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Abstract

In this thesis, the influence of inertia and flexibility on the dynamics of elongated
particles in fluid flows has been investigated. In particular, original experiments have
been designed and performed to understand the small-inertia effects on the rotational
dynamics of neutrally-buoyant axisymmetric particles in a viscous shear flow, while
accurate simulations have been conducted to examine the effect of flexibility in a wall-
bounded turbulent flow. Being very rich in physics, the physical problem considered
in this work is far-reaching from a fundamental point of view, but it has also a practical
importance being relevant to several environmental and engineering processes.

In the first part of this manuscript, we present an experimental study examining
the influence of small-inertia on the rotational dynamics of axisymmetric particles
suspended in a simple shear flow. A custom-built shearing cell and a multi-view shape-
reconstruction method are used to obtain direct measurements of the orientation and
period of rotation of cylindrical and ellipsoidal particles of varying aspect ratios. By
systematically changing the viscosity of the fluid, we examine the effect of inertia on
the dynamical behaviour of these suspended particles up to particle Reynolds number
of approximately one. While no significant effect on the period of rotation is found in
this small-inertia regime, a systematic drift among several rotations toward limiting
stable orbits is observed. Prolate particles are seen to drift towards the tumbling orbit
in the plane of shear, whereas oblate particles of any particle aspect ratio are driven
either to the tumbling or to the vorticity-aligned spinning orbits, depending on their
initial orientation. These results are compared to recent small-inertia asymptotic
theories.

The second part of the manuscript focuses on the numerical study, which was
conducted by means an Eulerian-Lagrangian computational approach based on DNS
of turbulence coupled with LPT of elongated and flexible fibres dispersed in channel
flow. Particles are modelled as chains of constrained sub-Kolmogorov rods that extend
well in the inertial range of turbulence and are naturally prone to bending. Statistics are
presented at shear Reynolds number Reø = 300, highlighting the complex interaction
between fibres and turbulence, while evaluating the influence of bending stiffness
and inertia. In the bulk of the flow flexible fibres are seen to orient and rotate as if
they were rigid particles suspended in Homogeneous Isotropic Turbulence, whereas
the same particles orient with the mean flow and experience stronger tumbling rates
when they move to the walls. By looking at the deformation of the particles, we find
that the most probable configuration for long flexible fibres in wall turbulence is
a stretched one. The dynamics of particle deformation are discussed, giving some
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insight into its relation to small-scales turbulence activity. Finally, we discuss the
effectiveness of long and slender fibres as drag reducing agents in turbulent channel
flows at Reø = 150,300. The presence of the particles determines a Non-Newtonian
stress in the axial momentum balance of the turbulent channel flow, influencing the
first and second-order moments of the fluid velocity. The analysis of the spectra and
the budget of turbulent kinetic energy provides more insight into the mechanism
responsible for drag reduction.

Keywords: shear flow, axisymmetrical particles, inertia, flexibility, turbulence, drag
reduction
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Résumé

Dans cette thèse, l’influence de l’inertie et de la flexibilité sur la dynamique des
particules allongées dans les écoulements a été étudiée. En particulier, des expériences
originales ont été conçues et réalisées pour comprendre les effets de la petite inertie
sur la dynamique rotationnelle de particules individuelles axisymétriques à flottabilité
neutre dans un écoulement de cisaillement, tandis que des simulations précises
ont été menées pour examiner l’effet de la flexibilité dans un écoulement turbulent
d’une suspension de fibres limité par des parois. Très riche en physique, le problème
considéré dans ce travail est d’une grande portée d’un point de vue fondamental, mais
il a également une importance pratique car il est pertinent pour plusieurs processus
environnementaux et d’ingénierie.

Dans la première partie de ce manuscrit, nous présentons l’étude expérimentale
examinant l’influence de la petite inertie sur la dynamique de rotation de une seule
particule axisymétrique en suspension dans un écoulement à cisaillement simple.
Une cellule de cisaillement sur mesure et une méthode de reconstruction de forme
multi-vues sont utilisées pour obtenir des mesures directes de l’orientation et de la
période de rotation de particules cylindriques et ellipsoïdales de différents rapports
d’aspect. En modifiant systématiquement la viscosité du fluide, nous examinons l’effet
de l’inertie sur le comportement dynamique de ces particules en suspension jusqu’à
un nombre de Reynolds d’environ un. Alors qu’aucun effet significatif sur la période
de rotation n’est trouvé dans ce régime à faible inertie, une dérive systématique parmi
plusieurs rotations vers des orbites stables limites est observée. Les particules ’prolate’
dérivent vers l’orbite de culbute dans le plan de cisaillement, tandis que les particules
’oblate’, quel que soit leur rapport d’aspect, sont entraînées soit vers l’orbite de culbute,
soit vers l’orbite de rotation alignée avec la vorticité, en fonction de leur orientation
initiale. Ces résultats sont comparés aux récentes théories asymptotiques en regime
de petite inertie.

La deuxième partie du manuscrit se concentre sur l’étude numérique, qui a été
menée au moyen d’une approche de calcul eulérienne-lagrangienne basée sur la
DNS de la turbulence couplée à la LPT de fibres allongées et flexibles dispersées
dans un écoulement en canal. Les particules sont modélisées comme des chaînes de
tiges sub-Kolmogorov contraintes qui s’étendent bien dans la plage inertielle de la
turbulence et sont naturellement enclines à la flexion. Les statistiques sont présentées
au nombre de Reynolds de cisaillement Reø = 300, mettant en évidence l’interaction
complexe entre les fibres et la turbulence, tout en évaluant l’influence de la rigidité de
flexion et de l’inertie. Dans le coeur de l’ècoulement, les fibres flexibles s’orientent
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et tournent comme s’il s’agissait de particules rigides dans une turbulence isotrope
homogène, alors que les mêmes particules s’orientent avec l’écoulement moyen et
connaissent des taux de rotation plus élevés lorsqu’elles se déplacent vers les parois.
En examinant la déformation des particules, nous constatons que la configuration
la plus probable pour les longues fibres flexibles dans la turbulence de paroi est une
configuration étirée. La dynamique de la déformation des particules est discutée,
donnant un aperçu de sa relation avec l’activité de la turbulence à petites échelles.
Enfin, nous discutons de l’efficacité des fibres longues et minces comme agents de
réduction de la traînée dans les écoulements turbulents de canaux à Reø = 150,300. La
présence des particules détermine une contrainte non-newtonienne dans l’équilibre
du moment axial de l’écoulement turbulent en canal, influençant les moments de
premier et de second ordre de la vitesse du fluide. L’analyse des spectres et du bilan
de l’énergie cinétique turbulente permet de comprendre le mécanisme responsable
de la réduction de la traînée.

Mots clés: écoulement de cisaillement, particules axisymétriques, inertie, flexibilité,
turbulence, réduction de la traînée
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1. Introduction

This thesis is focused on the study of the dynamics of fibres in viscous and turbulent
flows. Given the broad range of intents, two specialities have been combined in the
framework of a co-supervision agreement between the Università degli Studi di Udine
and the Aix-Marseille Université. This has determined a mixed methodology. On one
side, experiments have been performed at the Laboratoire IUSTI of the Aix-Marseille
Université to study the influence of inertia on the rotations of axisymmetrical particles
suspended in a viscous shear flow. This line of research represents a unique oppor-
tunity to study a natural dynamical system produced by the interaction between an
isolated particle and the viscous flow. Moreover, it aims at finding an answer to recent
theoretical efforts (Dabade et al., 2016; Einarsson, Candelier, et al., 2015b), which
included inertial effects to lift the indeterminacy of the Jeffery orbits (Jeffery, 1922).
On the other side, the theory of Jeffery has become the foundation for highly accurate
simulations of the dynamics of fibres in wall turbulence, performed at the Multiphase
Flow Laboratory of the Università degli Studi di Udine. These calculations intend to
characterise the dynamics and deformations of long and flexible fibres suspended in a
turbulent channel flow, relating their phenomenology to the fundamental properties
of turbulence.

We reckon that this multi-scale investigation of fibres in flows will be more profitable
if we first recall some general concepts. Therefore, we start by looking into natural
and industrial processes to understand where suspensions of fibres are a relevant
physical system in Section 1.1. In a second moment, a brief introduction to turbu-
lence is provided in Section 1.2, as it represent the flow condition of highest interest
for particle-laden flows. At this point, we begin the discussion of the dynamics of
axisymmetrical particles in flows. The first step is manifest and concerns the rota-
tion of axisymmetrical particles suspended in a viscous shear flow in Section 1.3.1.
Afterwards, turbulence is recovered as we look at how this complex flow condition
influences the orientation and tumbling rate of suspended disks and fibres in Section
1.3.2. This multi-scale system is of particular interest as many parameters, such as
particle inertia and flexibility, interplay in influencing the flow-particle interaction.
Finally, our discussing culminates into the analysis of drag reduction in Section 1.4,
a macroscopic manifestation of the modulation of turbulence that fibres determine
when carried by a flow.
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1. Introduction – 1.1. Context of the thesis

Figure 1.1. – Examples of suspensions of particles in nature: a) abundances of phyto-
plankton not far from Bristol (UK), whose swirls and shapes in the bloom
trace the movement of sea currents, in early summer of 2022. These
plant-like organisms play an important role in the absorption of carbon
dioxide by oceans (NASA, 2022b); b) Sarah Desert sand carried by a storm
far off the African coast towards South America. It is estimated that 100
tons of dust are dispersed from the Sarah Desert every year, representing
an important fertilizer for lands and seas downwind, but with deep con-
sequences on climate as well (NASA, 2022a); c) haze over the city of Paris,
completely covered by a gray cloud of P M2,5 during a stagnant spring air
in 2014 (NASA, 2014) ; d) the plume caused by the eruption of Iceland
Eyjafjallajökull, winding down by April 12, 2010 (NASA, 2010)

1.1. Context of the thesis

A suspension is a multi-phase physical system where particles (the carried phase)
are dispersed in a fluid (the carrier phase). Once we accept this definition, it is clear
that suspensions are ubiquitous, and their understanding is of absolute interest for
humanity. A spectacular example is the eruption of the Iceland’s volcano Eyjafjal-
laj okull in April 2010, when large amounts of small rocks, minerals (especially silica)
and glass particles with typical size below 2 mm were suspended in the atmosphere of
Europe up to 6000 meters of altitude (W. R. Chen and L. R. Zhao, 2015), as captured
by NASA in Figure 1.1, panel (d). Given the risk of engine failure that volcanic ash
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determines when is encountered by a plane, thousands of flights were cancelled in
the days following the eruption, with an estimated economical damage of 2 billion
dollars.

A more down-to-hearth suspension is that of particulate matter, which have been
correlated to a considerably high number of deaths in the main European cities
(Khomenko et al., 2021) and can be seen as a grey haze, like the one covering Paris
in Figure 1.1, panel (c). In this case, we are talking about smaller particles (P M2,5)
emitted by combustion engines, coal power plants and factories, whose size is below
2.5µm but which are visible as a gray cloud lying above the urban landscape and,
despite recent improvements, still represent the fifth greatest risk factor for global
mortality (Burnett et al., 2018).

Suspensions can also sparkle life, like the phytoplankton early summer bloom
captured by NASA around Bristol (UK), displayed in Figure 1.1, panel (a). These
microscopic plant-like organisms play an important role for the marine ecosystem
as well as in the global carbon cycle so that recent studies have looked at the impact
of global warming on their concentration in the Norther seas, of great importance
for the local food chain (McQuatters-Gollop et al., 2019). Indeed, these and other
micro-planktons passively drift within the oceans whiles their sensing, metabolism,
locomotion and sexual reproduction strongly depend on their orientation, modelled
as that of an axisymmetrical object (Guasto et al., 2012; Basterretxea et al., 2020).

As a matter of fact, one should not be surprised to find out that suspensions play a
major role in Earth’s climate and biological systems. It is estimated that winds pick
up approximately 100 million tons of dust from the Sahara desert each year, during
events like the one captured by NASA and displayed in Figure 1.1, panel (b). Once
airborne, the particles alter the amount of solar energy reaching the surface and affect
the formation of clouds and storms too. Winter and spring seasonal winds often push
dust higher into the atmosphere, so that it can reach the Caribbean, the Gulf of Mexico
and the Amazon rain forest carried by high-level winds, fertilising these ecosystems as
well as the oceans in between.

Modelling such complex physical systems usually requires to specify the shape
of the suspended particles. The simplest approximation would be to treat them
as spheres, and try to estimate the hydro-dynamical coupling between the carrier
and carried phases in order to produce a mathematical description of the dispersed
flow that would be useful for practical applications. This is exactly what has been
done to produce social distancing rules during the still ongoing COVID pandemic,
by treating saliva droplets as small falling spheres whose diameter varies between
1µm and 1mm while they are carried by the air flow produced by human speech or
respiratory events (C.D.C.P., 2020; J. Wang et al., 2022). Scientists are also looking into
solutions to model and prevent fluxes of sand in the lower atmosphere, a major issue
for human infrastructures near desert zones. In this regard sphere-laden simulations
of the atmospheric turbulent boundary layer are a powerful tool to gain insights into
the saltation and deposition of sand around obstacles (Le Ribault et al., 2021).

Plenty of industrial processes take advantage of axisymmetrical particles such as
cylinders and ellipsoids, i.e. particles whose shape is not spherical but it is obtained
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Figure 1.2. – Examples of suspensions of particles in industrial processes. Panels: (a)
High Performance Fibre-reinforced Concrete structures of the Mucem,
Marseille (FR) (copyright: www.marseille-tourisme.com); (b) Cellulose fi-
bres of a paper bag, enlarged by 200 times. Scale: 800 × 600µm (copyright:
Jan Homann, Wikipedia); (c) Polymer-laden vs. unladen jets: additives
like polymers and fibres are well known Drag Reducing agents (source:
Karpikov, 2005); (d) Fibre-laden natural mascara vs. regular mascara.
Natural mascara better lengthens eyelashes and is less nocive (copyright:
3D Silk Fiber Mascara, Milky Spoon).

from the rotation of a rectangle or an ellipse around one of its axes of symmetry.
Differently from spheres, this kind of particles expresses an orientation within a
flow, which determines an anisotropic hydro-dynamical interaction (Voth and Soldati,
2017). As a consequence, the qualities of final products such as high performance fibre-
reinforced concrete and paper, displayed in panels (a) and (b) of Figure 1.2 respectively,
strongly depend on the micro-structure that the embedded particles determine while
flowing as a suspension during production (Lundell et al., 2011). Fibres are also known
to be Drag Reducing agents and, despite less effective than polymers, whose positive
increment of water flow-rate is shown in in panel (c) of Figure 1.2, these particles
have been deployed in flooded motors and oil pipelines (Hoyt, 1972). In addition,
fibre-like particles are appearing in daily-life applications, where they are used to
produce natural cosmetics, such as the fibre-reinforced mascara displayed in panel
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(d) of Figure 1.2.
Axisymmetrical suspended particles are also an effective way of representing mi-

croplastics and better understand the cycle of these global contaminants, first dis-
persed in domestic and industrial waste-waters but now contaminating the entirety
of the oceans on planet Earth (Ross et al., 2021). Finally, axisymmetrical particles can
be a simplified model to study the hydro-dynamical stresses determined by red blood
cells on the walls of human veins, as well as phenomena of cell adhesion, important
in hemostasis and thrombosis (Goldsmith, 1996). Indeed, the dynamical behaviour of
these objects is of great interest, determined by the interplay of viscosity and elasticity
of their surface, combined with a shape memory (Dupire et al., 2012).

1.2. A brief description of turbulent flows

Having looked at the importance of suspensions of axisymmetrical particles, we
now focus on a qualitative understanding of suspension motion in turbulence, as it
represents the most common condition where these physical systems are encountered,
both in nature and in industrial processes. The flow of a fluid is described by the
Reynolds number:

Re = ΩU L
µ

, (1.1)

where Ω and µ are respectively the density and the dynamic viscosity of the fluid,
and U and L are the characteristic velocity and dimension of the flow. The Reynolds
number appears in the Navier-Stokes equations which, together with the continuity
equation, describe the conservation of mass and momentum of a physical system
where a fluid is flowing in a finite volume:

r ·u = 0 , (1.2a)

@u
@t

+ (u ·r)u =°rP + 1
Re

r2u , (1.2b)

where u indicates the generic velocity vector and P is the pressure gradient that is
driving the flow. Examples of flow in the viscous regime, when the Reynolds number
is particularly small, are common in the field of biology and cell dynamics, like the
experiments with single red blood cells given in figure 1.3, panel (a). From equation
1.2b, we can appreciate how, for increasing Reynolds number, the relative importance
of the viscous term r2u will be eclipsed by the convective terms @u

@t + (u ·r)u. Such
transition between regimes can be found in the circulatory system, an interesting
example of a multi-scale system, where flow regimes spawn from the viscous one of
capillary veins to a preliminary turbulent flow in the largest aortas (Verzicco, 2022).
Then, as the Reynolds number becomes sufficiently large, the flow completely evolves
from the laminar to the turbulent regime and inertia now dominates over viscosity.
This enhances the transport of heat and momentum within, at the price of an unstable
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Figure 1.3. – Examples of flows across scales and regimes. Panels: (a)Single red blood
cell dynamics experiments in the viscous regime Re << 1 (Viallat and
Abkarian, 2014); (b) Human blood flow is typically laminar but can peak
up to Re = 104 in the largest aortas. Simulation of the flow in the heart dur-
ing the cardiac cycle, coloured according to the velocity magnitude (Verz-
icco, 2022).; (c) jet engine down for maintenance. The typical Reynolds
number is ªO(104;105); (d) the typhoon Hinnamnor in Aug. 2022 in the
Western Pacific Ocean. Higher than average sea temperatures feed these
kind of storms, which are suggestive examples of turbulent eddies (NASA,
2022c); (e) one of poles of Jupiter, as seen by the NASA’s Juno spacecraft in
Dec. 2016. It is possible to admire a transition from a zone of organized
turbulence around the equator (top) to a cluster of filament structures at
the pole (bottom) (NASA, 2017).

and unpredictable phenomenology as well as increased drag losses (Pope, 2000).
Industrial processes are a typical example of turbulent flows, like the jet engine

displayed in panel (c) of Figure 1.3. In general, the aircraft performance critically
depends on the control of the boundary layer developing around the wings as well as
on the flow regime within the engine (Marusic, 2009). Nevertheless, no known solution
satisfies the two criteria of existence and smoothness for the Navier-Stokes equations,
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therefore physicists and engineers have been forced to model turbulence for a long
time. One of the most significant contributions dates back to 1920 when L. F. Richard-
son pictured the multi-scale nature of turbulent flows by describing an atmospheric
boundary layer composed by eddies, i.e. structures of locally coherent turbulent
motion (Richardson, 1920). According to the English scientist, the largest eddies are
comparable to the scale of the flow, L0, but are not stable and eventually break up,
transferring their energy to generate smaller ones. This mechanism replicates through
the intermediate eddies, which correspond to the inertial range of turbulence, in a
sort of energy cascade that eventually generates such small eddies, at scale LD , that
their motion is stabilized by the molecular viscosity, which dissipates all their excess
energy. Satellites can help in understanding this multi-scale description: for example,
by looking at a picture of Jupiter’s atmosphere, displayed in panel (e) of Figure 1.3, we
appreciate a smooth transition from large coherent structures around the equator of
the planet to small filament eddies at the pole. Multi-scale turbulent structures are
also found in more familiar places, such as the Hinnamnor storm, displayed in panel
(d) of Figure 1.3.

The theory of Richardson introduced the fundamental concept of scale separation
and energy cascade within a turbulent flow. Because of its importance, the Russian
mathematician A. Kolmogoroff used it as a starting point to describe the structure of
Homogeneous Isotropic Turbulence (HIT hereinafter), presented in his famous AK41
(Kolmogorov, 1941), published in 1941 but translated to English and discussed only
after the World War Two by Batchelor (Batchelor, 1947).

According to the Russian, for high enough Reynolds number flows, small scales are
statistically isotropic and uniquely determined by the interaction between viscosity
µ and dissipation ≤, which is nothing but a degradation of mechanical energy due to
shear stress action. The Kolmogorov length, time and velocity scales are consequently
defined:

¥ª
µ
∫3

≤

∂1/4

, (1.3a)

ø¥ ª
≥∫
≤

¥1/2
, (1.3b)

u¥ ª (∫≤)1/4 . (1.3c)

Using the Kolmogoroff scales, it is possible to deduce the range of length scales that a
turbulent flow expresses, which is given by the following expression:

L0

LD
ª Re3/4, (1.4)

so that this ratio increases with the Reynolds number at the point that high Re flows
present a wide range of eddies that are much smaller than the flow characteristic scale
L0 and much larger than the viscous scale LD , also known as the inertial sub-range,
whose statistical motion is hypothesized to be universal.

Having characterised the ratio of scales in a turbulent flow, the Russian scientist
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Figure 1.4. – Panels: (a) turbulent energy against eddies length-scale. Energy is emit-
ted into the system at large scale (left) by a forcing term, i.e. a pressure
gradient, to be transferred along the cascade to less and less inertial ed-
dies until reaching the smallest scales, where viscous dissipation takes
care of all the remaining energy. (b) Representation of the energy cascade.
Eddies are space-filling at every step. Image taken from Frisch et al., 1978.

investigated the structure functions of turbulence, in order to determine how kinetic
energy is distributed among eddies of different sizes. He found that, in the limit of
an infinite Reynolds number, such distribution is determined only by the interplay
between dissipation and the given length scale, and energy is flowing from larger to
smaller scales. When that is the case, the power spectrum of the turbulent kinetic
energy will exhibit a power-law scaling in the intermediate inertial range:

E(∑) =C≤2/3∑°5/3 , (1.5)

as visualized in Figure 1.4. The influence of Kolmogorov’s theory of turbulence is such
that still nowadays it represents the base for any novel approach to the subject. Any-
how, the discussion has been lively since its publication. Indeed, small-scale activity
was soon found to be intermittent, in the sense that eddies in the inertial and, even
more, in the dissipating range are not filling the space homogeneously, as predicted by
the AK41, but emerge as sudden energy-containing bursts surrounded by quiescent
regions (Batchelor and Townsend, 1949). Consequently, this has deep consequences
on the structure of the cascade and determines a modification of the universal scaling
of the moments of the velocity increment.
Recalling the seminal work of Richardson, one detail was lost up to this point, which

is the fact that the British framed the atmospheric boundary layer as the archetype
of turbulent flow. Indeed, in the real world is common to see turbulence developing
around a body or being confined within bodies, whereas the HIT configuration is a
sort of ideal scenario, suitable for mathematical analysis. Because of this, the study
of wall turbulence is a matter of great importance and the focus of an intense investi-
gation and will be dealt with for the rest of this manuscript. The main consequence

25



1. Introduction – 1.2. A brief description of turbulent flows

Figure 1.5. – Visualisation of a section of volume (L+
x = ºReø,L+

y = º/2Reø,L+
z =

2
3 Reø) of a turbulent channel flow at shear Reynolds number Reø = 150.
The simulation was developed in-house during the preparation of this
manuscript as detailed in 3. The left-side volume rendering of the dimen-
sionless stream-wise velocity u+ clearly shows the coherence of the bulk
of the flow, from which fast-speed streaks burst towards the wall deter-
mining, due to mass conservation, the eruption of slow-speed streaks
of fluid from the wall to the bulk, especially visible in the front. This
is particularly evident in the right-side horizontal panel, displaying the
dimensionless stream-wise velocity u+ at z+ = 10, where the irregular al-
ternation of fast-slow fluid zones is clearly visible. This interplay between
slow and fast fluid generates eddies, here rendered as iso-surfaces of
the second invariant Q of the fluid velocity gradient tensor (the selected
value is Q = 0.04, corresponding to one-fifth of the maximum value of
Q obtained in the simulations). It is possible to appreciate how eddies
detach from the wall to ultimately reach the typical hairpin shape (black
dashed line).

of having introduced a wall in our turbulent flows is the generation of a turbulent
boundary layer, which breaks the statistical homogeneity of the wall-normal direction.
Macroscopically, this corresponds to a dramatic increase of drag and heat transfer on
the surface of any vehicle: for example, 50% of the total drag in commercial aircraft
is determined by the development of a turbulent boundary layer (Marusic, 2009).
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Microscopically, it has some peculiar consequences, as eddies now scale with the
distance to the wall, rendering dissipation largely localized near the wall (Jiménez,
2012). Not only, but a mechanism is also generated, where eddies lift slow fluid from
the wall and replace it with fast fluid from above, as displayed in figure 1.5. In this
way, layers of fluid start to roll up while being stretched, finally resulting in vortexes
that are long but, in some sense, still attached to the wall, whose shape reminds that
of a hairpin (Perry and Chong, 1982), as suggested by the black dashed line over one
turbulent structure in figure 1.5. These structures are believed to be fundamental in
the transition to turbulence of a laminar boundary layer, and still represent a matter
of ongoing research.

1.3. Suspensions of axisymmetrical particles

After having provided a brief description of the phenomenology of turbulence,
we now introduce axisymmetrical particles in the picture. First, we focus on their
dynamics in viscous flows, providing a quick resume of the experimental, theoretical
and numerical efforts that were produced in order to understand how these objects
rotate within a simple shear flow. This will give us the opportunity to focus on relevant
research matters, such as the influence of inertia on particle dynamics. Second, we
will move to turbulent flows laden with axisymmetrical particles, especially fibres
as they represent the most studied shape in this multi-phase system. A complete
picture of the influence of turbulence on the rotation rate of these particles will be
then provided. The discussion will also focus on the main sources of bias for this
multiphase system: inertia, determined by the relative length of the particles within
the flow and by a density mismatch between the carried and carrying phases. Finally,
we will mention the influence of particle flexibility on the dynamics of axisymmetrical
particles in viscous and turbulent flows. Given the complexity of the matter, we will
limit our selves to fibres, looking into their rich deformation dynamics and how these
modify their orientation and rotation trends.

1.3.1. Suspensions in viscous flow

Given the complexity of the subject, the modelling of suspensions of axisymmetrical
particles is a matter of ongoing research (Voth and Soldati, 2017). In these physical
systems hydrodynamic interactions are entangled to the relative orientation of the
particles, so that their collective behaviour can differ from what observed for spher-
ical objects even in relative simple scenarios like particle sedimentation (Metzger,
Guazzelli, et al., 2005). Then, a small contribution by fluid inertia will deeply affect the
orientation and concentration of sedimenting axisymmetrical particles (Lopez and
Guazzelli, 2017), which, for a turbulent flow, depends on the relative importance be-
tween convective and velocity-gradient torques in determining preferential alignment
or orthogonality with the gravity force (Sheikh et al., 2020). The relative orientation
within suspended axisymmetrical particles is also responsible for the non-Newtonian
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properties exhibited by these systems when they are sheared (Snook et al., 2014).
At this point, we should be convinced that the modelling of suspensions of axisym-

metrical particles depends primarily on the way these particles orient within a flow.
Neglecting gravitational effects, this depends solely on the way an object reacts to
a deformation imposed by the flow, at a given shear rate (∞̇). Then, among the nu-
merous parameters that play an important role in determining this system, the most
important is certainly the particle aspect ratio r . This given by the ratio between the
length of the particle along its symmetry axis, 2`, and its diameter, 2a:

r = 2`
2a

, (1.6)

equal to one for a sphere, greater than one for prolate objects and lower for oblate
shapes. As we shall see, the particle aspect ratio alone has already an important
influence on the orientation of axisymmetrical particles in viscous and turbulent
flows.

Besides the particle aspect ratio, other parameters act as sources of bias. Among
these, we find the possibility for axisymmetrical particles to deform (Forgacs and
Mason, 1959; Żuk et al., 2021) but also their inertia (Mao and Alexeev, 2014). This is
usually determined by inertial effects of the flow on the particle rotation and by the
inertia of the particle alone, the former quantified by the particle Reynolds number
and the latter by the particle Stokes number:

Rep = Ω∞̇`2

µ
, (1.7a)

St =
Ωp

Ω
·Rep =

Ωp ∞̇`
2

µ
, (1.7b)

where Ωp is the density of the particle and ∞̇ is the shear rate that the object is feeling
within the flow. Weakly inertial particles will follow the flow stream and are therefore
called tracers, whereas as inertia becomes more and more relevant, determined by
a relevant density ratio Ωp /Ω or an important particle size 2`, particles will develop
a ballistic behaviour and strongly sediment. One must not forget that turbulence
is usually in the bargain, giving also raise to phenomena of particle resuspension
(Le Ribault et al., 2021).

Therefore, in his seminal work Jeffery, 1922 strongly simplified the physical system
in order to be able to obtain a theory for the orientation of axisymmetrical particles
suspended in a viscous shear flow. Indeed, the author considered a linear shear flow,
i.e., a good local approximation of a pressure-imposed turbulent flow, in the viscous
regime, i.e., for vanishing particle Reynolds number, where a rigid ellipsoidal particle
is suspended, being its density equal to that of the fluid. In the absence of inertial and
Brownian forces, Jeffery found that the axis of revolution of the axisymmetric particle
rotates along one of an infinite one-parameter family of closed periodic orbits, known
as Jeffery orbits, rendered as dotted spherical ellipses in figure 1.6 for an ellipsoid with
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Figure 1.6. – Rendering of five different Jeffery orbits for an ellipsoid of aspect ratio
r = 10 in the limit of a viscous shear flow (Rep = 0). The azimuthal and
polar angles, ¡ and µ, are defined in yellow. The trajectories of one
extremity of the particle are obtained by integrating equation 1.8 in time
from different initial conditions, and are displayed as dotted lines on the
surface of a sphere of radius `. The orbit constant C increases among
the represented orbits following the dashed arrow, from C = 0 in the z
axis-aligned rolling orbit to C =1 in the tumbling orbit in the x, z plane.

particle aspect ratio r = 10. The time change in orientation is given by the equation
for the unit vector n parallel to the axis of revolution of the ellipsoid:

ṅ =≠ ·n+ r 2 °1
r 2 +1

[E ·n°n (n ·E ·n)] . (1.8)

The orientation rotates fully with the rate of rotation of the flow, ≠, and only a fraction
(r 2 °1)/(r 2 +1) of the rate of strain of the flow, E. Note that the seemingly non-linear
term at the end of the right-hand side of equation (1.8) is just meant to keep |n| = 1.
Considering the uniform shearing motion defined by (∞̇y,0,0) where ∞̇ is the flow shear
rate, the orientation of the particle axis of revolution is described by the azimuthal
and polar angle, ¡ and µ, shown in Figure 1.6. The Jeffery orbits are of the form (with
t = 0 when ¡= 0):

tan¡= 1
r

tan
∑

∞̇t
r + (1/r )

∏
, (1.9a)

tanµ = Cr

(cos2¡+ r 2 sin2¡)1/2
, (1.9b)

where the constant of integration C is known as the orbit constant. The period
of rotation is TJe f f er y = 2º(r +1/r )/∞̇. The rotational motions consist of infinitely
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many possible spherical ellipses, limited by a tumbling orbit in the (x, y) plane on the
equator of the sphere (C =1) and a spinning orbit aligned with the vorticity z-axis on
the pole of the sphere (C = 0).

Since their formulation, many experimental studies have reported Jeffery orbits for
ellipsoids as well as for other axisymmetrical particles such as fibres (r > 1) and disks
(r < 1) (Taylor, 1923; Binder, 1939; Forgacs and Mason, 1959; Goldsmith and Mason,
1962b; Karnis et al., 1966; Einarsson, Mihiretie, et al., 2016). Forgacs and Mason,
1959 looked at flexible fibres, mentioning that permanently bent particles express
a shorter period of rotation than straight ones. Some other experiments reported
Jeffery orbits for particles suspended in a Poiseuille flow configuration (Goldsmith
and Mason, 1962b; Karnis et al., 1966). A late effort by Moses et al., 2001 investigated
experimentally particle rotations in a confined shear flow, finding that, as long as the
fibres are located at a distance from the wall greater than 2`, they would still describe
Jeffery orbits.

Interestingly, fibres were observed to rotate with a period comparable to that of
ellipsoids with a lower aspect ratio, as displayed in figure 1.7. This would suggest an
equivalence of shape between the physical cylindrical aspect ratio r and the equivalent
ellipsoidal aspect ratio req , that would extend the theory of Jeffery to cylindrical shapes.
Following experiments with disks (Goldsmith and Mason, 1962a) and high-aspect ratio
fibres (Anczurowski and Mason, 1968a), allowed a more and more precise estimation of
a general expression for this equivalence of shape between ellipsoidal and cylindrical
particles, moving from a linear proportionality (req = 0.74r ) (Burgers, 1938; Trevelyan
and Mason, 1951) to a semi-empirical asymptotic theory (req = 1.24r /

p
logr ) (Cox,

1971) to a final data-driven formula (req = 1.14r /r 0.156) (Harris and Pittman, 1975).
Anyway, differently from a suspension of spheres (Einstein, 1906), the first modifica-

tion to the viscosity of a suspension of ellipsoids is indeterminate in the limit of the
derivation of Jeffery, 1922, as the particles exist in a dynamical state depending only on
their initial orientation and without steady-state preferential orientation. To solve this
indeterminacy, Jeffery himself was the first to suggest that ellipsoids would eventually
align with the local vorticity, driven by the terms neglected in his calculations, namely
flow and particle inertia.

In the first place, Taylor, 1923 experimentally confirmed the suggestion of Jeffery,
1922 that ellipsoidal particles would align in the spinning orbit, just to be later dis-
proved by the analysis of Saffman, 1956. In the following years, few experiments
explored the influence of inertia on Jeffery orbits. Preliminary efforts characterised
the phenomenon in terms of a slow variation of orbit constant C among consecu-
tive rotations for negligible particle Reynolds number (Goldsmith and Mason, 1962a;
Stover and C. Cohen, 1990). Karnis et al., 1963 found that fibres and disks suspended
in circular tubes at RepO(10°4) would eventually rotate in the tumbling (C =1) and
spinning (C = 0) orbits respectively. Yet, to the best of our knowledge, no experimental
study has produced a rigorous characterisation of the influence of inertia on the Jeffery
orbits of these rigid objects.

Instead, weak inertial effects have been thoroughly addressed in the recent theoreti-
cal efforts of Subramanian and Koch, 2005; Subramanian and Koch, 2006; Dabade et
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Figure 1.7. – Period of rotation, T , of the axisymmetrical particles against the particle
aspect ratio r . The period is made dimensionless using the shear rate ∞̇
and normalized by a factor 2º. The theories of Jeffery, 1922 and Burgers,
1938, the semi-empirical correlation of Cox, 1971, and the empirical
expression of Harris and Pittman, 1975 are displayed as a solid black
line, a dotted cyan line, a dashed blue line and a dash-dotted pink line,
respectively. The experiments of Anczurowski and Mason, 1968b are
displayed as empty grey diamonds (cylinders) and one solid x (ellipsoid),
clearly showing the equivalence of shapes between the two shapes.

al., 2016; Marath and Subramanian, 2017; Marath and Subramanian, 2018 and Einars-
son, Candelier, et al., 2015a; Einarsson, Candelier, et al., 2015b, who independently
reached similar conclusions: the first effect of fluid and/or particle inertia is to lift the
degeneracy of the infinitely many stable Jeffery orbits since the ellipsoidal particles are
then driven towards a limiting stable orbit through consecutive rotations as displayed
in figure 1.8. Prolate ellipsoids are pushed towards the tumbling orbit (C =1). The
situation is more complex for oblate ellipsoids which are attracted to either the sole
spinning orbit (C = 0) or both the vorticity-aligned (C = 0) and the tumbling (C =1)
orbits, depending on whether their aspect ratio is larger or smaller than a critical
value of approximately 0.14 (Dabade et al., 2016; Einarsson, Candelier, et al., 2015a).
Interestingly, Marath and Subramanian, 2017 also suggested a second-order effect of
inertia on the period of rotation, while Rosén, Einarsson, et al., 2015 discussed the
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Figure 1.8. – Effect of particle inertia (St = 0.8) on the Jeffery orbits as calculated by
Dabade et al., 2016. The Jeffery orbits are not closed spherical ellipses
but instead describe a spiralling trajectory towards one of the two stable
attracting cycles. Two different oblate particles are considered among
the left and the right panel, showing the precise location of the cycle
separating between the tumbling and spinning basins of attraction.

influence of flow confinement over the stability of the tumbling and spinning orbits.
The problem has been also tackled numerically. Several studies based on the Lattice-

Boltzmann method have considered prolate and oblate ellipsoids in the near-sphere
limit (Qi and Luo, 2003; Huang et al., 2012; Mao and Alexeev, 2014), with the advantage
of easily separating between fluid and particle inertia. By exploring a wide parameter
space (0 < Rep < 300 and 0 < St < 1200) for ellipsoids with moderate aspect ratio
2 ∑ r ∑ 6, these authors found a good agreement with the theoretical efforts of Dabade
et al., 2016; Einarsson, Candelier, et al., 2015a at RepO(101), but also the emerging
of other stable rotation states (spinning, inclined spinning, inclined tumbling or
kayaking) for different combinations of increasing particle and flow inertia (Rosén,
Einarsson, et al., 2015). Interestingly, these simulations and previous experiments by
Zettner and Yoda, 2001 reported an increase of the period of rotation with flow inertia,
proportional to (Rep,cr °Rep )°0.5, where Rep,cr is a critical particle Reynolds number
above which the considered particles were observed to stop rotating.

