 O 12 24 0 1 34 0 0 0 0 1

5.1 Instances

The algorithm was run on the 45 instances of the compe-
tition that are available for download on the website of the
competition (Van Bulck et al., 2020a). We performed a gen-
eral analysis of their main features. The size, expressed in
number of teams, is always comprised between 16 and 20
teams, and 22 instances in total have a phased requirement.
As we can observe in Table 2, the total number of hard and
soft constraints fluctuates considerably among instances. The
range for hard constraints goes from a minimum of 51 in
instance Late_11 to amaximum of 246 in instances Early_10,
Early_11, Middle_2, and Late_2. The range for soft con-
straints goes from a minimum of 34 in instance Late_4
to a maximum of 1231 in instance Middle_2. Incidentally,
instance Middle_2, which has the highest overall number
of constraints, 1477, is also the only instance in which our
solver was not able to determine any feasible solution. More
in general, from our experimental results we observed that
most instances where our solver shows the most deficiencies
are also among those characterized by many hard constraints,
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but only when also the phase requirement is present. For this
reason, the solver redistributes the total number of iterations
in favor of Stage 1 when it recognizes a phased instance with
a quantity of hard constraints above a certain threshold. Table
3 provides additional details on the cardinality of constraints
of each type in their hard and soft versions. It is possible to
notice that constraint types BR2, FA2, and SE1 are always
expressed uniquely, if present, so only six constraint types
out of nine are actually declined into multiple constraints.
Finally, it is noteworthy to mention that each individual con-
straint involves different quantities of teams or slots, so that
also the individual contribution to the instance complexity
may differ substantially.

5.2 Parameters and tuning

For the three-stage multi-neighborhood algorithm to be effec-
tive on the given instances, several parameters need to be
tuned. In this work, we tuned the probabilities of the six
neighborhoods separately on the phased and on the non-
phased instances. These probabilities are stage-independent.
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Table4 Parameter tuning Parameter Description Tuning range Assigned values
Not Phased Phased
Psh SwapHomes [0.0, 1.0] 0.154 0.130
Dst SwapTeams [0.0, 1.0] 0.070 0.020
Dsr SwapRounds [0.0, 1.0] 0.025 0.080
Ppst PartialSwapTeams [0.0, 1.0] 0.319 0.120
Ppstp PartialSwapTeamsPhased [0.0, 1.0] 0.070 0.130
Ppst PartialSwapRounds [0.0, 1.0] 0.350 0.520
Stage 1 Stage 2 Stage 3
To Start Temperature [0, 2000] 179 600 17.9
Tnin End Temperature [0, 20] 2.1 3.52 0.21
Wh,ca Weight of CA1 hard [1,10] 7 7 -
Wh,cay Weight of CA2 hard [1,10] 8 8 -
Wh,cas Weight of CA3 hard [1,10] 2 2 -
Wh,cay Weight of CA4 hard [1,10] 8 8 -
Wh,gay Weight of GA1 hard [1,10] 10 10 -
Wh,bry Weight of BR1 hard [1,10] 1 1 -
Wh,bry Weight of BR2 hard [1, 10] 6 6 -
Wh, fay Weight of FA2 hard [1,10] 1 1 -
Wh,se, Weight of SE1 hard [1,10] 1 1 -
Initial solution {random, greedy} greedy - -
wy, Feature-dependent wy, {ves, no} no yes -
wy Feature-dependent w), {ves, no} no yes -
k Correlation factor [0.1, 1000.0] - 0.5 -
wy, Hard weight (fixed) [1, 1000] 10 - -
wp Phased weight (fixed) [1, 1000] 117 - -

The specific parameters of the simulated annealing meta-
heuristics, on the other hand, were tuned separately for each
stage. For the simulated annealing we decided to tune only
the start temperature and the final temperature, which turned
out to be the most critical parameters from previous research
work (see, e.g., Bellio et al., 2016, 2021). Conversely, we
fixed the sample acceptance ratio and the cooling rate values
to consolidated and robust values found in previous work.
In our algorithm, we assigned weights to the different hard
cost components and these weights also underwent a tuning
procedure. They were employed in Stage 1 and Stage 2, since
moves that violate satisfiability are not considered in Stage
3. Finally, the decision whether to use a random or a greedy
start for Stage 1 was also subject to a tuning procedure.

