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A deep learning approach 
to hard exudates detection 
and disorganization of retinal inner 
layers identification on OCT images
Lisa Toto 1, Anna Romano 1*, Marco Pavan 2, Dante Degl’Innocenti 2, Valentina Olivotto 2, 
Federico Formenti 1, Pasquale Viggiano 3, Edoardo Midena 4,5 & Rodolfo Mastropasqua 6

The purpose of the study was to detect Hard Exudates (HE) and classify Disorganization of Retinal 
Inner Layers (DRIL) implementing a Deep Learning (DL) system on optical coherence tomography 
(OCT) images of eyes with diabetic macular edema (DME). We collected a dataset composed of 442 
OCT images on which we annotated 6847 HE and the presence of DRIL. A complex operational 
pipeline was defined to implement data cleaning and image transformations, and train two DL 
models. The state-of-the-art neural network architectures (Yolov7, ConvNeXt, RegNetX) and 
advanced techniques were exploited to aggregate the results (Ensemble learning, Edge detection) 
and obtain a final model. The DL approach reached good performance in detecting HE and classifying 
DRIL. Regarding HE detection the model got an AP@0.5 score equal to 34.4% with Precision of 48.7% 
and Recall of 43.1%; while for DRIL classification an Accuracy of 91.1% with Sensitivity and Specificity 
both of 91.1% and AUC and AUPR values equal to 91% were obtained. The P-value was lower than 0.05 
and the Kappa coefficient was 0.82. The DL models proved to be able to identify HE and DRIL in eyes 
with DME with a very good accuracy and all the metrics calculated confirmed the system performance. 
Our DL approach demonstrated to be a good candidate as a supporting tool for ophthalmologists in 
OCT images analysis.

Diabetes mellitus (DM) is a metabolic disorder frequently complicated by diabetic retinopathy (DR) and dia-
betic macular edema (DME). Diabetic retinopathy is the major sight threatening eye disease in working-age 
populations with an estimated prevalence of any form of DR of 34.6% and proliferative DR (PDR) of 6.96% in 
the diabetic patients.1 Diabetic macular edema, which occurs in any stage of DR, is the most common cause 
of visual loss in DR. DME consists of retinal thickening involving or approaching the fovea related to capillary 
leakage and retinal fluid accumulation in the macula.2

Vascular, neurodegenerative, and inflammatory components have been implicated in DME occurrence.3–6

Nowadays, optical coherence tomography (OCT) a well-established retinal imaging technique allows to 
evaluate the status and the progression of different retinal pathologies. OCT is widely used for DME detection 
and classification based on the type of retinal edema.7

In addition, OCT is helpful in imaging biomarkers detection such as retinal fluid distribution, the status 
of the inner retina and in particular the disorganization of retinal inner layers (DRIL), the status of the outer 
retina and particularly of the photoreceptor layer, the presence of hard exudates (HE), and the identification of 
hyperreflective foci (HF).8–11

Several studies investigated OCT biomarkers in DME and found them to be predictive of treatment out-
comes after intravitreal anti-VEGF injection and intravitreal steroid implant and to be related to the final visual 
outcome.12–17
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In the last years, the high demand for screening and monitoring patients with DR prompted the development 
of Artificial Intelligence (AI) in the ophthalmology field in order to improve access of patients to DR screening 
and to improve diagnostic accuracy, by means of retinal fundus images. AI and particularly deep learning (DL) 
models were applied to fundus images for automated detection of fundus lesions, such as microaneurysms, hard 
exudates, hemorrhages, and soft exudates.18–21

Moreover, recently the need to diagnose correctly DME features at baseline avoiding subjectivity of OCT 
biomarkers interpretation and to monitor DME response after intravitreal therapy favored the application of 
AI to structural OCT.

Some authors applied Machine Learning (ML) to OCT to identify macular edema of various etiologies includ-
ing DME, exploiting the classification capability of AI models.22,25 In particular, ML is a branch of AI in which 
programs learn from raw data to develop an automated classification of medical images.