1.3.2. Suspensions in turbulent flows

An axisymmetrical particle suspended in a viscous shear flow behaves as a periodic
dynamical system, while a small inertial effect (Rep << 1) supposedly modifies the
stability of the Jeffery orbits driving the object towards preferential limiting cycles.
This phenomenology dramatically changes when axisymmetrical particles are carried
by a turbulent flow. It is of interest to look at how the particles react to the multi-scale
flow structures and re-orient due to the intermittent velocity gradients. Therefore, the
natural observable becomes the particle rotation rate. For a a sub-Kolmogorov fibre
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this is predicted by the theory of Jeffery as following:

ṅi =≠i , j n j +
r 2 °1
r 2 +1

°
Ei , j n j °ni nk Ek,l nl

¢
, (1.10)

determined by the interplay of the flow rate of rotation, i.e. its vorticity ≠i , j and the
flow rate of strain Si , j (Ni et al., 2015). As displayed in panel (a) of Figure 1.9, the
phenomenology of the rotation rate of a fibre suspended in turbulence becomes very
intermittent, as rotations 30 times stronger than the mean suddenly burst (Parsa,
Calzavarini, et al., 2012).

Numerical simulations and experiments have lead to insights into the rotations of
axisymmetrical particles in turbulence, especially fibres. Parsa, Calzavarini, et al., 2012
obtained experimental measurements of the tumbling rate of tracer rods suspended
in HIT. Nevertheless, in agreement with previous numerical HIT simulations by Shin
and Koch, 2005, they reported a mean squared tumbling rate up to 3 times smaller
than what was predicted for randomly oriented particles through the theory of Jeffery,
1922.

An explanation for this must be sought in the preferential alignment that these
particles express within a turbulent flow. Indeed, the orientation of short rods is
strongly correlated with the vorticity vector as well as the first two eigenvectors of
strain rate tensor Pumir and Wilkinson, 2011; Ni et al., 2015. This alignment is deter-
mined by the fluid stretching, which is known to follow the intermediate eigenvector,
while conservation of angular momentum causes vorticity to preferentially follow this
direction too (Voth and Soldati, 2017). Therefore, as short rods align with the local
strain, their strong correlation with the vorticity will determine a remarkable spinning
motion around their symmetry axis. On the other hand, small disks experience a
complementary behaviour, aligning their axis with the third eigenvector of the strain
rate, in an orthogonal tumbling motion driven by local vorticity. In the end, tumbling
and spinning are complementary effects when comparing rods and disks, adding up
to determine an almost shape-independent variance of the angular velocity Byron
et al., 2015, as displayed in panel (b) of Figure 1.9.

Several other mechanisms come into play when the size of the axisymmetrical parti-
cles becomes larger, as fluid inertia must be accounted for (Rep >> 0) while the flow
sampling happens at a length-scale proportional to their largest dimension, filtering
out contributions by smaller eddies Shin and Koch, 2005. Therefore, fibres in the
inertial range will experience a reduced mean squared tumbling rate, well predicted
by a (2`)°4/3 power law scaling observed both experimentally and numerically in the
HIT configuration(Parsa and Voth, 2014; Pujara et al., 2019).

Simulations disclosed that fibres in the inertial range of HIT still align with the
extensional eigenvectors of the perceived strain-rate tensor (Pujara et al., 2019; Olivieri,
Mazzino, et al., 2022). Therefore, the negative power law scaling is explicable only
by the filtering effect due to the extended particle size (Shin and Koch, 2005). As the
fibres size is further increased (2`>> 2a > ¥k ), the characteristic spinning time-scale
becomes important too, as these particles will spin much more than tumble, trapped
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Figure 1.9. – Panels : (a) Three-dimensional reconstruction of the trajectory of a rod
with aspect ratio r = 5 in a HIT configuration at Re∏ = 214. The projected
trajectories of the center of the rod are also displayed as green lines onto
the x, y and y, z planes. The rod color shows its rotation rate. Image
taken from Parsa, Calzavarini, et al., 2012. (b) Mean square tumbling,
spinning and rotation rates against the particle aspect ratio for tracer
axisymmetrical particles in HIT as measured in the simulations of Byron
et al., 2015 and in the experiments of Parsa, Calzavarini, et al., 2012;
Marcus et al., 2014. Image taken from Voth and Soldati, 2017.

within elongated coherent structures, while once again a °4/3 power law scaling for
the variance of the spinning rate was experimentally found (Oehmke et al., 2021).

The described phenomenology changes when we move from HIT to wall turbulence,
as turbophoresis comes into play. As described by Soldati and Marchioli, 2009, this
mechanism entangles small spheres inside flow sweeps that cluster them in a near-
wall accumulation region, where they will either gently diffuse to the wall or be puked
back into the buffer layer by flow ejection phenomena. Simulations showed that
short ellipsoids follow the same fate, segregating towards the wall in low-speed streaks
proportionally with their particle aspect ratio r , where they will recover a Jeffery-like
dynamical behaviour (Mortensen et al., 2008; Marchioli, Fantoni, et al., 2010). This
implies that short rods (resp. disks) near the wall will be preferentially aligned to the
mean flow (resp. wall-normal direction) while describing a tumbling motion (Hoseini
and Andersson, 2015; Capone and Romano, 2015; Voth and Soldati, 2017).

Actually, as numerically shown by L. Zhao and Andersson, 2016, sub-Kolmogorov
rods (resp. disks) are still aligning with the local flow stretching (resp. compression)
across the whole section of a turbulent channel flow, similar to what is observed in
HIT, but with the main difference that, in the near wall region, vorticity becomes
perpendicular to the direction of maximum stretching, therefore determining an in-
creased tumbling rate for these particles. On the other hand, as the vorticity-stretching
alignment is restored in the bulk of the wall-bounded flow, a HIT scenario is recovered,
where short rods will cluster in low vorticity regions and express a lower tumbling rate
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(Jie et al., 2019).
When longer fibres are considered in wall turbulence, experiments by Shaik et al.,

2020 have shown that they will accumulate in high-speed streaks, while the extended
particle length will determine interaction with larger and more energetic turbulent
structures so that the tumbling rate of longer fibres could even become higher.

Another source of bias is given by particle inertia (St >> 0), determined by the differ-
ent density of the carried phase, which will in the first place reduce the fibre alignment
with the local stretching and vorticity (Olivieri, Mazzino, et al., 2022). Consequently,
this will induce a higher tumbling rate for intermediate values of St , which will satu-
rate and decrease as fibres become more and more ballistic (Kuperman et al., 2019).
As shown by Bounoua et al., 2018 in HIT, the °4/3 power law scaling is extendable
to include particle inertia effects on the tumbling rate of fibres, having normalised
it by the characteristic rotational response time. In wall turbulence, instead, inertia
strengthens wall segregation as well as the thickness of the region where axisymmetri-
cal particles will feel the influence of the wall, while particle orientation becomes more
isotropic in the bulk of the flow (L. Zhao, Challabotla, et al., 2015; L. Zhao, Challabotla,
et al., 2019). Another consequence of particle inertia is the preferential sampling of
the flow by prolate ellipsoids, which is expected to have deep consequences for their
acceleration and tumbling rate (Ouchene et al., 2018).

1.3.3. Deformation of fibres in flows

What seen until now is valid for rigid fibres in viscous and turbulent flows. Anyway,
in several biological and industrial applications, fibres are flexible and will deform
within the flow (Du Roure et al., 2019). Flexibility modifies the way an axisymmetrical
particle will sample flow rotation and strain, where viscous and elastic forces compete
to determine the following dimensionless number, known as the visco-elastic number,
defined here for a viscous shear:

B= 8ºµ∞̇`4

EY º/4a4 , (1.11)

being EY is the Young’s modulus of the material.
As B increases, a flexible fibre suspended in a viscous shear flow will struggle to

rotate as a whole, transitioning to a snaking motion and undergoing events of extreme
deformation (buckling) (Forgacs and Mason, 1959; Delmotte et al., 2015). Flexibility
also influences the way a fibre sediments in a viscous flow, as different equilibrium
shapes are attained depending on the elasticity of the particle, which can optimise
the drag experienced by the particle (Marchetti et al., 2018). In slightly more complex
scenarios, such as a viscous cellular flow, fibres buckling depends on the particles’ con-
figuration when they approach stagnation points, determining the following dynamics
more chaotic (Quennouz et al., 2015).

Coming to turbulence, a stiff fibre will be deformed only by large strain, rapidly
restoring its fully stretched shape afterwards Rosti et al., 2018. On the other hand,
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Figure 1.10. – Panels : (a) Left-to-right time sequence of an elastomer filament in
viscous shear flow undergoing buckling deformation. G is the estimated
shear rate (Forgacs and Mason, 1959). (b) (Top) DNS of 1000 inertial
fibres dispersed in HIT for three different particle lengths (short in green,
intermediate in red, long in blue). The grey-scale panels display the
normal component of the vorticity (negative in white, positive in black).
(Bottom) Histogram of the inflexion of the fibres from straight (left) to 20
inflexion points (M) along the particle (right). Image taken from Olivieri,
Mazzino, et al., 2021.

a stiff-less fibre will be enslaved to turbulent fluctuations (Andrić et al., 2013). This
means that sub-Kolmogorov flexible fibres suspended in HIT will be fully stretched
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for most of the time, undergoing buckling instability when they tumble and meet a
suddenly strong flow compression (Allende et al., 2018).

Indeed, experiments and scaling laws suggest that particle flexibility is negligible for
fibres shorter than a critical length, determined by the interaction between turbulence
intensity, bending stiffness and particle length (Brouzet et al., 2014; Verhille and
Bartoli, 2016). Then, it should be of no surprise to see stiff-less and long fibres being
stretched inside vortical regions of comparable size, as observed numerically for
flexible bead-spring chains in HIT by Picardo et al., 2020. In the end, these features
seem to indicate that the bending stiffness has a moderate influence on alignment
statistics (Olivieri, Mazzino, et al., 2022).

Few studies considered flexible fibres in wall turbulence. There, long and stiff-less
fibres will be stretched by the strong mean shear in the near wall region, reaching a
steady-state elongation regardless of their location within the channel flow, i.e., their
relative ratio to the local scales of the flow (Dotto, Soldati, et al., 2020). Anyway, to the
best of our knowledge no study has explored the alignment and the rotation of long
and flexible fibres in wall turbulence, which will be discussed in this thesis.

1.4. Turbulence modulation and Drag Reduction

We have seen that axisymmetrical particles preferentially orient within a turbulent
flow, consequently experiencing modified rotation rates. Anyway, it is known that
these particles, if dispersed in sufficient concentration, will also modulate the turbu-
lence, with consequences that culminate in a macroscopic phenomenology known as
Drag Reduction (hereinafter DR) (Voth and Soldati, 2017).

DR is ubiquitously pursued in nature. Form DR is the most common, a typical
example being the sword of swordfishes or the skin of the sharks (Bushnell and Moore,
1991). On the other hand, many industrial processes are more suitable for a different
kind of phenomenology: DR by additives. This manifests when a flow, driven by an
imposed pressure gradient, will produce a higher flow rate due to the interaction
between the fluid and a carried phase, as displayed in figure 1.11, panel (b) (Lumley,
1969).

The first experimental observations of DR date back to the pioneering works of
Forrest and Grierson, 1931 on wood pulp fibre suspensions and of Toms, 1949 on
dispersed polymers in pipes. Here, polymers are some macro molecules of small size,
usually shorter than the Kolmogorov length scale of the carrier flow, which can coil
and, therefore, accumulate energy. Fibres, instead, remain bigger objects, comparable
to the Kolmogorov length scale and characterized by a stretched equilibrium shape.
Differently from polymers, fibres cannot store energy and therefore will interact with
the flow in a purely hydrodynamic way, resulting in lower drag-reduction effective-
ness, together with the risk of pipeline plugging. On the bright side, fibres exhibit
chemical and mechanical stability over a wider range of stresses and temperatures
when compared to polymers (Y. Wang et al., 2011). Panel (c) of figure 1.11 displays the
differences between these two DR agents.

37



1. Introduction – 1.4. Turbulence modulation and Drag Reduction

Figure 1.11. – Panels: (a) Experimentally measured turbulent kinetic energy spectra
against the wavenumbers of a turbulent channel flow dispersed with
asbestos fibres (rO(104)) at 300 p.p.m. The dashed line represents the
unladen spectrum, whereas the other lines represent different exper-
imental runs where fibres are dispersed in the flow. It is possible to
appreciate the kinked shape of the spectra, feeding energy from the
intermediate scales to redistribute it to the smallest ones. Some spectra
show a typical resonance at the largest scales, associated with the DR
(McComb and Chan, 1981); (b) Dimensionless mean velocity profiles
against the wall-normal coordinate of a turbulent channel flow at shear
Reynolds Reø = 180, laden with slender prolate ellipsoids (red dashed
line), thin (blue dash-dotted) and extremely thin (green solid) oblate
ellipsoids (Z. Wang et al., 2021). It is possible to appreciate a higher
mean velocity profile over all the section of the channel when compared
to the unladen case (black solid line with circles), sign of DR. (c) Top:
polymers naturally exist in a coiled state within the flow (1) and, as they
move to the near-wall region, they will be stretched and consequently
store elastic energy (2). This energy will be later released as the polymers
coil back (3), determining local visco-elastic effects that generate the
overall DR. Bottom: as fibres are typically much larger than polymers
and interact with the flow in a purely hydrodynamic way, they weaken
the near-wall quasi stream-wise eddies proportionally with their par-
ticle aspect ratio(Paschkewitz et al., 2004). After these flow structures
rearrange, DR is obtained.
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Many experimental studies followed these two seminal works so that a large qualita-
tive characterisation of drag reduction was produced, both by polymers (Metzner and
Park, 1964; Gadd, 1965) and by fibres, especially in the limit of very high aspect ratio
(r ª [1000;10000]) (Hoyt, 1972; Sharma, 1981). The common picture is that the DR
agents would introduce some extra stresses of non-Newtonian nature within the flow,
even at low concentrations of a few hundred PPM in weight. More in detail, polymers
would reduce the coupling between axial and wall-normal turbulent components by
being continuously stretched from their coiled state, especially in the near-wall region,
where this would interfere with the turbulent bursts directed towards the bulk of the
flow(Virk, 1975). On an intimate level, this was theoretically found to determine a
visco-elastic behaviour of the suspension. According to the viscous theory of DR by
Lumley, 1973, when sheared, a polymer-laden flow will express significant extensional
viscosity in those regions where turbulent stretching is particularly strong. Instead, in
the vision of De Gennes, 1990, DR occurs because polymers determine elastic stresses
comparable to the turbulent stresses of the flow. In any case, this would correspond
to a small-scale interaction, thickening the viscous sub-layer without affecting the
turbulent core of the flow (Voth and Soldati, 2017), therefore treatable as an additional
effective viscosity (Benzi et al., 2008).

Numerical simulations explored DR by fibres. Studies were limited to near-Kolmogorov
rods with a moderate particle aspect ratio (r = 100), adopting a probabilistic closure
model to resolve the orientation of the particles in a purely Eulerian approach at first
(Paschkewitz et al., 2004; Gillissen et al., 2008), to later directly calculate the parti-
cle dynamics in the framework of two-way coupled Euler-Lagrangian simulations
(Moosaie and Manhart, 2013; Z. Wang et al., 2021). It was found that the dispersed
fibres indeed reduce the axial to wall-normal momentum exchange by weakening the
quasi-streamwise eddies, but also determine a new axial to wall-normal term that
penalizes the possible drag reduction by replacing the missing amount of Reynolds
stress (Z. Wang et al., 2021). Indeed, as fibres tend to be macroscopic objects, their
action is less effective in the near-wall region as they do not directly determine an
effective viscosity like polymers, but instead will impose external constraints on the
near-wall eddies, forcing them to restructure (Marchioli and Campolo, 2021).

On the other hand, fibres have been shown to interact on a wide range of turbulent
scales, feeding energy from intermediate scales of the turbulent flow to re-distribute
it at smaller ones, in an effect known as spectral shortcut (Olivieri, Brandt, et al.,
2020). The intensity of this phenomenon is directly related to the mass loading of the
suspension, i.e. to the density ratio between the fibres and the flow, and also depends
on the relative length of the particles as well as on their aspect ratio, while particle
deformability is a less relevant parameter (Olivieri, Mazzino, et al., 2022). Extremely
slender fibres in a pressure-imposed flow were also observed to resonate, distributing
energy to the largest scales of turbulence, determining a phenomenology associated
with prominent drag reduction (McComb and Chan, 1981).
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1.5. General aim of this manuscript

As this brief introduction tried to summarise, the study of suspensions of axisymmet-
rical particles is a matter of intense ongoing research. Many fundamental questions
still remain unanswered, depending on the interaction between these particles and
the carrying flows in a complex and multi-scale manner. Because of this, we were
inspired to develop a multi-method approach, combining simple laboratory experi-
ments with cutting-edge numerical simulations and exploring suspensions of fibres
across multiple scales. This was possible by establishing a co-supervision agreement
between the Università di Udine and the Aix-Marseille Université, and with the pa-
tronage of the Università Italo-Francese through the ’Bando Vinci 2021’. In the end,
this has lead to the investigation of three fundamental aspects.

First, despite the recent theoretical and numerical efforts, a fundamental question
still remains open in the study of suspensions of axisymmetrical particles:

± What is the influence of inertia on the Jeffery orbits?

To finally close this matter, an experimental investigation was prepared and executed
at the Laboratoire IUSTI of the Aix-Marseille Université. The experimental set-up is
described in detail in Chapter 2, together with the experimental protocols and the post-
processing methods for the particle segregation and pose estimation. Results are then
presented in Section 2.4, looking at Jeffery orbits of ellipsoidal and cylindrical particles
in the weakly-inertial regime (Rep ∑ 1) and comparing with the recent theories of
Dabade et al., 2016; Einarsson, Candelier, et al., 2015b.

Second, a numerical tool was developed at the Università di Udine in order to sim-
ulate a fibre-laden turbulent channel flow by an Euler-Lagrangian approach. The
implementation is described in Chapter 3. Especially, we will focus on the modelling
of the fibres, obtained through the Rod-Chain model by Yamamoto and Matsuoka,
1993; Lindström and Uesaka, 2007, as well as on the implementation of the two-way
coupling in the Navier-Stokes equations, performed through the Exact Regularized
Point Particle method by Gualtieri et al., 2015 to emulate the otherwise neglected
boundary conditions imposed by the particles on the flow. As we will see, the hydrody-
namical foundation of this implementation will permit to validate our software against
the experimental results. Time will be also spent discussing the High-Performance
Computing solutions deployed to implement this software for large-scale execution.

Then, the results of fibre-laden turbulent channel flow simulations at shear Reynolds
number Reø = 150 and Reø = 300 will be presented in Section 3.8. We will first focus
on the deformation of long fibres in wall turbulence at shear Reynolds Reø = 300 in
Section 3.8.1, exploring the influence of particle length, inertia and bending stiffness
on their dynamics and their shape to answer the following question:

± How do long fibres deform in wall turbulence?
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As simulations are performed in the two-way coupling regime, the feedback force
determined by the slender fibres on the fluid will be evaluated, consequently deter-
mining the modulation of turbulence. Results of a wide numerical investigation will
be presented in Section 3.8.6 at shear Reynolds Reø = 150 and Reø = 300, trying to
answer to the third fundamental question of this manuscript

± Can long slender fibres be Drag Reducing agents?

Given the broad range of our research, we anticipate that a combined methodology is
the only possible solution. Indeed, experiments in the viscous regime are a powerful
tool that allowed for an immediate answer to the influence of inertia on Jeffery orbits.
On the other end, experimentally validated numerical simulations are the best option
for the study of fibre-laden turbulent flows, exploring a vast parameter space defined
by particle inertia and bending stiffness while looking at the mutual influence between
the carried and carrier phases. In conclusion, it is clear that the two approaches
strongly complemented each other and will lead to a multi-scale investigation of
suspensions of fibres.
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2. Experiments on the influence of

small-inertia on the Jeffery orbits

of axisymmetrical particles

The results presented in this chapter are the subject of the following article:
D. Di Giusto, L. Bergougnoux, C. Marchioli and É Guazzelli, Influence of small inertia on Jeffery orbits,
In preparation for the Journal of Fluids Mechanics, 2023

In this chapter, the experimental campaign conducted to study the influence of
small inertia on the Jeffery orbits of axisymmetrical particles is presented. At first, we
look at the experimental methods, focusing on the preparation of the particles and the
shear cell. Details about the particle detection method are then given, as well as a de-
scription of the data-driven approach to the multi-view object orientation estimation.
Afterwards, the experimental results are discussed. Typical experiments are presented,
highlighting the differences among Jeffery orbits for negligible and appreciable inertia.
Then, we thoroughly characterise the equivalence of shape between ellipsoidal and
cylindrical particles. Finally, we look into the influence of inertia on the period of
rotation and the orbit constant of the experimentally observed Jeffery orbits. Results
are also compared with the most recent small-inertia theories.

2.1. Experimental methods

2.1.1. Fabrication and characterization of axisymmetrical

particles

The first problem faced in this thesis was to find particles of cylindrical and ellip-
soidal shapes having a typical size of few mm and a density easily equated with a
transparent and viscous fluid.

2.1.1.1. Fabrication

Custom axisymmetrical particles are fabricated for the preparation of this thesis.
The shapes of interest are those of cylinders and of ellipsoids, as detailed in table
2.1 and visualised in figure 2.1. Whereas there exists a large literature describing
experimental studies with cylindrical particles, i.e., fibres and disks (Trevelyan and
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Code Name shape r ` (mm) a (mm) Batch
ELL02 oblate ellipsoid 0.20±0.01 0.58±0.02 2.91±0.01 I
ELL06 oblate ellipsoid 0.56±0.01 1.27±0.01 2.28±0.01 I
ELL2 prolate ellipsoid 1.72±0.02 1.78±0.01 1.04±0.01 I
ELL3 prolate ellipsoid 2.67±0.06 2.53±0.01 0.95±0.02 I
ELL5 prolate ellipsoid 5.1±0.1 2.64±0.01 0.52±0.01 I
ELL9 prolate ellipsoid 9.0±0.1 2.62±0.01 0.29±0.01 I

ELL13 prolate ellipsoid 13±1 4.7±0.2 0.36±0.02 I

CYL005 oblate cylinder 0.05±0.01 0.14±0.01 2.58±0.06 III
CYL009 oblate cylinder 0.10±0.01 0.15±0.02 1.51±0.01 III
CYL01 oblate cylinder 0.11±0.01 0.31±0.01 2.90±0.04 III
CYL02 oblate cylinder 0.20±0.01 0.31±0.01 1.56±0.02 III
CYL06 oblate cylinder 0.56±0.01 1.03±0.01 1.85±0.02 III
CYL2 prolate cylinder 1.33±0.02 1.78±0.02 1.34±0.01 I

CYL10 prolate cylinder 9.0±0.2 2.59±0.01 0.29±0.01 I
CYL15 prolate cylinder 15.4±0.2 3.48±0.01 0.23±0.01 II
CYL20 prolate cylinder 20.5±0.7 4.54±0.01 0.22±0.01 II

Table 2.1. – Characteristics of all the particles used in the experiments: code name,
mean aspect ratio r , half-length `, radius a and identification of the pro-
duction method.

Mason, 1951; Anczurowski and Mason, 1968b; Alipour, De Paoli, Ghaemi, et al., 2021;
Verhille, 2022; Baker and Coletti, 2022), efforts with ellipsoids are rare, given the
embedded difficulty in accurately producing such shape (Anczurowski and Mason,
1968b; Will et al., 2021). In addition, a strong constraint is enforced as we want to avoid
confinement effects in order to better compare our results with theoretical efforts,
typically derived for single objects suspended in an infinite viscous shear flow (Jeffery,
1922; Dabade et al., 2016; Einarsson, Candelier, et al., 2015a). This means that the
typical size of the considered particles must be in general less than 1 cm.

Three different production methods are selected to fabricate our axisymmetrical
objects. The first one (producing the particles identified as Batch II) is practically
inexpensive and consists in cutting short segments from long fishing lines and is
particularly suitable to produce slender fibres. The other two methods are somewhat
more complex, involve basic knowledge of three-dimensional modeling and rapid
prototyping, and require specialized and expensive machines. One procedure is based
on the Laser cutting of Plexiglas sheets (Batch III). The Laser cutter is an Epilog Laser
model, with a resolution of 1200 DPI, capable of cutting two-dimensional shapes and
engraving a finite thickness of the material. Therefore, it is particularly suitable for the
production of oblate cylinders, drawn in Adobe Illustrator, a commercial vector-based
graphics software.

The other approach relies on the polymerization of a photo-sensitive resin (Batch I).
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The resin printer is an Anycubic Photon Mono X model, with a resolution of 50 microns.
Particles are generated from ’.stl’ files, produced in Blender, an open-source software
for three-dimensional rendering. Therefore, this method is helpful in producing some
fibres as well as both oblate and prolate ellipsoids. Finally, all particles except the fibres
are polished at the end of their fabrication. Disks are manually smoothed between two
sandpaper sheets. Ellipsoids are shaken by a mechanical agitator at 1000 rpm inside
a small plastic box, partially filled with sand and whose internal walls are covered in
sandpaper. Both methods improve the smoothness of the particles’ surface as well as
their overall shape.

2.1.1.2. Characterization

The shape of the produced particles is measured by a Hirox RH-2000 digital mi-
croscope. This allows taking multiple pictures with different perspectives of a given
object, at a typical resolution of 221 pixels per mm. Then, at least 10 measurements
of the particle shape are taken, in order to produce a statistical characterization of
their length, 2`, and their diameter, 2a, and consequently of their particle aspect ratio
r . These are produced using the open-source imaging software ImageJ (Abràmoff
et al., 2004), which offers two functions to manually measure rotated rectangles and
ellipses. The latter is deployed to characterize both the side and the top view, where
the particle’s axis is perpendicular to the plane of the image, of disks and ellipsoids, as
shown in the panels (a) to (f) of figure 2.1 for an oblate ellipsoid with r = 0.6 (ELL06).
The former is used to measure the fibres by solely looking at their side view, with the
particle’s axis lying in the plane of the image, as done in the panels (g) to (i) of figure
2.1 for a fibre with aspect ratio r = 9.0 (CYL10). Disks are also measured by fitting a
rectangle on their top (panel (l), CYL005) and side views (panel (m) for CYL01 and (n)
for CYL009). Indeed, we can appreciate the quality of the fabrication method from the
fitted contours, especially in determining a realistic ellipsoid (panels (a) to (c)) with a
circular mid-section (panels (d) to (f)). This is quite impressive considering the typical
size of the objects, given by the scale reported in panel (c). Moreover, having repeated
the measurements for different sides of the object, not only we check the symmetry of
the particles but also collect enough data for a statistically sound characterization of
their two sizes. In the end, we are able to produce and characterize 7 ellipsoids and 9
cylinders, whose aspect ratio and sizes are reported in columns 3 to 5 of table 2.1.

A comment is in order about the surface roughness of our particles, which in some
cases appear not so smooth, like in panel (l) of figure 2.1. Anyway, from a detailed
observation of the produced objects, we estimate the shape deviations to be not so
relevant to their rotational dynamics, being always small when compared to their
smallest size.

Finally, since the typical values of the Young modulus EY of the three materials are
of the order of few gigapascals, we assume the particles to be perfectly rigid. Therefore,
as the ratio between viscous and elastic forces will be vanishingly small, the particles
are not expected to deform within the flow (Du Roure et al., 2019).
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Figure 2.1. – Typical images for the characterization of some of the particles used in
our experiments taken by the digital microscope. Panels: (a), (b) and (c):
side view of the oblate ellipsoid ELL06 (r = 0.6), where the symmetry axis
lies in the plane of the image; (d), (e) and (f): top view of the same oblate
ellipsoid ELL06 (r = 0.6), where the symmetry axis is perpendicular to the
plane of the image; (g), (h), (i): side view of the prolate cylinder CYL10
(r = 9.0); (l): top view of the oblate cylinder CYL005 (r = 0.05); (m): side
view of the oblate cylinder CYL01 (r = 0.11); (m): side view of the oblate
cylinder CYL009 (r = 0.1). The global scale is also reported in blue in
panels (c).

2.1.2. Preparation of density-matched suspensions

The theory of Jeffery describes the rotation of axisymmetrical particles suspended
in a viscous shear flow. Having described the protocol to prepare and measure ax-
isymmetrical particles, we now focus on the experimental fluids, which will need to
match the density of the given particles in order to nullify gravitational effects on their
dynamics as well as be comfortably adjustable in their viscosity. For this reason, we
found it convenient to prepare solutions of pure water, Ucon oil (Oil 75-H-90,000 Dow
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Figure 2.2. – Density-viscosity map for the water-citric acid-Ucon oil solution at three
different concentrations of Ucon oil, namely (0,10,20%).

(www.dow.com)) and citric acid. Ucon oil is a particular oil which is deployed as a
lubricant in solution with pure water, allowing it to increase its viscosity up to 40000
times that of the original fluid. Instead, the citric acid is mixed with water to increase
the density of the resulting solution proportionally with its concentration, up to 1.3
times that of the original fluid.

Therefore, experimental fluids were prepared by first imposing the Ucon oil con-
centration and roughly fixing the viscosity of the final solution to later adjust its
density to that of the given particle by finely tuning the citric acid concentration. An
example is given in figure 2.2, where three solutions at 0,10,20% concentration in
mass are displayed (circles, squares and pentagons respectively), while the citric acid
concentration is increased from left to right of the graph.

Viscosity measurements were made using an Anton Paar Physica MCR 501 rotational
rheometer, with an error of 0.001Pa · s fully taking into account the real uncertainties.
A comment is in order about the properties of a solution of pure water, citric acid
and Ucon oil, whose viscosity is particularly sensitive to the temperature. Because of
this, all experiments and rheological measurements were performed in a room at a
controlled temperature of 23±1±.

Given the typical size of the particles, it was not possible to directly estimate their
density. Therefore, particles were suspended in a viscous fluid (µªO(10)mPas) inside
a thin 100 ml graduated beaker. Then, the density of the fluid was adjusted by small
(ª 1g ) additions of citric acid or dilutions with pure water, until the settling/rising
velocity of the particle was in the order ofO10°6m/s, calculated between consecutive
pictures over a time extent of several minutes. At that moment, the density of the
fluid was measured by means of an Anton Paar Handheld density meter, estimating
a maximum error of 4 kg

m3 to fully take into account uncertainties for all our samples.
This measurement was also used to estimate the density of the given particles, setting
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their value for the experimental fluids at all viscosity.

2.1.3. Experimental set-up

Viscous shear flows have been experimentally studied for one century now since the
first experimental observation of Jeffery orbits (Taylor, 1923). Indeed, the simplicity of
this configuration is a powerful advantage, allowing us to study more or less complex
suspensions and directly compare them with the corresponding theory. Nevertheless,
an embedded limitation is given by the fact that, contrary to theoretical modelling,
the experimental realisation of a shear flow requires the confinement of the fluid,
which must be handled with care in order to avoid undesired effects (Zettner and Yoda,
2001).

Viscous shear flows are typically produced in two different configurations: a cylin-
drical shear cell (Taylor, 1923; Trevelyan and Mason, 1951; Anczurowski and Mason,
1968b; Mason and Manley, 1956) and a linear shear cell (Moses et al., 2001; Zettner and
Yoda, 2001; Metzger and Butler, 2012). The former offers the advantage of comfortably
controlling the zero-velocity central line by adjusting the relative rotational velocity
between the two counter-rotating concentric cylinders that shear the fluid. Neverthe-
less, the produced velocity gradient does not have a perfect linear variation, which
must be taken into account (Trevelyan and Mason, 1951). On the other hand, linear
shear cells produce a constant velocity gradient but present tougher technological
challenges and can especially suffer from confinement effects and secondary flows
(Zettner and Yoda, 2001). To solve this issue, double linear shear cells represent an
expensive and complicated alternative (Moses et al., 2001).

A linear shear cell is deployed for the preparation of this thesis, illustrated in figure
2.3. The setup comes from the work of Metzger and Butler, 2012 and is similar to
that of Zettner and Yoda, 2001. It consists of a small metal tank (1) 500 mm long, 40
mm wide, and 90 mm deep with 10 mm thick glass walls on its long sides. The tank
is covered by a hollow lid (2), from which two metallic cylinders of diameter 20 mm
hang, both equipped with polylactic acid (PLA) cylindrical supports to increase their
diameter to 27 mm, which corresponds to the extent of the shear Ly . One cylinder is
free to rotate (3), being coupled to a transmission shaft (4) through a rolling bearing.
The other one is fixed to the lid (5) but allows it to re-adjust its position along the
long side of the tank. In this way, a 0.1 mm thick transparent plastic belt (6) made
of Mylar is kept under tension between the two. Small rectangular holes are cut on
the top side of the belt, to ensure its coupling with a gear wheel that is glued to the
rotating cylinder (not visualized for the sake of simplicity). The belt is 70 mm tall,
extending from nearly the bottom to the top of the shear cell. An analog rotating
motor is deployed for the experiments, powered by a Laboratory DC power supply
and operating at an imposed current of 0.2 A and imposed tension of 24 V to ensure a
stabilized Direct Current output voltage, manually adjusted between 5 and 9 V. This
is connected to the transmission shaft by means of a drive belt and will rotate it at
constant velocity. Therefore, the gear glued on the connected cylinder will grip the
transparent belt and drive it in an infinite loop, shearing the fluid confined within at a
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Figure 2.3. – Realistic rendering of the linear shear cell deployed during this thesis.
The small tank is displayed (1), together with its lid (2), from which the
two cylinders hang. The first is free to rotate (3), being coupled to a
transmission shaft (4) through a rolling bearing. The second is fixed (5).
Between them, a transparent plastic belt made of Mylar is kept under
tension (6). Neither the laser-cut holes in the belt nor the gear glued on
the rotating cylinder is visualized for sake of simplicity. The two cameras
are also portrayed: one looking at the flow-gradient (x, y) plane (7), and
the other focused on the flow-vorticity (x, z) plane (8). The scale is also
reported in blue.

constant rate.
As displayed in figure 2.3, we define the absolute system of reference where x is the

flow direction, y is the gradient direction and z is the vorticity direction, opposite to
the gravity. In our experiments, one single particle at a time will be sheared in an iso-
density fluid, having initially placed it by hand between the two sides of the transparent
plastic belt. Given their inner distance of 27mm, we understand the importance of
producing typically small particles in order to avoid confinement effects.

2.1.4. Characterisation of the flow

2.1.4.1. Particle Image Velocimetry

Particle Image Velocimetry (PIV) measurements are performed to characterize the
viscous shear flow. For this purpose a 500 mW Class 4 laser is combined with a prism
to shed a homogeneous 250 µm thick layer of light onto a flow-gradient x, y plane
as rendered in panel (a) of figure 2.4. The wavelength of the chosen laser is of 532
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Figure 2.4. – Panels: (a) rendering of the set-up for the PIV measurements, where the
side camera is replaced by the laser beam; (b) typical PIV field with arrows
showing the result of one measurement averaged over 200 couples of
images at 39 mm from the bottom of the tank. The scale is also reported;
(c) collapse of the flow-direction velocity u for the y = const lines of
points, averaged in time. The black dashed line indicates the linear fitting
to measure the mean shear. For these measurements, the viscosity is
µ = 0.05Pas and the tension imposed on the rotating stage is of 9V ,
returning a shear rate of 3.16± 0.03 1/s. (d) Scattering of the velocity
measurements in time at three different positions along the gradient

direction y . The shear Reynolds number is Re = Ω∞̇(Ly )2

µ = 55, where the
shear length Ly = 27 mm is given by the imposed distance between the
two sides of the transparent plastic belt.

nm, corresponding to the sensitivity peak of the top camera, while the side view is
not considered for these measurements. Then, micro-spheres of glass covered with
silver are chosen as tracers to seed the fluid. These particles have an estimated batch
diameter of 15 µm and a density of 1.4 g /cm3 (Dantec Measurement Technology).
Given their characteristics, we can estimate a very low particle response time, therefore
the particles are expected to act as tracers (St ªO(10°5)) and follow the flow without
developing an inertial behaviour. The solid phase volume fraction is very small so
particle-particle interactions are negligible.

When the laser beam is pointed from one of the long sides, we obtain a clear visu-
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alization of the flow generated by the motion of the transparent belt by the contrast
between the shiny particles, which diffuse the laser light, and the dark background.
A typical PIV image is displayed in panel (b) of figure 2.4, with the result of the mea-
surement drawn as blue arrows. Then, two consecutive pictures of the illuminated
flow-gradient plane are taken with the top camera at a frame rate of 1/30 s. An Eu-
lerian approach is chosen to analyse the sequence of images in order to measure
the flow around 48£19 points of the flow-gradient plane. The following routine is
implemented in the program DPIVSoft (Meunier and Leweke, 2003). Centred around
each point, a square interrogation window from the first frame is correlated to its twin
from the second frame, the latter being also displaced around its centre in the two
dimensions by a finite distance. The typical size of the interrogation window is 32
pixels. Correlation is calculated among the Fourier transforms of the two interrogation
windows, whose peak will indicate the average displacement of the glass beads in that
region of the flow.