As introduced in Sect. 4.5, we allow in Stage 1 and Stage
2 the exploration of the infeasible region and, for phased
instances, also the break of the phase structure. Thus, the
weights assigned to hard violations and phased violations
also require tuning. In this case, we did not only search for
possible values, but we compared two different approaches:
feature-based or fixed values. Specifically, the only feature
that we take into account for this problem is the number of

hard constraints in the given instance. Let Nj, be the number
of hard constraints, wy and w, respectively, the hard cost
component weight and the phased cost component weight,
and k a generic constant. Equations 23 and 24 describe how
we can obtain the weights for the hard cost component and
the phased cost component from the number of hard con-
straints, in the feature-based scenario. The value of k is also
determined through a tuning procedure. Please note that k is
float-valued and wy, and w), are integer-valued, so a round-
ingis applied. In our tuning procedure, the feature-dependent
approach resulted to be the most effective for Stage 2, while
for Stage 1 fixed values resulted to be more suitable.

wp, = Np -k
wp = Np - k-wy

(23)
(24)

The whole tuning procedure was performed with the aid
of the tool json2run (Urli, 2013), which implements the F-
RACE procedure. The parameter space was sampled using an
Hammersley point set (Hammersley & Handscomb, 1964).

Table 4 contains the list of the parameters and related
values. The column Tuning range contains the lower and
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Table 5 Comparison of the

results obtained by the random Instance Random Greedy Instance Random Greedy

start and the greedy start on 30 Feas. Time (s) Feas. Time (s) Feas. Time (s) Feas. Time(s)

short runs of Stage 1
Early_1 1.00 444 1.00  5.03 Middle_9 1.00 10.49 1.00 12.96
Early 2 0.87  26.50 097  24.40 Middle_10 0.00  20.41 0.00 2590
Early 3 1.00  2.24 1.00 2.72 Middle_11  0.83  64.05 090  69.47
Early 4 0.00 2290 0.00  25.03 Middle_12  1.00 14.39 1.00 18.98
Early 5 0.00 7341 0.00  76.77 Middle_13  1.00  25.04 1.00  36.09
Early_6 020  68.10 020 7042 Middle_14 1.00  26.85 1.00  34.05
Early 7 033 40.14 030  44.24 Middle_15  1.00 1.67 1.00 691
Early_8 1.00 1.23 1.00  2.87 Late_1 097  21.75 1.00  20.89
Early_9 1.00 1.29 1.00  3.08 Late 2 0.00  58.60 0.00  60.31
Early_10  0.00 92.14 0.00 102.42 Late_3 1.00 749 1.00  8.07
Early 11 037  83.88 0.60  90.42 Late_4 1.00  3.11 1.00  4.50
Early 12 047  73.86 043  78.61 Late_5 0.00  73.04 0.00  76.02
Early 13 1.00 16.09 1.00  22.23 Late_6 1.00  7.15 1.00  9.64
Early 14 1.00 0.94 1.00  5.73 Late 7 1.00 13.66 1.00 16.13
Early 15 1.00  46.00 1.00  56.23 Late_8 1.00  2.78 1.00 391
Middle_1  0.00  23.55 0.00  24.47 Late 9 1.00  24.39 1.00  26.07
Middle_2 0.00  60.07 0.00  61.46 Late_10 0.00  90.38 0.00  99.97
Middle_.3 0.00  58.68 0.00  60.33 Late_11 1.00  4.16 1.00  7.99
Middle_4 1.00 12.18 1.00 14.45 Late_12 0.87  66.50 0.87  80.68
Middle .5 1.00 3.26 1.00 455 Late_13 1.00  46.21 1.00  56.76
Middle_ 6 027  59.18 040  59.57 Late_14 1.00  31.55 1.00  39.43
Middle_7  1.00 19.80 1.00  23.17 Late_15 1.00  0.80 1.00 571
Middle_.8 1.00  20.99 1.00  23.68

upper bounds of the ranges taken into account by the tuning
procedure, which do not constitute a boundary in our algo-
rithm. The dual comparisons aimed to determine whether to
use a random or a greedy start and whether to use fixed or
feature-dependent wy, and w), do not require a Hammers-
ley sampling. The outcome of the tuning procedure is shown
under the columns Assigned values.

Finally, Table 5 presents the outcome of a dual comparison
between the random start and the greedy start. We limited the
execution of the algorithm to one million iterations, which we
consider a short run, of Stage 1, exclusively. The results are
given in terms of feasibility ratio, because in this stage of the
algorithm we are not focused yet in optimizing the objective
function. In general, we can observe that the greedy start
ensures a higher probability of finding a feasible solution, at
a price of a slightly longer execution time.