Sandhu et al. showed high accuracy in the diagnosis of non-proliferative DR, applying ML techniques to mul-
tiple data such as OCT images alone or combined with retinal imaging techniques (such as OCT angiography) 
and clinical and demographic patient data. When OCT images were analyzed alone by the system demonstrated 
an accuracy of diagnosis of 76%, sensitivity of 85% and specificity of 87% in diagnosing DR.26

Recently other authors used DL models to detect imaging biomarkers in OCT images such as intraretinal 
and subretinal fluid, status of the external retina, and HF showing high accuracy of automating quantification 
for the different OCT biomarkers.27–30

Singh et al. also developed a DL-based algorithm for DRIL detection in DR patients using OCT images show-
ing high accuracy, specificity and sensitivity in identifying DRIL.31

The aim of this study was to assess the accuracy of AI implementing a DL model to identify and localize two 
different OCT biomarkers related to DR and DME. The biomarkers chosen for this purpose are HE, an early and 
classic sign of DR related to the breakdown of blood retinal barrier (BRB), and the DRIL, a biomarker of inner 
retinal status frequently related to the worst visual acuity in DR patients, despite good response to intravitreal 
treatment.

Two different DL approaches were developed based on specific architectures with HE identification with 
details of their position and area and DRIL identification by running a whole image classification. Given that this 
paper has two primary objectives (identifying HE and DRIL), and the techniques for implementing them are of 
different natures, it is necessary to use the appropriate metrics for each of them. It will be the responsibility of the 
specialist to consider the two predictions provided by the two AI systems, aggregate the results, and draw conclu-
sions. The novelties of our study are: (i) the use of a recent and complex DL approach combined with ensemble 
methods to exploit the best from different architectures and improve DL model classification performance applied 
to OCT images in DR and DME; (ii) identification/classification of two different OCT biomarkers of different 
nature using different AI methodologies and aggregating the results. Briefly, differently from the other works in 
the literature, we designed a more complex software architecture to combine several modules and take advantage 
of both the AI object detection approach and the image classification one.

Methods
Patients
This was a retrospective, cross-sectional, single center Italian study. It was carried out at the University of Chieti-
Pescara for patients’ enrollment, and in collaboration with Datamantix S.r.l. Artificial Intelligence Company 
(Udine, Italy) for data analysis.

This study was conducted in accordance with the Declaration of Helsinki and was approved by the insti-
tutional review board of the Department of Medicine and Ageing Science of the University ‘G. d’Annunzio’ of 
Chieti-Pescara (Chieti, Italy). All patients provided written informed consent prior to enrollment. Data were 
collected between March 2022 and September 2022 and analyzed from October 2022 to December 2022.

Inclusion criteria were age > 18 years and a diagnosis of type 2 diabetes mellitus with non-proliferative DR 
(NPDR) according to the simplified version of the ETDRS classification complicated by center-involved DME. 
Exclusion criteria were: a diagnosis of a retinal disease other than DR (retinal vascular occlusions, retinal dys-
trophies, age-related macular degeneration, macular holes etc.), vitreomacular interface (VMI) alterations such 
as vitreomacular traction; media opacity precluding high-quality OCT imaging, and myopia > 6 diopters.

Three hundred patients (442 eyes) were enrolled in the study, 155 females and 145 males, with a mean ± SD 
age of 65.5 ± 10.5 years (range 48 and 78 years), a mean diabetes duration of 15.2 ± 8.2 years and mean ± SD 
HbA1c (%) of 7.2 ± 0.6.

One hundred and fifty-eight eyes of the 300 patients enrolled in the study were not considered because not 
fulfilling the inclusion and exclusion criteria and in detail 48 eyes were not considered due to absence of center-
invoved DME and/or presence of proliferative DR; 42 eyes were excluded for coexistence of vitreomacular 
interface (VMI) alterations; 68 eyes were excluded for media opacity precluding high-quality OCT imaging.

All patients had a diagnosis of DM type 2 with NPDR complicated by center-involved DME.
All patients underwent spectral domain OCT (SDOCT) using Spectralis ® HRA + OCT (Heidelberg Engi-

neering; Heidelberg, Germany). The acquisition protocol for SDOCT included a macular horizontal and vertical 
B-scans centered on the fovea. Eye tracking and automatic real-time (ART) averaging techniques were used to 
improve image quality. A High-Resolution mode, a mean ART > 90, and a Quality index > 30 were used to ensure 
image quality. All selected OCT images were exported in PNG format for analysis.
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OCT biomarker identification
At OCT images hard exudates are recognized as previously described as hyperreflective spots (HRS) mostly 
localized in the outer retinal layers with size > 30 μm, reflectivity similar to retinal pigment epithelium (RPE)-
Bruch membrane and back shadowing (Fig. 1A).32,33

DRIL as previously described are defined as the loss of boundaries between ganglion cells, Inner plexiform 
layer, inner nuclear layer, and outer plexiform layer measured as the transverse extent (Fig. 1B).34

The deep learning system: design and development
This work requires simultaneous object detection for HEs and DRIL classification. To achieve this dual task 
effectively, a workflow that includes two different DL approaches was designed. The proposed pipeline is shown 
in Fig. 2 and it consists of a common phase of data collection and annotation followed by two main branches for 
DRIL classification and HEs detection, executed separately due to the different techniques involved.