A comment is in order about the delay between the two images, which must be
adjusted according to the intensity of the shear and the size of the interrogation
window to avoid losing track of the tracers. Nevertheless, a viscous shear flow with a
typical size like the one considered in our experiments does not express such strong
velocity gradients and the given parameters represented an optimal configuration
during the whole preparation of this manuscript.

2.1.4.2. Characteristics of the Viscous shear flow

PIVs are usually performed averaging over 200 couples of images, with a delay of
1 s between each. Measurements are repeated at three different heights above the
bottom of the channel (28, 39 and 56 mm), in order to obtain information on a flow
window deep enough (ª 30mm) to comfortably perform the experiments, but also
well separated from the floor of the tank and the free surface of the fluid, typically
recorded at ª 65 mm. The typical resolution for the intermediate depth is of ª 7
pixels/mm.

The mean shear rate is ∞̇ = du/d x and is measured by linearly fitting the mean
velocity profile in the flow direction x against the gradient coordinate y , as shown in
panel (c) of figure 2.4. Errors are calculated by taking the mean value of the standard
deviation calculated at each y = const line of points in time and in space. In panel
(d) of figure 2.4 the time-evolution of the flow velocity u is displayed for three mea-
surement points at different values of the gradient coordinate y . We can appreciate a
nice collapse of the scattered points around the mean values, displayed as solid lines.
These fluctuations are due to the random oscillation of the transparent plastic belt as
well as to the presence of the secondary flows, determined by the two rotating and
static cylinders. Anyway, the quality of our results leads us to estimate their impact
as negligible on the mean shear along the whole width of the camera field, which
corresponds to ª 14cm where to perform experiments.

Finally, PIV measurements are repeated at low (0.05Pas) and high (0.4Pas) viscosity
values for two different values of the tension imposed on the rotating stage. In this
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Table 2.2. – Shear rate measurements for two different viscosity values. Averages are
performed in time over 200 couples of frames, and in space along the flow
direction x. PIV measurements are repeated at different depths to ensure
a constant shear region whose estimated depth is ª 30mm.

Viscosity [Pa s] Voltage [V ] ∞̇ [1/s]

0.4 5 2.07±0.03
0.4 9 3.64±0.05

0.05 5 1.97±0.03
0.05 9 3.16±0.03

way, shear rate values will be estimated by linear interpolation on the actual viscosity
of the experimental fluids during the experiments, allowing us not to repeat a PIV
measurement for each experimental session, which would be highly time-consuming
and very unpractical. The measured shear rates are reported in table 2.2. It is possible
to appreciate a slight decrease in the effective shear rate with the viscosity of the
experimental fluid.

2.1.5. Particle detection and methods for the pose estimation

2.1.5.1. Image recording

We now discuss the methods for the recording of the experiments, the detection
of the particles and the reconstruction of their three-dimensional orientation. As
displayed in figure 2.5, two cameras are placed, their axes perpendicular in a virtual
(y, z) plane, to get two complementary views of the shear cell. The top camera looks at
the flow-gradient (x, y) plane, while the side camera looks at the flow-vorticity (x, z)
plane. Both cameras are focused on a three-dimensional region of interest which is
14 cm long in the flow direction, while its extent in the gradient direction is limited
to the distance between the two sides of the transparent plastic belt, fixed to 27 mm.
Finally, the depth of this region of interest is limited to 3 cm, corresponding to the
typical vertical spread of the PIV measurements, and starts 1 cm below the free surface
of the fluid.

The cameras are two Allied Prosilica GX1910, with a resolution of 1890£1080 pixels.
Both cameras are equipped with a Nikon micro nikkor 55mm 2.8 objectif. Being placed
at a distance of less than half a meter from the shear cell, they record images with a
resolution of ª 20 pixels per mm for each view. Moreover, the objectives’ exposition
is constantly reduced to the bare minimum in order to enhance the depth of focus,
estimated to be approximately 3 cm, yet without compromising the images’ contrast.
Distortion effects are assumed to be negligible, especially considered the distance
between the cameras and the shear-cell. Nevertheless, this is verified manually by
measuring a check-board inclined pattern placed in the camera fields inside the small
tank for both perspectives. Also, this allows to exclude phenomena of diffraction at
the interfaces, especially crucial for the side view.
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Figure 2.5. – Panels: (a) Picture of the experimental setup, where the tank filled with
fluid between the two sides of the transparent plastic belt is visible (1),
together with the motion transmission system (2) and the two cameras,
looking at the (x, y) flow-gradient plane (3) and at the (x, z), flow-vorticity
plane (4). (b) Sketch of the output given by the dual-camera video-
recording system. The reference frame is defined at the centre of the
particle. The azimuth and polar angles, ¡ and µ, as well as the projected
angle, ∏, and the three components of the Axes-Aligned Bounding Box, B,
are also represented. The two recorded frames are displayed on the corre-
sponding (x, y) flow-gradient and (x, z) flow-vorticity planes, to appreci-
ate the contrast between the particle projections and the background as
well as the detected particle contours and Axes-Aligned Bounding Boxes.

The cameras are connected by Ethernet cable to one computer each and controlled
by a Matlab script developed In-house. The script allows to take single images, mul-
tiple images or videos at a given frame-rate in the range [3.5°30] fps. Videos of the
experiments with a single particle suspended in a viscous shear flow are recorded as
following. First, the shear flow is activated. Second, the particle is manually placed
as close as possible to the neutral zero-velocity line. Third, having waited for a short
time in order for the particle to forget the influence of its positioning of the initial
condition, the video-recording for both cameras is started. At this point, both videos
are synchronized by a luminous signal. Then, the video-recording is stopped after a
satisfying number of rotations has been observed or before the particle is to leave the
camera fields in the flow direction. A typical result is displayed in figure 2.6, where the
chrono-photography of a fibre with particle aspect ratio r = 5.5 is displayed combining
the frames recorded by the top (panel (a)) and bottom (panel (b)) cameras.
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Figure 2.6. – Left-to-right chrono-photography of a fibre with r = 5.5 in viscous shear
flow, obtained by taking the minimum intensity of one frame every 10.
The aspect ratio r , the particle Reynolds number Rep , the dimensionless
period of rotation ∞̇T and the fitted orbit constant C are also reported.
Panels: (a) top view of the flow-gradient x, y plane; (b) side view of the
flow-vorticity x, z plane.

2.1.5.2. Particle segmentation

The processing of the two videos of one experiment starts with the manual identifi-
cation of the first synchronized frame, given by the luminous signal, as well as of the
particle’s initial position. Both parameters are manually measured using the software
ImageJ, and represent the input for a Python script for the automatic detection of the
particle, developed during the preparation of this thesis. We’d like to stress on the
fundamental importance of automatising as much as possible this procedure, given
the large amount of experiments that have been recorded.

In order to automatically detect the particle in the recordings of our experiments,
the computer must be able to separate it as a whole from the background and other
surfaces or objects, which could include imperfections in the transparent plastic belt
or in the glass side of the tank, small bubbles or other particles that accidentally
contaminated the experimental fluid (dust, hair, dirt). In other words, the computer
must be capable of a task usually identified as image segmentation, a fundamental
operation since the rise of Computer Vision with important applications in medical
image analysis, video surveillance and autonomous vehicles (Minaee et al., 2021).

A typical image segregation algorithm partitions the image into coherent regions
classified according to a fundamental property, such as pixel intensity, in order to be
able to assign them a proper label, i.e., identify their nature as a coherent object (Pham
et al., 2000). Classical approaches include the image thresholding (Otsu, 1979) or the
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Figure 2.7. – Steps of the Particle detection method for one typical frame. Panels: (a)
original frame zoomed on the particle; (b) blurred frame to reduce noise;
(c) square power of the original frame to increase the contrast between the
particle and the background; (d) threshold filter to segregate the particle;
(e) detection of the contour based on the Canny-edge method; (f) contour
fitting to measure its orientation (fitEllipse) and its Axis Aligned Bounding
Box (boundingRect).

watershed method (Najman and Schmitt, 1994) among many. The former has been
the foundation of many successful studies with rigid and flexible fibres suspended in
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viscous or turbulent flows (Brouzet et al., 2014; Einarsson, Mihiretie, et al., 2016; Will
et al., 2021; Alipour, De Paoli, Ghaemi, et al., 2021). Instead, data-driven approaches
based on Deep Learning models have rapidly taken over in the past years, because
of their superior performance and accuracy (Minaee et al., 2021). Nevertheless, their
popularity in the field of fluid mechanics could be limited by the difficoulties in
producing reliable data-sets for training.

A threshold approach was chosen for the particle detection script, combined with
the Canny, 1986 contour detection method and implemented in Python using the
OpenCv library (Bradski, 2000). The script completes a simple detection routine for all
the frames of a video-recording of one experiment as illustrated in figure 2.7. First, a
background subtraction operation is performed using a particle-less image of the tank.
Second, the frame is reduced to a focused region of size 4max(`; a) around the particle
centre (panel (a)), having manually measured the scaling on the particle’s smallest
size by ImageJ. For the most slender objects, this corresponds to ª 10 pixels over the
smallest size of the particle. At this point, the following operations are performed on
the image:

— a Gaussian filter is applied to reduce the noise (panel (b));
— the square power of the image is calculated a stored in a second array (panel (c)).

This operation results in an increased separation between the intensity of the
pixels belonging to the particle (high) and to the background (low);

— a Threshold filter is applied to the image according to its previously calculated
squared values, erasing to zero all the pixels whose intensity lies below a fraction
of the mean intensity of the picture. This fraction intuitively depends on the
aspect ratio of the particle, as more slender images fill a lower part of the frame
(panel (d)).

At this stage, the image is ready for the detection of the particle’s edges, which is
performed by the Canny method (panel (e)). This algorithm allows the recognition of
contours within an image by measuring its pixel intensity gradients and reconstructing
the shapes through hierarchical threshold (Canny, 1986). Finally, if the detected
contour satisfies some geometrical constraints given by the known-a-priori particle
shape, measurements of the projected particle are taken. First, the orientation angle
of the contour is recorded. This is done through the fitEllipse function of the OpenCv
library, which performs a least-squared optimization method to fit an ellipse to the
measured contour and estimate its orientation.

The method was always successful for prolate shapes, whereas the returned an-
gles would not be the actual ones in the case of disks or oblate ellipsoids, despite
maintaining a consistent time-evolution. Second, the two-dimensional Axis Aligned
Bounding Box is measured (AABB hereinafter). By Axis-Aligned Bounding Box (AABB
hereinafter) we mean the smallest rectangle (parallelepiped when generalizing to three
dimensions) that is tangent to the particle projection (particle in three dimensions),
and is obtained from the boundingRect function of the OpenCv library. Finally, both
measurements are stored before advancing to the next frame, which will be centered
around the latest measured centre of the particle, also given by the fitEllipse method.
In the end, the described routine will produce long lists of the time-evolution of the
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Figure 2.8. – Evaluation of the accuracy of the proposed particle detection method.
Panels: (a) absolute error between the reference and measured values of
the particle contour orientation angle for a fibre of aspect ratio 10; (b)
Euclideian norm error between the reference and measured values of the
particle AABB for a disk of aspect ratio 0.1 and diameter 490 pixels.

centre, orientation and AABB of the particle projection for each recorded video.
The accuracy of the post-processing script is evaluated in figure 2.8 against 8100

virtual images of randomly oriented disks and fibres. These images are generated
using the open-source software Blender, covering all possible orientations in the first
quadrant of a three-dimensional reference system in optimal light conditions. Also, a
resolution of 7 pixels over the particle’s smallest dimension, comparable to the one
available in the experiments. As we can appreciate from panel (a) of figure 2.8, the
error on the angle is typically below 2±. The error on the Axes-Aligned Bounding Box is
also small, being limited to few pixels for a particle with perimeter equal to 490 pixels.

2.1.5.3. Pose estimation

Having described how to obtain the time-evolution of the position, orientation
and AABB components of the projections of the particles onto the flow-gradient and
flow-vorticity planes for one experiment, we now discuss the methods to estimate
their three-dimensional orientation. The procedure is non-trivial, therefore we find it
convenient to introduce a polar reference system that returns the three components
of the particle orientation vector n as following:

n = (sin¡sinµ,cos¡sinµ,cosµ) , (2.1)

where ¡ and µ are the azimuth and polar angles respectively, graphically introduced
in panel (b) of figure 2.5 or in figure 1.6. Note that the Euclidean norm of n is always
one by definition.

From the experiments of Trevelyan and Mason, 1951 with fibres suspended in a
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viscous shear flow we know that, whereas the particle projection in the flow-gradient
(x, y) plane provides a direct measurement of the azimuth angle ¡, that in the flow-
vorticity (x, z) plane determines a projected polar angle ∏, which corresponds to the
real polar angle µ only in the flow-aligned particle orientations. Since, most of the
experimental studies aiming at estimating the three-dimensional orientation of rigid
fibres in viscous and turbulent flows relied on a projection-based approach (Stover
and C. Cohen, 1990; Baker and Coletti, 2022). The main advantage of this method
is the fact that a simple direct calculation of the particle orientation is performed
from its projected lengths. Anyway, its two main drawbacks are the following. First,
the projection-based approach naturally requires a high resolution on the particle in
order to be accurate. Second, this method is particularly efficient for slender particles,
being more error prone as the particle aspect ratio decreases and becoming useless
for ellipsoidal objects.

A remarkable alternative is the pattern-recognition approach described in the work
of Will et al., 2021, who measured the orientation of ellipsoids rising in a still fluid. This
method is based on correlating experimental observations and computer-generated
images of ellipsoidal particles to estimate the rotation of the former from the latter,
having painted a corresponding pattern on both real and virtual particles. Finally, if
provided with enough computational resources and training data, one could also look
into Neural Networks for the direct pose estimation from one or two images, taking
advantage of pre-trained models to rapidly adapt them to our task (Redmon et al.,
2016).

Two issues have emerged during this study that motivated a novel approach to
the orientation estimation of axisymmetrical particles suspended in a viscous shear
flow. First, the resolution on the particle sizes is not sufficient to successfully deploy
a projection-based approach. Second, we intend to estimate the pose of ellipsoidal
particles from their projections only, as their typical size would not allow to mark them
and follow the pattern-recognition method of Will et al., 2021.

Therefore, we found convenient to look at the relation between the particle orien-
tation vector n and the length of the particle projection along the three-axis of the
Cartesian reference system, i.e., its three-dimensional Axes Aligned Bounding Box B.
This is a non-linear expression and known is a closed form only for the inverse trans-
formation, allowing to recover the projections of cylindrical and ellipsoidal particles
by having previously imposed their orientation. Such operation is straightforward for
a cylinder, whose axes aligned projected lengths correspond to the sum of a line of
size 2` and two oriented capping circles of diameter 2a (Quilez, 2016). By defining the
eccentricity e of these rotated circles as follows:

e = a ·
p

1°n ·n , (2.2)

given their center points pa and pb, the Axes-Aligned Bounding Box B is given by
maximizing the only two possible orientation extensions:

B = max
°
(pa +e), (pb +e)

¢
°min

°
(pa °e), (pb °e)

¢
. (2.3)
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A similar calculation is slightly more complex for ellipsoidal particles, considering
their natural lack of sharp edges. A generic ellipsoid oriented with the z axis (n =
(0,0,1)) is presented in its quadric form as following:

O =

2
4

a°2 0 0
0 a°2 0
0 0 (a · r )°2

3
5 (2.4)

It is straightforward to build a generic rotation matrix R that aligns the original orien-
tation of the quadric, (0,0,1), to any generic orientation given by the two polar angles
as in equation 2.1. Therefore, the quadric itself will be rotated to the new orientation
by the following:

Q = R ·O ·R
T

. (2.5)

Given the matrix Q, it is possible to demonstrate that the square roots of the first three
components of the diagonal of its inverse are the halved sides of the AABB:

Bi = 2 ·
q

Qi,i
°1

. (2.6)

Demonstration for this statement is provided in Appendix A.
We now posses all the information to estimate the orientation of the given axisym-

metrical particles. Indeed, by a suitable re-scaling of the two-dimensional AABBs
measured in the flow-gradient and flow-vorticity planes, it is possible to obtain an
experimental observation of the time evolution of the three-dimensional Axes-Aligned
Bounding Box. On the other hand, having fixed the particle aspect ratio r , equations
2.3 or 2.6 can be iterated over all the possible orientations of a three-dimensional
Cartesian system, reducing it to the first quadrant due to the symmetries of the system.
This was done by Python scripting over 360£360 = 129600 possible combinations
of ¡,µ in the range [0;90] resulting in long lists of geometrically calculated three-
dimensional AABBs with resolution of 0.25± over each angular variable. Finally, the
time evolution of the particle orientation vector n is regressed by minimizing each
AABB experimental measurement over the virtually generated list of geometrically
calculated AABB for the given geometry. Note that this approach does not allow us to
measure the spin of the particles.

2.1.5.4. Multi-variate minimization by Deep Learning

The minimization of the experimentally measured AABB over the virtually generated
list of AABBs to regress the particle orientation represents an optimisation problem in
three variables (Bx ,By ,Bz). This type of calculation can be especially time consum-
ing even when implemented using specialized optimization libraries such as Scipy.
Therefore, given the abundance of synthetic three-dimensional AABBs, a data-driven
approach was chosen instead, based on a simple Deep Learning model implemented
using Tensorflow (Abadi et al., 2015). A Deep Learning model, or Neural Network, is a
collection of parameters, or weights, which respond to a determinate input according
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to a non-linear activation function. These models can by trained over labeled data,
i.e., data where input and output are related in a known way, to automatically learn
features. This is done by minimizing a loss-function, which calculates the difference
between the predicted and true output in response to a given input value. After trained,
complex and non-linear functions can be comfortably solved for novel data by the
Neural Network, as long as one possesses sufficient training data and computational
power.

Therefore, we choose to build a simple Deep Learning model to estimate the pose
of the given axisymmetrical particle from its Axes-Aligned Bounding Box. The model
is trained on synthetic data, i.e., the geometrically deduced lists of AABBs and n,
prepared following equations 2.3 and 2.6 as described in the previous section. The
model takes the three components of the AABB as input and returns the corresponding
orientation vector n, both of size 3. A Gaussian noise layer with 0.1 standard deviation
is attached to the input layer, which will randomly corrupt the AABBs values in order
to avoid overfitting and strengthen the general predicion of the model. Then, hidden
dense layers are placed inbetween, made of 256 fully connected weights, being ’relu’
their activation function. We observed that one hidden layer is typically sufficient for
the regression of the most slender prolate shapes, but three seem preferable to deal
with oblate and nearly spherical objects. Finally, a dedicated Lambda layer ensures the
normalization of the Euclidean norm of the model output. The model is compiled and
trained over at least 20 epochs by minimizing a custom loss function, which calculates
the Euclidean norm of the difference between the true and predicted values of the
orientation vector o:

loss =

vuut 3X

i=1

°
ntr ue,i °npr ed ,i

¢2 . (2.7)

In addition to that, the custom loss function strongly penalizes any prediction whose
value would be lower than zero, as such orientation vector components are not possi-
ble. The chosen optimization method is the ’Adam’, which is a randomized batched
Gradient Descent method. A random 20% splitting of the data-set between training
and testing samples is picked for the evaluation of trained model. The result of the
testing phase is visualized in figure 2.9, where the predicted values of the particle
orientation vector n are displayed against the true solution for a fibre with aspect ratio
r = 9.0 (CYL10). We can appreciate the great accuracy of the proposed method, as the
Neural Network clearly succeeded in learning the geometrical function that takes the
particle Axes-Aligned Bounding Box B as input and returns the the particle orientation
vector n.

A comment is in order about the dependence of the proposed method on the
particle shape, as the model must be recompiled and trained for every different
particle geometry or particle aspect ratio. We expect that a general model for all
axisymmetrical particles could be built and trained, but for sake of simplicity and lack
of knowledge an attempt towards such solution was not made during the preparation
of this manuscript.
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Figure 2.9. – Predicted values against true values of the orientation vector n obtained
by training and testing the described Deep Learning over the geometri-
cally calculated synthetic data for a fibre with aspect ratio r = 9.0 (CYL10):
(a) n1 along x, (b) n2 along y , (c) n3 along z.

2.1.6. Analysis of the experiments

2.1.6.1. Projected angles and period of rotation

By taking full advantage of the described methodology, we can perform experi-
ments with a given particle sheared in an iso-density flow that last up to several
rotations. Then, experiments will be repeated approximately 10 times for a given parti-
cle Reynolds number, trying to sample as many as possible different initial conditions.
A report of the performed experiments with the given particles is given in table 2.3.

Typical results consist of long time series of the evolution of the two measured
angles ¡ and ∏, as well as the coordinates of the centres of the particle’s projections in
the flow-gradient and flow-vorticity planes together with the components of the two
Axes-Aligned Bounding Boxes.

We focus at first on the analysis of the projected angles in order to obtain some
insight into the period of rotation of the considered axisymmetrical particles. As an
example, one complete experimental run with an oblate ellipsoid (ELL06) with particle
aspect ratio r = 0.6 is presented. Anyway, the methodology and the approach to the
analysis of the data will be the same for all the particles considered for the preparation
of this thesis. During this run, 11 experiments are performed at constant shear rate
∞̇ = 3.15 1/s, being Ω = 1.23 g /cm3 the density and µ = 46 mPa s the viscosity of
the experimental fluid. The particle Reynolds number is Rep = 0.44 and the shear
Reynolds number is Re = 15.

The time-evolution of ¡ and ∏ are displayed in panels (a) and (b) of figure 2.10 for all
the experiments. The profiles of the angle ¡ show a clearly periodic evolution, describ-
ing multiple passages between 0± and 360±, each corresponding to one Jeffery orbit.
Instead, the projected polar angle ∏ shows a less intelligible behaviour, oscillating
between ±90±.

Clearly, both angles can be interpreted as time series and characterised by Fourier
analysis. This is done by calculating the Fourier transform of the two signals, whose
power spectra are displayed in panels (c) and (d) of figure 2.10 respectively. The
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Code Name N. of experiments Range of Rep

ELL02 10 0.04 - 0.05
ELL06 32 0.01 - 1.04
ELL2 77 0.03 - 0.38
ELL3 13 0.5 - 1.3
ELL5 40 0.008 - 0.291
ELL9 50 0.007 - 0.642

ELL13 5 0.18

CYL005 56 0.03 - 0.78
CYL009 36 0.01 - 0.34
CYL01 30 0.04 - 1.32
CYL02 10 0.005 - 0.009
CYL06 20 0.04 - 0.25
CYL2 50 0.002 - 0.336

CYL10 153 0.007 - 0.986
CYL15 5 0.059
CYL20 5 0.100

Table 2.3. – Number of experiments and range of particle Reynolds number for each
considered particle.

calculations are done in Python using the Fast Fourier Transform implementation of
the Numpy library. We can appreciate a clear resonance of the signal power around
the characteristic frequencies of the system. This is also highlighted in the inserts,
where the dispersion of the frequencies of the maximum power around its mean is
illustrated. Therefore, the period of rotation of the given particle is estimated as the
inverse of the mean of these frequencies, where a minimum squared error criterion
is applied to choose between the signals of ¡ and ∏. Uncertainties are calculated
as standard deviation errors over all the available measurements. We argue that
differences between the two angles arise from particular inclinations of the particle
within the flow, which render the detection of one of the two impossible, like when
attempting the detection of the angle ¡ of an oblate ellipsoid aligned with the vorticity
axis.

Once the mean period of rotation Tm has been measured, we can invert the formula
of Jeffery, 1922 to estimate the equivalent particle aspect ratio req by resolving the
following second order equation:

r 2
eq °

Tm∞̇

2º
req +1 = 0 . (2.8)

This operation returns the aspect ratio of the ellipsoid that corresponds to the experi-
mentally observed particle. Previous studies have shown that fibres and disks express
an equivalence of shape, as they always tend to rotate at the same time as less slender
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Figure 2.10. – Characterisation of the measured angles¡ and∏ during 11 experimental
runs with an ellipsoid of aspect ratio r = 0.6 at particle Reynolds num-
ber Rep = 0.44 and T ∞̇ = 15.67. Panels: (a) azimuthal angle ¡ against
the dimensionless time t ∞̇; (b) projected polar angle ∏ against the di-
mensionless time t ∞̇; (c) power-spectra of the azimuthal angle ¡; (d)
power-spectra of the projected polar angle ∏. The inserts in panels (c)
and (d) show the dispersion around the mean of the maximum frequen-
cies of the power spectra.

ellipsoids. (Trevelyan and Mason, 1951; Anczurowski and Mason, 1968b; Harris and
Pittman, 1975).

Burgers, 1938 analytically showed that the disturbance caused by a cylinder of
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axis ratio r will be reproduced by an ellipsoid of req = 0.74r . (Trevelyan and Mason,
1951) experimentally found a good agreement at intermediate prolate aspect ratios
(10 . r . 20). Later on, Cox, 1971 derived a semi-empirical asymptotic expression
for the equivalence of shape of slender cylinders, which he fitted on the data of An-
czurowski and Mason, 1968b to find that req = 1.24r /

p
logr . Finally, Harris and

Pittman, 1975 found that Cox’s equivalence was slightly overestimating their measure-
ments at high particle aspect ratios (r > 200), suggesting an alternative data-driven
power-law expression to determine the equivalent ellipsoids at req = 1.14r /r 0.156 for
both disks and fibres. Given the long-standing efforts in finding the correct shape
equivalence between cylinders and ellipsoids, we expect our measurements of the
period of rotation to be particularly insightful during our experiments.

2.1.6.2. Particle orientation vector and Jeffery orbits

The two projected AABBs are recombined by a suitable re-scaling, having manually
measured the number of pixels over the particle diameter by ImageJ. Then, the Deep
Learning model is trained over the geometry of the particle and deployed to obtain
the time-evolution of the particle orientation vector n during the experiments. Finally,
a mono-dimensional Gaussian filter is applied to reduce measurement noise.

We now consider the same oblate ellipsoid but with a different experimental fluid,
being Ω = 1.23 its density and µ = 1.2 Pa s its viscosity. The estimated shear rate
is ∞̇ = 3.64 1/s, determining a low particle Reynolds number Rep = 0.02 and shear
Reynolds number Re = 0.69. Only one experiment of the given session is discussed in
figure 2.11, but the methodology is the same for all runs with any of the considered
particles.

The time-evolution of the three components of the particle orientation n is displayed
in panel (a) of figure 2.11. We appreciate an excellent agreement between our data
(green dots) and the theory of Jeffery (solid black line), obtained integrating equation
1.8 in time from the first flow-aligned position of the particle during the experiment.
The three components can be recombined to render the experimental Jeffery orbits in
the three-dimensional space, as done in panel (b) of figure 2.11. Once again we can
appreciate the nice agreement between the experiment and the theory, as the Jeffery
orbits of the considered oblate ellipsoid appears like a slightly spherical ellipse on the
surface of a sphere of radius 1.

Finally, we are just left with the task of measuring the orbit constant C during our
experiments. At this scope, we can directly measure the real polar angle µ = arccos(n3)
and fit its definition according to the theory of Jeffery

µ = arctan

0
B@

C · r
q

r 2cos(¡)2 + si n(¡)2

1
CA (2.9)

where ¡= arctan(n1/n2) is the azimuth angle and the equivalent aspect ratio r = req

must be imposed to correctly estimate C . This is done graphically in figure 2.12, where
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Figure 2.11. – Visualization of the experimentally measured particle orientation vector
n = (n1,n2,n3) for an oblate ellipsoid with aspect ratio r = 0.6 (ELL06).
The shear rate is ∞̇= 3.64 1/s and the viscosity is µ= 1.2Pas, determin-
ing a particle Reynolds number equal to Rep = 0.02. Panels: (a)time-
evolution of the three components of the particle orientation vector;
(b)Three-dimensional reconstruction of the Jeffery orbits. The theory of
Jeffery is also displayed in the panels as a solid black line.

the experimentally measured values of µ are plotted as empty black dots together with
the values returned by equation 2.9 using the fitted orbit constants C displayed in
the legend. Whereas in the viscous regime (Rep ª 0) we know that the orbit constant
will not vary in time, allowing us to fit the whole experiment for one value, this is not
expected to be the case when considering experiments at relevant particle Reynolds
number (Dabade et al., 2016). Therefore, it is preferable to measure the orbit constant
every half-rotation, fitting equation 2.9 over a short window of size 0.8 ·Tm . This
operation will produce two discrete measurements for each period of rotation, which
will be differentiated with the corresponding points at the next rotation as following:

¢Ci =
Ci+2 °Ci

Tm
. (2.10)

In figure 2.12 it is possible to appreciate a contained variation of the orbit con-
stant among consecutive rotations as expected, given the small value of the particle
Reynolds number that was considered in this experiment.

2.2. Dimensional analysis

The rotation of axisymmetrical particles suspended in a viscous shear flow is char-
acterized by seven quantities:

— the shear rate ∞̇
£
s°1§;

— the fluid dynamic viscosity µ
£
kg m°1 s°1§;
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Figure 2.12. – Time-evolution of the experimentally measured polar angle µ (black
empty circles) and least-square fitting of the theory of Jeffery over each
half-period (coloured lines). Rep = 0.02.

— the density of the fluid Ω
£
kg m°3§;

— the density of the particle Ωp
£
kg m°3§;

— the length of the particle 2` [m];
— the diameter of the particle 2a [m];
— the length of the shear Ly [m].
Following the ¶ theorem (Buckingham, 1914), we find 7° 3 = 4 dimensionless

numbers that describe the physical system:
± the particle aspect ratio r = 2`

2a . This dimensionless number quantifies the
slenderness of the axisymmetrical particles, i.e., the way they preferentially
sample strain and vorticity in the flow. Once the shear rate ∞̇ is specified, the
temporal extent of the Jeffery orbits purely depends on the particle aspect ratio,
being the dimensionless period:

T ∞̇= 2º
µ
r + 1

r

∂
. (2.11)

During the preparation of this thesis, we worked with not particularly slender
cylinders and ellipsoids, exploring the range r 2 [0.05;20.1].

± the particle confinement ratio ∑= max(2a,2`)/Ly . This dimensionless number
quantifies confinement effects over particle dynamics. Its importance on the
flow and on the particles was evaluated by Zettner and Yoda, 2001. Great care
was taken during the fabrication of our axisymmetrical particles so that their
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major size would always determine a confinement ratio ∑ lower than 0.2 during
the experiment with small but finite particle Reynolds number, and ∑∑ 0.35 for
the most slender prolate particles (ELL13 and CYL20);

± the particle Reynolds number Rep = Ω∞̇max(a,`)2

µ . This dimensionless number
measures the ratio between the inertial effects induced by the flow on the particle
dynamics and the viscous forces and it is of crucial importance in the considered
physical system. In our experiments, its range is limited by the following factors.
First, the density of the flow is fixed to match that of the particles and nullify
gravitational contributions to their dynamics. Second, the largest size of the
particle is typically kept small in order to minimize confinement effects to better
compare experiments and theoretical efforts. Third, the shear rate of the system
is limited by the characteristics of the rotating stage. Therefore, flow inertia is
controlled by modifying the viscosity µ of the experimental fluids, to explore
the following range: Rep 2

£
O(10°3);O(100)

§
. The particle Reynolds number Rep

and the confinement ratio ∑ combine to determine the shear Reynolds number

Re = Ω∞̇(Ly /2)2

µ , which evaluates the ratio between the inertial and viscous forces
of the shear flow. Its influence on the stability of the particle dynamics was
evaluated in the work of Zettner and Yoda, 2001. In our experiments, the shear
Reynolds number will be varied in the range Re 2 [0.2;37];

± the particle Stokes number St = Ωp /ΩRep = Ωp ∞̇max(a,`)2/µ, which measures
the ratio between the inertia of the particle and the viscous forces. Simulations
and theoretical efforts have explored its influence over the Jeffery orbits (Rosén,
Lundell, et al., 2014; Einarsson, Candelier, et al., 2015b; Dabade et al., 2016).
Nevertheless, it is impossible to separate between fluid and particle inertia in
our experiments, as the density of the fluid and that of the suspended object
are supposedly matched, which means that Rep = St at all times. The theory of
Dabade et al., 2016 has quantified the relative importance between the contri-
butions of fluid and particle inertia in determining the instability of the Jeffery
orbits. As we will discuss in Section 2.3, the former will always dominate the
latter in intensity for both prolate and an oblate particles.

2.3. Small-inertia theories

Einarsson, Candelier, et al., 2015b and Dabade et al., 2016 presented two theoretical
derivations of the hydrodynamic torque acting on an ellipsoid suspended in a viscous
shear flow based on the reciprocal theorem. In this way, these authors could model
the influence of small-inertia on the Jeffery orbits to order Rep , both finding that the
first effect is a modification of their stability.

Einarsson, Candelier, et al., 2015a presented their results as an equation of motion
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Figure 2.13. – Panels: (a) Øi coefficients of equation 2.12 as given in Figure 2 of Einars-
son, Candelier, et al., 2015a. As an example, for the fibre CYL10 with
r = 9.0, the coefficients Øi are chosen at the intersection between the
dotted vertical line at req = 7.4 with the respective curves; (b) Three-
dimensional reconstruction of the Jeffery orbits of a fibre with aspect ra-
tio r = 9 at particle Reynolds number Rep = 0.5 obtained by integration
equation 2.12 in time, using the Øi coefficients calculated graphically
in panel (a). The colour scale indicates the dimensionless time and is
reported in the colour-bar.

for the particle orientation vector n as follows:

ṅ = ≠ ·n+ r 2 °1
r 2 +1

[E ·n°n (n ·E ·n)]

+Ø1 (n ·E ·n)P(E ·n)+Ø2 (n ·E ·n)≠ ·n+Ø3P(≠ ·E ·n)+Ø4P(E ·E ·n)(2.12)

where P(x) = x°(n ·x)n is an operator that projects out components in the n-direction.
The right-hand side of the first row corresponds to the equation of Jeffery while the
second row contains the additional terms. The scalar coefficients Øi are functions
of the particle aspect ratio, combining to determine the preferential response of the
ellipsoid to the influence of strain and vorticity in the small inertia regime. They were
provided graphically in figure 2 of Einarsson, Candelier, et al., 2015a for Rep = St and
are reported here in panel (a) of figure 2.13, where the equivalent aspect ratio is used
when considering a cylinder with r = 10.

Equation 2.12 shows that for small but finite Rep an ellipsoidal particle will continue
to rotate periodically where its period of rotation T is still given by the theory of Jeffery,
1922. Anyway, inertial effects arise proportionally to the particle Reynolds number
and affect the stability of the Jeffery orbits. This will determine a slow drift through
consecutive rotations depending on the particle aspect ratio, as displayed in panel
(b) of figure 2.13. Prolate ellipsoids will drift towards the stable C =1 Jeffery orbit in
the flow-gradient (x, y) plane where they will adopt a pure tumbling motion. Instead,
oblate ellipsoids in the near-sphere limit will drift to the stable C = 0 spinning orbit
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along the vorticity axis z. Nevertheless, oblate ellipsoids below a critical aspect ratio
r § ª 0.14 display a peculiar behaviour, feeling two stable orbits in both the spinning
and the tumbling limiting cycles. Therefore, slender oblate particles below the critical
aspect ratio will drift to either the spinning or the tumbling orbit depending on their
initial orientation.

Dabade et al., 2016 reached similar conclusions on the influence of inertia on the
Jeffery orbits, giving a precise estimation of the separation between the two basins of
attraction for the oblates, which moderately raises from the tumbling orbit (C =1)
as the slenderness increases. These authors characterised the inertial effect as a drift
through consecutive rotations by means of a discrete variation of orbit constant ¢C
in a single Jeffery period. To understand such a formulation, we must discuss Jeffery
orbits as a periodic dynamical system. To this purpose, it is convenient to recall the
formulation of Leal and Hinch, 1971, who introduced the orbit time ø and the orbit
phase (or constant) C to describe the two-dimensional parameter space of the Jeffery
orbits. Hence, following a classical textbook on the subject (Glendinning, 1994), the
time-dependence of the system can be dropped in order to look at variations ¢C of its
phase C through dynamical states, where the intensity and the sign of the variations
will characterise the stability of the corresponding Jeffery orbit.