5.3 Analysis of the results
We report in this section an overview of the experimental
results.

First, we discuss the results obtained on Model M. We
used the solver CPLEX 20.1 and we imposed different time
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limits, ranging from one hour to 24 hours. We employed one
single CPU per run.

Solving the model on the competition instances did not
yield good results: within a time limit of one hour, a fea-
sible solution was found only for instance Late_4, and the
other 44 instances were left unsolved. Longer time limits
provided very limited improvements. Within 24 hours, feasi-
ble solutions were found only for six instances (ES, M4, M8,
M15, L4, L8), with values of the objective function far from
those obtained by the simulated annealing within analogous
running times. Hence, to assess the performances and the
limits of Model M, we run tests on two clusters of instances
obtained by reducing the size of the competition ones. In the
first cluster, we removed constraint types and pairs of con-
straint types from each competition instance which contains
them. The columns of Table 6 (left) report, respectively: the
removed constraint types; the number of reduced instances;
the number of instances for which a feasible, but not optimal,
solution is found; the number of instances solved to optimal-
ity. From Table 6 (left), we infer that the solver still struggles
to produce feasible solutions when only one constraint type is
removed. Removing pairs of constraints seems to bring ben-
efits only when the capacity and break constraints are both
removed: the solver manages to provide 26 feasible solutions
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-Srglbvl ;Z I\?:;zlltjs\jtgsigfed first Removed constraints # Inst. # Feas. # Opt.
(left) and second cluster (right) CA 45 3 3
of reduced instances

GA 42 1 0

BR 45 3 0

FA 23 0 0

SE 24 0 1

CA, GA 42 8 3

CA, BR 45 20 6

CA, FA 23 6 4

CA, SE 24 4 3

GA, BR 42 7 0

GA, FA 22 0 0

GA, SE 24 1 0

BR, FA 23 4 3

BR, SE 24 2 2

FA, SE 3 0 0

|7 # Inst. # Feas. # Opt.

6 20 7 13

20 14 6

10 20 15 2

12 20 4 1

14 20 2 0
I:gﬁ:frz_bg:ggﬁons per stage, Instance type Max iterations (M) per stage

M, M, M3

Phased A Nj, > 200 500000000 50000000 40000

—Phased vV N, < 200 20000000 250000000 40000
for the considered instances, six of which are proven to be  solutions and an optimal one are found with |7| = 12 and

optimal in an average time of 30 seconds. This is in line
with the structure of the instances; indeed, several of them
consider many capacity and break constraints in their hard
version (see Table 3).

In the second cluster of instances, we reduced the size
of the competition instances in terms of number of teams.
Specifically, we restrict the cardinality of team set 7 to
|7| = 6,8, 10, 12 and for each cardinality we consider 20
reduced instances. These instances are obtained from the
competition ones by randomly selecting the teams to remove
and by deleting them from all the constraints in which they
appear. Table 6 (right) reports the same data as in Table 6
(left), except for the first column which, in this case, reports
the size of set 7. As expected, the larger the size of 7, the less
feasible (and optimal) solutions the solver is able to provide.
Moreover, we observe that the model is solved consistently
on instances up to size ten. Starting from |7'| = 12, the per-
formances of the model drop drastically: only four feasible

only two feasible solutions are found with |7 | = 14.

In what follows, we discuss the results obtained by the
simulated annealing algorithm on the competition instances.
Specifically, we report both the best overall solution that we
obtained for each instance and data on the average behavior of
the algorithm. In order to assess the average performances of
the simulated annealing in terms of cost, time, and feasibility,
we report the results of a dedicated experiment batch. All the
experiments were run without a time limit, but rather with
a fixed number of maximum iterations per stage (see Sect.
4.4). Depending on the number of hard constraints in the
instance, two different configurations of iterations per stage
were applied, as shown in Table 7.