Since the classification and the detection algorithms focus on various image features, two different data 
preparation strategies were carried out. Furthermore, the state-of-the-art to choose the best architectures was 
examined, and multiple experiments to compare the performance and the robustness of the models were devel-
oped. In the end, the results of the two branches have been combined. In Fig. 3 is depicted how the AI system 
provide the results.

All the experiments were carried out using an AI workstation with an NVIDIA v100 GPU with 32 GB of 
VRAM memory. The implementations were based on Python v3.8.10 and PyTorch v.1.13.0. Python libraries such 
as OpenCV v4.6.0 and Pillow v9.3.0 were also used.

In the following sections, a comprehensive description of the annotation process, the two key AI techniques 
implemented in our study, and the evaluation methodologies is provided.

Image annotation and analysis
Image data annotation refers to the process of labeling specific features or regions of interest within images, 
providing valuable information to train and evaluate DL models.

Each image was analyzed by three experienced retinal specialists (LT, RM, PV). In particular, to identify all 
the HEs in the pictures, two specialists separately analyzed the samples using a specific tool to draw bounding 
boxes around the biomarkers. The third specialist reviewed the annotations by merging and/or cleaning boxes.

On the other hand, the three specialists independently annotated the DRIL by indicating for each image 
its presence or absence. The majority voting has been applied to assign the proper annotation to each image. 
We also computed the inter-grader agreement and the Kappa coefficient in order to provide details about the 

Figure 1.  A Infrared (IR) image and horizontal optical coherence tomography (OCT) scan of a patient with 
diabetic macular edema showing hard exudates (dashed white rectangle). B IR image and horizontal passing 
through the fovea OCT scan passing through the fovea showing diabetic macular edema and disorganization of 
retinal inner layers (dashed yellow rectangle).
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agreement level among the different pairs of specialists. In general, the overall inter-grader agreement reaches 
a score equal to 83.26% (90% on DRILs and 76.58% on NO_DRILs images). In the following Table 1 we report 
all the computed scores for each specialists’ pair.

A total of 442 OCT images were collected, among which 220 displaying DRILs (49.8%) and a total of 6847 
HEs have been annotated.

Figure 2.  The operational workflow of our AI system. Due to the complexity of the task we designed and 
implemented a custom pipeline. It involves a shared phase of data collection and annotation and it is followed 
by two distinct branches, one for DRIL classification and the other one for HE detection. By combining these 
approaches, we are able to achieve the final goal with a model that fulfills our purpose.

Figure 3.  An example of input image and its corresponding output after the AI model inference. The upper 
part of the figure reports a typical OCT image that can be used as input data of our system to analyze the 
benchmarks presence. After the inference of the final model the image is labeled with a class (“DRIL” or “NO 
DRIL”) that highlights if a DRIL is present or not, and all the predicted HEs are marked with bounding boxes. 
Regarding the specific sample, the predicted class is “NO_DRIL”, while the HEs are identified by red boxes as 
emphasized in the zoom area.
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HE detection using AI object detection approach
Object detection technique allows us to simultaneously predict the class of an object and its bounding box 
coordinates in images. To maximize the performance and train a stable model, we implemented a set of image 
transformations and model configurations. We cropped the images to emphasize the region of interest and we 
applied the median filter technique to reduce the speckle noise issue. Moreover, we reversed the colors of collected 
images to highlight the objects of interest, in order to emphasize HEs against the surrounding tissue.

To proceed with the AI training phase, we chose the YOLO algorithm, because of its accuracy and ability to 
generalize well to new objects.35 At the time of the experiments done in this study, version YOLOv7 surpassed 
all known object detectors, and for this reason, it was selected to maximize the experiments’ performance.36 First 
of all, we split the dataset randomly into a training set (60%, 264 images), a validation set (20%, 88 images), and 
a test set (20%, 90 images), dividing at the patient level. During the training phase, each input image was resized 
to 1024 × 1024 pixels, since high resolution improves the performance of object detection, especially for small 
objects such as HEs. A batch size of 16 images, a momentum of 0.937, and a learning rate in the range [0.01, 0.1] 
were set as the principal hyperparameters of the training step. Moreover, we analyzed and checked the validation 
loss curve to avoid overfitting.