Dabade et al., 2016 provide closed expressions for the drift due to particle and
fluid inertia separately. For particle inertia, this is given in their equation (5.19) in
terms of the eccentricity: ª0 =

p
1/(1°1/r 2) for the prolate and ª0 =

p
1/(1° r 2) for

the oblate particles. The eccentricity parameter ª0 is calculated using the physical
particle aspect ratio, r , for the ellipsoids and the equivalent particle aspect ratio,
req , for the cylinders. Then, the integrals Ii , Ji are provided in their Appendix C,
while the prolate F p

i ,G p
i coefficients come from their equations (5.7-5.12). Following

Dabade et al., 2016 to obtain the oblate coefficients, one needs first to multiply the
prolate coefficients by the squared length-scale to obtain their dimensional form.
Then the transformation prolate-to-oblate must be applied (ª0 < ° > i

°
ª2

0 °1
¢0.5),

before returning to dimensionless variables by dividing by the squared length-scale,
as described below equation (5.12) of Dabade et al., 2016. The fluid-inertia drift is still
obtained from equation (5.19), where St is replaced by Rep and the F f

i ,G f
i coefficients

are given in equations (6.1-6.8).
The normalized orbit constant variations are displayed in figure 2.14 for a prolate

(panel (a)) and an oblate (panel (b)) ellipsoid against the normalized orbit constant.
The contributions are normalized by the squared particle eccentricity to keep the
drift finite in the near sphere limit. The positive sign of the curve shows that prolate
particles tend to the tumbling cycle as the orbit instability peaks at intermediate orien-
tations before relaxing in the (x, y) plane (C /(C +1) = 1). On the other hand, the oblate
shape is pushed towards the spinning orbit, as its ¢C is mostly negative. Nevertheless,
a tiny region of positive orbit constant variations is visible in correspondence with the
tumbling orbit (C /(C +1) = 1), highlighting the existence of a double basin of attrac-
tion for this oblate spheroid. A comment is in order about the relative importance
of particle and fluid inertia, as the former is clearly dominated by the latter for both
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Figure 2.14. – Normalized orbit constant variation ¢C against the normalized orbit
constant C . The variations are scaled in the near sphere limit, normaliz-
ing by the squared particle eccentricity ª2

0. Blue lines display the fluid
inertia contribution while pink lines report the particle inertia contri-
bution. Panels: (a) prolate ellipsoid, r = 10; (b) oblate ellipsoid, r = 0.1.
The dotted black lines show the neutral stability line.

shapes. Also, orbit constant variations are plainly larger for the oblate particle.
In the following of this chapter, the results of an experimental campaign observing

the influence of inertia on the Jeffery orbits will be presented and compared to the two
theoretical efforts of Einarsson, Candelier, et al., 2015b and Dabade et al., 2016. First,
we will look at the time-evolution of meaningful experiments against equation 2.12 of
Einarsson, Candelier, et al., 2015b for both prolate and oblate shapes. The equation
was integrated in time using the ’odeint’ function of the Scipy Python Library from the
first flow-aligned orientation of the given experimental run. Then, we will measure
variations ¢C of orbit constant C by discretely differentiating over the experimentally
measured orbit constants, in order to directly compare our results to the stability maps
of Dabade et al., 2016.

2.4. Experimental results and comparison with the

small-inertia theories

2.4.1. Jeffery orbits

Typical experimental Jeffery orbits for a disk with aspect ratio r = 0.05 and a disk
with aspect ratio r = 0.11 are shown in figure 2.15, (a),(b) and (c),(d) respectively. In
addition, we display the experimental Jeffery orbits observed for an ellipsoid with
aspect ratio r = 0.6 and a fibre with aspect ratio r = 9.0 in figure 2.16, (a),(b) and (c),(d)
respectively. In these two figures, the coloured symbols represent the intersection
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Figure 2.15. – Three experimental Jeffery orbits for the disk CYL005 with r = 0.05
and req = 0.09 (top-row panels) and the disk CYL01 with r = 0.1 and
req = 0.18 (bottom-row panels): (a) Disk, r = 0.05, Rep = 0.24; (b) Disk,
r = 0.05, Rep = 0.8; (c) Disk, r = 0.11, Rep = 0.05; (d) Disk, r = 0.11,
Rep = 1.32. The particles considered in this figure are rendered in the
vorticity-aligned position with their orientation vector n highlighted in
cyan. The coloured dots represent the intersection of the axis given by
the orientation vector n with the half sphere of radius a for the oblate.
The corresponding Jeffery orbits are also displayed as solid black lines
and were obtained using the experimentally measured equivalent aspect
ratio req by integrating equation (1.8) from an initial condition given by
the first flow-aligned orientation of each experiment.
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Figure 2.16. – Three experimental Jeffery orbits for the ellipsoid ELL06 with r = 0.6
(top-row panels) and the fibre CYL10 with r = 9.0 (bottom-row panels):
(a) Ellipsoid, r = 0.6, Rep = 0.02; (b) Ellipsoid, r = 0.6, Rep = 0.43; (c)
Fibre, r = 9.0, Rep = 0.08; (d) Fibre, r = 9.0, Rep = 1.0. The particles
considered in this figure are rendered in the vorticity-aligned position
with their orientation vector n highlighted in cyan. The coloured dots
represent the intersection of the axis given by the orientation vector n
with the half sphere of radius a for the oblate. The corresponding Jeffery
orbits are also displayed as solid black lines and were obtained using
the experimentally measured equivalent aspect ratio req by integrating
equation (1.8) from an initial condition given by the first flow-aligned
orientation of each experiment
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of the axis given by the orientation vector n with the half sphere of radius ` for the
prolate particles and a for the oblate particles, respectively. The corresponding Jeffery
orbits at zero inertia are also displayed as solid black lines. These were obtained
upon integration of equation (1.8) using the first flow-aligned orientation of each
experimental run as initial condition.

At low inertia, i.e., for the disk CYL01 at Rep = 0.05 of panel (c) in figure 2.15 as well
as the ellipsoid ELL06 at Rep = 0.02 of panel (a) and the fibre F10 at Rep = 0.08 of panel
(c) of figure 2.16 , there is no significant change between the successive rotations for
runs with different initial conditions, i.e. different orbit constants. The experimental
orbits are in good agreement with the theoretical Jeffery orbits, represented by the
solid black spherical ellipses.

As inertia becomes finite, i.e. for the disk CYL005 at Rep = 0.24 in panel (a) and at
Rep = 0.8 in panel (b) and the disk CYL01 at Rep = 1.32 of panel (d) in figure 2.15 as
well as the ellipsoid ELL06 at Rep 0.43 of panel (b) and the fibre CYL10 at Rep = 1 of
panel (d) in figure 2.16, the picture slightly changes. The experimental orbits are still
spherical ellipses, but they depart from the zero-inertia orbits as their shapes evolve
between successive rotations. For the fibre of panel (d) of figure 2.16, the orbits are
expanding towards the tumbling orbit (C =1) on the equator of the sphere, i.e. in
the (x, y) flow-gradient plane. It is worth mentioning that the orbits are not equally
unstable as the fibre experiences a stronger drift when describing intermediate orbits
(brown dots) than when close to the rolling (pink pentagons) and tumbling (green
hexagons) cycles.

The oblate particles are also drifting through consecutive orbits, but their behaviour
is more complex as two limiting stable orbits clearly exist. As shown in panels (a),(b)
and (d) of figure 2.15 and panel (b) of figure 2.16, the disks and the ellipsoid can either
maintain a tumbling orbit (C =1) in the plane of shear or drift to a spinning orbit
(C = 0), i.e. aligning its orientation vector with the direction of vorticity, z.

Focusing on panel (a) of figure 2.15, it is interesting to note that for a slender disk
with r = 0.05 at Rep = 0.24 the two orbits closer to the pole of the half sphere (blue
dots and red pentagons) are attracted toward the spinning orbit (C = 0) while the
other orbit, which is starting with a much larger orbit constant (pink hexagons), is
drawn toward the tumbling orbit (C =1) on the equator of the half sphere. This is
also clearly visible for the oblate ellipsoid with r = 0.6 at Rep = 0.43, where the initial
conditions of the tumbling orbit (green dots) and the orbit drifting to the vorticity
(orange pentagons) are even more close to each other.

2.4.2. Period of rotation

The dimensionless period of rotation, T ∞̇/2º, of the axisymmetric particles is dis-
played against particle aspect ratio, r , in figure 2.17. The main panel (a) shows all the
results obtained for both prolate and oblate particles, while the two smaller panels
distinguish between (b) prolate and (c) oblate shapes and focus on the asymptotic
limits. The data are obtained by averaging over all the available experiments for all
particle Reynolds number (Rep . 1), meaning that we choose in these plots not to
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Figure 2.17. – Period of rotation, T , of the axisymmetrical particles against the particle
aspect ratio r . The period is made dimensionless using the shear rate ∞̇
and normalized by a factor 2º. Panels: (a) both prolate and oblate, (b)
prolate, and (c) oblate particles. The experimental values are displayed
as coloured rectangles (cylindrical particles) and circles (ellipsoidal
particles). Each point is the average over all the available experiments
for all particle Reynolds numbers (Rep . 1). The theories of Jeffery, 1922
and Burgers, 1938, the semi-empirical correlation of Cox, 1971, and
the empirical expression of Harris and Pittman, 1975 are displayed as a
solid black line, a dotted cyan line, a dashed blue line and a dash-dotted
pink line, respectively. The experiments of Anczurowski and Mason,
1968b are displayed as empty grey diamonds (cylinders) and one solid
x (ellipsoid), while the data of Harris and Pittman, 1975 correspond to
empty brown plus symbols.

take into account any possible influence of inertia on the period of rotation. Such
influence will be addressed later at the end of this section. These data are displayed
as empty rectangles for cylindrical particles and circles for ellipsoidal particles and
explore a moderate range of aspect ratios (0.05 . r . 21). They complement the
previous experimental results of Anczurowski and Mason, 1968b for disks and fibres
(empty grey diamonds) as well as one prolate ellipsoid (solid grey x), and those of
Harris and Pittman, 1975 for fibres with higher aspect ratio (empty brown pluses), also
reported in the figure. Note that the present measurements for the period of ellipsoidal
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particles span over two decades of r around r = 1, extending the experimental dataset
of Anczurowski and Mason, 1968b.

The agreement with the theory of Jeffery, 1922, T ∞̇/2º = r + 1/r , displayed as a
solid black curve, is excellent for the ellipsoids. In contrast, the measured period of
cylindrical particles systematically lies below Jeffery’s curve, meaning that the period
of a cylinder is always smaller than that of the corresponding ellipsoid at the same
r . This difference is minimal around r = 1 and increases with increasing slenderness
or flatness. These data are in good agreement with those available in the literature
(Anczurowski and Mason, 1968b; Harris and Pittman, 1975).

Since the work of Trevelyan and Mason, 1951, it has been suggested that an equiva-
lent aspect ratio, req , can be found for cylindrical particles to recover the Jeffery period.
In particular, req can be computed from T ∞̇ = 2º(req +1/req ) using the measured
period of rotation for T , as described in Section 2.1.6.1 Different expressions have
been proposed for req . In an earlier work for the case of fibres, Burgers, 1938 showed
that the disturbance caused by a cylinder of axis ratio r will be reproduced by an
ellipsoid of req = 0.74r , an expression which would eventually diverge at high r as well
as underestimate the period of rotation in the near-sphere limit. Our measurements
for 10 . r . 20 show good agreement with the proposed equivalence. Later on, by
fitting his asymptotic theory to the measurements of Anczurowski and Mason, 1968b,
Cox, 1971 provided an expression for slender cylinders as req = 1.24r /

p
logr . Our

data are in good agreement with this formula for r > 5. Then, Harris and Pittman,
1975 proposed an unweighted least square log-log fit over their measurements for
slender rods leading to req = 1.14r /r 0.156. They found that Cox’s semi-empirical pre-
diction was an overestimate in the asymptotic limit and their power-law function of r
showed an excellent agreement with all the considered experimental measurements
available at that time. This empirical correlation provides an excellent match with
our present data for both prolate and oblate cylinders. It is even accurately predicting
the additional measurements with the thinnest disk (CYL005, red rectangles in figure
2.17).

Finally, we move to the influence of inertia on the period of rotation. Figure 2.18
shows the period of rotation, T , normalised by the Jeffery period, 2º(req +1/req )/∞̇,
against the particle Reynolds number, Rep . The data are now averaged over experi-
mental runs at the same Rep for each particle. While req is equal to the aspect ratio
r for the ellipsoidal particles, its value for the cylindrical particles is determined by
solving T ∞̇= 2º(req +1/req ) using their measured period of rotation, T , at each Rep .
For both prolate and oblate particles, there is a good collapse of the data around unity,
corresponding to the Jeffery period. The data are scattered within ±20% but do not
indicate any systematic trend with increasing inertia. We can conclude that inertia
does not affect significantly the period of rotation, T , for Rep . 1.

2.4.3. Drift

Having previously looked at the general behaviours of the Jeffery orbits in figures
2.15 and 2.16, we now examine more in detail the influence of inertia on the time

74



2. Experiments – 2.4. Experimental results and comparison with the small-inertia
theories

Figure 2.18. – Experimentally measured period of rotation, T , of axisymmetrical par-
ticles against the particle Reynolds number, Rep : (a) Prolate particles
and (b) oblate particles. The period is now normalised by the Jeffery
period, 2º(req +1/req )/∞̇. The dotted black line corresponds thus to the
Jeffery period within this normalisation. The experiments are displayed
as coloured rectangles (cylindrical particles) and circles (ellipsoidal par-
ticles) with the same colour code as in figure 2.17.

evolution of each component of the orientation vector n. Figures 2.19 and 2.20 display
the three components of n in the flow (n1), gradient (n2), and vorticity (n3) directions
against the dimensionless time, t ∞̇, respectively projecting the panels (a) and (d) of
figure 2.15 and the panels (b) and (d) of figure 2.16. In this way, we focus the discussion
on a subset of three runs for the most slender disk with r = 0.05 at moderate Rep = 0.24
(CYL005 in panel (a) of figure 2.19), a less slender disk with r = 0.1 at much intense
Rep = 1.32 (CYL01 in panel (b) of figure 2.19), the oblate ellipsoid with r = 0.6 again
at moderate Rep = 0.43 (ELL06 in panel (a) of figure 2.20) and, at last, the fibre with
r = 9.0 at Rep = 1.0 (CYL10 in panel (b) of figure 2.20). We also compare our results with
the asymptotic model of Einarsson, Candelier, et al., 2015a as detailed in Section,2.3.
It is important to stress that, while the model considers an unbounded shear flow,
there is some degree of confinement in the experiments (∑∑ 0.19) which may affect
the stability of the orbits (Rosén, Einarsson, et al., 2015).

Let us first examine the influence of inertia on the dynamics of the disk with aspect
ratio r = 0.05 in panel (a) of figure 2.19. The general tendency is that the disk either
drifts away from the flow-vorticity (x, y) plane towards the vorticity-aligned spinning
orbit (runs 1 and 2), either aligns itself in the tumbling orbit in the plane of shear (run 5).
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Figure 2.19. – Evolution of the components of the orientation vector n, displayed as
vertically aligned panels for 3 typical runs against the dimensionless
time t ∞̇. Panels: (a) disk CYL005 with aspect ratio r = 0.05 and con-
finement ratio ∑= 0.19 at Rep = 0.24; (a) disk CYL01 with aspect ratio
r = 0.11 and confinement ratio ∑= 0.19 at Rep = 1.32. Comparison with
the model of Einarsson, Candelier, et al., 2015a, presented in § 2.3 is also
given as black dashed lines.

This is evinced by the systematic increase or decrease of n3 with successive oscillations.
The described dynamics are observed also for the disk with r = 0.1 in panel (b) of
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Figure 2.20. – Evolution of the components of the orientation vector n, displayed as
vertically aligned panels for 3 typical runs against the dimensionless
time t ∞̇. Panels: (a) Ellipsoid ELL06 with aspect ratio r = 0.6 and con-
finement ratio ∑= 0.17 at Rep = 0.43; (a) fibre CYL10 with aspect ratio
r = 0.9 and confinement ratio ∑= 0.19 at Rep = 1.0. Comparison with
the model of Einarsson, Candelier, et al., 2015a, presented in § 2.3 is also
given as black dashed lines.

figure 2.19, where, again, the particle will either drift to the vorticity orbit (runs 1 and
9), or just tumble towards the tumbling orbit (run 2). A qualitative agreement between
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the model of Einarsson, Candelier, et al., 2015a and the experiments is observed for
the disk CYL005 at small Rep = 0.24 in panel (a), despite the theory predicts a faster
drift towards the spinning orbit. Instead, the disk CYL01 at much higher Rep = 1.32
shows a clear discrepancy between the experiments and the model, which predicts a
rapid degeneration of the Jeffery orbits to an inclined flow-aligned configuration.

The discussion is now repeated for the oblate ellipsoid with r = 0.6 in panel (a)
of figure 2.20 at moderate Rep = 0.43. Again, this oblate particle exhibits a dual
dynamical behaviour, drifting to the vorticity-aligned, spinning orbit (runs 8 and 5),
but also adopting a tumbling motion in the plane of shear (run10). The agreement
with the model of Einarsson, Candelier, et al., 2015a is improved for this particle, as
the drift intensities are more comparable than before. Anyway, the theory fails to
predict the tumbling motion observed when this particle starts its rotation with its
orientation vector oriented in the plane of shear.

Finally, we conclude the analysis by looking at the fibre with r = 9.0 in panel (b) of
figure 2.20 at a considerable Rep = 1.0. The influence of inertia forces the particle to
drift out of the spinning orbit towards the tumbling one in the flow-gradient plane.
Moreover, the drift intensity is stronger at intermediate orientations (run 13), while
the prolate cylinder lazily leaves the vorticity-aligned cycles (run14). In general, there
is a good agreement between the experiments and the model of Einarsson, Candelier,
et al., 2015a and the experiments, despite the theory again overestimates the drift
intensity for the intermediate orientations (run 13).

In conclusion, our results indicate that prolate particles will always be driven to-
wards the sole limiting tumbling orbit, whereas oblate shapes can drift towards two
different limiting cycles, the spinning or the tumbling orbits, depending upon their ini-
tial orientations. Whereas the model of Einarsson, Candelier, et al., 2015a successfully
predicts the existence of two limiting orbits, it gives a much stronger overestimation
of the drift through consecutive orbits in the oblate case than in the prolate case,
especially for more slender shapes.

As previously mentioned in introduction of this manuscript, the separation between
the two limiting orbits for the oblate particles should depend on their initial orienta-
tions but also on their aspect ratio (Einarsson, Candelier, et al., 2015a; Dabade et al.,
2016). To examine this difference in drift more closely, we calculate the change in the
orbit constant in a single Jeffery period as done in Dabade et al., 2016. As detailed in
Section 2.1.6.2, this implies the fitting of our experimental measurements to estimate
the local values of the orbit constant C before taking discrete differences ¢C over
each period of rotation. The results are shown in figure 2.21, where the normalised
change in the orbit constant in a single period, Re°1

p ¢C /(C 2+1), is plotted against the
normalised orbit constant C /(C+1) for all the experiments. Measurements referring to
different values of Rep are identified by different colours. The values C /(C +1) = 0 and
C /(C +1) = 1 correspond to the spinning and tumbling modes, respectively. Following
Dabade et al., 2016, to keep the drift finite in the near-sphere limit, the normalisation
for¢C also uses a factor depending on the particle eccentricity: ª0 =

p
1/(1°1/r 2) for

the prolate particles and ª0 =
p

1/(1° r 2) for the oblate particles.
Figure 2.21 displays results for the following cases: the thinnest disk CYL005 with
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Figure 2.21. – Discrete variation of the orbit constant over one period, ¢C , against the
orbit constant C at varying Rep . Results refer to the following particle
types (characterized by different colours): (a) disk CYL005 (r = 0.05 and
∑= 0.19); (b) disk CYL009 (r = 0.1 and ∑= 0.11); (c) disk CYL01, (r = 0.11
and ∑ = 0.21); (d) ellipsoid ELL06, r = 0.56 and ∑ = 0.17); (e) ellipsoid
ELL3, (r = 2.67 and ∑ = 0.19); (f) fibre CYL10, (r = 9.01 and ∑ = 0.19).
The drift is normalized to keep its value finite in the near-sphere limit as
in Dabade et al., 2016, thus allowing for a better comparison with their
model (black dashed line and black solid line in the slender limit). The
critical orbit constant C§ &

p
35 (C /(C +1)& 0.86) separating the basins

of attraction in the slender disk limit is also displayed as a dash-dotted
grey line (Dabade et al., 2016). Data are collected over all the available
experiments at a given Rep (up to 10 runs), measuring the orbit constant
and its variation as described in Section 2.1.6.2.

r = 0.05 in panel (a), two disks having similar r but two different confinement ratios
in panels (b) (CYL009 with r = 0.1,∑ = 0.1) and (c) CYL01 with (r = 0.11,∑ = 0.2), a
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thicker oblate ellipsoid EYLL06 with r = 0.6 in panel (d). Also included are the results
for two prolate particles, a prolate ellipsoid with r = 2.7 in panel (e) and a slender
fibre with r = 9 in panel (f). These data are compared to the theoretical prediction of
Dabade et al., 2016 considering both particle and fluid inertia (St = Rep in the present
neutrally-buoyant case) as detailed in Section 2.3.

Despite the rather large scatter of the data, there are some clear trends and quali-
tative agreements with theoretical predictions. Prolate particles experience positive
increments of the orbit constant, which drive them towards tumbling motion (C =1,
i.e. C /(C +1) = 1), while oblate particles experience negative variations as they are
mostly attracted to the vorticity-aligned orbit (C = 0, i.e. C /(C +1) = 0). Moreover, as
revealed from the scales of the ordinate axes, the drift intensity ¢C increases with the
particle aspect ratio r , as more slender objects experience stronger variations of C .
The oblate particles not only drift towards the spinning orbit but also to the tumbling
orbit as evidenced by the clustering of points around zero and slightly above for orbit
constants C &

p
35, i.e. C /(C +1) & 0.86, as computed by Dabade et al., 2016, see

panels (a) to (c). This is in stark contrast with the strong incline taken by the fibre of
aspect ratio r = 9 in panel (f) when leaving the spinning orbit (C /(C +1) = 0) which is
unstable for this prolate particle.

An interesting behaviour is observed in panel (d) for the oblate spheroid with r = 0.6,
which is an aspect ratio well above the predicted critical aspect ratio of approximately
0.14, for which only the drift towards the spinning motion is expected (Dabade et al.,
2016). Anyway, this particle is still describing stable tumbling and spinning orbits,
in contradiction with theoretical predictions. The critical orbit constant seems also
to have moved as positive increments of orbit constant are observed at C .

p
35, i.e.

C /C +1. 0.86, in particular for the higher Rep . Similar behaviour is observed for the
disk with req = 0.18 in panels (b) and (c), which correspond to different confinements.
This may suggest a wider region of attraction for the tumbling mode at aspect ratios
above the critical one (r § ª 0.14). The influence of confinement is clearly visible
between panels (b) and (c), where are shown two disks at a comparable r º 0.1 but
differing confinement ratios, ∑= 0.11 and ∑= 0.21. The smaller disk is in better agree-
ment with the theory than the large disk having a twofold increase of confinement
ratio, where the drift is much less intense than that predicted by Dabade et al., 2016
for an unconfined viscous shear flow.

Finally, we address the scaling of the drift intensity with the particle Reynolds
number. Clearly, experiments at higher particle Reynolds number (Rep º 1) do not
collapse with those at smaller Rep . Despite the large scatters, this is particularly
evidenced in panels (a),(c),(d) for oblate objects, where the intensity of the drift is
weaken for the larger Rep . This suggests a saturation effect above a certain inertial
threshold.
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2.5. Conclusions

We have examined the rotation of axisymmetrical particles suspended in a simple
shear flow when inertia is progressively increased up to particle Reynolds number
Rep ' 1. A custom-built shearing cell and a multi-view reconstruction method have
been used to obtain direct measurements of the orientation and period of rotation of
ideal objects such as ellipsoids but also shapes of practical interest such as cylinders
with varying aspect ratios. This system is rather flexible and is amenable to study the
alignment of small objects of other shape in simple shearing flows.

The first important result is that the axisymmetric particles still rotate with the
Jeffery period in this small-inertia regime. Our results also complement the data
available in the literature (Anczurowski and Mason, 1968b; Harris and Pittman, 1975),
showing that the period of rotation of a cylinder is smaller than that of an ellipsoid
with the same aspect ratio. An equivalent aspect ratio can be inferred to recover the
Jeffery period in the case of cylinders. Our results show that the empirical expression
of Harris and Pittman, 1975 still remains the best prediction for this equivalent aspect
ratio, which we were able to validate over one further decade of slender oblate particles
compared to available literature results.

The second major finding is that we observe an irreversible drift across Jeffery orbits
towards attracting limiting cycles. This drift is due to weak inertial effects, and its
occurrence confirms, at least qualitatively, the asymptotic theories of Einarsson, Can-
delier, et al., 2015a and Dabade et al., 2016. Our measurements indicate that prolate
particles are uniquely driven towards a tumbling motion in the flow-gradient plane
regardless of their initial orientation and aspect ratio. For small but finite Rep (up to
O (10°1) in our experiments), there is a good quantitative agreement with the theories.
For larger Rep (up to O (1) in our experiments) a saturation of the phenomenon is
observed and the asymptotic theories predict a faster drift toward the tumbling orbit,
indicating that their limit of validity may have been trespassed. In stark contrast to
prolate particles, which only possess a single attracting orbit, oblate particles are
observed to drift towards two different orbits, the spinning orbit or the tumbling
orbit, depending upon their initial orientation. Whereas the asymptotic models of
Einarsson, Candelier, et al., 2015a and Dabade et al., 2016 do predict the existence
of two limiting orbits, there is some notable discrepancy between predictions and
experiments.

First, the theories provide an overestimation of the drift through consecutive orbits,
which is even more severe when Rep approaches unity. We remark here that part of the
observed overestimation may be ascribed to unavoidable confinement effects, which
tend to lower the drift intensity and thus introduce a small bias in the experimental
measurements. Second, we do not observe the bifurcation toward a single stable
spinning orbit above a critical aspect ratio of approximately 0.14 as predicted by the
theories. The experiments seem to suggest a wider basin of attraction for the tumbling
mode. The existence of two stable limiting cycles for oblate particles may not be
attributed to confinement, as disks with values of ∑ down to 0.1 still exhibit both
rotation modes despite their equivalent aspect ratio being larger than the critical
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value.
Overall, our results indicate that fluid and particle inertia play a significant role in

breaking the indeterminacy of the Jeffery orbits. This finding has major consequences
for the steady-state rheology of suspensions of axisymmetrical particles in a viscous
dilute regime, i.e. when particle-particle interactions are negligible. Indeed, prolate
particles will eventually drift toward the tumbling orbit, aligning asymptotically with
the mean flow direction. Conversely, the effective viscosity of a suspension of oblate
particles will always depend on their initial orientation and regardless of their aspect
ratio, i.e., not only in the lower near-sphere limit (0.14 < r < 1) as predicted by Dabade
et al., 2016.

A final comment is in order about the importance of including the effect of both the
fluid and particle inertia in the numerical calculation of the rotational dynamics of
axisymmetric particles suspended in complex flows, e.g. turbulent flows. In a turbu-
lent flow, the modified rotation rate (see equation 2.12) might affect the distribution
of particle orientations (Sheikh et al., 2020). In homogeneous isotropic turbulence, ax-
isymmetric prolate (resp. oblate) particles were seen to align with (resp. perpendicular
to) the local vorticity vector, following the local flow stretching in a mostly spinning
(resp. tumbling) rotational state (Ni et al., 2015; Byron et al., 2015). Accounting for
the inertial torques would strengthen the influence of the local stretching, even if one
might argue under which conditions the inertial contribution becomes relevant given
the intermittent nature of the flow.

The picture is even more complex in bounded turbulence, where the strong near-
wall shear causes axisymmetric particles to follow the local flow stretching but alignes
the vorticity vector in the spanwise direction (L. Zhao and Andersson, 2016). In
this case, inertial torques could especially modify the orientation statistics of oblate
particles, which tend to align normal to the wall, with possible consequences for drag
reduction (Z. Wang et al., 2021).
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fibre-laden turbulent channel

flows

Part of the results presented in this chapter are the subject of the following article:
D. Di Giusto and C. Marchioli, Turbulence Modulation by Slender Fibers, Fluids, 7(8), 255, 2022

In this chapter we present a numerical investigation carried out to study the dy-
namics of long and flexible fibres suspended in a turbulent channel flow. After having
detailed the physical problem, the governing equations are introduced. Then, the
numerical methodology for the Direct Numerical Simulation of a fibre-laden turbulent
channel flow is presented, as well as its implementation for the execution on acceler-
ated and distributed computing architectures. Then, we validate the novel software
against typical literature results, discussing the importance of the particle-induced
flow acceleration in recovering the correct shape equivalence for fibres suspended in a
viscous shear flow. Finally, results are presented, focusing on the orientation, rotation
and deformation of flexible fibres in a turbulent channel flow at shear Reynolds num-
ber Reø = 300, while evaluating the influence of the particle length, particle inertia
and particle bending stiffness. At last, we discuss the turbulence modulation by the
fibres and its consequences for drag reduction.

3.1. Physical problem

In the previous chapter we briefly discussed the lattice Boltzmann method as a tool
for exploring the influence of inertia on the Jeffery orbits of ellipsoidal particles (Rosén,
Lundell, et al., 2014). This method is appropriate when a single ellipsoid in a viscous
flow is considered, but, as we have seen in the introduction of this manuscript, typical
suspensions a axisymmetrical particles include millions of them and are flowing in the
turbulent regime. The description of such a physical problem is clearly more complex
and difficult, because one should solve the Navier-Stokes equations imposing a no-slip
boundary condition at the surface of each particle, which is impossible.

As a matter of fact, the system could be greatly simplified if we assumed that the
ellipsoids are shorter than the smallest relevant flow scale, i.e. the Kolmogorov’s
length-scale. Then, particles could be accurately modelled as zero-volume point-wise
objects, feeling only the Stokes drag force (Happel and Brenner, 1983) and the Jeffery
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3. Simulations – 3.1. Physical problem

Figure 3.1. – Visualization of a turbulent channel flow at shear Reynolds number Reø =
300, laden with 125.000 stiff (E+

Y = 104) tracer-like fibres of total length
L+
= = 35.81 and aspect ratio r = 100. The panels display the stream-wise

component of the velocity. The bottom panel is cut at z+ = 10 from the
wall. The upper wall is transparent for visualisation porpuses.

torque (Jeffery, 1922). In addition, in the limit of dilute suspensions, we would gladly
neglect the hydrodynamic disturbance that the particles determine on the flow and on
each other. These are the principles of the Lagrangian Particle Tracking (LPT), which,
despite the drastic approximations, has lead to great insight into the dynamics of
short axisymmetrical particles in turbulence (Marchioli, Fantoni, et al., 2010; L. Zhao,
Challabotla, et al., 2015; L. Zhao, Challabotla, et al., 2019).

Solution to extend prolate particles across the flow scales was found in the work of
Yamamoto and Matsuoka, 1993, who were the first to use several sub-Kolmogorov’s
spheres to form longer chains, where two consecutive elements would be entangled by
a no-slip condition at their contact point. This method rapidly evolved as Lindström
and Uesaka, 2007 replaced the spherical constitutive elements with ellipsoids, reduc-
ing the computational cost and improving the stability of the model. Then, Andrić
et al., 2013 presented the final formulation of what is known as the Rod-Chain model,
where a bending resistance was taken into account to keep to constrained rods aligned
within the turbulent flow. A remarkable variation on theme is that proposed in the
work Delmotte et al., 2015, who built their fibres as chains of spheres held together by
a free slip constraint.

A more sophisticated approach is that illustrated in the work of Picano et al., 2015,
who performed Direct Numerical Simulations with a direct-forcing Immerse Bound-
ary Method to account for the presence of spheres and, in a following study, rigid
oblate particles (Ardekani et al., 2017). Despite the more intense computational cost,
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which limits the number of dispersed particles, this method is especially accurate
for particles of non-negligible size. Moreover, as the particles’ boundary conditions
are naturally restored, it is a natural framework for the observation of turbulence
modulation by finite particles. Nevertheless, the approach naturally tends to particles
in the near-sphere limit and without sharp edges, making the simulation of cylindrical
shapes very challenging.

On the other hand, Lindström and Uesaka, 2007 had already shown the importance
of taking into account the particle-induced acceleration of the surrounding flow to
recover the correct shape equivalence when simulating a fibre suspended in a viscous
shear flow. In the case of point-wise particle simulations, this is done by a two-way
coupling scheme, among which we find the Particle-In-Cell method (Squires and
Eaton, 1990) or the more advanced Exact Regularised Point Particle method (Gualtieri
et al., 2015). Interestingly, turbulence modulation and drag reduction are recovered
even for point-wise axisymmetrical particle simulations in the two-way coupling
regime, as long as sufficiently high volume fractions are considered (Z. Wang et al.,
2021).

During the preparation of this manuscript, we have studied the of long, slender
and flexible fibres suspended in wall turbulence. The canonical configuration of
the turbulent channel flow is chosen (J. Kim et al., 1987), and the Rod-Chain model
is deployed (Andrić et al., 2013) together with the Exact Regularized Point Particle
two-way coupling method (Gualtieri et al., 2015).

3.2. Governing Equations

3.2.1. The flow

The carrier phase is an incompressible Newtonian fluid, driven by an imposed pres-
sure gradient between two smooth, parallel walls of a plane channel. This Poiseuille
flow conserves mass and momentum, therefore it is described by the coupled system
of continuity and Navier-Stokes equations, here reported in dimensional vector form:

r ·u = 0 (3.1a)

Ω[
@u
@t

+ (u ·r)u] =°rP +µr2u+F2w , (3.1b)

where u = (u, v, w) is the velocity vector corresponding to the position x = (x, y, z)
referred to the absolute system of reference, °rP is the equivalent pressure gradient
that drives the flow and the fluid is identified by its two properties: the density Ω and
the viscosity µ. Finally, the last term F2w represents two-way coupling momentum
term that the carried phase determines on the flow, which will be presented in detail
later on.

As displayed in figure 3.2, this flat channel geometry is periodic in the stream-wise
x and span-wise y directions, while it is bounded by the two walls in the wall-normal
z one, at a distance of 2h from each other. Usually, a factor of º is introduced for the
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span-wise extension of the channel, and another factor of 2 will scale the stream-wise
length so that the total volume of the channel is Lx £Ly £Lz = 4ºh £2ºh £2h. The
nondimensionalization procedure starts by identifying the Newtonian fluid, which
is supposed to be iso-thermal and is, therefore, determined by two properties: the
density Ω and the viscosity µ. The reference velocity for this kind of flow is the friction
velocity uø =

p
øw /Ω, where øw is the shear stress exerted by the flow at the wall. We

can identify the characteristic length-scale of the flow as such given by the channel half-
height h. It follows that the reference time-scale is given by h

uø
. Therefore, coordinates,

velocities and time can be made dimensionless to give the traditionally named outer
units:

x° = x
h

, u° = u
uø

, t° = uø

h
t . (3.2)

Figure 3.2. – Sketch of the turbulent channel flow. Solid walls are rendered are grey
surfaces. The absolute system of reference is also represented. Note that
the origin is usually set in the bottom left corner of the system.

At this point, we introduce the shear Reynolds number, which is given by the ratio
between inertial and viscous forces and will be the fundamental phenomenological
parameter that determines the simulated flow:

Reø =
Ωuøh
µ

. (3.3)

To complete, we will also present the outer form of the pressure and the two-way
coupling force:

P° = P

Ωu2
ø

, F°
2w = F2w

h
Ωuø

. (3.4)
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Figure 3.3. – Representation of a point-wise rod element with the drag force (blue),
the hydrodynamic torque due to the relative spin (green) and that due to
the fluid velocity gradients (red). The rods’ length is 2` while its diameter
is 2a. The position of its centre of mass is given by the vector pn , while its
orientation by the vector on , whose Euclidean norm must be one at all
times.

Then, the two governing equations 3.1 become:

r ·u° = 0 (3.5a)

@u°

@t°
+ (u° ·r)u° =°rP°+ 1

Reø
r2u°+F°

2w , (3.5b)

where the ° apex indicates the dimensionless quantities in outer units.

3.2.2. The fibres

The fundamental concept of the rod-chain model is to treat the n ° th rod element
of any fibre as a point-wise object in order to calculate its translation and rotational
dynamics, as displayed in figure 3.3. Its position will be indicated as pn while its
orientation will be given by a unity norm vector on . Then, its linear and angular
velocities will be reported as vn and !n . The mass of this cylindrical object is mn =
Ωn2ºr a3, where Ωn is its density, a its radius and r = `/a its aspect ratio, defined as
the ratio between the rod half length ` and cross-sectional radius a. Dynamic and
kinematic equations for linear and angular motion are given by the following system:

mn
dvn

d t
= FD

n +Xn+1 °Xn , (3.6a)

d J̄!n

d t
= TD

n +HD
n +`on £ (Xn+1 +Xn)+ (Yn+1,b °Yn,b), (3.6b)

dpn

d t
= vn , (3.6c)

don

d t
=!n £on , (3.6d)

where FD
n is the hydrodynamic drag force exerted by the fluid on the element, J̄ =

mn a2

12 [(4r 2 +3)(Ī°onoT
n )+6onoT

n ] is the inertia tensor of the element in the absolute
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Figure 3.4. – Representation of three constrained point-wise rod elements with the
constraint forces (purple), constraint torques (pink) and bending torques
(blue).

frame of reference, with Ī the identity matrix. Instead, the term TD
n is the hydrody-

namic torque due to the relative spin between fluid and rod element and HD
n is the

hydrodynamic torque due to the fluid velocity gradients’ action of the rod.
Finally, the extra terms X and Y represent the constraint forces and moments that

consecutive rods of one chain exert on each other, as displayed in figure 3.4. They arise
by the enforcement of a no-slip constraint between consecutive point-wise cylinders,
which is given by the following equation:

pn +`non ° (pn+1 °`n+1on+1) = 0. (3.7)

In the meantime, the bending resistance torque appearing in equation 3.6b is mod-
elled following Lindström and Uesaka, 2007:

Yb
r =°kbÆ

b
r eb

r , (3.8)

where kb = EY (J + J)/(4`r ) =ºEy a3/(8r ) is a constant parameter, determined by the
Young modulus EY of the rod element. The torque is calculated as the product between
the solid angle Æb

r between two consecutive elements and their relative curvature:

Yb
r =°ºEY a3

8r
cos°1(or ·on°1)

or £on°1

|or £on°1|
. (3.9)

Therefore, the constraint forces X alone would be sufficient to keep the chains of rods
together, while the role of the moments Y is just to maintain the rod elements aligned
in a minimal energy configuration.