Table 8 reports the results obtained by the solver. The col-
umn Best solution found reports the best solution that our
solver was able to find in all experiments. Some of these
values are those that we submitted to the ITC2021 competi-
tion, and others have been found in later experiments. When
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Table 8 Best and average

results Instance Best Average values Best CPLEX
solution known best

found Cost Time (s) Feasible cost bound

Early_1 423 540.7 5667 1.00 362 1.0
Early_2 318 384.6 14844 1.00 145 0.0
Early_3 1068 1176.5 12195 1.00 992 48.9
Early_4 556 1007.8 8760 0.56 507 0.0
Early_5 4117 - 28517 0.00 3127 247.2
Early_6 3927 4543.0 35162 1.00 3325 587.3
Early_7 5205 6721.7 37487 1.00 4763 1233.1
Early_8 1051 1151.9 21394 1.00 1051 212.1
Early_9 132 228.7 10324 1.00 108 0.0
Early_10 4986 - 35856 0.00 3400 308.2
Early_11 4526 5784.5 43692 1.00 4426 309.5
Early_12 1010 1200.2 14726 1.00 380 0.0
Early_13 173 233.8 19675 1.00 121 2.0
Early_14 63 82.3 5616 1.00 4 1.0
Early_15 3556 3945.8 46715 1.00 3362 484.5
Middle_1 5657 6075.0 26291 0.06 5177 2857.5
Middle_2 SH - 26891 0.00 7381 2909.8
Middle_3 9542 11403.1 44749 0.23 9542 3266.8
Middle_4 16 33.0 5660 1.00 7 7.0
Middle_5 510 624.4 6223 1.00 413 46.8
Middle_6 1701 2186.3 21350 1.00 1120 23.0
Middle_7 2203 2452.7 16303 1.00 1783 23.6
Middle_8 136 196.6 19718 1.00 129 2.0
Middle_9 640 772.1 17611 1.00 450 0.0
Middle_10 1357 1687.5 14433 1.00 1250 3.8
Middle_11 2696 2996.5 43877 1.00 2446 345.0
Middle_12 950 1054.2 14599 1.00 911 1.0
Middle_13 362 479.3 15687 1.00 252 0.0
Middle_14 1172 1304.6 37484 1.00 1172 0.0
Middle_15 985 1099.7 8705 1.00 485 0.7
Late_1 2021 2372.7 20242 1.00 1922 1102.4
Late_2 5715 6085.5 41433 0.49 5400 2817.7
Late_3 2457 2718.0 18328 1.00 2369 347.9
Late_4 0 0.0 2355 1.00 0 0.0
Late_5 2341 - 9191 0.00 1923 397.5
Late_6 930 1121.3 7122 1.00 923 54
Late_7 1765 2226.5 22959 1.00 1558 3.1
Late_8 997 1155.3 11286 1.00 934 77.9
Late_9 715 881.2 25963 1.00 563 2.9
Late_10 2571 3527.3 32511 0.05 1945 1.0
Late_11 207 289.3 15892 1.00 202 0.0
Late_12 3944 4830.6 35514 1.00 3428 156.2
Late_13 1868 2285.5 21007 1.00 1820 6.1
Late_14 1202 1326.3 39161 1.00 1202 6.5
Late_15 60 82.8 6435 1.00 20 0.0
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I:Sbulﬁ :obct;r:é);gzoghzzgge Instance With PSTP Without PSTP gap

instances with and without the avg feasible (%) avg feasible (%) (%)

neighborhood

PartialSwapTeamsPhased Early_1 540.7 1.00 563.5 1.00 +4.22%
Early 2 384.6 1.00 388.3 1.00 +0.96%
Early 3 1176.5 1.00 1204.4 1.00 +2.37%
Early 4 1007.8 0.56 1125.8 0.38 +11.71%
Early 5 - 0.00 - 0.00 -
Early_6 4543.0 1.00 4553.2 1.00 +0.22%
Early_10 - 0.00 - 0.00 -
Early_12 1200.2 1.00 1326.4 1.00 +10.51%
Middle_1 6075.0 0.06 - 0.00 +00
Middle_2 - 0.00 - 0.00 -
Middle_4 33.0 1.00 333 1.00 +0.91%
Middle_5 624.4 1.00 656.8 1.00 +5.19%
Middle_6 2186.3 1.00 2224.7 1.00 +1.76%
Middle_10 1687.5 1.00 1766.8 1.00 +4.70%
Middle_11 2996.5 1.00 3131.8 1.00 +4.52%
Middle_12 1054.2 1.00 1137.0 1.00 +7.85%
Late_4 0.0 1.00 0.0 1.00 +0.00%
Late_5 - 0.00 - 0.00 -
Late_6 1121.3 1.00 1141.7 1.00 +1.82%
Late_8 1155.3 1.00 1186.1 1.00 +2.67%
Late_10 3527.3 0.05 3590.0 0.05 +1.58%
Late_11 289.3 1.00 321.6 1.00 +11.16%