After running the trained YOLO model on the test set we applied two post-processing steps to improve the 
precision of the results: merging boxes that overlap over a certain threshold and cleaning up predictions outside 
the region of interest. We exploited the Intersection Over Union metric (IOU) to measure the ratio of the boxes’ 
intersection over the union of their areas and we merged boxes if their IOU is greater than 50%. Moreover, to 
address false positives outside the region in which HEs can be located, we detected the main edges using the 
Canny algorithm followed by the Probabilistic Hough Line Transform.37,38 Finally, we removed the bounding 
boxes predicted above these edges.

DRIL Identification using AI image classification
DRIL were identified as present or not and the task was addressed implementing a whole image classification 
based on Convolutional Neural Networks.

In order to prepare data for the training process, all the images were cropped to keep only the part of the 
interest of the raw pictures. We also created copies of the original dataset to obtain different versions by applying 
various pixel transformations to the images. This involved adjusting the contrast and brightness of each picture 
and applying colorization effects. As a result, we obtained a total of six datasets (including the original one) 
which were used in the training phase. All of them were split randomly into three subsets (train, validation, and 
test set), following the same percentages of the object detection task and maintaining the same proportion of 
the target classes in each set, that makes the evaluation of the model more rigorous.

As previously stated, we examined the state-of-the-art Deep Neural Network architectures to select the most 
suitable ones that align with our primary objective, and we chose to adopt ResNet, ConvNeXt, and RegNetX.39,40 
We designed and implemented several experiments using the selected network architectures and the versions of 
the dataset created to compare the different combinations and highlight the best ones.

In Table 2 the top three models that reach the best performance are shown.
We combined the strengths of these models to identify the DRILs on images implementing an ensemble 

phase. We carried out an approach based on soft voting, where the three models have been considered with equal 
weight, and their predictions were combined to make the final decision.

Table 1.  Annotation agreement scores for each specialists’ pair.

Specialists’ pair % Agreement Kappa coefficient

Rater 1–Rater 2 89.14 0.66

Rater 1–Rater 3 88.91 0.78

Rater 2–Rater 3 88.46 0.77

Table 2.  Top three classification models and their main hyperparameters.

Architecture Dataset transformation Epochs Learning rate Batch size Image input size Resize method

ConvNeXt tiny
Color substitution:
black → red
white → yellow
midtone → blue

50 0.01 16 434 × 1024 Squish

ConvNeXt tiny
Color substitution:
black → blue
white → yellow midtone → red

100 0.001 16 434 × 1024 Squish

RegNetX_016
Brightness
beta = -30 and contrast
alpha = 1.5

50 0.001 16 434 × 1024 Squish



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16652  | https://doi.org/10.1038/s41598-024-63844-9

www.nature.com/scientificreports/

Evaluation and statistical analysis
In this section, we discuss the evaluation metrics used to assess the models’ performance, to provide insights on 
their strengths and limitations, and to evaluate their potential for clinical applicability. The selected metrics to 
evaluate the DL system depend on the task considered since object detection and image classification problems 
have different evaluation processes.

The typical metrics calculated to evaluate an object detector are mean Average Precision (mAP), Precision, 
and Recall, that can be computed using different IOU thresholds. Usually, an IOU score greater than 0.5 is used 
to define a correct prediction, therefore we chose to adopt it. In our case, we do not need the standard mAP 
metric, which computes the mean (m) of the Average Precision (AP) over the different object classes, since 
there is only one class to predict. Therefore, we calculated the AP@0.5 as the Area Under the Precision-Recall 
Curve evaluated at the IOU threshold equal to 0.5. Regarding Precision and Recall, we followed the standard 
calculation. Moreover, each box is predicted by our model with a certain confidence level. In our specific case, 
since the objects are very small on many occasions and the images do not always have a high quality, we selected 
a confidence level of 10%. In this way, our AI system ensures to detect the maximum number of HEs possible, 
acting as a good supporting tool and without missing any crucial objects of interest in the image.