The equations for the carried phase are made dimensionless in terms of wall units,
indicated as + units. The purpose is now to scale the particles according to the relevant
turbulence scales at the wall, and not as done before, in the centre of the channel.
Here, the reference length scale is determined by the viscosity: µ/(Ωuø). In this way,
the radius of one rod becomes a+ = aΩuø

µ . Then, the reference time-scale is given
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by µ/(u2
øΩ), so that t+ = tu2

øΩ
µ ; finally, the reference velocity is uø, so that u+

r = ur/uø.

Therefore, angular velocities will be made dimensionless as!+
r = !µ

Ωu2
ø

, constraint forces

as X+
r = XrΩ

µ2 and the Young Modulus will become E+
Y = EY

u2
øΩ

.

3.2.2.1. Two-way coupling

The point-wise modelling of the dispersed rods neglects the boundary condition
that actual fibres would impose on the flow. This is clearly necessary as we will
simulate up to 25 million elements (Prosperetti, 2015). Anyway, we can recover the
particle’s back reaction of the fluid as the Newtonian reaction to the experienced drag
force FD

n . Intuitively, each particle will then contribute within a finite volume of the
flow, so that the sum of all reaction forces determines a normalized force F2w that
appears in the Navier-Stokes equation 3.1. This method is known as the Particle In
Cell method, and it was proposed in the work of Squires and Eaton, 1990 and has been
largely deployed since, due to its simplicity. Anyway, it requires a large number of
particles within every small portion of flow volume over which the two-way coupling
force is normalized in order not to diverge, and in the past, this would make the
accurate calculation of particle stresses on turbulent flows unfeasible (Gillissen et al.,
2007).

Therefore, for this work at not particularly large particle concentrations another
method of more recent derivation is deployed: that is the Exact Regularized Point Par-
ticle method, presented for the first time by Gualtieri et al., 2015 and then generalized
to wall-bounded turbulent flows by Battista et al., 2019, whose details we know briefly
describe.

The method provides a rigorous derivation based on the unsteady Stokes flow
around a small, spherical, rigid particle, whose interaction with the flow is physically
regularized by viscous diffusion, that slowly propagates the generated vorticity field
from the particle’s boundary to the computational grid. This means that the method
introduces a delayed time-scale ≤R , below which the particle’s disturbance has yet
to interact with the flow and can be neglected without incurring in large errors. The
resolution of such time-scale imposes a length-scale æR that the computational grid
needs to discretise, as displayed in figure 3.5:

æR =
p

2∫≤R (3.10)

where ∫ indicates the fluid viscosity. In the end, each particle delayed hydrodynamic
force will be the one calculated at a slightly previous time-step t°≤R , when the particle
was at the position xp (t °≤R ), regularized by means of a Gaussian g [x°xp (t °≤R ),≤R ]
whose variance is indeed æR . The summation of the contribution of all particles gives:

F2w =
NpX
n

FD
n (t °≤R ) · g [x°pn(t °≤R ),≤R ], (3.11)

where Np is the total number of simulated rods and the Gaussian corresponds to the
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Figure 3.5. – Representation of the two-way coupling according to the ERPP method.
Panels: (t°≤) the disturbance generated by the n-th element moving with
velocity vn(t ) at the time-step t °≤ has yet to diffuse to the computational
grid, whose spacing is indicated by d x and d y . (t ) the n-th element has
now moved along its trajectory while the previously generated distur-
bance has diffused enough to reach the computational grid with delay ≤.
Image freely inspired from Gualtieri et al., 2015.

following expression:

g [x°pn(t °≤R ),≤R ] = 1
[4º∫≤R ]3/2

·exp(° ||x°pn(t °≤R )||2
4∫≤R

), (3.12)

The dimensionless forms for the regularization time-scale and length-scale given by
equation 3.10 are:

≤R =
≤°R ·h

uø
=
≤+R ·∫

u2
ø

, (3.13a)

æR =æ°
R ·h =

æ+
R ·∫
uø

. (3.13b)

The two-way coupling term given by equation 3.11 has units N
m3 . Indeed the Gaussian

form is the inverse of a volume, which gives:

g = g°

h3 = g+

( ∫
uø

)3 . (3.14)

For the drag force, instead, we have:

FD = FD° ·Ωu2
øh2 = FD+ ·µ2

Ω
. (3.15)
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In the end, the two-way coupling term will be calculated in plus units, as the rest of the
particle solver, to be converted to minus units before being added to the convective
terms of the Navier-Stokes equation as follows, in simplified notation:

F2w =
NpX
n

FD°
n · g° =

NpX
n

FD+
n · g+ ·Reø . (3.16)

3.3. Numerical methodology

3.3.1. The flow

The flow is resolved in down to the smallest scale (Direct Numerical Simulation) on
an Eulerian grid. The numerical method follows a classical pseudo-spectral algorithm,
where all the calculations are performed in modal space, except for the convective
terms (u ·r)u, which are resolved in physical space and then re-transformed back
(Canuto et al., 2007).

Some treatment is necessary to obtain the dimensionless equations 3.5: splitting
the pressure gradient between mean dP̄

d x° and fluctuating @p
@x° one allows us to collect

the source terms S as following, where we will start to drop the ° apex for the sake of
brevity:

@u
@t

= S+ 1
Reø

r2u° @p
@x

. (3.17)

Note that the two-way coupling force (equation 3.11) is collected inside the source
term too. The velocity-vorticity formulation is adopted to solve the flow field. The curl
of the Navier-Stokes equation produces a second-order equation for the wall-normal
component of the vorticity:

r£ @u
@t

=r£S+ 1
Reø

r£r2u°r£rp, (3.18)

where the last term is identically zero. From the definition of vorticity ! = rxu, it
follows that

@!

@t
=r£S+ 1

Reø
r2!, (3.19)

which is nothing but the equation describing the transport of vorticity.
Taking again the curl operator on our last result, 3.19 produces the following

Helmholtz fourth-order equation:

@(r2u
@t

=r2S°r(r ·S)+ 1
Reø

·r4u. (3.20)

Finally, the equations 3.19 and 3.20 are projected in the wall-normal direction, to solve
for !z and w , in order to use the definitions of continuity and vorticity to calculate the
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two other velocity components u, v , so that the final system of equations to be solved
corresponds to:

r ·u = 0, (3.21a)

! ·nz = (r£u) ·nz , (3.21b)

@(r2u)
@t

·nz = [r2S°r(r ·S)+ 1
Reø

r4u] ·nz , (3.21c)

@!

@t
·nz = (r£S+ 1

Reø
r2!) ·nz . (3.21d)

This method comes from the already classical algorithm developed by J. Kim et al.,
1987.

3.3.2. Pseudo-spectral discretization

The dimensionless system of equations is discretized on an Eulerian grid in space fol-
lowing a pseudo-spectral approach. Fourier discretization is applied in the streamwise
and spanwise directions x and y , implicitly imposing periodic boundary conditions
for those coordinates as they are assumed to be statistically homogeneous. Chebyshev
polynomials are adopted for the wall-normal direction instead. The main advantage is
that Chebyshev-Gauss-Lobatto points lead to a much finer discretization close to the
walls as visualised in figure 3.6. Indeed, this is the critical region of the turbulent chan-
nel flow, where the scales are smaller and require a much finer resolution J. Kim et al.,
1987. The main advantage of adopting such a pseudo-spectral method is the high
accuracy of spatial derivatives when calculated in modal space: indeed, truncating
infinite Fourier and Chebyshev series produces extremely small errors.

The computational grid that will resolve all the Eulerian flow variables corresponds
to the following coordinates in the three physical dimensions:

xi = (i °1)
Lx

Nx °1
i = 1, ..., Nx , (3.22a)

y j = ( j °1)
Ly

Ny °1
j = 1, ..., Ny , (3.22b)

zk = cos(
k °1

Nz °1
º)k = 1, ..., Nz , (3.22c)

where Lx ,Ly are the domain lengths in the stream-wise and span-wise directions,
whereas the channel always extends from -1 to +1 in z, and Nx , Ny , Nz represent the
number of total points for the grid in each dimension.

A generic velocity signal u in physical space will be represented in modal space as
the result of consecutive Fourier and Chebyshev transforms:

u(x, y, z, t ) =
Nx /2X

i=0

Ny /2X

j=°Ny /2+1

Nz°1X

k=0
û

°
kx,i ,ky, j ,k, t

¢
Tk (z)e ∂(kx,i x+ky, j ,y) (3.23)
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Figure 3.6. – Visualization of the Eulerian grid over half of the channel height at shear
Reynolds number Reø = 150. The grid is made of nx = 1024£ny = 512£
nz = 257 grid-points, which are located at the intersection between black
lines. The grid spacing in the stream-wise x and span-wise y coordinates
is uniform, and is simply determined by the chosen number of points
(d x+ = L+

x /nx = d y+ = L+
y /ny ), being L+

x = 4ºReø = 2£L+
y . Chebyshev

polynomials, calculated according to equation 3.22c, allow to obtain a
much finer grid discretization close to the wall, as we can appreciate from
the small insert.

where the Fourier coefficient û
°
kx,i ,ky, j ,k, t

¢
is depending on the Fourier wave-numbers

kx,i and ky, j and on the k ° th Chebyshev polynomial Tk (z)e ∂(kx,i x+ky, j ,y).
The x and y Fourier wave-numbers are then given by:

kx,i =
2º(i °1)

Lx
i = 1, . . . , Nx/2+1 (3.24a)

ky, j =

8
<
:

2º( j°1)º
Ly

j = 1, . . . , Ny /2+1

°2º(Ny° j+1)
Ly

j = Ny /2+2, . . . , Ny
. (3.24b)

It follows that derivatives in these two homogeneous directions can be immediatly
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computed:
@ f (x, y, z, t )

@x
=

Nx /2X

i=0

Ny /2X

j=°Ny /2+1

Nz°1X

k=0
∂kx,i f̂ Tk e ∂(kx,i x+ky, j y). (3.25)

Instead, Chebyshev polynomials, and their derivatives, are obtained recursively:

T0(z) = 1 @T0(z)
@z = 0

T1(z) = z @T1(z)
@z = 1

...
...

Tn(z) = 2zTn°1(z)°Tn°2(z) @Tn (z)
@z = @Tn°2(z)

@z +2nTn°1.

(3.26)

The time-advancement is performed by an Implicit-Explicit scheme: the source
term S is integrated explicitly by an Adam-Bashforth scheme (explicit Euler for the
first time-step of any simulation), while the other terms are calculated according to
the implicit Cranck-Nicolson, second order scheme. At the generic advancement in
time, the discretized system of equations becomes:

r ·un+1 = 0, (3.27a)

!n+1 ·nz =
°
r£un+1¢ ·nz , (3.27b)

r2un+1 °r2un

¢t
·nz =

"
3
£
r2Sn °r (r ·Sn)

§
°

£
r2Sn°1 °r

°
r ·Sn°1¢§

2
+

+ 1
Reø

r4un+1 +r4un

2

∏
·nz ,

(3.27c)

!n+1 °!n

¢t
·nz =

µ
3r£Sn °r£Sn°1

2
+ 1

Reø

r2!n+1 +r2!n

2

∂
·nz . (3.27d)

Without going into further detail, this system is solved in modal space for the generic
wave-numbers, given in equation 3.23, by means of the Chebyshev-Tau method. The
method is applied to the fourth and second order equations for the velocity and the
vorticity, given in equations 3.27. This reduces the problem to the solution of two
Helmholtz-like equations, having split the fourth order velocity equation into two
second order ones by means of an auxiliary variable. Eventually, this reduces to the
application of the Gauss-Jordan elimination algorithm and a forward substitution
method that allow the calculation of the vorticity vector and the wall-normal velocity.
Finally, the stream-wise and span-wise velocity components are recovered through
the continuity equation.

3.3.3. Boundary conditions

The Fourier discretization of the homogeneous directions imposes periodic bound-
ary conditions for the x and y coordinates. The presence of the solid walls along the
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wall-normal coordinate z requires a no-slip boundary conditions for this direction:

u(x, y, z =±1) = [uw , vw ,0] and
@!

@z
|z=±1 = 0 . (3.28)

By continuity, this implies a zero wall-normal component of the vorticity at the solid
boundaries (!z(x, y, z =±1) = 0).

3.3.4. The fibres

The final system of equations that is going to be solved for each rod-element of a
fibre is the following:

vt+1
n = Kt

n + Q̄t
n
°
Xt

n+1 °Xt
n
¢

, (3.29a)

!t+1
n = Rt

n + ¯̄St
n

˜̄Ot
n
°
Xt

n+1 +Xt
n
¢

, (3.29b)

vt+1
n °vt+1

n+1 +∏a
°
!t+1

n £ot
n +!t+1

n+1 £ot
n+1

¢
= 0, (3.29c)

pt+1
n = pt

n +¢tvt+1
n , (3.29d)

ot+1
n = ot

n +°¢tot
r £!t+1

r , (3.29e)

where:

Ōt
n =

2
64

0 °ot
z;r ot

y ;r
ot

z;r 0 °ot
x;r

°ot
y ;r ot

x;r 0

3
75 =) ot

n £a = ˜̄Ot
na 8a

Kt
n =

µ
¯̄±+ ¢t

mp

¯̄At
n

∂°1 µ
vt

n + ¢t
mp

¯̄At
nut

n

∂

¯̄Qt
n =

µ
¯̄±+ ¢t

mp

¯̄At
n

∂°1

Rt
n =

h
J̄t

n +¢t
≥
˙̄Jt

n + ¯̄Ct
n

¥i°1 h
¯̄Jt

n!
t
n +¢t

≥
¯̄Ct

n≠
t
n +Ht

n +Yb,n
n+1 °Yb

n

¥i

¯̄St
n =∏a

h
¯̄Jt

n +¢t
≥
˙̄Jt

n + ¯̄Ct
n

¥i°1
.

In all of these equations, the equivalence of shape between fibres and ellipsoidal
particles is accounted for according to the semi-empirical correlation of Cox, 1971. As
we have already seen in the experimental part of this manuscript, a fibre corresponds
to a shorter ellipsoid if the diameter is the same. Here, instead, we invert Cox’s formula
to calculate the equivalent radius of our rod elements according to the following
equation:

a = ael l ·1.24/
p

l n(r ). (3.31)

In this way, Cox’s equivalence is enforced at imposed aspect ratio.
The expressions for the hydrodynamic drag force, hydrodynamic torque follow the
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formulation of S. Kim and Karrila, 2013:

FD
n = ¯̄An(un °vn) = 6ºr aµ[Y A

n
¯̄±+ (X A

n °Y A
n )onoT

n ](un °vn); (3.32a)

TD
n = ¯̄Cn(≠n °!n) = 8ºr 3a3µ[Y C

n
¯̄±+ (X C

n °Y C
n )onoT

n ](≠n °!n); (3.32b)

HD
n =°8ºr 3a3µY H

n ( ¯̄≤on) : ( ¯̇̄∞non), (3.32c)

where ¯̄A is the resistance drag force tensor, ¯̄C is the resistance drag torque tensor and
¯̄

HD
n is the resistance drag torque tensor. In equation 3.32c:

( ¯̄≤on) : ( ¯̇̄∞non) = ≤i j k (∞̇ j l ;no j ;n)o j ;n , (3.33)

where the gradient tensor is:

¯̇̄∞n = 1
2

(
@ui

@x j
+
@u j

@xi
), (3.34)

and ¯̄≤ is the Levi-Civita third rank tensor.
Following the principles of the Lagrangian Particle Tracking, the flow velocity un ,

the flow velocity gradient dun/d xi and the flow vorticity ≠n at the nth particle’s
position are calculated by fourth-order polynomial interpolation over the Eulerian
grid representing the flow.

Finally, the coefficients X A
n ,Y A

n , X C
n ,Y C

n and Y H
n are defined in function of the pa-

rameter ec,n =
q

(r 2a2 °a2
el )/(r 2a2) and correspond to the following expressions:

X A
n =

8e3
c,n

°6ec,n +3(1+e2
c,n) log 1+ec,n

1°ec,n

(3.35a)

Y A
n =

16e3
c,n

6ec,n +3(e3
c,n °1)log 1+ec,n

1°ec,n

(3.35b)

X C
n =

4e3
c,n(1°e2

c,n)

6ec,n °3(1°e2
c,n) log 1+ec,n

1°ec,n

(3.35c)

Y A
n =

4e3
c,n(2°e2

c,n)

°6ec,n °3(1+e2
c,n) log 1+ec,n

1°ec,n

(3.35d)

Y H
n =

4e5
c,n

°6ec,n +3(1+e2
c,n) log 1+ec,n

1°ec,n

(3.35e)

As previously mentioned, the equations for the carried phase are made dimensionless
in terms of wall units. The final system of equations 3.29a:3.29e will now becom:
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The constraint system is solved as a tridiagonal block-matrix one. Details about this
method can be found in Dotto, Soldati, et al., 2020 and are not repeated for the sake of
brevity. Equations 3.7 and the system 3.6 combine together to determine a tridiagonal
block-matrix system. Its resolution requires the following steps, in order:

— an interpolation of the flow velocities and velocity gradients at the rod’s position
to determine the force and torques exerted by the fluid on the point-wise object,
calculated by 4-th order polynomials;

— the resolution of the tridiagonal block-matrix system to determine the constraint
forces X on each rod element of all the chains;

— time integration of the rod’s kinematic equations according to a second order
Adam-Bashford scheme to determine its linear position and orientation;

— verification of the quality of the time integration with special regards towards
the accumulation of numerical error between constrained rod elements and
correction.

The last step of the list is particularly important and comes from the discussion of
Lindström and Uesaka, 2007 and Delmotte et al., 2015, and it is performed by fixing
the position of the central rod element of the chain and translating around it the
other rods, in order to reproduce the exact fiber length and avoid the accumulation of
numerical errors. Each chain of rods must then meet a 1% maximum constraint error,
which distinguishes between valid and failed solutions. This is why a sub-stepping
procedure is introduced, in order to improve the stability of the model, particularly
critical when simulating large values of Young’s modulus EY or short rod elements.

Beyond stability issues, the time integration of the fibres is dominated by their
shape and their density ratio with regard to the fluid. These two physical quantities
are combined to determine the particle’s response time, given here for a single rod
(Dotto, Soldati, et al., 2020):

øp,n =
2a2Ωp r

9∫
·

log
≥
r +

p
r 2 °1

¥

p
r 2 °1

, (3.37)

which will be the control parameter that determines the inertial nature of the simu-
lated particles. Particles characterized by a low response time will behave as tracers in
the flow, whereas for high values of this parameter rods will express a more ballistic
behaviour. Note that no gravity is taken into account for these simulations so that the
inertial behaviour of the particles will be purely hydrodynamic. Finally, while particles
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interact with each other in a purely hydrodynamic way, particle-wall impacts are mod-
elled as purely elastic collisions with a restitution coefficient equal to one. Therefore,
when a fibre meets a solid boundary, it will be solidly bounced back according to the
position of the rod element that is closest to the wall.

3.4. Implementation

3.4.1. A novel parallelization scheme for the solution of

non-local Lagrangian tridiagonal block-matrix systems

on an Eulerian grid.

As we have seen, the ERPP method naturally requires high-resolution grids, which
must discretize a quasi-viscous length- scale in order to precisely capture the distur-
bance of the particles on the flow. For this reason, an implementation in a modern pro-
gramming language is vital as well as making our solver suitable for High-Performance
Computing. That is why the surf_gpu application is written in Fortran 90 while its
core, the DNS+ERPP solver, is ported to CUDA C to run on Nvidia GPUs. Fourier and
Chebyshev are performed relying on the cuFFT library for the solution, while the rest
of the kernels are written in-house.

The main advantage of this operation is an exceptional performance of the solver,
which can leverage modern Graphic Processing Units for accelerated simulations, as
reported in figure 3.7 where the elapsed time per time-step of for the unladen flow
calculations is displayed. The main disadvantage is determined by the difficulty of the
software development and the lack of portability of CUDA C, which is compatible with
the Nvidia GPUs only. Solutions to this issue would be represented by more generic
compiler directives such as OpenACC and OpenMP.

Nevertheless, during the preparation of this manuscript we embraced the challenge
and ported to CUDA C all the subroutines of the DNS+ERPP solver, as well as part of
the LPT, the most challenging kernels being the non-homogeneous derivatives, the
Gauss-Jordan elimination method and the fourth-order polynomial interpolation. As
an example, the Gauss-Jordan CUDA C implementation is reported in Appendix B.

Instead, the rest of the LPT is kept in Fortran 90, given the complexity of the em-
bedded communication phases, but multi-threading is enabled through OpenMP
directives.

Essentially, the parallelization strategy is determined to ease the computational
load of the DNS+ERPP solver and is based on a 1D domain decomposition to divide
the workload among all the MPI tasks, each associated with one GPU. Asynchronous
collective MPI AllToAll calls are deployed. The described parallelization scheme is
maintained when rod elements are interfacing with the fluid by communicating flow
halos for the interpolation of flow variables at the particle’s positions and particle halos
for the two-way coupling. In doing so, rods will be travelling through the distributed
memory of the GPUs according to their physical position within the flow.

Instead, given the unpredictability of the memory accesses along each chain of
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rods, we find it convenient to create a second copy of each rod, statically placed at
the same distributed memory unit of all the elements of a given chain. These static
addresses are chosen by balancing the load among all involved CPUs. Doing so, all
the information is locally available for the resolution of the constraint equations that
keep the chains of rods together, if two communication phases are considered, before
and after these calculations, to update the sampled flow information and distribute
the positions of the newly integrated rods. These communication steps are efficiently
performed by Asynchronous MPI Send/Recv calls, having previously buffered the
data, and are activated on-demand, so that the minimum number of messages is
sent, as two MPI tasks will exchange data only if they share a chain of rods. Finally,
I/O operations are performed using the MPI I/O subroutines from the MPI library,
especially convenient when dealing with large files such as our flow and particle fields.

This computational approach is determined by the unique constraints of the stud-
ied problem and therefore required the development of an original proprietary code.
The result is a scalable application, suitable for execution on large distributed com-
putational architectures. Moreover, to the best of our knowledge, this is the first time
that a similar algorithm is proposed for fibre-laden turbulent flows. The application
has been tested and optimized on different Tier-0 GPU-accelerated clusters (e.g.,
Marconi100, Juwels-Booster, Piz Daint).

A measure of the quality of the proposed parallelization scheme is given by its
scalability. By scalability, we indicate the ability of a system to handle an increasing
quantity of computations by spawning them on a wider amount of resources. A
strong scaling test is performed when the problem size is fixed and the number of
computational resources systematically increased. This will return information about
the parallelization overhead, intended as the time spent to synchronize distributed
computing units, and its ratio with the time spent for calculations. Amdahl’s law
states that the theoretical speedup Sth of any application is limited by the fraction p of
the execution time that can be parallelized divided by the number of computational
resources s plus the fraction of the execution time 1°p that cannot be executed in
parallel (Gustafson, 1988):

Sth = 1

(1°p)+ p
s

. (3.38)

Despite the non-ideal behaviour, the strong scaling test, reported in panel (a) of figure
3.7, shows the scalability and feasibility of our approach for the parallel resolution
of such a demanding and constrained computational set-up. It is clearly that the
communication phases are more and more important in determining the elapsed
time per time-step as the number of GPUs is increased. By comparing the unladen
solver performance (blue diamonds) and the fibre-laden one, we also appreciate the
drawback determined by the extra computational load and the parallelisation scheme
produced by the carried phase.

On the other hand, a weak scaling test is performed when both the problem size and
the number of computational resources are increased to keep a constant workload
per processor. An application showing good weak scaling will prefer communications
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Figure 3.7. – Scalability tests of the flow solver (blue diamonds) and the fibre-laden
flow solver (pink squares) on the Tier-0 PRACE system Marconi 100. Ideal
behaviours are displayed as black dashed lines. Panels: (a) strong scaling
test against the number of dedicated GPUs. Data were collected for
a turbulent channel flow at shear Reynolds Reø = 600 discretized on
2048£1024£1025 grid points and laden with 20 million rods elements.
(b) weak scaling test against the number of dedicated GPUs. Data were
collected starting from a turbulent channel flow at shear Reynolds Reø =
150 discretized on 512£256£257 grid points and laden with 312500 rod
elements. Both Eulerian and Lagrangian computational loads were then
multiplied by a factor of 8 at each increment of computational resources.
Elapsed times per time-step are also reported.

with the nearest neighbouring computational units in the topology of the system. This
allows to solve smaller and larger computational problems in the same time, adjusting
the number of computational resources accordingly. The weak scaling test, displayed
in panel (b) of figure 3.7 highlights again the impact of including the fibres in our
calculations, as the efficiency (pink squares) drops to 0.4 for the largest simulation.
Note that already a pseudo-spectral algorithm is highly non-local, therefore even the
unladen simulations (blue diamonds) show a drop of efficiency down to ª 0.6.

These two tests allow us to conclude that the surf_gpu application, already in the
unladen case (blue diamonds) but especially for the laden simulations (pink squares),
is strongly limited by the bandwidth of the communication network, crucial for the
synchronization of the non-local memory addresses that represent the flow slabs as
well as each rod element of the long and slender fibres. Nevertheless, this original
solution is the only feasible approach to unprecedented simulations of fibre-laden
turbulent flows.
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3.5. Dimensional analysis

The suspension of fibres in a turbulent channel flow is characterized by nine quanti-
ties:

— the dynamic viscosity of the fluid µ
£
kg m°1 s°1§;

— the density of the fluid Ω
£
kg m°3§;

— the size of the turbulent channel flow h [m].
— the shear velocity of the flow uø

£
m s°1§;

— the density of the fibres Ωp
£
kg m°3§;

— the length of the fibres 2` [m];
— the diameter of the fibres 2a [m];
— the Young’s modulus of the fibres 2a

£
kg m°1 s°2§;

— the number of dispersed fibres Np [°].
In the previous sections on this chapter we have already introduced the two dimen-

sionless categories that are typically deployed in wall turbulence: the outer units and
the wall units. Outer units, denoted using the superscript -, are obtained making phys-
ical units dimensionless with the typical scales of the flow, i.e., the channel half-height
h and the shear velocity uø:

x° = x
h

, u° = u
uø

, t° = uø

h
t .

Wall units, denoted using the superscript+, rely on typical turbulence quantities to
make physical quantities dimensionless, i.e., the shear velocity uø and the kinematic
viscosity ∫:

x+ = xuø

∫
, u+ = u

uø
, t+ =

tu2
ø

∫
. (3.39)

Typically, particle-related quantities are made dimensionless with regards to the wall
units.

Following the ¶ theorem (Buckingham, 1914), we find 9° 3 = 6 dimensionless
numbers that describe the physical system:

± the shear Reynolds number Reø = uøh
∫ , which describes the ratio of turbulent

scales that are considered in a given turbulent channel flow. In our simulations
we will be limited to low values of this number, imposing Reø 2 [150;300];

± the volume fraction of the fibres, ©, which measures the ratio between the total
volume of the dispersed particles and that of the turbulent channel flow, fixed
to (2º 2h £º 2h £2h). In our simulations, we will consider dilute suspensions,
exploring the range © 2

£
10°5;10°3§. Note that the volume fraction can be mul-

tiplied by the density ratio Ω+ = Ωp /Ω to calculate the mass loading M of the
suspension;

± the aspect ratio of the fibres rtot = r ·nr od s . This dimensionless number quanti-
fies the slenderness of the chains of rods, calculated as the aspect ratio of one
element times the number of elements in the chain of rods. In our simulations
we typically consider rod elements of aspect ratio r = 5, which are combined to
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determine fibres in the range rtot 2 [50;200]. In addition, some calculations are
performed with extremely slender chains with rtot = 1000 (r = 50);

± the length of the fibres L+ = L·uø
∫ , that measures the ratio between the length of

the particle and the viscous scale of the turbulent flow. In our simulations we
will consider long fibres, fixing L+ 2 [17;71];

± the Stokes number of the fibres

St+f i br e =
øp,n

ø f
= 2a+2

9

Ωp

Ω
· rtot ·

log
≥
rtot +

q
r 2

tot °1
¥

q
r 2

tot °1
.

This dimensionless number measures the ratio between the characteristic times
of the flow and is calculated for a fibre in its fully stretched configuration. A
low value of the Stokes number describes fibres which will follow the stream-
lines of the flow, acting like a tracer. Instead, a high value of the Stokes number
corresponds to an inertial particle, which will develop a ballistic behaviour within
the flow. In our simulations we will look at fibres Stokes number in the range
St+f i br e 2 [0.1;11]. Note that inertial effects are modelled only for the particles’
linear dynamics, ignoring the torque determined by flow and particle inertia
(Einarsson, Candelier, et al., 2015b; Dabade et al., 2016);

± the viscous-elasto number (Du Roure et al., 2019):

B=
8ºr 4

tot ·
°
Ωu2

ø

¢

EY ·º/4
=

32 · r 4
tot

E+
Y

.

This number can be looked at as the typical ratio between the time-scale of
the fibres’ bending stiffness and that of the viscous scale of turbulence, so that
at small B the fibres are very rigid whereas at large B the fibres become more
flexible and might bend within the turbulence. The rod-chain model struggles
to simulate rigid fibres, as a high value of the fibres Young’s modulus, i.e., Bª 0,
makes the calculations unstable and error-prone even when a sub-stepping
procedure is deployed. Therefore, in our simulations we choose to consider
completely stiff-less fibres and fibres with a finite but small bending stiffness. The
corresponding values for the Young’s modulus are E+

Y = 0 and E+
Y = 104, which

determine respectively B=1 for the first kind of chains, which are completely
enslaved to turbulence, and B= [20000,320000,5120000] for fibres with aspect
ratio r = 50,100,200, which are still remarkably flexible for the considered flows.
Nevertheless, we will classify the B=1 as stiff-less, whereas those with a finite
value of the Young’s modulus will be called stiff.
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Figure 3.8. – Validation of the GPU-accelerated Turbulent Channel Flow DNS solver
"surf_ gpu.exe" (coloured circles, shear Reynolds number Reø = 750))
against the database of the University of Tokyo (black dashed lines, shear
Reynolds number Reø = 600, (Iwamoto et al., 2002)). Panels: (a) dimen-
sionless stream-wise mean velocity profile against the wall-normal di-
mensionless coordinate z+. (b) Root Mean Squared stream-wise (blue),
span-wise (pink) and wall-normal (green) velocity fluctuations against
the wall-normal dimensionless coordinate z+.

3.6. Validation

3.6.1. Unladen flow

The GPU-accelerated flow solver is validated against the database of the University
of Tokyo for the same geometry at a high shear Reynolds number Reø = 720 (Iwamoto
et al., 2002). Despite we will focus on fibre-laden turbulent channel flows at lower
Reø, we look here for a robust test of the implemented flow-solver. Calculations are
performed from an initial laminar velocity profile, perturbed by a sine function with
random amplitude until a linear total axial momentum against the wall-normal coor-
dinate is observed. Then, statistics are sampled every 18t+, over an averaging window
of approximately 2000t+. As displayed in figure 3.8 for the mean velocity profile (panel
(a)) and the turbulence intensities (panel (b)), good agreement is obtained, despite
the slightly different shear Reynolds number.
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3.6.2. Particle-laden turbulent channel flow

The current implementation of the ERPP method is validated against the work of
Battista et al., 2019. These authors present the axial momentum balance for a particle-
laden turbulent pipe flow at shear Reynolds number Reø = 180, where particles are
approximated as point-wise spheres modelled taking into account the Stokes Drag
force with the Faxen correction term

dvp

d t
= 1

Stp

√
up +

d 2
p

24
r2up °vp

!
. (3.40)

In figure 3.9 the axial momentum balance for our implementation of the ERPP method
is presented against their result. This is obtained by considering a minimal flow
configuration, where the domain size was set to (Lx ,Ly ,Lz) = (2ºh,2ºh,2h). Then,
the grid is made of (Nx , Ny , Nz) = (256,256,257) points, giving a maximum ratio of
d z+max
æR

+
= 1.2 for the wall-normal coordinate and of d x+=d y+

æR

+
= 2.45.

As no detail about the effective regularization scale is given by Battista et al., 2019,
we cannot compare the quality of the two simulations, despite we expect our study
to be slightly more approximate, as they deploy a more refined grid for a practically
similar flow volume. These considerations, together with the fact that we are indeed
considering two analogous but yet different geometries, could explain the moderate
differences in the intensity of the extra particle stresses displayed in figure 3.9, whereas
there is still a good qualitative and quantitative agreement between the reference and
our implementation to consider our implementation valid.

3.6.3. Jeffery orbits

The fibre solver is validated against the classical test case for axisymmetrical par-
ticles suspended in viscous shear flow. As we have seen, these particles will rotate
according to the theory of Jeffery, 1922, enforcing an equivalence of shape between
ellipsoids and cylinders so that fibres will always rotate like prolate ellipsoids with a
lower particle aspect ratio r . Nevertheless, previous numerical studies have shown
the importance of the local fluid acceleration determined by the particles in order to
recover the correct period of rotation for the simulated fibres (Lindström and Uesaka,
2007; Delmotte et al., 2015).

Our results are reported in figure 3.10, where we look at the time evolution of the
orientation of a fibre with aspect ratio r = 15 suspended in a viscous shear flow, given
by the azimuthal angle ¡. We see that the one-way coupled calculation (blue squares)
recovers the qualitative behaviour, despite the rotation being clearly much slower than
expected (blue dashed line). Once the ERPP is activated, a coarser grid will determine a
delayed time-scale ≤ that is much larger than the time-step of the simulation, resulting
in a slightly lower overestimation of the period of the Jeffery orbits for this fibre (green
circles). Finally, a more refined grid determines a much shorter regularisation time
scale, allowing a perfect match between the simulated fibre (orange diamonds) and
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Figure 3.9. – Axial momentum balance for a turbulent channel flow at shear Reynolds
Reø = 180 against the result of Battista et al., 2019 in a turbulent pipe
flow at Reø = 180: particles have the same size (St+p = 80) and density
ratio with the fluid (Ω+ = 180), and the mass loading is similar, fixed
at approximately ¡m ' 0.4. Note that in our work we do not consider
the Faxen correction term, therefore relying only on the Stokes Drag
force to couple the two phases. øvi sc identifies the viscous shear stress,
øtur b = u0w 0 is the turbulent Reynolds stress and øp is the particles extra
stress, calculated as a cumulative integral of the axial force F2w,x over the
wall-normal coordinate z. In order to obtain a statistically steady state
for the numerical simulations, the sum of these three terms must be a
linear function of the wall-normal coordinate, as highlighted by the øtot

term.

the experimentally validated theory.
Therefore, the two-way coupling is fundamental to obtaining a physically validated

numerical simulation of a fibre suspended in a viscous shear flow, where the particle-
induced flow acceleration clearly plays a key role. The ERPP two-way coupling method
smoothly emulates the experiments, at the price of a more refined computational
grid. Moreover, it allows us to bridge between the experimental and numerical investi-
gations that were developed during the preparation of this manuscript, connecting
simple experiments on the rotation of axisymmetrical particles in the viscous regime
to complex numerical simulations of fibre-laden turbulence. This is a fundamental
aspect when simulating cylindrical shapes, as we have discussed in Section 2.4.2
when comparing the shape equivalence between fibres and ellipsoids, and it will have
deep consequences for their dynamics as well as for turbulence modulation and drag
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Figure 3.10. – Time evolution of the azimuthal angle¡ of a numerically simulated rigid
fibre suspended in a viscous shear flow. Here, the fibre is assembled
as a chain of five rods of aspect ratio r = 3 so that the total aspect ratio
is rtot = 15, and bending is avoided by imposing a sufficient value for
the Young’s modulus. The dotted curves represent the obtained Jeffery
orbits, calculated for progressively refined grids, while the dashed line is
the effective analytical solution, obtained from Jeffery’s theory (Jeffery,
1922) through the equivalence of shape of Cox, 1971. Note that, for
the considered total aspect ratio rtot = 15, the equivalence of shape of
Harris and Pittman, 1975 would return the same result.

reduction (Z. Wang et al., 2021).
A comment is in order about the criterion behind the choice of the regularisation

time-scale ≤+, which gives the best results when it is a small multiple of the time-step
of the simulation and the particle response time. Clearly, it will not be possible to
maintain the same accuracy when scaling up our calculations to the turbulent channel
flow geometry, as the computational load would become unsustainable even for the
modern High-Performance Computing infrastructures. Nevertheless, the analysis of
the rod’s response time, given by equation 3.37, shows a clear proportionality with the
density and the size of the particle. Therefore, we speculate that inertial effects due to
the particles’ density will mitigate the inaccuracies due to the longer regularisation
time-scales ≤+ estimated in our turbulent simulations.
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3.7. Summary of the Simulations

We now present the results of a numerical investigation into the dynamics of fibres
in turbulence at imposed shear Reynolds number Reø = 300. The closed turbulent
channel flow has dimensions Lx £Ly £Lz = 4ºh £ 2ºh £ 2h, which correspond to
L+

x £L+
y £L+

z = 3770£1885£600 wall units. Simulations are performed in the two-way
coupling regime, as the Exact Regularized Point Particle method is deployed to emulate
the boundary conditions imposed by the point-wise rods on the flow. Therefore,
we choose to resolve the computational domain on a grid made of Nx £Ny £Nz =
1024£512£513 points, much finer than those normally deployed for calculations
in the one-way coupling regime. This corresponds to a grid resolution of (d x+ =
d+

y ª 3.7;d+
z,max ª 1.8), where the Chebychev polynomials allow for a much finely

discretization near the walls. Therefore, we scale the two-way coupling regularization
scale with regard to the coarser region of the grid, i.e. the bulk of the flow, setting the
regularization scale to ≤+R =æ+

R
2/2 ª 1.82/2 = 1.62.