the current known best was determined by our solver, the
corresponding value in the first column is marked in bold.
When no feasible solution has been found, the number of
hard violations followed by a letter H is reported. Next
columns, labeled Average values, report the data obtained
in a set of experiments that we run independently from the
competition, in order to extract information on the average
behavior of the algorithm in its final configuration. At least
48 runs per instance were performed to collect this data.
Columns Cost and Time report, respectively, the average val-
ues of the objective function and the average time needed
for a complete run of the three stages. Regarding the aver-
age cost, the value is computed only on feasible solutions.
Column Feasible reports the ratio between feasible solutions
and total runs. Finally, column Best known cost contains
the best known results at the moment this article is written,
according to data published on the website of the compe-
tition (Van Bulck et al., 2020a), and column CPLEX best
bound contains the best lower bound that CPLEX was able
to determine on Model M. Overall, our three-stage multi-
neighborhood Simulated Annealing solver could find at least
one feasible solution on 44 out of 45 instances. According to
data, in its final configuration it manages to determine very
easily a feasible solution on 36 instances, which are charac-
terized by a feasibility ratio of 1.00, as it can be observed

in column Feasible of the above-discussed table. The other
instances appear to be less easy to solve for the algorithm.
In particular, instances Early_5, Early_10, Middle_2, and
Late_5 resultto be considerably challenging, as feasible solu-
tions are found just sporadically.

5.4 Analysis of the neighborhood
PartialSwapTeamsPhased

One of the main contributions of the presented work is the
new neighborhood PartialSwapTeamsPhased that was intro-
duced with the main purpose to solve the phased version
of the problem. In order to test the effectiveness of the
novel neighborhood, we run an additional set of experiments
on phased instances without making use of PartialSwap-
TeamsPhased. To do so, we associated a probability of 0.00
to PartialSwapTeamsPhased in the multi-neighborhood and
rescaled the probabilities associated with the other neighbor-
hoods proportionally, in order to keep the same mutual ratios
among them (according to the values in Table 4).

In Table 9 we report the average costs and the fea-
sibility ratios obtained by the standard configuration and
those obtained by the configuration that does not employ
PartialSwapTeamsPhased. At least 20 runs per instance
were executed. The last column reports, where possible,
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the percentage gap between the average cost obtained with-
out PartialSwapTeamsPhased and the average cost obtained
by the full configuration. It is possible to observe that
instance Middle_1 is solved to feasibility only in the con-
figuration that employs PartialSwapTeamsPhased. Sixteen
instances, solved by both configurations, have worse results
when solved without PartialSwapTeamsPhased. For just one
instance, Late_4, the configurations obtain the same aver-
age cost. Finally, the remaining four instances, Early_5,
Early_10, Late_5, and Middle_2, are not solved to feasibil-
ity by any of the two configurations, in the given number
of runs. According to these data, the neighborhood Partial-
SwapTeamsPhased appears to bring a tangible improvement
in 17 out of 22 phased instances.

6 Conclusions

In this study, we considered the version of the Sports
Timetabling Problem proposed for the ITC2021 competi-
tion. We presented an ILP model for the problem, which did
not yield significant results when solved by a commercial
solver. Then, we tackled the problem employing a three-
stage multi-neighborhood simulated annealing approach that
makes use of six different neighborhoods. In particular, the
neighborhood that we named PartialSwapTeamsPhased is a
novel contribution. Finally, we performed a parameter tuning
for the solver using the F-RACE procedure that allowed us
to find a set of parameter values for this problem.

This approach managed to find a feasible solution for
44 out of the 45 instances proposed by the competition.
Feasible solutions were found rather easily for most of the
instances; however, the metaheuristic struggled to produce
feasible solutions for certain instances, even in long execu-
tion times. The results obtained by the simulated annealing
approach allowed us to rank second out of 13 participants in
the final ranking of the competition.

Future work will be devoted to improve the results and per-
formances of the simulated annealing algorithm both on the
considered instances and on other benchmark instances for
round-robin tournament. Specifically, we think that relevant
advancements can be achieved through a wider study and
application of the PartialSwapTeamsPhased neighborhood
on a larger set of instances. Possible research directions may
also include the definition and integration of new neighbor-
hoods in the simulated annealing algorithm to better deal
with feasibility in heavily constrained instances. In addi-
tion, we will work on the implementation and evaluation of
new greedy techniques to generate different initial solutions,
not restricted to the canonical pattern. Further research may
also be committed to develop a metaheuristic approach, such
as Large Neighborhood Search (LNS), which embeds exact
methods in our simulated annealing algorithm.
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