On the other hand, with regard to the DRIL classification, the principal metrics that we analyzed are Accuracy, 
Sensitivity, Specificity, Area Under the ROC Curve (AUC), and Area Under the Precision-Recall Curve (AUPR). 
Taking into consideration the confusion matrix data, we calculated two important statistical measures called 
p-value and Kappa coefficient. In this context, the p-value is computed considering a one-sided binomial test 
to determine if the accuracy surpasses the no-information rate. Moreover, the Kappa coefficient is a measure 
of inter-rater reliability, which assesses the level of agreement between two or more raters in evaluating a set 
of items. In the context of DL model evaluation, the Kappa coefficient is used to evaluate the performance of 
a model in a classification task by calculating the agreement between the predicted labels and the true labels.

Results
This section presents the results obtained calculating the described metrics over the HE detection and DRIL 
classification on the respective test set.

With reference to the HEs detection task, the AP@0.5 reaches a value of 34.4%, with the corresponding 
Precision-Recall curve shown in Fig. 4. In particular, the Precision results at 48.7%, and the Recall value is equal 
to 43.1% as summarized in Table 3.

Figure 4.  The results of HE detection on test set images. Precision-Recall curve of HE detection model 
considering IOU (Intersection Over Union) threshold to 0.5.

Table 3.  The results of HE detection on test set images. AP average precision.

Object detection model AP@0.5 Precision Recall

Yolov7 34.4% 48.7% 43.1%



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16652  | https://doi.org/10.1038/s41598-024-63844-9

www.nature.com/scientificreports/

Finally, we computed the Pearson correlation between the number of HEs detected by the AI model and the 
number of HEs annotated by experts per each image, in order to evaluate the system under the HEs counting 
point of view. We obtained a score of 0.804 with a two-sided p-value lower than 0.05.

Considering the DRIL classification, we reached an overall accuracy score of 91.1% (a total of 82 correct 
predictions out of 90) with a 95% confidence interval of [0.852 ,0.969]. Both classes obtained the “Excellent” 
grade on the AUC interpretation rating scale.41 The results indicate that the model effectively differentiates 
between positive and negative samples, with a 91.1% as score for both sensitivity and specificity metrics, as it 
is possible to note in the in Fig. 5. Table 4 depicts the principal metrics for the three selected models and the 
resulting ensembled final model.

The AUC and the AUPR values, both equal to 91%, confirm the remarkable performance of the classifica-
tion model. The Kappa coefficient (the inter agreement between AI and the human majority voting) equal to 
0.82 and the P-value lower than 0.05 indicate that the final model predictions are statistically significant. The 
obtained Kappa value is considered "Excellent" according to Cicchetti’s and Fleiss’ benchmarks and "Almost 
Perfect" according to Landis & Koch’s benchmark.42,43 In order to measure also the agreement between AI and 
each rater we computer the percentage of agreement and the Kappa coefficient for each “AI-rater” pair.40 In 
Table 5 we illustrate these scores.

Finally, a more in-depth and thorough qualitative analysis of the final model predictions was conducted on 
each image. Expert ophthalmologists confirmed the true effectiveness of our AI system as a supporting tool for 
ophthalmologists.

Figure 5.  Confusion matrix of DRIL classification results on the test set images. It presents the percentage 
result of the predictions made by the model, compared to the actual values assigned by expert ophthalmologists 
during the annotation process.

Table 4.  The results of DRIL classification on test set images. CI confidence interval.

Classification model Accuracy Accuracy 95% CI Sensitivity Specificity

ConvNeXt tiny model 1 83.3 [75.6%, 91.0%] OVERALL: 83.3%
DRIL: 83.7%, NO_DRIL: 83.0%

OVERALL: 83.3%
DRIL: 83.0%, NO_DRIL: 83.7%

ConvNeXt tiny model 2 76.7 [67.9%, 85.4%] OVERALL: 77.0%
DRIL: 79.5%, NO_DRIL: 74.5%

OVERALL: 77.0%
DRIL: 74.5%, NO_DRIL: 79.5%

RegNetX_016 73.3 [64.2%, 82.5%]
OVERALL: 73.3%
DRIL: 72.7%
NO_ DRIL: 73.9%

OVERALL: 73.3%
DRIL: 73.9%, NO_DRIL:72.7%

Final Ensamble
Classification 91.1 [85.2%, 96.9%] OVERALL: 91.1%

DRIL: 88.6%, NO_ DRIL: 93.5%
OVERALL: 91.1%
DRIL: 93.5%, NO_ DRIL: 88.6%

Table 5.  Agreement scores for each “AI-rater” pair.