The time-step for the advancement of the flow equations in time is ±+t = 0.015 ª
ø+k,w /150, where is the smallest relevant time-scale of the flow, i.e. the Kolmogorov’s
time-scale at the wall. The convergence condition is verified by verifying that the
Courant number of the calculations is kept below 0.4 at all times. A comment is in order
about the delay imposed by the ERPP two-way coupling method, which corresponds
to ≤+/d t+ = 108 time-steps during which the particle disturbance information must be
stored before being diffused to the computational grid. This choice is a compromise
between the quality and the feasibility of our numerical simulations.

The dispersed fibres are built constraining together rod-like elements with fixed
geometry, their diameter 2a+ = 0.36 wall units and their particle aspect ratio r = 5, so
that their length 2`+ = 1.79 will be comparable to the smallest turbulent length-scale.
This corresponds to a Stokes number of the rod equal to St+r od = 0.05 which, combined
with an imposed density ratio Ω+ = 3, determines particles with low inertia and three
times the density of the fluid, classified as tracer-like in the following pages. From
the described rod element, chains are created with three different total lengths and
aspect ratios, resulting in the total fibre Stokes numbers reported in table 3.1. For each
different fibre length, a zero and a finite (104) value of Young’s modulus are considered,
to explore the influence of the bending stiffness. The influence of particle inertia is
also studied. This is done by selecting the intermediate fibres (L+ = 35.81, r = 100),
both flexible and stiff, and increasing their rods’ Stokes number and density ratio by
two orders of magnitude (St+r od = 5,Ω+ = 300). The resulting inertial particles will have
total Stokes number St+f i br e = 11 and produce a 100 times higher mass loading, as
reported in the last two lines of table 3.1.

The rod motion equations are advanced in time at the same time-step as for the fluid
but a one-tenth sub-stepping procedure is enabled, in order to maintain the error on
the constraints below 1% as described at the end of Section 3.3.4. A final insight into
the quality of the two-way coupling is given when we compare the characteristic fibre
time-scale, given by their Stokes number St+f i br e , to the regularization time-scale ≤+R .
Despite the computational effort, it is clear that the two-way coupling time-scale (≤+R =
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run St f i br e (Ω+) E+
Y rtot L+ Vf r ac M f r ac %

A 0.1 (3) 0 50 17.91 0.0001 0.032
B 0.1 (3) 104 50 17.91 0.0001 0.032
C 0.11 (3) 0 100 35.81 0.0001 0.032
D 0.11 (3) 104 100 35.81 0.0001 0.032
E 0.13 (3) 0 200 71.62 0.0001 0.032
F 0.13 (3) 104 200 71.62 0.0001 0.032

G 11 (300) 0 100 35.81 0.0001 3.2
H 11 (300) 104 100 35.81 0.0001 3.2

Table 3.1. – Report of the considered simulations with tracer-like fibres at different
total particle lengths, showing the given values for the fibres’ Stokes num-
ber St+f i br e and the corresponding density ratio Ω+, the Young’s modulus
of the chains E+

Y , the fibre aspect ratio rtot , the total fibre’s length L+, the
volume fraction and mass loading. The number of rods is fixed to 2.5 mil-
lions. Quantities are made dimensionless and presented in wall units. The
Stokes number of each fibre is calculated in its fully stretched equilibrium
configuration.

1.62) is small enough to correctly take into account the flow acceleration determined
by the inertial rods only (St+f i br e = 11). Anyway, the imposed regularization time-scale
is lower than the Kolmogorov time-scale at the wall (≤+R = 1.62 < ø+k,w = 2.24), allowing
us to conclude that the interaction between fibres and turbulence will be accurately
modelled even for the tracer-like chains of rods.

All the simulations start from a fully-developed turbulent flow condition. Fibres
are injected into the flow as fully stretched and randomly dispersed, with initial
orientation along the stream-wise direction. After injection, fibres evolve in time
under the action of the turbulent flow and eventually forget about the initial condition
imposed on their conformation, position, orientation and velocity. Then, statistics are
collected every 15 t+ over a time span of 1500 t+, which corresponds to four times the
eddy turnover time of the largest structures of the turbulent channel flow.

Calculations are performed on 64 Nvidia Tesla V100 cards of Marconi 100, hosted by
CINECA (Italy). Thanks to the scalability properties of the computational solver, the
simulations require an elapsed time per time-step of approximately 750 milliseconds.

3.8. Results

3.8.1. Visualisation of the fibre-laden turbulent channel flow

We begin the discussion of our results by looking at the flow visualisations in figures
3.11 and 3.12, where stiff-less and stiff fibres at all lengths are displayed respectively.
In these figures, we consider a L+

x = 975£L+
y = 840 horizontal section of the turbulent

channel at a given time, where the stream-wise direction x+ increases from left to right
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and the span-wise direction y+ from bottom to top. The left panels show particles
whose centre of mass lies within 30 wall units from the walls, whereas the right panels
show those whose centre of mass lies within 30 wall units from the half-height of
the turbulent channel flow. Left panels display also the stream-wise velocity u on a
(x, y) plane at z+ = 10, whereas right panels consider the same section but at z+ = 300.
We obtain a qualitative description of the fibre-laden flows from these two images.
The characteristic velocity streaks are visible in the near-wall left panels, and at the
given mass load no remarkable modification of their structure is measurable, which
would be a typical sign of turbulence modulation (Z. Wang et al., 2021). On the other
hand, the right panels display the more isotropic structure of the bulk of the flow. The
real-scale rendering of the fibres allows us to appreciate the different particle lengths,
which increase by a factor of 2 between each line of panels from the top to the bottom
of the two figure. In general, fibres near the wall (left panels) prefer a flow-aligned
configuration, whereas the orientation of the chains in the bulk of the flow appears
more isotropic, The bending stiffness does not seem to play a role in the shortest
chains, which look straight in all the panels. Instead, intermediate and long stiff fibres
(panels (c), (d), (e) and (f) of figure 3.12) clearly appear more stretched than their
stiff-less twins (panels (c), (d), (e) and (f) of figure 3.11).

3.8.2. Characterisation of the dynamic behaviour of the fibres

The instantaneous visualisation of the fibre-laden turbulent channel flows in figures
3.11 and 3.12 already reveals some features of the particle behaviour. Anyway, this
description must be completed by considering the dynamic behaviour of the fibres.
Within this scope, we find it convenient to average among all the rods of each chain
and use the chain-averaged quantities to describe each fibre. Their position within
the turbulent channel flow is that of their centre of mass:

pcm =
PN

i=1 pi

N
, (3.41)

while their orientation is calculated as in Andrić et al., 2013:

n =
PN

i=1 oi

|PN
i=1 oi |

, (3.42)

and other averages will be calculated accordingly. Following in Byron et al., 2015, we
decompose the rotation rate of an axisymmetrical particle among its tumbling and
spinning components:

Tumbling rate = |ṅ| = |!£n| , (3.43a)

Spinning rate = |n ·!| . (3.43b)

The former measures the rotation of the fibres’ axis of symmetry, while the latter the
rotations around that axis. In a way, spinning and tumbling rates describe the particle
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Figure 3.11. – Instantaneous visualisation of the fibre-laden turbulent channel flow
for stiff-less (E+

Y = 0) fibres. Panels display fibres whose centre of mass
lies within 30 w.u. from the wall (left) or the half-height of the channel
(right). Panels are coloured according to the stream-wise velocity u
measured on a plane at z+ = 10 (left) or z+ = 300 (right). The size of each
panel is L+

x = 975£L+
y = 840 wall units. Panels: (a) and (b) short fibres

(L+
0 = 17.91); (c) and (d) intermediate fibres (L+

0 = 35.81); (e) and (f) long
fibres (L+

0 = 71.62).
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Figure 3.12. – Instantaneous visualisation of the fibre-laden turbulent channel flow
for stiff (E+

Y = 104) fibres. Panels display fibres whose centre of mass
lies within 30 w.u. from the wall (left) or the half-height of the channel
(right). Panels are coloured according to the stream-wise velocity u
measured on a plane at z+ = 10 (left) or z+ = 300 (right). The size of each
panel is L+

x = 975£L+
y = 840 wall units. Panels: (a) and (b) short fibres

(L+
0 = 17.91); (c) and (d) intermediate fibres (L+

0 = 35.81); (e) and (f) long
fibres (L+

0 = 71.62).
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Figure 3.13. – Time-evolution of some fibres within the turbulent channel flow, at
initial wall-normal position z+ = 5 (green), z+ = 100 (yellow) and
z+ = 300 (purple). For the selected particle, the wall-normal posi-
tion of the centre of mass, the stream-wise component of the parti-
cle orientation vector, the module of the tumbling rate vector and the
normalized effective end-to-end distance are displayed from top to
bottom of each column. Averages are calculated on the whole chain
of rods. Columns: (a) St+f i br e = 0.11,E+

Y = 0,L+
0 = 35.81,r = 100; (b)

St+f i br e = 0.11,E+
Y = 104,L+

0 = 35.81,r = 100.

orientation within the local directions of strain and vorticity. Finally, we define the
fibres’ effective end-to-end distance as the module of the vector difference between
the two free extremities of the chain:

Le =
L+

L+
0
= pn +on ·`° (p1 °o1 ·`)

L+
0

. (3.44)

This observable describes, for values ∑ 1, the effective length that fibres adopt while
being deformed by the flow.

We are finally able to look at the time-evolution of some meaningful fibres in fig-
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ure 3.13, where the wall-normal position of the centre of mass z+
cm , its alignment

with the flow direction nx = n ·1,0,0, the module of the tumbling rate |ṅ| and the
normalized effective end-to-end distance L+/L+

0 are plotted from top to bottom of
the two columns. Stiff-less (column (a)) and stiff (column (b)) tracer-like chains are
considered, being L+

0 = 35.81 their stretched length and r = 100 their particle aspect
ratio. From the first row of panels, we see that fibres will experience different flow
conditions along the observation window, as they are either pushed towards or lifted
from the solid boundaries. Therefore, the particle orientation in the flow does not
correspond anymore to a periodic dynamical behaviour, such as was observed for
axisymmetrical particles suspended in a viscous shear flow in the experimental part
of this manuscript. As shown in the second row of panels, particles enjoy flow-aligned
configurations only for brief times, being constantly reoriented by the action of eddies
of proportional size (Shin and Koch, 2005). In any case, stiff and stiff-less fibres in
the bulk seem more relaxed (purple lines), whereas these objects experience more
frequent re-orientations as they get closer to the walls (green and yellow lines).

This is reflected in the third row of panels, where the tumbling rate is displayed
against time. At first glance, it is clear that fibres near the walls experience stronger
tumbling than those in the bulk of the flow, which reorient more softly. If one looks
carefully, there is a correspondence between the tumbling rate events and the varia-
tions of particle orientation displayed in the second row. Finally, the analysis of the
visco-elastic number B in Section 3.5 indicated that even the stiff fibres (E+

Y = 104) fall
in the flexible regime. This is confirmed by looking at the effective end-to-end distance
of the fibres, displayed in the fourth row of panels of figure 3.13. Comparing columns
(a) and (b), we appreciate the influence of the finite bending stiffness (column (b)),
which keeps fibres in the bulk remarkably stretched (purple line). Instead, stiff tracer
fibres will experience rapid deformation events as they move closer to the walls (yellow
and green lines). On the other hand, stiff-less chains of rods are deformed no matter
their wall-normal position (columns (a)). In general, events in the bulk (purple lines)
manifest themselves less frequently than those near the walls (yellow and green lines).
Anyhow, turbulence eventually straightens the buckled chains, as the lowest effective
lengths appear for relatively short times.

Forgacs and Mason, 1959 studied experimentally the Jeffery orbits of flexible fibres.
These authors observed strong buckling deformations of their particles when rotating
out of the flow-aligned stretched configuration into the compressing quadrant of a
viscous shear flow. Interestingly, even our long fibres (L+ = 35.808) suspended in
turbulence exhibit similar behaviour, clearly displayed in column (b) by stiff tracer
particles, where the correspondence between strong tumbling rate values and low
effective particle lengths is appreciable. This physical mechanism was also observed
for short sub-Kolmogorov flexible rods in HIT (Allende et al., 2018). Motivated by this
analogy, in the following pages we will build a more quantitative discussion to try
and understand the deformation of fibres in wall turbulence. This will be done by
looking into their orientation, tumbling rate and effective shape before focusing on
the dynamics of the deformations.
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3.8.3. Orientation of fibres in wall turbulence

Figures 3.11 and 3.12 provided a nice perspective over the preferential orientation
of fibres within the turbulent channel flow, highlighting the differences between the
near-wall and the bulk regions. Moreover, having looked at figure 3.13 it is clear
that the periodic rotations between flow-aligned configurations typical of the Jeffery
orbits are definitely lost when fibres are suspended in turbulence. One could still
obtain some insight into the orientation of slender fibres by looking at the probability
distribution function of the components of the rods’ orientation vector o in figure
3.14. We do so by splitting our particles according to the wall-normal position of
their centre of mass, considering again either two near-wall regions of thickness 30
wall units (p+

z,cm < 30 or p+
z,cm > 2Reø°30, "near wall" panels), or a bulk region of

thickness equal to 60 wall units (Reø°30 < p+
z,cm < Reø+30, "bulk" panels). Figure

3.14 shows that fibres near the walls express a strong preferential orientation in the
stream-wise direction (o1), determined by the mean shear that acts in this part of the
channel (panels "Near wall"). This corresponds to a moderate anti-alignment with the
span-wise direction (o2) and an even stronger perpendicularity with the wall-normal
orientation (o3). These trends are much weaker but still observable for the fibres in
the bulk of the flow ("Bulk" panels), which clearly lose the preferential alignment with
the mean flow.

In general, the particle length alone does not influence these statistics, as one can
appreciate by comparing panels on the same row. Only in the case of stiff tracer-like
fibres near the wall, we can appreciate a reduction of the anti-alignment with the wall-
normal direction as the length of the fibres is increased from left to right (panels (g),
(h) and (i)). This could be related to geometrical constraints that the longer particles
inevitably experience when closer to the solid boundaries. These observations hold
even for the considered stiff and stiff-less inertial particles at intermediate particle
length, which are not displayed here for the sake of brevity.

Yet, from the Introduction of this manuscript we know that axisymmetrical particles
in HIT are not randomly oriented but instead preferentially sample the local strain
rate according to their particle aspect ratio (Byron et al., 2015; Voth and Soldati, 2017).
Therefore, one could expect that fibres in the bulk of a turbulent channel flow, the most
isotropic region of this geometry, would behave in a similar way, even when longer
than the smallest relevant flow-scale (Olivieri, Mazzino, et al., 2022). In order to answer
this question, it is necessary to verify that the two-way coupling disturbance does
not perturb the local flow conditions at the particles’ positions, similar to what was
done by Olivieri, Mazzino, et al., 2022 in HIT. This is done by looking at the alignment
between vorticity and eigenvectors of the strain rate at the rods’ centres of mass in
figure 3.15, where stiff and stiff-less tracer-like and inertial fibres at intermediate
particle length (L+

0 = 35.81) are considered.
We find a good agreement with the literature, as the vorticity vector preferentially

aligns with the intermediate eigenvector (pink lines) in the bulk of the flow (bottom
panels). This corresponds to a well-understood phenomenology, where turbulent
eddies follow not the first eigenvector (corresponding to the direction of maximal
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Figure 3.14. – P.d.f.s of the stream-wise (blue), span-wise (pink) and wall-normal
(green) components of the rods’ orientation vector o. "Near wall" panels
on first and third rows: p+

z,cm < 30 or p+
z,cm > 2Reø°30; "Bulk" panels

on second and fourth rows: Reø°30 < p+
z,cm < Reø+30. Panels: (a),(d)

stiff-less short tracer-like fibres; (b),(e) stiff-less intermediate tracer-like
fibres; (c),(f) stiff-less long tracer-like fibres; (g),(l) stiff short tracer-like
fibres; (h),(m) stiff intermediate tracer-like fibres; (i),(n) stiff long tracer-
like fibres.
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Figure 3.15. – P.d.f.s of the alignment between the flow vorticity and the eigenvectors
e of the strain rate tensor at the rods’ positions, sorted in descending
eigenvalue order (e1: blue, e2: pink, e3: green). Top panels: p+

z,cm <
30 or p+

z,cm > 2Reø° 30; Bottom panels: Reø° 30 < p+
z,cm < Reø+ 30.

Panels: (a),(e) stiff-less tracer-like intermediate fibres; (b),(f) stiff tracer-
like intermediate fibres; (c),(g) stiff-less inertial intermediate fibres;
(d),(h) stiff inertial intermediate fibres.

stretching) but the second one and, due to momentum conservation during vortex
stretching, vorticity will align with this direction too (Voth and Soldati, 2017). Besides,
the vorticity will feel a moderate alignment with the first eigenvector (blue lines) and a
marked anti-alignment with the third one (green lines, corresponding to the maximal
compression). Inertia slightly enhances the alignment with e1, at the expense of that
with e2, in agreement with what was observed by Olivieri, Mazzino, et al., 2022. In
addition, we extend this kind of measurement to the near-wall region of the flow (top
panels of figure 3.15. This section of the channel is dominated by the strong shear
so that the mean vorticity vector will follow the span-wise direction. The alignment
between vorticity and the second eigenvector still persists, but a strong anti-alignment
with the third and first ones emerges, in agreement with what was observed by L.
Zhao and Andersson, 2016. Therefore, the consistency between our observation and
the literature allows us to evaluate Eulerian strain and vorticity conditions at the
Lagrangian positions of our fibres.

Finally, having evaluated the relative orientation between local strain rate and
vorticity at the rods’ positions, we possess sufficient insight into the flow structure to
look at the particles’ orientations in figure 3.16. Here probabilities of the alignment
of the rods’ orientation vector o with the vorticity vector ≠ (black dashed lines) and
with the eigenvectors of the strain-rate ei is displayed, the latter sorted following
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Figure 3.16. – P.d.f.s of the alignment between the rods’ orientation and the eigen-
vectors e of the strain rate tensor, sorted in descending eigenvalue
order (e1: blue, e2: pink, e3: green). The p.d.f.s of the alignment
between the rods’ orientation and the vorticity are also displayed
as black dashed lines. "Near wall" panels on first and third rows:
p+

z,cm < 30 or p+
z,cm > 2Reø°30; "Bulk" panels on second and fourth

rows: Reø°30 < p+
z,cm < Reø+30. Panels: (a),(e) stiff-less tracer-like

short fibres; (b),(f) stiff tracer-like short fibres; (c),(g) stiff-less tracer-like
long fibres; (d),(h) stiff tracer-like long fibres, (i),(p) stiff-less tracer-like
intermediate fibres, (l),(p) stiff tracer-like intermediate fibres, (m),(q)
stiff-less inertial intermediate fibres, (n),(r) stiff inertial intermediate
fibres.

the intensity of the eigenvalues to separate between stretching and compressing
events. Again, we separate between fibres whose centre of mass lies from 30 wall
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units from a solid boundary (p+
z,cm < 30 or p+

z,cm > 2Reø° 30, "Near wall" panels,
first and third rows) or from the half-height (z+ = 300) of the turbulent channel flow
(Reø°30 < p+

z,cm < Reø+30, "Bulk" panels, second and fourth rows). Short and long
tracer-like fibres are considered in the first two lines, showing the results for the stiff-
less and stiff simulations. Intermediate fibres are displayed in the third and fourth
lines of panels, where we explore the influence of bending stiffness and particle inertia
as well.

Figure 3.16 shows that fibres of any length in the bulk of a turbulent channel flow
(second and fourth rows of panels) align with the local stretching, with a slight pref-
erence for the second eigenvector of the local strain e2 over the first one e1. This has
been recently observed in fibre-laden HIT, as suggests that long flexible fibres are be-
ing stretched inside tubular eddies of large dimension (Olivieri, Mazzino, et al., 2022;
Picardo et al., 2020). As the local flow rotation is concurrently following the second
eigenvector inside these stretched flow structures, all the considered fibres in the bulk
of the flow are also strongly aligning with the local vorticity ≠, which has important
consequences on their tumbling rate. On the other hand, a consistent anti-alignment
is observed between all the rods and the third eigenvector of the local strain e3 in the
bulk of the turbulent channel flow. Longer chains show a more marked tendency to
follow the local vorticity than shorter ones (panels (e), (f), (g) and (h)). Instead, the
bending stiffness of the particles has a limited influence on these statistics, whereas
particle inertia slightly suppresses the observed alignment (panels (q) and (r)).

Interestingly, we observe different trends when considering the near-wall region,
visualized in the first and third rows of panels of figure 3.16. First, all fibres show
alignment and anti-alignment with the second eigenvector e2 and the vorticity vector
≠, where the former prevails for longer chains (panels (c) and (d)) and the latter is
enhanced by particle inertia (panels (m) and (n)). Second, all particles show a sharp
peak around a delayed alignment with the first and the third eigenvectors of the local
strain, the latter always delayed with regard to the former. A finite bending stiffness
gently brings together the two peaks, especially when considering the more inertial
fibres (panels (m) and (n)).

The pinnacles of the e1 ·o probability indicate an ordinate value estimated to ª 0.7.
This is equivalent to an angle of ª 45± between the first eigenvector of the local strain
and the fibres, which we have observed in the first and third rows of panels of figure
3.14 to prefer a flow-aligned and wall-perpendicular orientation in this region of the
flow. Remarkably, this corresponds to the stream-wise inclination angle of large (20
times larger than the viscous scale) wall-attached coherent flow structures that extend
up to the log-region of the flow (Yang and Pullin, 2011; Deshpande et al., 2019). In
our simulations, the large size of the considered fibres seems to naturally allow for
their sampling without losing the flow-aligned mean orientation. These structures are
typical in the cycle of wall turbulence, therefore they could play an important role in
the re-suspension and re-orientation of the long fibres that were considered in this
study.

In conclusion, we have presented results on the orientation of long fibres suspended
in a turbulent channel flow. Whereas near the solid boundaries, the particles follow
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the mean flow, fibres in the bulk of the channel preferentially align with the local
stretching and, coincidentally, with vorticity. This has deep consequences on their
tumbling rate, as we will see in the following section of this manuscript.

3.8.4. Rotation of fibres in wall turbulence

In the previous section, the orientation of long slender fibres within a turbulent
channel has been discussed, highlighting a stark similarity between particles in the
bulk of the wall-bounded flow and previous studies with fibres suspended in HIT
(Olivieri, Mazzino, et al., 2022). We expect this to deeply affect the rotational dynamics
of the considered particles, therefore we look at the mean squared tumbling rate of
the fibres in the bulk of the flow against the particle length in figure 3.17. Being the
tumbling rate an inverse time scale, it is made dimensionless by the local squared
Kolmogorov time scale ø2

k , while the fibre length is normalized by local Kolmogorov
length scale ¥k .

Previous experiments with rigid fibres of different lengths in the HIT configuration
reported that their tumbling rate approaches a (L/¥k )°4/3 power law scaling above
a certain ratio between the Kolmogorov length-scale and the particle length (ª 10)
(Parsa and Voth, 2014; Oehmke et al., 2021). Interestingly, we report a good agreement
with the previous studies, as the simulated tracer-like stiff and stiff-less fibres fall near
the experiments with the shortest particles for all the different lengths. It is clear that
we are limited by the anisotropy of the turbulent channel flow in considering longer
fibres, being the most slender chains (L+

0 = 71.62) already comparable to one-tenth
of the total height of the computational domain (600 wall units). In all of this, the
bending stiffness does not have a remarkable influence on the short and intermediate
chains of rods, while a discrepancy is highlighted for the long flexible fibres, which
rotate faster when more flexible. Instead, particle inertia appears to filter turbulent
fluctuations, determining a lower mean squared tumbling rate (blue and pink dots).
This is in qualitative agreement with the previous HIT experiments by Bounoua et
al., 2018 and suggests that despite not modelling inertial effects on the flow-particle
torque coupling, an inertial rod-chain representation still recovers a filtered rotational
behaviour.

Encouraged by this preliminary agreement between our results and the data avail-
able in the literature, we now consider the probability distribution of the squared
tumbling rate events in figure 3.18, normalising them by their mean value. Again, we
separate fibres whose centre of mass lies within 30 wall units from the half-height of
the flow in panel (a) or the two walls in panel (b). An amicable agreement is found
between all the considered fibres in the bulk of the turbulent channel flow and those
recorded in the HIT experiments by Parsa and Voth, 2014, showing a weak dependence
of the tumbling rate events from the fibre length and aspect ratio.

Parsa and Voth, 2014 reported narrower tails for the longest fibres (black solid
and empty exes), suggesting that the particle length influences the tumbling rate in
the same way that the diameter of large spherical particles affects their acceleration
statistics (Volk et al., 2011), suppressing their otherwise highly intermittent nature
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Figure 3.17. – Dimensionless mean squared tumbling rate against the dimensionless
normalized fibre length. Averages are calculated on a ª 30 wall units
thick slab around the half-height of the turbulent channel flow.

(La Porta et al., 2001). Despite we did not consider long enough fibres to compare
our results to those of Parsa and Voth, 2014, our simulations reveal an influence of
particle inertia on the tails of the tumbling rate p.d.f.s. This effect is not remarkable
in the bulk of the flow (panel (a) of figure 3.18), where the inertial fibres experience
a weak suppression of extreme tumbling rate events. Considering fibres near the
walls (panel (b) of figure 3.18), the local shear lifts the tails of the distributions, in
qualitative agreement with the experiments of Alipour, De Paoli, Ghaemi, et al., 2021.
As a consequence, the influence of inertia becomes clear for stiff (blue triangles)
but especially stiff-less (pink squares) fibres, who see a strong shrinkage of their
probability distributions. Extending the similitude between tumbling rate of fibres
and acceleration of spheres, this effect is in agreement with what observed numerically
for sub-Kolmogorov spheres in turbulent channel flow Zamansky et al., 2011.

Finally, we look at the dimensionless mean squared tumbling rate against the wall-
normal coordinate z+ in figure 3.19, averaging over the two half-widths of the domain
according to the position of the centre of mass of the fibres. The first important result
is that, in agreement with previous experiments by Shaik et al., 2020; Alipour, De Paoli,
and Soldati, 2022, the tumbling rate increase as we move from the bulk of the flow to
the walls for all the observed fibres. This is coherent with the previous trends for the
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Figure 3.18. – Probability distribution of the squared tumbling rate normalized by its
mean value. Panels: (a) particles whose centre of mass lies in a flow slab
60 wall units thick around the half-height of the channel; (b) particles
whose centre of mass lies inside 30 wall units from one of the two walls.
The length of the fibres is normalized by the Kolmogorov length scale of
the corresponding two-way coupled simulation, calculated at the half-
height of the channel. Therefore, slight variations are to be expected.

fibres’ orientations, which showed that the slender particles lose their alignment with
the local vorticity as they move from the bulk of the flow to the near-wall region. In
the latter, the local shear determines span-wise mean vorticity, which will definitely
contribute to the tumbling rate of the flow-aligned fibres, in a Jeffery-like scenario
Marchioli, Fantoni, et al., 2010.

Shaik et al., 2020 observed that fibre’s length determines higher tumbling rates, as
longer particles interact with more energetic turbulent eddies. Nevertheless, our cal-
culations do not report a remarkable influence of L+

0 over the observed tumbling rates.
On the other hand, we appreciate a more important effect of the bending stiffness as
the fibres become longer. Indeed, just a slightly stronger tumbling rate is observed for
completely flexible fibres in the viscous sub-layer at short and intermediate lengths
(panels (a) and (b)). Instead, in panel (c) long stiff-less chains will tumble more than
their stiff twins just to reach a plateau below ª 20 wall units, where the latter take over.

The filtering effect of particle inertia on the tumbling rate is confirmed in panel (b)
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Figure 3.19. – Dimensionless mean squared tumbling rate against the wall-normal
coordinate z+. Panels: (a) tracer-like short fibres; (b) tracer-like and
inertial intermediate fibres; (c) tracer-like long fibres.

of figure 3.19, where tracer-like and inertial, stiff and stiff-less fibres are compared at
fixed particle geometry. It is possible to appreciate a reduced tumbling rate across the
whole outer region of the turbulent channel flow (50 < z+ < 2Reø°50) for the much
denser particles. On the other hand, inertial particles near the wall will tumble more
than the tracer-like fibres, and this is possibly due to the preferential sampling that
the former display in this region. A zero Young’s modulus seems to steam this effect
in the viscous sub-layer for short and intermediate particles. Nevertheless, given the
remarkable particle size, geometrical effects most probably play a relevant role in this
section of the flow.

In conclusion, we have looked at the tumbling rate of flexible fibres in wall turbu-
lence, to obtain some insight into the way these particles re-orient in response to the
local strain and vorticity. The tumbling rate of the simulated chains in the bulk of
the flow is comparable to previous experiments with rigid fibres in HIT (Parsa and
Voth, 2014; Oehmke et al., 2021). Moving to the walls, the mean squared tumbling
rate increases, in agreement with previous numerical and experimental studies Shaik
et al., 2020; Alipour, De Paoli, and Soldati, 2022. This is consistent with the previous
considerations on the particles’ orientation within the flow in section 3.8.3: near the
solid boundaries, fibres align with the mean flow but, as the local shear determines
a strong vorticity along the span-wise direction, this will directly contribute to the
rotation of the particles.
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Figure 3.20. – Normalized effective end-to-end distance against the wall-normal coor-
dinate z+ for increasing fibre length from left to right. Data are sorted
according to the wall-normal position of the centre of mass of each
fibre and averaged over the full width, length and the two half-heights
of the turbulent channel flow. Panels: (a) and (d) mean and standard
deviation for stiff and stiff-less short tracer-like fibres; (b) and (e) mean
and standard deviation for stiff and stiff-less intermediate tracer-like
and inertial fibres; (c) and (f) mean and standard deviation for stiff and
stiff-less long tracer-like fibres.

3.8.5. Deformation of fibres in turbulence

3.8.5.1. Classification of the deformed shapes

We now complete our study by evaluating the particle deformation within the
turbulent channel flow. We start by looking at the normalised effective end-to-end
distance L+/L+

0 of the fibres against the wall-normal position of their centre of mass
in figure 3.20, again averaging over the two half-widths of the domain. Mean values
are displayed in the top panels while its standard deviations are shown in the bottom
panels, and the fibres’ length is increasing from left to right.

Figure 3.20 highlights a clear dependence of the effective end-to-end distance L+/L+
0

on the fibres’ bending stiffness and the fibres’ total length L+
0 . As a matter of fact, short

stiff fibres will always be stretched, while their stiff-less twins will deform across the
whole channel, as their effective length rapidly decreases in the buffer layer (panel
(a)). This picture holds for stiff and stiff-less tracer-like fibres at intermediate particle
length (panel (b)), despite the latter being, on average, never completely stretched
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but actually showing a non-monotone trend with a minimum just below the end of
the outer layer. A clear difference is appreciable for the longest tracer-like fibres, as
both stiff and stiff-less chains display a similar plateau at approximately L/L0 ª 0.75
in the bulk of the flow (panel (c)). This suggests that the particle bending stiffness is
ineffective for very long chains.

The influence of particle inertia is also considered for the intermediate particle
length in panel (b). Here, we can appreciate the fact that effective length in the bulk of
the flow depends only on the bending stiffness of the chains, and not on the inertial
nature of the chains. Instead, inertial effects consistently determine a lower end-to-
end distance as these particles approach the wall, where their influence is remarkable
below ª 100 wall units. A comment is in order about the magnitude of the calcu-
lated standard deviations, which seem to include the fully stretched configuration
practically everywhere.

The effective end-to-end distance is an intuitive observable that effectively describes
the deformation of the flexible fibres within the flow. Even so, another parameter must
be taken into account in order to completely classify all the possible shapes that the
chains of rods can express when stretched and compressed by turbulence. Previous
studies considered the mean curvature of the fibres (Allende et al., 2018). Given the
discrete nature of our fibres, we find it natural to look at the radius of gyration, defined
as the root mean squared distance between the rod elements and the centre of mass
of the fibres (Brouzet et al., 2014):

R+
g

R+
g ,0

=

q°PN
i=1(pi °pcm)2

¢
/N

R+
g ,0

, (3.45)

where the R+
g ,0 corresponds to a fully stretched chain and R+

g = 0 to a fully compressed
chain, for which all rods lie on the same spot.

By combining the effective end-to-end distance and the radius of gyrations, a com-
plete classification of the deformation of our fibres is possible. This is displayed in
figure 3.21, where the bi-variate probability distribution of these two quantities is
displayed for short (panels (a),(b),(e) and (f)) and long (panels (c),(d),(g) and (h))
tracer-like fibres near the wall (top panels) and in the bulk (bottom panels) of the tur-
bulent channel flow. Moreover, meaningful values of the two-dimensional parameter
space are explored by visualizing the corresponding particles in the small grey inserts,
to provide a qualitative visualization of the possible configurations.

The first striking observation is that the most probable fibre configuration (blue
colour) is the fully stretched one across all panels, no matter the particle length or
bending stiffness. This is in qualitative agreement with what was observed by Picardo
et al., 2020 for chains of beads in three-dimensional turbulence. Considering the
mean values that were previously discussed in figure 3.20, we now understand that
the probability distributions must be particularly skewed, as clearly suggested by the
colours. More in detail, short stiff particles near the walls (panel (b)) and especially in
the bulk (panel (f)) do not almost bend, whereas the same stiff-less shapes (panels
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Figure 3.21. – Bi-variate probability of the normalized effective end-to-end distance
and radius of gyration of the fibres. "Near wall" top panels: p+

z,cm <
30 or p+

z,cm > 2Reø ° 30; "Bulk" bottom panels: Reø ° 30 < p+
z,cm <

Reø+ 30. Panels: (a) Stiff-less tracer-like short fibres; (b) Stiff tracer-
like short fibres; (c) Stiff-less tracer-like long fibres; (d) Stiff tracer-like
long fibres; (e) Stiff-less tracer-like short fibres; (f) Stiff tracer-like short
fibres; (g) Stiff-less tracer-like long fibres; (h) Stiff tracer-like long fibres.
For each panel, one fibre is visualized in the small insert, whose shape
corresponds to the black dot in the bi-variate space. For visualization
purposes, fibres are not in scale.

(a) and (e)) can reach a wide variety of shapes, particularly when close to the solid
boundaries.

From the dimensional analysis in Section 3.5 we know that the importance of
elasticity B>> 1 increases with the particle aspect ratio rtot at an imposed Young’s
modulus E+

Y . Therefore, we are not surprised to observe a lower influence of the
bending stiffness as longer chains are considered, at the point that stiff and stiff-less
long fibres cover a similar probability space, both near the walls (panels (c) and (d))
and in the bulk (panels (g) and (h)). This is also highlighted by the stark contrast
between short and long stiff fibres, both near the walls (panels (b) and (d)) or in the
bulk of the flow (panels (f) and (h)). These differences are slightly less important when
comparing short and long stiff-less chains.

More insight into the deformation of the particles and the influence of the bending
stiffness is given by looking at the rendered fibres in the grey inserts. For high values of
effective end-to-end distance and radius of gyration, the particle conserves an almost
straight shape (panel (f)). As the two quantities decrease, two main deformation
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patterns appear, depending on their relative intensity with regard to the constraints
of the particle geometry. If L+/L+

0 is much lower than R+
g /R+

g ,0, fibres are bending like
an eyelash, adopting a regular curvature while their extremities almost touch. This
is more and more visible for both particle lengths moving from panel (b) to (c) (d)
and finally (a), and corresponds to a yellow region of moderate probability clearly
discernible in panels (a), (c), (d), (e), (g) and (h). On the other hand, if we move along
the L+/L+

0 ' R+
g /R+

g ,0 diagonal, fibres are being compressed along their axis. Therefore,
either extreme curvatures are possible, like in panel (h) where the fibre is drawing a
knot, or a teeth-saw configuration emerges, like in panel (g). Nevertheless, moving
down to the left bottom of the bi-variate space, the chains of the rod will eventually
collapse on themselves in an extremely buckled state (panel (e)).

Having classified the two main deformation patterns, we now understand that a
finite bending stiffness suppresses the possibility of buckling along the chains’ axis.
Instead, the considered fibres will always bend like eyelashes, especially the longer
tracer-like chains, whereas the shorter ones in the bulk of the flow can eventually
maintain a straight shape. Nevertheless, deformed configurations are more rare than
what is suggested by the mean values of the effective length in figure 3.20.

Finally, we evaluate the influence of inertia on the deformation of fibres, considering
stiff and stiff-less, tracer-like and inertial chains at fixed particle length L+ = 35.81 in
figure 3.22, where the top and bottom panels display particles near the wall and in the
bulk of the flow. Again, the most important finding is that the stretched configuration
is the most probable shape for all the considered parameters. A finite bending stiffness
suppresses the compression of the chains (panels (b), (f), (d) and (h)), allowing mostly
for a regular eyelash-like bending. Instead, particle inertia is positively influencing
the deformation, especially for stiff-less particles in the near-wall region (panel (c)).
On the other hand, its importance in the bulk of the flow appears less relevant, as it
emerges by comparing stiff-less (panels (e) and (g)) or stiff chains (panels (f) and (h)).

3.8.5.2. Characteristic deformation time

As we have seen, stiff and stiff-less fibres in wall turbulence seem to privilege a
stretched configuration. Anyway, the presented statistics describe the steady state
conformation of the particles. A natural question arises at this point, concerning the
dynamics of the deformations: are we able to measure it and what is its characteristic
time scale? Looking for its answer, we produce a dedicated data set for each of the
considered simulations, with a particularly small sampling time of 0.75t+, which
correspond to one-third of Kolmogorov time-scale at the wall, i.e. the smallest time-
scale of the turbulent channel flow. In this way, finely resolved time-series of the fibres’
dynamics are produced over a short window of 300t+, especially keeping track of their
effective length L+/L+

0 and their tumbling rate |ṅ|. For the sake of simplicity, we will
only consider tracer-like fibres, focusing on the influence of the particle length and
the bending stiffness.

Inspired by the work of Allende et al., 2018, we define deformations events as the
time span over which the effective end-to-end distance of the fibre is lower than 0.95.
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Figure 3.22. – Bi-variate probability of the normalized effective end-to-end distance
and radius of gyration of fibres with total length L+ = 35.81. "Near
wall" top panels: p+

z,cm < 30 or p+
z,cm > 2Reø°30; "Bulk" bottom panels:

Reø°30 < p+
z,cm < Reø+30. Panels: (a) Stiff-less tracer-like fibres; (b) Stiff

tracer-like fibres; (c) Stiff-less inertial fibres; (d) Stiff inertial fibres; (e)
Stiff-less tracer-like fibres; (f) Stiff tracer-like fibres; (g) Stiff-less inertial
fibres; (h) Stiff inertial fibres.

Not only do we measure the duration of the deformation events, but also we calculate
their mean position, in order to segregate them accordingly within the turbulent
channel flow. In addition, we keep track of their mean tumbling rate while the fibre
is buckling. Indeed, this observable can be interpreted as the typical time-scale
([|ṅ|] = 1/s) of the rotation of the fibres. As displayed in figure 3.23 for stiff and stiff-les
tracer-like fibres at intermediate particle length, this time-scale (symbols) does not
correspond to the eddy turnover time evaluated at the fibre scale (Tl = L2/3

0 ≤°1/3 (blue
solid line)), where ≤ is the dissipation rate of turbulent kinetic energy. Anyway, it is
also much longer than the Kolmogorov time scale (black dashed line), corresponding
more to the time scale of a non-dissipating structure within the turbulent flow. Clearly,
as we had already seen in figure 3.19, no remarkable difference is appreciable between
stiff and stiff-less fibres at intermediate length away from the near-wall region.

Therefore, we decide to normalise the time span of the deformation events by the
time scale identified by the mean tumbling rate recorded during each event. Given
the remarkable size of our particles and the anisotropy of the turbulent channel flow,
we reckon that this is an optimal solution, naturally taking into account the non-
local nature of the flow around each chain of rods. This would have hardly been
the case had we chosen to perform our analysis in dependence on the dissipation
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1/|ṅ|, L0 = 35 .81 , E+
Y = 0
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Figure 3.23. – Characteristic times-scales of a fibre-laden turbulent channel flow
against the wall-normal coordinate z+. Black dashed line: Kolmogorov
time-scale; Blue solid line: turnover time of eddies of size equal to that
of the fibres; Symbols: characteristic rotation time-scale, calculated as
the inverse of the mean tumbling rate. We consider only stiff (orange
triangles) and stiff-less (green squares) tracer-like fibres at intermediate
lengths.

rate, using either the eddies turnover time or the Kolmogorov time scale. The results
of these calculations are displayed in figure 3.24, where we look at the probability
distribution of the normalised time duration of the deformation events (calculated by
a Gaussian kernel density estimation by means of the gaussian_kde subroutine of the
Scipy Python Library).

The first striking result is that the p.d.f.s of the normalised deformation time indicate
a highly concentrated distribution of probability. This is clear for stiff-less and stiff
chains of all lengths in the bulk of the flow (panels (c) and (d). Near the walls, the
action of the mean shear seems to combine with the particle length to determine
wider tails for the distributions (panels (a) and (b)). Nevertheless, short chains with
finite bending stiffness(pink hexagons) display the same behaviour as what observed
in the bulk of the flow.

In figure 3.24 we also show that the distribution of data is well approximated by
a Gamma distribution (solid black line) with the following probability distribution
function:

p.d . f .
°
∞ di st .

¢
= tÆ°1e°ØtØÆ

(Æ°1)!
. (3.46)

where we fit the two shape parameter Æ and Ø over the measured distributions for
the longest fibres (L+

0 = 71.62). Estimations for the shape parameter Æ and the rate
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Figure 3.24. – P.d.f. of the deformation time normalized by the fibres rotational time-
scale, calculated as the inverse of the mean tumbling rate during the
corresponding deformation events. Panels: (a) Stiff-less tracer-like fibres
of all lengths near the wall; (b) Stiff tracer-like fibres of all lengths near
the wall; (c) Stiff-less tracer-like fibres of all lengths in the bulk; (d) Stiff
tracer-like fibres of all lengths in the bulk.

parameter Ø set their value to ª 1.5 and ª 1.2 for both curves in the bulk of the channel
(panes (c) and (d)), whereas the same estimations lead to Æª 1.2 and Øª 0.3 in the
near-wall region (panels (a) and (b)). These values confirm the concentration of data,
especially in the bulk region, when compared to the typical shape parameter of a
normal distribution, that is recovered for Æ> 100 (Thom, 1958).

Hence, from figure 3.24 we are seeing that the deformation time that typically ex-
pires before a fibre reaches a stretched configuration is a fraction of the characteristic
rotational time-scale of these particles in a turbulent channel flow. This is also con-
firmed by the small values of the fitted rate parameters Ø, which allows us to conclude
what already guessed from the bi-variate probability plots of the deformed shapes
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Figure 3.25. – Normalized characteristic time of deformation against the wall-normal
coordinate z+. Panels: (a) stiff-less tracers; (b) stiff tracers.

(figures 3.21 and 3.22): long flexible fibres in turbulence tend to a stretched config-
uration and deform for a short amount of time, which we are now able to estimate
to a fraction of their characteristic rotation time. Our data suggest that the typical
deformation time of long fibres in the bulk of the flow can be modelled according to a
Gamma distribution. An interesting property of this kind of distribution is that it is
not memory-less, i.e. the probability of a fibre leaving its buckled state decreases with
the time the fibres has already spent in such configuration.

To conclude the discussion, we consider the scaling of the normalised deforma-
tion time against the wall-normal coordinate of the turbulent channel flow. This is
returned by the most probable value of the p.d.f. of the deformation time, calculated
by separating the fibres according to the mean wall-normal position during the defor-
mation events, into 20 slabs of thickness 30 w.u. that completely span the wall-to-wall
distance. Also, averages over the two half-heights are calculated.

The results of these calculations are displayed in figure 3.25 for stiff-less (panel
(a)) and stiff (panel (b)) tracer-like fibres at all particle lengths. All curves collapse
indicating that the deformation time is a fraction of the characteristic rotation time
of the fibres independently from the considered particle length, except for the short
stiff tracer-like chains (pink hexagons). Moreover, this seems to moderately increase
from the bulk (ª 0.5) to the wall (ª 0.8), and such scaling holds for all the stiff-less
chains as well as for the intermediate and long stiff fibres (yellow and green triangles
of the panel (b)). This indicates that the deformation time corresponds on average to
a temporal scale relatable to a small turbulent structure, between 2 and 3 times the
Kolmogorov scales from the bulk to the wall of the turbulent channel flow. Therefore,
we speculate that the long deformed fibres suspended in wall turbulence are stretched
by turbulent structures with a short characteristic time-scale.
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3.8.6. Turbulence modulation

Several simulations are conducted to study turbulence modulation by long and slen-
der fibres, as reported in table 3.2. Calculations are performed at two shear Reynolds
number of Reø = 150 and Reø = 300. The second value has the advantage of offering a
wide ratio of scales in the turbulent channel flow, but it also implies an eight times
larger domain, greatly increasing the computational load that is required to simulate a
sufficient number of rods and attain remarkable volume fractions. Nevertheless, we fo-
cus on tracer-like and inertial stiff fibres of intermediate length (L+

0 = 35.81, rtot = 100)
at volume fraction © 2 [0.0001;0.001] (runs A,B,C and D of table 3.2).

Anyway, to simulate more slender particles, we decrease the domain size by im-
posing a lower shear Reynolds number Reø = 150. Doing so, we are able to explore
turbulence modulation by more slender particles, exploring the influence of par-
ticle inertia at a twice as slender particle aspect ratio (rtot = 200, runs E,F,G and
H of table 3.2) and in the case of extremely slender chains of rods (rtot = 1000,
runs I,L,M and N of table 3.2). These simulations are performed on a computa-
tional grid made of nx = 1024£ny = 512£nz = 257 points. This allows to set the
dimensionless regularisation length-scale required by the ERPP method to æ+

R = 1.8,
which gives a ratio æ+

R /d x+ = æ+
R /d y+ ' æ+

R /d z+
max = 1.02, where di represents the

grid spacing for the ith direction. Eventually, this produces a delayed time-scale
≤+R = 108 ·d t+ = 108 · 1.5 ·10°2 = 1.62 wall time units. Then, fibres are modelled as
chains of 40 rod elements with aspect ratio r = 5 and length 2`= 1.2 in runs E,F,G and
H, and as chains of 20 elements with r = 50 and length 2`= 1.8 in runs I,L,M and N.
A comment is order about the imposed density ratios, which can reach the extreme
value of Ω+ = 3000 in runs M and N. Despite one might argue about the realism of
these simulations in which, by the way, gravitational forces are neglected, we find
it interesting to push the exploration of the parameter space to its limits in order to
appreciate the strongest possible influence of the mass loading on turbulence.

Before looking into the qualitative phenomenology of turbulence modulation, we
appreciate that all simulations show a slight modification of the flow rate, which is
calculated as following:

¢Q = QL °QU

QU
£100 , (3.47)

where Q is the flow-rate of the turbulent channel flow for the laden cases (L subscript)
and unladen reference simulation (U subscript), calculated as the numerical integral
of the dimensionless stream-wise velocity over the half-height of the channel. The
modified flow-rates are displayed in the last column of table 3.2. In general, we do
not appreciate a strong increment for the simulations at shear Reynolds Reø = 300,
where fibres with aspect ratio rtot = 100 were considered (runs A,B,C and D). Instead,
more slender chains (rtot = 200, runs E,F,G and H) at shear Reynolds number Reø=150

consistently display stronger variations of flow rate, both positive and negative, which
become even more relevant when considering the most slender particles at the highest
particle concentration (rtot = 1000, runs I,L,K and N).

In the following, we are going to look into flow statistics to gather insights into the
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run Reø St f i br e (Ω+) E+
Y rtot L+ Vf r ac M f r ac % ¢Q%

A 300 0.11 (3) 104 100 35.81 0.0001 0.03 0.49
B 300 0.11 (3) 104 100 35.81 0.001 0.3 1.06
C 300 11 (300) 104 100 35.81 0.0001 3.2 -1.4
D 300 11 (300) 104 100 35.81 0.001 32.0 0.21
E 150 0.03 (1.3) 104 200 48.65 0.00002 0.003 1.76
F 150 0.03 (1.3) 104 200 48.65 0.0002 0.03 2.34
G 150 25 (1300) 104 200 48.65 0.00002 2.7 -1.76
H 150 25 (1300) 104 200 48.65 0.0002 27 1.68
I 150 0.2 (300) 0 1000 36.09 0.012 1 2.54
L 150 0.2 (300) 104 1000 36.09 0.012 1 4.09
M 150 2 (3000) 0 1000 36.09 0.012 10 -0.51
N 150 2 (3000) 104 1000 36.09 0.012 10 -0.25

Table 3.2. – Report of the considered simulations at shear Reynolds Reø = 150 and
Reø = 300 with tracer-like and inertial, stiff and stiff-less fibres with differ-
ent particle aspect ratios, total particle lengths, volume fractions and mass
loads. The percentage flow rate increase is also displayed in the last col-
umn, calculated as in equation 3.47. Quantities are made dimensionless
and presented in wall units. The Stokes number of each fibre is calculated
in its fully stretched equilibrium configuration.

mechanism behind turbulence modulation by long fibres. First, we will focus on the
runs E,F,G and H of table 3.2 at shear Reynolds Reø = 150, discussing the modification
of the first and second statistic moments of the flow as well as of its axial momentum
balance. Finally, the non-Newtonian nature of the stresses induced by the fibres
within the flow will be addressed. Then, we will switch to the runs A,B,C and D of
table 3.2 to appreciate the multi-scale nature of the interaction between fibres and
turbulence at a higher shear Reynolds number Reø = 300. In the end, we will consider
the runs I,L,M and N of table 3.2 with the most slender particles (rtot = 1000), to
discuss the influence of the carried phase on the turbulent kinetic energy budget
and the mechanism behind drag reduction. Despite switching between data-sets, we
believe that this is the most meaningful and insightful way to present our results, as we
will focus on the best features that each simulation has to offer. This also underlines
the consistency of the proposed numerical methodology, which gave coherent results
at different shear Reynolds number and for multiple particle geometries.

3.8.6.1. Flow Visualization

A visual rendering of the modification of turbulence due to the presence of the fibres
is provided in figures 3.26–3.29, each referring to a different simulation carried out
in this study. For each figure, the Eulerian grid is horizontally cut at z+ = 10 from the
wall and the resulting slice is coloured according to the local value of the stream-wise
fluid velocity. Fibres located within a distance of 20 wall units above the slice are also
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Figure 3.26. – Top view of the stream-wise fluid velocity streaks in the near-wall region
(z+ = 10) and instantaneous fibre distribution. Reference simulation:
run E, St+f i br e = 0.03,Ω+ = 1.3,©= 2.12 ·10°5.

Figure 3.27. – Top view of the stream-wise fluid velocity streaks in the near-wall region
(z+ = 10) and instantaneous fibre distribution. Reference simulation:
run G, St+f i br e = 25,Ω+ = 1300,©= 2.12 ·10°5.

rendered. The actual fibre length is shown, whereas the fibre diameter is magnified by
a factor of five for visualisation purposes.

The two cases at lower volume fraction (runs E and G), shown in figure 3.26 for the
St+f i br e = 0.03 fibres and in figure 3.27 for the St+f i br e = 25 fibres respectively, already
show some modification in the spatial distribution of the velocity streaks. These ap-
pear to be somehow weaker and characterised by a smoothing of the velocity field.
Also, fibres seem to align along low speed streaks, in agreement with previous numeri-
cal studies (Dotto and Marchioli, 2019), but in disagreement with the experiments of
Shaik et al., 2020.

As could be expected, the near-wall flow field modifications appear to be more
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Figure 3.28. – Top view of the stream-wise fluid velocity streaks in the near-wall region
(z+ = 10) and instantaneous fibre distribution. Reference simulation:
run H, St+f i br e = 0.03,Ω+ = 1.3,©= 2.12 ·10°4.

evident at the higher volume fraction, as shown in figure 3.28 for the St+f i br e = 0.03
(run F) fibres and in figure 3.29 for the St+f i br e = 25 fibres (run H) respectively. The
velocity streaks appear more regular and the spacing between them seems to increase,
especially in the case of fibres with higher inertia, in accordance with numerical
simulations of turbulence modulation by sub-Kolmogorov spheroids (Z. Wang et al.,
2021). From a qualitative point of view, it can be observed again that fibres exhibit
a preferential alignment in the low-speed streaks. This is especially visible in the
case of inertial fibres, which are able to accumulate more efficiently than tracer-like
fibres in the near-wall region by virtue of the turbophoretic mechanism that controls
their wall-normal transport. In turn, this leads to an increase of the local (near-wall)
volume and mass fractions, which generate a stronger feedback force from the fibres
to the fluid.

3.8.6.2. Mean Velocity Profiles

The mean velocity profiles of the fibre-laden simulations are shown in figure 3.30,
with small inserts enhancing the region 100 ∑ z+ ∑ 150 for a better visualisation of
the modified curves. To correctly compare these profiles with those of the unladen
case, the velocity is normalised by the shear velocity obtained from the actual mean
wall shear stress of the two-way coupled simulation. Only the stream-wise velocity
component u is plotted, as the other two components have zero mean. Our results
indicates that there is a proportionality between the fibre volume fraction © and the
attained flow rate increase, with a higher concentration of particles determining a
stronger reduction of drag. This effect is more subtle for the inertial fibres. Apparently,
an onset volume fraction is trespassed between the two simulations, which leads to
a switch from drag increase in the low-© case to drag reduction in the high-© case.
We can quantify these trends by defining the drag reduction percentage as done in
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Figure 3.29. – Top view of the stream-wise fluid velocity streaks in the near-wall region
(z+ = 10) and instantaneous fibres distribution. Reference simulation:
run F, St+f i br e = 25,Ω+ = 1300,©= 2.12 ·10°4.

Paschkewitz et al., 2004:

%DR =
"

1°
µ

uL
ø

uU
ø

∂2#
£100, (3.48)

where the superscript L indicates the friction velocity obtained in the two-way coupled
simulations while the superscript U indicates the same quantity for the unladen flow.
As reported in table 3.3, our results indicate a gentle drag reduction, except for one
drag increase result. As a comparison, previous numerical investigations (Paschkewitz
et al., 2004; Gillissen et al., 2008; Moosaie and Manhart, 2013; Z. Wang et al., 2021)
reported a 10-times higher drag reduction percentage with a 10-times higher mass
loading. The comparison with experiments is less satisfactory, as the measured drag
reduction percentages reported in the literature are always larger than those reported
in the table, even for the very low concentrations (Hoyt, 1972; Lee et al., 1974). These
discrepancies, however, can be ascribed to several aspects of the present simulations,
among which two emerge. The first aspect is the flexibility of the simulated fibres,
which are not perfectly rigid as those considered in the experiments. Nevertheless,
our analysis of the probability and of the life-time of the deformation events has
highlighted that long fibres are continuously stretched by the turbulent flow, which
could mitigate the issue. The second, and most relevant, aspect is the fibre aspect
ratio, which was too large to be measured in the experiments, and therefore estimated
to be several thousands (Hoyt, 1972). In our numerical study, we are limited to less
slender fibres, in order to not be overwhelmed by an excessively high number of fibre
elements (which would be necessary to maintain a volume fraction high enough to
produce appreciable turbulence modulation). Anyway, an effort towards fibre-laden
simulations with extremely slender fibres has been illustrated in table 3.2 and will be
presented a following section.
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Figure 3.30. – Mean stream-wise fluid velocity along the wall-normal coordinate. Pan-
els: (a)©= 2.12 ·10°5; (b)©= 2.12 ·10°4 . The curves of the unladen flow
case is plotted in dashed black for reference. All cases are normalized
according to the shear velocity yield by the corresponding simulation.
The inserts zooms on the bulk of the flow, between 100 and 150 wall
units.

Table 3.3. – Percentage of drag reduction, %DR (defined as in Equation (3.48)), for the
different cases simulated in the (©, St+n ) parameter space considered
in this study. Drag increase is obtained when %DR < 1, whereas drag
reduction is obtained when %DR > 1.

St+f i br e = 0.03 St+f i br e = 25

©= 2.12 ·10°5 1.44% 0.90%

©= 2.12 ·10°4 1.48% 2.84%

3.8.6.3. Root Mean Square Profiles of the Velocities

The profiles of the root mean square (rms) of the fluid velocities allow more insight
into the physical mechanism that controls drag modulation. The rms of the stream-
wise fluid velocity is shown in figure 3.31 for all the simulated cases. Tracer-like fibres
enhance the rms peak, in agreement with the previous simulations with inertialess
spheroids (Z. Wang et al., 2021). This rms modulation effect reduces with the volume
fraction. Inertial particles, instead, suppress this peak and, at higher ©, produce a
shift of the peak away from the wall. It can also be observed that all the simulations
show a gentle increase of the rms profiles away from the wall. This corresponds to a
suppression of turbulent activity and an enlargement of the buffer layer, in qualitative
agreement with previous studies on polymer-induced drag reduction (Xi, 2019).

Considering the span-wise rms, shown in figure 3.32, tracer-like fibres determine a
peak that is located further away from the wall with respect to the unladen case. In
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Figure 3.31. – Root mean square (rms) of the stream-wise fluid velocity along the wall-
normal coordinate. Panels: (a) ©= 2.12 ·10°5; (b) ©= 2.12 ·10°4 . The
curve of the unladen flow case is plotted in dashed black for reference.
All cases are normalized according to the shear velocity yield by the
corresponding simulation.

addition, at low volume fraction, the mean profile is shifted upwards as one moves
away from the wall. This is not observed with the inertial fibres, which appear to shift
the profiles downward at increasing volume fraction.

Finally, the overall physical picture is coherent also for the wall-normal rms, shown
in figure 3.33. In this case, all simulations show a gentle reduction, proportional to the
volume fraction and to the inertia of the fibres, with the exception of the tracer fibres
at low concentration, which seem to slightly detach the profile peak from the wall and
increase its value in the center of the channel.

3.8.6.4. Axial Momentum Balance

In the flow configuration considered in this study, the mean axial momentum
balance in the unladen case is determined solely by the viscous shear stress, øvi sc =
µ@ū/@z, and the mixed axial-wall normal Reynolds stress, øtur b = Ωu0w 0. The sum of
these two contributions provides the total shear stress, øtot = 1

2

°
d p/d x

¢
h, which is a

linear function of the wall-normal coordinate (Pope, 2000):

µ
@ū
@z| {z }

øvi sc

°Ωu0w 0
| {z }
øtur b

= 1
2

d p
d x

·h
| {z }

øtot

(3.49)

When a dispersed phase is added to the carrier fluid, an extra stress term must
be accounted for in the balance. This extra stress is determined by the presence of
the dispersed phase, and is generally referred to as particle extra stress øextr a in the

137



3. Simulations – 3.8. Results

Figure 3.32. – Root mean square (rms) of the span-wise fluid velocity along the wall-
normal coordinate. Panels: (a) ©= 2.12 ·10°5; (b) ©= 2.12 ·10°4 . The
curve of the unladen flow case is plotted in dashed black for reference.

Figure 3.33. – Root mean square (rms) of the wall-normal fluid velocity along the wall-
normal coordinate. Panels: (a) ©= 2.12 ·10°5; (b) ©= 2.12 ·10°4 . The
curve of the unladen flow case is plotted in dashed black for reference.

following. This term is calculated directly from the two-way coupling force, defined as
in Equation (3.11), in the form of a cumulative integral over a given coordinate x j :

øextr ai , j =
1

L j

ZL j

0
F2w,i d x j . (3.50)
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Figure 3.34. – Unladen-flow momentum balance along the wall-normal coordinate.
The viscous shear stress dominates near the wall, while the Reynolds
stress takes over away from it. The gray line indicates the maximum
value of the Reynolds stress, which is used to compare present results
with the fibre-laden ones.

The momentum balance given by Equation (3.49) then becomes:

µ
@ū
@z

°Ωu0w 0+øextr ax,z =
1
2

d p
d x

·h, (3.51)

where øextr ax,z = 1
h

Rh
0 Fxd z (simply referred to as øextr a hereinafter, for ease of nota-

tion).
The different contributions to the total balance in the unladen flow case are shown in

figure 3.34, whereas the contributions in the fibre-laden cases are shown in figures 3.35
and 3.36. Achieving a linear profile for the axial momentum balance is computationally
intensive even in the unladen flow case, as statistics need to be calculated on very
long averaging windows.

Figure 3.34 demonstrates that our simulations have reached a statistically steady
state and ensures that the reported drag reduction is not depending on beneficial but
temporary turbulent activity. For the two cases at the lower volume fraction, shown
in figure 3.35, we can appreciate an effect of the mass loading on the intensity of
the fibre extra (axial-normal) stress øextr a . This stress is larger for the inertial fibres,
while the disturbance given by the tracer-like fibres appears to determine an irrelevant
contribution to the momentum balance of the flow (as it is reasonable to expect).

At higher volume fraction, as can be seen from figure 3.36, the effect of the mass
loading is even more clear, as the inertial fibres determine a significant increase of
øextr a , which qualitatively behaves like a turbulent stress and directly feeds from the
Reynolds stress øtur b . Finally, we note that, even if the stress determined by the tracer-
like fibres has slightly increased with the volume fraction, its contribution to the total
momentum balance is still very small.
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Figure 3.35. – Axial momentum balance at low volume fraction (©= 2.12·10°5). Panels:
(a) St+f i br e = 0.03; (b) St+f i br e = 25 .

Figure 3.36. – Axial momentum balance at high volume fraction (©= 2.12 ·10°4). Pan-
els: (a) St+f i br e = 0.03; (b) St+f i br e = 25 .

3.8.6.5. Particle Stresses

Equation (3.50) can be generalised to calculate the mean particle normal stresses,
which reveal the non-Newtonian contribution of the dispersed fibres. Fibres introduce
a dominant axial-normal stress øx,z , that peaks close to the wall before decreasing
and vanishing to zero at the center of the channel due to the symmetry of the flow
configuration. The intensity of this profile is proportional to the local volume fraction
of the dispersed fibres, as one would expect, but also to their inertia. This picture
holds for the other non-zero normal stress, øz,z , which is shown in Figure 3.37 and
indeed shows a different profile. Starting from the wall, øz,z increases up to a distance
of about 50 wall units and then maintains an almost constant value in the rest of the
channel.
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Figure 3.37. – Particle normal stresses. against the wall normal coordinate. Panels: (a)
©= 2.12 ·10°5; (b) ©= 2.12 ·10°4.

Another interesting feature is the fact that, away from the wall, the øx,z component
is dominated by the øz,z component produced by the tracer-like fibres, whereas the
situation is the opposite for the inertial cases. Compared with previous studies (Z.
Wang et al., 2021), we can appreciate a difference related to the peak of øx,z and øz,z ,
which appear to be less localised than previously observed (Z. Wang et al., 2021). We
speculate that this is related to the size of the fibres considered in our study, much
larger that the the typical ellipsoids and fibres simulated by means of the Lagrangian
Particle Tracking (Paschkewitz et al., 2004; Z. Wang et al., 2021).

3.8.6.6. Turbulent kinetic energy spectra

The multi-scale nature of the interaction between slender fibres and turbulence is
revealed when we look at the power spectra of the Turbulent Kinetic Energy (TKE).
The TKE is defined as follows:

K= 1
2

°
u0u0+ v 0v 0+w 0w 0¢ , (3.52)

where the primes indicate fluctuating quantities. In Chapter 1, we have seen that the
TKE identifies the kinetic energy associated with the different eddies within the turbu-
lent flow, flowing from larger to smaller scales to be eventually dissipated by viscosity.
Differently from spheres, when fibres interact with turbulence, they modulate it across
a wide range of scales. Therefore, it is convenient to perform a scale-by-scale analysis
by looking at the TKE spectra against the inverse length scale, i.e. the wave number.
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Figure 3.38. – Turbulent kinetic energy spectra against the dimensionless wave-
number k+ at shear Reynolds number Reø = 300. Panels: (a) z+ = 5
wall units; (b) z+ = 10 wall units; (c) z+ = 300 wall units. The unladen
cases are plotted as black solid lines.

To this purpose, we consider four simulations are shear Reynolds number Reø = 300
where tracer-like (St+f i br e = 0.11) and inertial (St+f i br e = 11) stiff fibres of intermediate
length (L+

0 = 35.81) are dispersed in the turbulent channel flow. Two different concen-
trations of 10°4 and 10°3 are evaluated, produced by dispersing 125.000 and 1.250.000
chains of 20 rods respectively, to produce a total of four studies, identified as runs
A,B,C and D in table 3.2.
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The spectra of the turbulent kinetic energy are calculated by means of the Fast
Fourier Transform implementation of the Numpy Python library. As displayed in
figure 3.38, we will consider the flow-field on three different (x, y) planes parallel to
the wall, situated at 5 (panels (a) and (b)), 10 (panels (c) and (d)) and 300 (panels (e)
and (f)) wall units from the solid boundaries, while the volume fraction is increased
from 10°4 in the left panels to 10°3 in the right panels.

Our results highlight typical features of fibre-laden turbulence. As we can see in
panels (a) and (b), fibres near the wall distribute energy to the smallest scales, deter-
mining lifted tails for the spectra. This effect is proportional to the volume fraction
but, most importantly, to the mass load of the suspension. Indeed, inertial fibres
(blue curves) exhibit a clear bypass effect (Olivieri, Mazzino, et al., 2022), feeding from
large and intermediate scales to redistribute at smaller ones, where the crossing point
identifies a characteristic length scale that is smaller than that of the particles. Just a
little further from the wall (z+ = 10, panels (c) and (d)) and the scenario is modified.
Tracer-like fibres (yellow and red curves) are now feeding from the smaller scales to
slightly resonate at the larger ones. The crossing point suggests a typical length scale
that is comparable to that of the particles (k+§ ª 0.03 ª 1/L+

0 ). On the other hand,
inertial fibres at higher concentrations (blue curve of the panel (d)) still show a gentle
bypass effect, yet moderately resonate at the largest scales. The phenomenology is
clearly weaker in the bulk of the flow (panels (e) and (f)). Here fibres seem to redis-
tribute energy at both smaller and larger scales, as a gentle bypass effect emerges only
for the inertial chains at higher volume fraction.

3.8.6.7. Turbulent kinetic energy budget

The mechanism behind drag reduction is revealed when one evaluates the budget
of the Turbulent Kinetic Energy. This comprises the production, transport and dissi-
pation of TKE over the whole height of the turbulent channel flow, and is given by the
following equation:
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When a statistically stationary state is attained, the production, dissipation and trans-
port (turbulent, viscous and pressure transport) terms combine to completely describe
the TKE budget.

From a quick overview of the literature about fibre-induced drag reduction, it is clear
that previous numerical studies have evaluated particle aspect ratios of orderO(102)
(Z. Wang et al., 2021), whereas experiments would normally operate with much more
slender fibres, having rO(103;104) (Sharma, 1981). Motivated by this discrepancy, we
decide to produce an extreme parameter study and simulate exceptionally slender
fibres (r = 1000), corresponding to runs I,L,M and N of table 3.2 not only with consider
the fibres with the largest particle aspect ratio but also we impose the highest particle
concentration.

These chains are built from 20 rod elements with length 2` = 1.8, diameter 2a =
0.036 and aspect ratio r = 50, resulting in slender chains of total length L+

0 = 36.09 and
total aspect ratio rtot = 1000. Ten million rods are considered for these simulations,
dispersed in a turbulent channel flow at shear Reynolds number Reø = 150 at a dilute
concentration of 3.5 ·10°5. The rod Stokes number and density ratio are combined at
fixed geometry to produce two data sets, one with tracer-like chains (St+f i br e = 0.2))
and one with inertial fibres (St+f i br e = 2.0)). The influence of the bending stiffness

is also explored by considering a zero and a finite (E+
Y = 104) value for the Young’s

modulus, which will determine a total of four simulations.
The TKE budget is displayed in figure 3.39, where the bending stiffness is increased

from left to right and the inertial nature from top to bottom. When compared to
the unladen budget (dotted black lines), fibre-laden simulations are characterised
by a lower production peak (blue lines), indicating that the flow is loosing energy to
the particles in this region, as observed by Pan et al., 2020 for inertial spheres. The
transport and dissipation of TKE are also weakened, especially the viscous diffusion
(red lines) and the viscous dissipation (purple lines) in the near-wall region. The
influence of the mass loading does not look so remarkable, despite an even weaker
peak of the production term being reported for the most inertial fibres (panel (d)).

At the same time, a novel source term appears in the TKE budget (brown lines),
determined by the interaction between the particles and the flow and calculated as
follows:

P = h f 0
i u0

i i . (3.54)

This corresponds to the work done by the particles on the fluid per mass and per time
in all directions, which is displayed against the wall-normal coordinate in the top
panel of figure 3.41. Despite its intensity is small, this term is fundamental in restoring
the balance of the TKE budget of the fibre-laden turbulent channel flows. A positive
sign indicates that the particles strengthen the flow and generate drag reduction,
whereas a negative sign corresponds to drag increase. We can appreciate the fact that
long and extremely slender fibres determine a not so remarkable positive contribution
along a wide section of the bulk of the turbulent flow, whereas they more strongly drag
the fluid in a narrow section just outside the buffer layer. The crossing point between
these two regions moves away from the wall as particle inertia is increased. Therefore,
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Figure 3.39. – Turbulent kinetic energy budget terms against the wall-normal dimen-
sionless coordinate z+ at shear Reynolds number Reø = 150. Panels: (a)
stiff-less tracer-like fibres; (b) stiff tracer-like fibres; (c) stiff-less inertial
fibres; (d) stiff inertial fibres. The unladen terms are plotted as black
dotted lines.

we can speculate that the considered fibres act to rearrange large scale structures of
the flow. Because of this, these large structures are more energetic and contribute in
a more effective way to the mean flow rate, determining a moderate drag reduction.
This consideration is in agreement with the resonance previously observed in the
spectra of the TKE 3.38 at shear Reynolds number Reø = 300.

On the other hand, the TKE spectra suggested an enhancement of the energy content
of the smallest scales. At first this look in opposition with the reduced contribution of
the viscous diffusion and viscous dissipation in the near-wall region of the turbulent
channel flow, as displayed in the budgets of figure 3.39. Anyhow, we argue that the
particles play an intermediate role, inhibiting the production of turbulent TKE and its
transport from the large to small scales of the flow. As a consequence, we argue that
small turbulent scales energise themselves and become more coherent both in time
and in space. This is appreciable by looking at the visualisation of the flow for the stiff
tracer-like slender (r = 1000) fibres at shear Reynolds Reø = 150 in figure 3.40, where
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Figure 3.40. – Flow-visualisation of a ºReø/2£ºReø/4 wide section of a turbulent
channel flow at shear Reynolds number Reø = 150. The panels display
the stream-wise velocity component on a section at z ĺ+ = 5. Iso-surfaces
of the second invariant Q of the fluid velocity gradient tensor are also
displayed, being Q = 0.02 the selected value, corresponding to one
tenth of the maximum value of Q obtained in the simulations). Panels:
(a) fibre-laden flow simulation, where tracer-like stiff slender particles
are considered. Fibres are enhanced by a factor 5 on their radius for
visualization purposes. (b) un-laden flow simulation.

the panel displays the stream-wise velocity component u and the iso-surfaces of the
second invariant Q of the fluid velocity gradient tensor are also displayed( Q = 0.02,
corresponding to one tenth of the maximum value of Q obtained in the simulations)
for the laden (top panel). The corresponding unladen flow is also displayed in the
bottom panel and the comparison between the two confirms our speculation. Indeed,
low and high speed velocity streaks are more homogeneously spaced in the fibre-
laden flow and tend to assume a longer shape too. In addition, the flow structures are
decimated and regularised by the presence of the fibres, whereas the iso-Q surfaces
displays a forest of chaotic eddies in the unladen case. In conclusion, long slender
fibres appear to act as drag reducing agents at intermediate flow-scales, acting to
structurally rearrange the large structures in order to reduce the transport of TKE to
the smallest scales which, as a consequence, rearrange themselves in a more coherent
way. When comparing with previous studies on Drag Reduction with sub-Kolmogorov
fibres, we understand that these fibres considered in this manuscript are much less
efficient, underachieving by one order of magnitude (Paschkewitz et al., 2004; Z. Wang
et al., 2021).

Nevertheless, long and slender fibres could be combined to shorter ones or polymers
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Figure 3.41. – Panels: (a) particle source term of the TKE budget against the wall-
normal dimensionless coordinate z+; (b) normalized particle volume
fraction against the wall-normal dimensionless coordinate z+.

to complement their near-wall effectiveness and extend drag reduction to the bulk of
the flow (Marchioli and Campolo, 2021). This would be an effective solution as long as
the fibres’ inertia is small. To evaluate this statement we measure the effective steady
state volume fraction © against the wall-normal coordinate, having normalized it by
the initial concentration of particles, which is homogeneous along the channel height
in the bottom panel of figure 3.41. Indeed, inertial particles tend to preferentially
segregate in the near-wall region, and we speculate that this is the reason behind the
marked negative particle work in that part of the flow, where this kind of particles
are known preferentially segregate in high-speed streaks (Dotto and Marchioli, 2019).
Instead, tracer-particles leave the walls and preferentially concentrate in the bulk of
the flow, confirming that they could be successfully combined to smaller fibres or
polymers to effectively reduce drag across the whole height a wall-bounded turbulent
flow.

3.9. Conclusions

In this study, we have numerically explored the dynamics of long and flexible fibres
in wall turbulence at moderate shear Reynolds number (Reø and Reø). Simulations

147



3. Simulations – 3.9. Conclusions

combine the Direct Numerical Simulation of the turbulent field with the Lagrangian
Particle Tracking of sub-Kolmogorov rods constrained together to build long fibres
following the rod-chain model.

Initially, we have focused on the dynamics of the fibres. The first important result is
that, long and flexible fibres in the bulk of a turbulent channel flow orient with the
local strain, coincidentally aligning with the vorticity, in agreement with the simula-
tions of Olivieri, Mazzino, et al., 2022. Correspondingly, these particles experience a
lower tumbling rate, comparable to what experimentally measured for rigid fibres in
Homogeneous Isotropic Turbulence (Parsa and Voth, 2014; Oehmke et al., 2021).

This phenomenology is modified as we consider particles closer to the walls. Our
results indicate that vorticity orients with the span-wise direction under the action
of the mean shear determined by the solid boundaries, whereas flexible fibres align
with the mean flow. This orthogonality determines a stronger contribution of the flow
rotation to the tumbling rate of the observed particles, which moderately increases
from the bulk to the near wall-region of the turbulent channel flow.

The second major finding is that the most probable configuration of a flexible fibre
suspended in turbulence is the stretched one, in qualitative agreement with what
observed numerically in Homogeneous Isotropic Turbulence (Picardo et al., 2020).
Having classified the possible deformed shapes in a bi-variate probability space, our
results suggest that the fibres deform following two typical deformation patterns,
classified as ’eyelash’ bending and ’compressing’ buckling, where a finite yet moderate
bending stiffness will suppress the latter.

This is in clear agreement with the observed dynamics of the deformations, as
we find that flexible fibres in wall turbulence spend a short time in a bent state,
before being stretched again by the flow. Our calculations indicate that this time is a
fraction of their characteristic rotation time-scale and can be modelled as a gamma
distribution, characterised by a stronger locality in the bulk of the flow than near the
walls. Moreover, the typical deformation time moderately decreases with the wall
normal coordinate for stiff-less fibres.

Overall, our results indicate that, from a dynamical perspective, flexible and rigid
fibres in wall turbulence exhibit similar orientations and rotation rates. The reason
behind this must be sought in the fact that the deformed fibres rapidly regain their
stretched configuration, as their typical deformation time can be modelled by a highly
local gamma distribution and most probably corresponds to the life span of small
turbulent scales, i.e., between 2 and 3 time the Kolmogorov time-scale of the flow. This
recalls the numerical investigation by Allende et al., 2018, who found that the inter-
buckling time for sub-Kolmogorov flexible rods in Homogeneous Isotropic Turbulence
was well predicted by a Weibull distribution.

Subsequently, we have focused on the modulation of turbulence by slender fibres.
The general picture that emerges from a wide exploration of fibre-laden turbulent
channel flows at different shear Reynolds number highlights the importance of the
volume fraction highlights the importance of the volume fraction, which is the key
parameter in determining the intensity of the drag reduction. The mass load is also an
important parameter as, for inertial fibres, turbulence modulation generally leads to
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drag increase.
Looking at the turbulence intensities, we appreciate two slightly different behaviours:

one efficient case is determined by tracer fibres at low volume fraction, when they
determine slightly stronger turbulence intensities, especially for the peak of the axial
component and in the bulk of the flow. Instead, the three other simulations highlight a
more classical picture, where the turbulence intensities are weakened proportionally
with the inertia of the dispersed particles, especially for their peak (Xi, 2019). Keeping
this is mind, we look at the axial momentum balance, where the non-Newtonian, axial-
normal particle extra stress appears: from available theories on polymer-induced drag
reduction, it is known that this term is limiting the possible amount of drag reduction,
therefore it must be considered an undesired effect (Xi, 2019).

At the considered volume fractions, tracer-like fibres do not generate significant
extra stresses, while inertial fibres do, feeding from the Reynolds stress proportion-
ally to the mass load. However, tracer-like fibres are capable of introducing a more
appreciable normal extra stress, of opposite sign. We speculate here that this stress
acts to reduce the axis-wall normal momentum transfer, which can be thought of as
the fundamental mechanism on which drag reduction is based (Xi, 2019). The effec-
tiveness of the tracer-like fibres could be then related to their production of purely
normal extra stresses without introducing a relevant particle stress in the momentum
balance.

More insight into the mechanism behind turbulence modulation is obtained by
looking at the spectra of the turbulent kinetic energy. Our results indicate typical fea-
tures fibre-laden turbulence, in agreement with previous numerical studies (Olivieri,
Mazzino, et al., 2022). The particles feed from the intermediate turbulent scales to
vigorously distribute energy to the smaller ones but also modestly resonate in corre-
spondence of the largest scales of the flow.

Traces of this mechanism are also found by looking at the budget of the turbulent
kinetic energy. Long fibres act positively to affect the bulk of the turbulent channel
flow. Despite their weak contribution, these particles modulate the production of
turbulent kinetic energy which is more weakly transported to the smaller scales of the
flow, where the viscous dissipation is also modulated.

In conclusion, our findings suggest that long and slender fibres could not so effec-
tively replace smaller rods or polymers as Drag Reducing agents. Instead, it would
be wiser to combine them together, as they typically influence a turbulent flow on
different scales (Sharma, 1981).
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The influence of inertia and flexibility on the dynamics of axisymmetrical particles
suspended in viscous and turbulent flows were discussed in this manuscript.

Chapter 2 was devoted to an experimental study investigating the influence of
small-inertia on the rotation of axisymmetrical particles suspended in a viscous shear
flow. The first main finding is that the theory of Jeffery, 1922 is still valid to describe
the periodic rotations of the particles in the explored inertial regime up to Rep . 1.
The second important result is that small-inertia modifies the stability of the orbits
described by the rotating particles, determining the insurgence of attracting limiting
cycles. Prolate particles eventually drift through consecutive rotations to the tumbling
orbit in the plane of shear. Instead, oblate particles of any aspect ratio will either drift
to the spinning orbit along the vorticity axis or the tumbling orbit in the plane of shear,
depending only on their initial orientation.

The experimental methodology presented in this manuscript is rather flexible and
therefore amenable to study the alignment of small particles of different shape in a
viscous shear flow, opening for the following lines of future research:

± flexible fibres in viscous shear flows were studied experimentally by Forgacs and
Mason, 1959. It would be of great interest to characterise the rotation and de-
formation of flexible prolate and oblate cylinders by means of the methodology
proposed in this manuscript. First, the viscous regime could be fully charac-
terised, before considering a weakly inertial one and its consequences on the
particle deformation. Nevertheless, the particle reconstruction methods should
be revisited to adapt them to flexible objects. Most probably, the optimal solu-
tion would be the direct deployment of the Neural Networks on the experimental
images, despite this would require a precise and extensive training.

± the analytical model of Borker et al., 2018 highlighted the possibility of con-
trolling the orientation of rings suspended in a viscous shear flow, which ulti-
mately attained an aligned orientation in time when the fore-aft symmetry of
the cross-section is broken. Preliminary experiments with 3D printed rings were
performed during the preparation of this manuscript, qualitatively confirming
the result of Borker et al., 2018 in the weakly inertial regime. As displayed in
figure 4.1, depending on their section, donut rings rotate in a viscous shear
flow at Rep = 0.35 (top), whereas rings with fore-aft asymmetric section align
with the flow at Rep = 0.44 (bottom). This results are encouraging and justify
a further exploration of the equivalence of shape between rings with different
cross-sections and ellipsoids. Furthermore, these result open a perspective over
the control of the rheology of suspensions by particle shape, which could have
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Figure 4.1. – Time-evolution of a fore-aft symmetric donut ring (top) and a fore-aft
asymmetric ring with triangular section (bottom) suspended in a viscous
shear flow. The viscosity of the fluid is µ= 25.7mPas and the shear rate is
∞̇= 3.64. The particle Reynolds number is estimated as Rep = Ω∞̇a≥

µ , being
≥ the equivalent radius of the cross section of the ring. This corresponds
to a Rep = 0.35 for the donut (top) and Rep = 0.44 for the triangular ring
(bottom). The time-line highlights the evolution of the experiment, from
left to right. As displayed by the frames and highlighted by the arrows,
while the donut rotates (top), the triangular ring maintains an aligned
position in the viscous shear flow (bottom).

important applications in the field of process engineering.

In Chapter 3 we discussed the orientation, rotation and deformation of flexible
fibres in a turbulent channel flow. Despite the embedded flexibility of the particles,
our results indicate that fibres in wall turbulence deform for short times, preferring
a stretched configuration. As a consequence, we observe that flexible fibres orient
and rotate comparably to rigid ones in the bulk of a turbulent channel flow, whereas
they align to the mean flow and experience stronger tumbling rates under the effect
of the strong shear near the walls. Finally, by analysing the turbulence statistics of
the fibre-laden flow, we find the proposed numerical approach recovers a moderate
drag reduction, indicating that long and slender flexible fibres should be combined to
smaller drag reducing agents to modulate turbulence all along the section of a pipe.

The numerical methodology is suitable to the investigation of numerous future
developments:

± in this work, long and flexible fibres were modelled as chains of sub-Kolmogorov
rods, while their rotational dynamics were calculated following the theory of
Jeffery, 1922. Nevertheless, the experimental investigation over the influence
of small-inertia on the Jeffery orbits highlighted its impact on their stability.
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Therefore, a natural development would be to model the rods according to the
equivalent theories of Einarsson, Candelier, et al., 2015b and Dabade et al., 2016.
Not only this would produce numerical simulations of unprecedented accu-
racy, but, most importantly, it would allow us to assess the relative importance
of small-inertia within a turbulent flow and its consequences on turbulence
modulation.

± the momentum exchange between fibres and turbulence could be modelled in
a complete way, taking into account not only the linear terms, as done in this
manuscript, but also the angular terms. Not only this is expected to modify the
entity of the turbulence modulation, but it would also allow for a more realistic
representation of the fibre bending dynamics.

± in this manuscript we provided statistical evidence that the bending of flexible
fibres is relatable to small turbulent scales. Therefore, in an effort to study the
dependence of particle deformation of the flow Reynolds number, one could
simulated flows at larger shear Reynolds number than what considered here
(Reø = 300), where stronger and more intermittent turbulent fluctuations are
expected. Anyway, such a development would inevitably incur the computa-
tional load of such numerical simulations, which could be lifted by deploying
modern computing infrastructures and relying on the novel algorithm discussed
in Section 3.4.1.
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A. Demonstration of the relation between the

Axes-Aligned Bounding Box of an ellipsoid and

the principal diagonal terms of its matrix of

coefficients.

The following demonstration is freely inspired by Stack-Overflow answer (Azevedo,
2020).

Given a generic hyper-ellipsoid E :

E = {x 2Rn |(x ° c)T Q°1(x ° c) ∑ 1} , (.1)

where c 2Rn is the vector of the centre of the solid and Q is a positive defined matrix
of coefficients, write g (x) = (x °c)T Q°1(x °c) to calculate the vector field orthogonal
to the shell of the ellipsoid:

rg (x) = 2Q°1(x ° c) . (.2)

Given the i th 2 n axis and its projection matrix Pi = ei eT
i , the orthogonal vector

field rg (x) and its projection Pirg (x) will touch in two points, that correspond to the
minimum AABB, where:

rg (x) = Pirg (x) , (.3)

which is equivalent to:
(In °Pi )Q°1(x ° c)| {z }

y

= 0n , (.4)

where yi will be the only non-zero value, i.e. y = tei , or x = c + tQei .
Intersecting this line with the boundaries of the ellipsoid E , we can find t:

t 2 = (eT
i Qei )°1 = q°1

i i , (.5)

where qi i is nothing but the i th entry of the inverse of the matrix of the coefficients of
the ellipsoid Q°1.

Therefore, the shell of the i th projection of the ellipsoid will touch the smallest AABB
in the following two points:

xi = ci ±
1

p
qi i

eT
i Qei = ci ±

qi ip
qi i

= ci ±
p

qi i (.6)
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B. Porting of the DNS+ERPP solver to CUDA C

The CUDA C version of the Gauss-Jordan elimination algorithm, described in section
3.3.2 is here displayed. We believe that this kind of solution is of great interest in the
framework of software development for High-Performance Simulations of turbulent
flows.

The code operates on the a,b,c,d and e coefficients of a matrix representing the
linear system of equations that must be solved, storing the solution in the vector f.
The main highlight of this implementation is the hidden periodicity of the arrays,
given by the ’dim’ dimension. Therefore, each thread out of the ’size’ threads will
independently assemble the solution vector by looping on its dimension nz. In this
way, no synchronization between the CUDA threads is required.

__global__ void k_gauss_solver
(cufftDoubleComplex *f, double *a, double *b, double *c, double *d,

double *e, int nz, int dim, int size),!

//------------------------------------------
// Subroutine for Gauss solver
// Copyright Multiphase Flow Laboratory, University of Udine
// authors - D. Di Giusto, March 2020
//------------------------------------------
{

int index = blockIdx.x * blockDim.x + threadIdx.x; //from zero to
spy*spx,!

int j;
double rc,rd,re;

if (index < size)
{

for (j=nz-1;j>3;j--)
{

//cancel upper diagonal c
rc = c[(j-4)*dim+index] / b[(j-2)*dim+index];
b[(j-4)*dim+index] = b[(j-4)*dim+index] - a[(j-2)*dim+index]

* rc;,!

f[(j-2)*dim+index].x = f[(j-2)*dim+index].x - rc *
f[j*dim+index].x;,!

f[(j-2)*dim+index].y = f[(j-2)*dim+index].y - rc *
f[j*dim+index].y;,!
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//cancel part of row d
rd = d[j*dim+index] / b[(j-2)*dim+index];
d[(j-2)*dim+index] = d[(j-2)*dim+index] -rd *

a[(j-2)*dim+index];,!

f[index].x = f[index].x - rd * f[j*dim+index].x;
f[index].y = f[index].y - rd * f[j*dim+index].y;

//cancel part of row e
re = e[j*dim+index] / b[(j-2)*dim+index];
e[(j-2)*dim+index] = e[(j-2)*dim+index] - re *

a[(j-2)*dim+index];,!

f[1*dim+index].x = f[1*dim+index].x - re * f[j*dim+index].x;
f[1*dim+index].y = f[1*dim+index].y - re * f[j*dim+index].y;

}

for (j=3; j>=2;j--)
{

//cancel part of row d
rd = d[j*dim+index] / b[(j-2)*dim+index];
d[(j-2)*dim+index] = d[(j-2)*dim+index] - rd *

a[(j-2)*dim+index];,!

f[index].x = f[index].x - rd * f[j*dim+index].x;
f[index].y = f[index].y - rd * f[j*dim+index].y;

//cancel part of row e
re = e[j*dim+index] / b[(j-2)*dim+index];
e[(j-2)*dim+index] = e[(j-2)*dim+index] - re *

a[(j-2)*dim+index];,!

f[1*dim+index].x = f[1*dim+index].x - re * f[j*dim+index].x;
f[1*dim+index].y = f[1*dim+index].y - re * f[j*dim+index].y;

}

//remains only 2x2 array, diagonal and lower diagonal
//|d(1), d(2)| |f(1)|
//|e(1), e(2)| |f(2)|
//variable stored in f(1)
f[index].x =(f[index].x - f[1*dim+index].x * d[1*dim+index] /

e[1*dim+index]) / (d[index] - e[index] * d[1*dim+index] /
e[1*dim+index]);

,!

,!
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f[index].y =(f[index].y - f[1*dim+index].y * d[1*dim+index] /
e[1*dim+index]) / (d[index] - e[index] * d[1*dim+index] /
e[1*dim+index]);

,!

,!

//variable stored in f(2)
f[1*dim+index].x = (f[1*dim+index].x - f[index].x * e[index]) /

e[1*dim+index];,!

f[1*dim+index].y = (f[1*dim+index].y - f[index].y * e[index]) /
e[1*dim+index];,!

//forward-substitute variable from k=2,Nz
//solution stored in f
for (j=2; j<nz; j++)
{

f[j*dim+index].x = (f[j*dim+index].x - a[(j-2)*dim+index] *
f[(j-2)*dim+index].x) / b[(j-2)*dim+index];,!

f[j*dim+index].y = (f[j*dim+index].y - a[(j-2)*dim+index] *
f[(j-2)*dim+index].y) / b[(j-2)*dim+index];,!

}
}

}//end kernel k_gauss_solver
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C. Rèsumè complet

Une suspension est un système physique multi-phasique dans lequel des particules
solides sont dispersées dans un fluide. Compte tenu de leur ubiquité, il est clair que
leur compréhension est d’un intérêt absolu, nous permettant de faire face à des phé-
nomènes complexes tels que les éruptions volcaniques, la pollution atmosphérique
par des particules fines, la dynamique du plancton, les tempêtes de sable et les disper-
sions de patogènes (W. R. CHEN et L. R. ZHAO, 2015 ; KHOMENKO et al., 2021 ; BURNETT

et al., 2018; MCQUATTERS-GOLLOP et al., 2019; GUASTO et al., 2012; BASTERRETXEA

et al., 2020; C.D.C.P., 2020 ; J. WANG et al., 2022 ; LE RIBAULT et al., 2021).
Au-delà de l’approximation sphérique, de nombreux procédés naturels et industriels

exploitent des particules axis-symétriques telles que les cylindres et les ellipsoïdes,
c’est-à-dire des particules dont la forme n’est pas sphérique mais est obtenue par
la rotation d’un rectangle ou d’une ellipse autour d’un de ses axes de symétrie. Du
fait de leur forme, les particules axis-symétriques s’orientent préférentiellement dans
l’écoulement, ce qui nous permet de modéliser la fabrication de matériaux complexes,
la réduction de la traînée par les fibres dans les moteurs immergés et les oléoducs, mais
aussi les pollutions par les micro-plastiques dans les eaux usées et l’hydrodynamique
des globules rouges (LUNDELL et al., 2011 ; HOYT, 1972 ; ROSS et al., 2021 ; GOLDSMITH,
1996).

La dynamique des particules axis-symétriques dans un écoulement visqueux montre
les propriétés fondamentales de ce système. Depuis les travaux précurseurs de JEFFERY,
1922, on sait qu’une seule particule axis-symétriques en suspension dans un écou-
lement visqueux cisaillé détermine un système dynamique périodique, et que son
orientation change avec la vorticité de l’écoulement et une fraction de la déforma-
tion de l’écoulement, proportionnellement au rapport d’aspect r de la particule. En
fin de compte, chaque extrémité de la particule décrit une orbite fermée parmi une
infinité d’autres possibles, appelées orbites de Jeffery, qui ne dépendent que de la
condition initiale. En conséquence, la viscosité d’une suspension de particules axis-
symétriques est indéterminée, à moins que d’autres effets ne soient pris en compte
pour déterminer les orbites de Jeffery préférentielles.

Les efforts théoriques récents de SUBRAMANIAN et KOCH, 2005; SUBRAMANIAN

et KOCH, 2006; DABADE et al., 2016; MARATH et SUBRAMANIAN, 2017; MARATH et
SUBRAMANIAN, 2018 et EINARSSON, CANDELIER et al., 2015a ; EINARSSON, CANDELIER

et al., 2015b ont discuté de l’influence d’un petit effet inertiel sur les orbites de Jeffery
de particules axis-symétriques. Ces auteurs ont trouvé que l’inertie du fluide et/ou
des particules modifie les orbites de Jeffery, autrement stables, puisque les particules
ellipsoïdales sont alors poussées vers une orbite stable limite au fur et à mesure
de leurs rotations. Les ellipsoïdes ‘prolate’ sont poussés vers l’orbite dans le plan de
cisaillement. La situation est plus complexe pour les ellipsoïdes ‘oblate’ qui sont attirés
soit par la seule orbite de rotation, soit à la fois par l’orbite alignée sur la vorticité et
l’orbite dans le plan de cisaillement, selon que leur rapport d’aspect est supérieur
ou inférieur à une valeur critique d’environ 0,14 (DABADE et al., 2016; EINARSSON,
CANDELIER et al., 2015a).
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La phénoménologie change radicalement lorsque des particules axis-symétriques
sont transportées par un écoulement turbulent, la condition d’écoulement la plus
courante pour ces suspensions dans les processus naturels et industriels. En raison
de la structure multi-échelle et intermittente de la turbulence, les particules ne se
comportent plus comme un système dynamique périodique, mais aussi des nom-
breux paramètres entrent en jeu, notamment la longueur, l’inertie et la flexibilité des
particules. Les fibres (resp. cylindres) sub-Kolmogorov dans la turbulence isotrope
homogène s’alignent avec (resp. perpendiculairement à) la déformation locale de
l’écoulement turbulent ainsi que la vorticité locale des tourbillons étirés (VOTH et
SOLDATI, 2017). En conséquence, cette dernière contribue faiblement à leur taux de
rotation (resp. de filature), qui est jusqu’à trois fois plus faible que celui calculé par la
théorie de Jeffery pour des particules orientées aléatoirement (SHIN et KOCH, 2005;
PARSA, CALZAVARINI et al., 2012 ; BYRON et al., 2015; NI et al., 2015).

Si l’on considère des particules cylindriques allongées (fibres) proportionnelles
aux structures inertielles de la turbulence, leur longueur non négligeable diminue la
contribution des petits tourbillons (SHIN et KOCH, 2005), diminuant encore leur taux
de rotation suivant une loi de puissance °4/3 (PARSA et VOTH, 2014; PUJARA et al.,
2019). Ceci est également extensible aux effets d’inertie des particules déterminés par
un décalage de densité entre les deux phases (BOUNOUA et al., 2018). En revanche,
l’influence de la flexibilité sur la dynamique des fibres dans la turbulence est plus com-
plexe. Les fibres flexibles se plient et s’étendent rapidement, étant étirées à l’intérieur
de régions tourbillonnaires de taille comparable, ce qui suggère que la déformabilité
des particules a un effet négligeable sur leur alignement dans la turbulence PICARDO

et al., 2020; OLIVIERI, MAZZINO et al., 2022.
Enfin, on sait que les particules axis-symétriques interagissent avec la turbulence et,

si elles sont dispersées en concentration suffisante, elles en modulent l’intensité, ce
qui conduit à une phénoménologie macroscopique connue sous le nom de Réduction
de la Traînée (VOTH et SOLDATI, 2017). Dans le cas des fibres, cela est déterminé par
une modification structurelle de l’écoulement turbulent que les particules imposent
aux tourbillons de taille comparable aux fibres. Cela détermine une interaction à
toutes les échelles de la turbulence, où le rapport d’aspect et l’inertie des particules
sont les paramètres les plus influents (MCCOMB et CHAN, 1981; OLIVIERI, MAZZINO

et al., 2022).

Cette thèse porte sur l’étude de la dynamique des fibres dans les écoulements
visqueux et turbulents. Pour mener à bien cette étude, deux spécialités ont été com-
binées dans le cadre d’une convention de co-tutelle entre l’Università degli Studi di
Udine et l’Aix-Marseille Université. Des expériences ont été réalisées au Laboratoire
IUSTI d’Aix-Marseille Université pour étudier l’influence de la petite inertie sur les
rotations de particules axis-symétriques isolés et iso-denses dans un écoulement de
cisaillement visqueux.

Dans le Chapitre Deux, nous présentons la partie expérimentale. Cette étude com-
prend la fabrication et la mesure de particules cylindriques et ellipsoïdales axis-
symétriques faites sur mesure selon trois méthodes différentes pour lesquelles nous
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avons combiné des connaissances de base en modélisation tridimensionnelle et des
technologies de pointe dans le domaine du prototypage rapide. Les particules obte-
nues sont ensuite caractérisées par microscopie numérique pour déterminer statisti-
quement le rapport entre la longueur et le diamètre de la particule, c’est-à-dire le rap-
port d’aspect de la particule. Nous avons ainsi obtenu 16 particules axis-symétriques
dans une large gamme de rapports d’aspect (r 2 [0.05;20]).

La préparation des fluides pour les expériences est donc expliquée en détail. Une
solution d’eau pure, d’acide citrique et d’huile Ucon a été retenue. La concentration
d’acide citrique permet de produire une condition d’iso-densité entre le fluide et les
particules axis-symétriques données, répondant ainsi à l’exigence de la théorie de
JEFFERY, 1922. Ensuite, la viscosité du fluide est proportionnelle à la concentration
du Ucon, ce qui la rend facilement ajustable et offre un moyen simple de contrôler
la nature inertielle des particules en suspension (DABADE et al., 2016; EINARSSON,
CANDELIER et al., 2015a).

De plus, une cellule de cisaillement sur mesure est présentée. Elle est équipée de
parois transparentes utilisé afin de permettre l’usage de un système d’enregistrement
par deux caméras orthogonales. Le cisaillement du fluide est assuré par le déplace-
ment continu d’une courroie, elle aussi, transparente, assuré par un moteur à courant
continue. Les mesures de taux de cisaillement sont obtenues par Vélocimétrie par
Image de Particules, effectuées avec des fluides à faible et forte viscosité. Le suivi de
la particule, initialement placée au centre de la cellule, est assuré par deux caméras
orthogonales qui enregistrent sa dynamique d’orientation au cours du temps. Ensuite,
un algorithme de Vision par Ordinateur développé pendant la thèse est utilisé pour
segmenter automatiquement la particule et mesurer l’orientation et la taille des deux
projections des particules sur les deux cameras.

À ce stade, un problème fondamental émerge, étant donné que les deux particules
projetées ne fournissent pas suffisamment d’informations pour estimer l’orientation
tridimensionnelle des particules axis-symétriques données. Alors qu’une approche
basée sur les deux projections pourrait résoudre le problème pour les formes cylin-
driques, à condition d’avoir une résolution suffisante sur la dimension mineure de la
particule, ce n’est pas le cas pour les ellipsoïdes, qui manquent naturellement de bords
nets. Par conséquent, nous tirons parti de la relation qui détermine le ‘Axes Aligned
Bounding Box’ des ellipsoïdes et des cylindres, connue a priori étant une expression
déterminée, pour entraîner un Neural Network sur la géométrie des particules axis-
symétriques. Ensuite, après avoir combiné les informations recueillies par les deux
caméras orthogonales, nous utilisons le Neural Network pour estimer leur pose sur la
base de le ‘Axes-Aligned Bounding Box’ qui a été mesurée expérimentalement.

Nous examinons l’effet de l’inertie sur le comportement dynamique de ces parti-
cules en suspension jusqu’à un nombre de Reynolds des particules d’environ un, en
modifiant systématiquement la viscosité du fluide. Qualitativement, pour un petit
nombre de Reynolds des particules (Rep ªO(10°2)) les orbites de Jeffery observées
correspondent aux ellipses fermées décrites pour la première fois par Jeffery, alors
qu’une dérive claire émerge pour une inertie plus élevé, les orbites s’étendent ou
s’effondrent selon l’orientation initiale et le rapport d’aspect des particules.

173



. Appendices – C. Rèsumè complet

Nos résultats montrent que la période de rotation des particules, quelque soit
la forme, ne varie pas dans ce régime de faible inertie. Ceci étend la validité de la
théorie de Jeffery jusqu’à un nombre de Reynolds des particules d’environ un. Nous
trouvons une dérive systématique parmi plusieurs rotations vers des orbites stables
limites. On constate que les particules ‘prolate’ dérivent vers l’orbite de rotation dans
le plan de cisaillement, tandis que les particules ‘oblate’, quel que soit leur rapport
d’aspect, sont entraînées soit vers l’orbite de rotation, soit vers l’orbite de rotation
alignée sur la vorticité, en fonction de leur orientation initiale. Les résultats pour
les particules allongées sont en bon accord avec les théories récentes de DABADE

et al., 2016 ; EINARSSON, CANDELIER et al., 2015a. D’autre part, nos résultats suggèrent
l’existence d’un bassin d’attraction plus large que prévu du cycle de rotation pour les
particules aplaties dans la limite proche de la sphère , ainsi qu’une instabilité plus
douce des orbites de Jeffery en général.

Le Chapitre Trois du manuscrit se concentre sur des simulations numériques très
précises d’une suspension de fibres dans une turbulence de paroi, réalisées au Mul-
tiphase Flow Laboratory de l’Università degli Studi di Udine. Ces calculs visent à
caractériser la dynamique et les déformations de fibres longues et flexibles suspen-
dues dans un écoulement turbulent en canal, en reliant leur phénoménologie aux
propriétés fondamentales de la turbulence.

Les simulations sont menées au moyen d’une approche de calcul Eulérienne-
Lagrangienne. Nous effectuons des simulations numériques directes (DNS) d’un
écoulement turbulent en canal imposé par pression, en discrétisant les équations de
continuité et de Navier-Stokes selon une méthode pseudo-spectrale classique (J. KIM

et al., 1987). Ensuite, les fibres sont modélisées selon le modèle rod-chain LINDSTRÖM

et UESAKA, 2007 ; ANDRIĆ et al., 2013 : nous effectuons le suivi Lagrangian de particules
(LPT) de tiges sub-Kolmogorov qui, étant assemblées en chaînes, modélisent des fibres
qui s’étendent bien dans le domaine inertiel de la turbulence et sont naturellement
enclines à la flexion. Cela signifie que les équations décrivant la dynamique linéaire et
angulaire de chaque tige sont couplées dans un système matriciel tri-diagonal par la
contrainte de non-glissement imposée au point de contact entre les deux extrémités
de deux éléments consécutifs.

Enfin, nous évaluons la perturbation hydrodynamique des fibres sur l’écoulement
en suivant la méthode de couplage bidirectionnel Exact Regularized Point Particle
(ERPP) (GUALTIERI et al., 2015). Cette méthode normalise la perturbation des parti-
cules, par ailleurs singulière, sur la grille Eulérienne par le biais d’une échelle de temps
retardée, qui est inversement proportionnelle à l’exactitude de la solution. Par consé-
quent, elle exige naturellement des grilles de calcul finement discrétisées, pénalisant
la faisabilité des calculs. D’autre part, cela permette que l’intensité de l’interaction
hydrodynamique calculée ne dépend pas de la fraction volumique locale comme dans
d’autres schémas (SQUIRES et EATON, 1990).

La méthodologie décrite permet des simulations très précises de suspensions de
fibres longues et flexibles dans la turbulence de paroi au prix de calculs intensifs. Nous
présentons donc les principes d’un nouvel algorithme de parallélisation, dont l’exten-
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sibilité est exploitée pour déployer un solveur accéléré par GPU (DNS+ERPP+LPT) sur
l’infrastructure de calcul haute performance la plus moderne d’Europe.

Plus important encore, nous évaluons l’influence de la méthode de couplage bi-
directionnel pour rétablir l’équivalence de forme correcte entre les fibres simulées
et la théorie de JEFFERY, 1922. Cela nous permet de valider nos calculs, en trouvant
une correspondance entre les expériences et les simulations présentées dans cette
thèse, de sorte qu’un critère simple est déduit afin de garder la précision dans des
simulations à grande échelle d’un écoulement turbulent.

Nous présentons des résultats à des nombres de Reynolds de cisaillement Reø = 300
en dispersant des fibres courtes, intermédiaires et longues de type traceur et iner-
tielles avec une rigidité en flexion nulle ou finie (10°4). Les statistiques permettent
de comprendre l’orientation préférentielle et le taux de rotation des particules. Nous
constatons que dans le centre du cisaillement les fibres flexibles s’orientent et tournent
comme s’il s’agissait de particules rigides en suspension dans une turbulence isotrope
homogène, comme dans les expériences et les simulations numériques les plus ré-
centes (PARSA et VOTH, 2014; OEHMKE et al., 2021; OLIVIERI, MAZZINO et al., 2022).
Cependant, les mêmes fibres s’orientent avec l’écoulement moyen et connaissent
des taux de rotation plus élevés lorsqu’elles se déplacent vers les parois, où le fort ci-
saillement détermine l’orthogonalité entre la vorticité et la direction de l’écoulement,
expliquant des rotations plus intenses des particules.

Ensuite, nous nous intéressons à la déformation des particules, en constatant que
la configuration la plus probable d’une fibre flexible dans la turbulence est étirée à la
fois dans le coeur de l’écoulement et près des parois, étirée comme ce qui est observé
numériquement dans la turbulence isotrope homogène (PICARDO et al., 2020). Deux
variables de forme, notamment la longueur effective et le rayon de giration, nous
permet de classer toutes les formes déformées possibles, en constatant que les fibres
se déforment selon deux schémas typiques, appelés flexion " en cils " et flambage "
en compression ". Nous constatons qu’une rigidité finie mais modérée est suffisante
pour supprimer le second mais seulement atténuer le premier.

Dans l’ensemble, nos résultats indiquent que, d’un point de vue dynamique, les
fibres flexibles et rigides dans la turbulence des parois présentent des orientations
et des taux de rotation similaires. Ceci s’explique par le fait que les fibres déformées
retrouvent rapidement leur configuration étirée, car nous constatons que leur temps
de déformation typique peut être modélisé par une distribution gamma très locale
et correspond très probablement à la durée de vie des petites échelles turbulentes,
c’est-à-dire entre 2 et 3 fois l’échelle de temps de Kolmogorov de l’écoulement. Ceci
rappelle l’investigation numérique de ALLENDE et al., 2018, qui a trouvé que le temps
d’inter-déformation pour des tiges flexibles sub-Kolmogorov dans une turbulence
isotrope homogène était bien prédit par une distribution de Weibull.

Par la suite, nous nous sommes concentrés sur la modulation de la turbulence par
les fibres. L’image générale qui se dégage d’un large nombre d’études des écoulements
turbulents en canal chargés de fibres à différents nombres de Reynolds de cisaillement
(Reø = 150 and Reø = 300) montre l’importance de la fraction volumique, qui est le
paramètre clé pour déterminer l’intensité de la réduction de la traînée. La charge
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massique est également un paramètre important car, pour les fibres inertielles, la
modulation de la turbulence entraîne généralement une augmentation de la traînée.

En regardant les intensités de turbulence, nous apprécions deux comportements
légèrement différents : un cas efficace est déterminé par les fibres iso-denses à faible
fraction volumique, lorsqu’elles déterminent des intensités de turbulence légèrement
plus fortes, en particulier pour le pic de la composante axiale et dans la masse de
l’écoulement. Au contraire, les trois autres simulations mettent en évidence une image
plus classique, où les intensités de turbulence sont affaiblies proportionnellement à
l’inertie des particules dispersées, en particulier pour leur pic (XI, 2019). En gardant
cela à l’esprit, nous examinons le bilan du moment axial, où apparaît la contrainte
supplémentaire non-Newtonienne, axiale-normale des particules : d’après les théories
disponibles sur la réduction de la traînée induite par les polymères, il est connu que ce
terme limite la quantité possible de réduction de la traînée, il doit donc être considéré
comme un effet indésirable (XI, 2019).

Aux fractions volumiques considérées, les fibres iso-denses ne génèrent pas de
contraintes supplémentaires significatives, alors que les fibres inertielles le font, ali-
mentant la contrainte de Reynolds proportionnellement à la charge de masse. Cepen-
dant, les fibres traçantes sont capables d’introduire une contrainte supplémentaire
normale plus appréciable, de signe opposé. Nous supposons ici que cette contrainte
agit pour réduire le transfert de moment normal axe-paroi, qui peut être considéré
comme le mécanisme fondamental sur lequel la réduction de la traînée est basée (XI,
2019). L’efficacité des fibres iso-denses pourrait alors être liée à leur production de
contraintes supplémentaires purement normales sans perturber l’équilibre axial de la
quantité de mouvement.

L’examen des spectres de l’énergie cinétique turbulente permet de mieux com-
prendre le mécanisme de la modulation de la turbulence. Nos résultats indiquent
des caractéristiques typiques de la turbulence chargée de fibres, en accord avec des
études numériques antérieures (OLIVIERI, MAZZINO et al., 2022). Les particules se
nourrissent des échelles turbulentes intermédiaires pour distribuer l’énergie aux plus
petites, mais résonnent aussi modestement en correspondance des plus grandes
échelles de l’écoulement.

On trouve également des traces de ce mécanisme en examinant le bilan de l’éner-
gie cinétique turbulente. Les fibres longues agissent positivement pour affecter la
masse de l’écoulement turbulent du canal. Malgré leur faible contribution, ces parti-
cules modulent la production d’énergie cinétique turbulente qui est plus faiblement
transportée aux plus petites échelles de l’écoulement, où la dissipation visqueuse
est également modulée. Nos résultats suggèrent que les fibres longues et minces
(L+

0 ª 30 w.u. and r = 1000) ne pourraient pas remplacer aussi efficacement les tiges
plus petites ou les polymères comme agents de réduction de la traînée. Il serait plu-
tôt plus judicieux de les combiner ensemble, car ils influencent généralement un
écoulement turbulent à différentes échelles (SHARMA, 1981).

En conclusion, le travail présenté ici tente de répondre à des questions fonda-
mentales concernant la dynamique des fibres en suspension dans des écoulements
visqueux et turbulents, lorsque l’inertie et la flexibilité jouent un rôle important. Cette
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étude a été menée en combinant des expériences et des simulations numériques, tout
en validant ces dernières sur les résultats des premières. Il en résulte deux lignes de
recherche complémentaires, qui ont permis d’explorer les suspensions de particules
axis-symétriques à de multiples échelles.
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