“AI–rater” pair % Agreement Kappa coefficient

AI–Rater 2 91.11 0.82

AI–Rater 3 88.89 0.78

AI–Rater 3 88.89 0.78

AI-Majority Voting 91.11 0.82
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Discussion
RD hallmark signs and particularly OCT biomarkers of DME have been investigated in several studies and post 
hoc analyses to assess their correlation to visual function and their prediction concerning the potential response 
to intravitreal pharmacotherapy.9,11,12,44–49

Hard exudates in the retina are one of the early signs of DR and their presence in the macula is related to 
diabetic maculopathy.

The quantification of HE is an important aspect due to the relationship between severity of HE in the macular 
region and visual loss. In addition, their assessment and monitoring during time is fundamental for the manage-
ment of DME as their sedimentation in the foveal region can compromise visual recovery.47,48

Moreover, the regression of HE from the foveal region has been found to differ with different intravitreal 
treatments being greater after dexamethasone intravitreal implant compared to intravitreal anti VEGF.49

DRIL has been proposed as a biomarker strongly associated with visual acuity in patients with DME, par-
ticularly with worse VA and with DR severity.50,51

In addition, DRIL is a potential biomarker of final post-treatment VA in eyes with DME and is associated to 
non-responders to intravitreal anti-VEGF and steroids in DME.34

In the past years identification and quantification of DR signs has been performed exclusively by human 
grading mainly on fundus images and more recently on OCT images.

Semiautomated quantification of RD biomarkers including HE in color fundus photographs and OCT images 
has been proposed and has been shown to be reliable and accurate, nevertheless, manual corrections had to be 
applied to obtain accurate quantification.52–56

Deep learning models have been applied for the classification, segmentation, and detection of lesions in DR 
including HE using public DDR datasets of fundus images by several authors demonstrating good performance 
in disease classification and lower performance for microlesion recognition (detection and segmentation).18–20

A new approach based on the YOLOv5 deep neural network model implemented through the open-source 
machine learning library PyTorch has been applied for fundus lesions detections such as microaneurysms, HE, 
hemorrhages, and soft exudates in diabetic retinopathy.21 In this study, a public dataset for diabetic retinopathy 
(DDR) of 757 fundus images was used and demonstrated the superiority of this deep learning-based approach 
for lesion detection compared to other studies.

Deep learning has also been used to detect different imaging biomarkers in OCT images such as intraretinal 
and subretinal fluid, status of the external retina, and HF.27–30 Midena et al. using a DL model showed an accuracy 
of the automatic quantification of retinal fluids and retinal status ranging between 94.7 and 95.7%.

Tejero et al. using a DL approach demonstrated high accuracy in automatic detection of IRF and SRF in Early 
Treatment Diabetic Retinopathy Study (ETDRS) rings of OCT scans.28

Suciu et al. investigated the usefulness of AI-assisted diagnosis of DME using AI neural networks (Efficient-
NetV2 and ConvNeXt) for detection of intraretinal cystoid spaces (i.e. DME), HF, and neurosensory detachment 
(ND) and demonstrated high sensitivity and specifity. In detail DME detection showed a sensitivity of 0.92 and 
a specificity of 0.98, ND a sensitivity of 0.82 and a specificity of 0.97, HF a sensitivity of 0.97 and a specificity 
of 0.78. 30.

Vahadane et al. used a patch-based approach to classify OCT frames as being indicative of DME detecting 
and classifying patches corresponding to HE and fluid using image processing and deep learning.57

Singh et al. developed a Deep Learning-based algorithm for DRIL detection in a cohort of patients with DR 
using OCT images and demonstrated high accuracy of 88.3%, specificity of 90% and sensitivity of 82.9% in 
identifying DRIL.31

In contrast to their methodology, we employed a more performant CNN and utilized ensemble methods to 
exploit the best from different architectures. Thanks to this approach, we achieved an advancement in the DRIL 
classification task, reaching metrics that demonstrate a high level of performance in classification capability.

The identification and quantification of HE and DRIL could be challenging in clinical practice even if per-
formed by trained retinal experts and could be time-consuming and need OCT images of high quality.

This study uses DL for automated detection of OCT biomarkers in DME patients such as HE and DRIL with 
the aim of facilitating their identification and quantification and making possible correlations with response to 
intravitreal treatment and visual function.

As highlighted by all the metrics that were considered, the AI system designed and developed reached good 
results in both the two main tasks. In more detail, the performance on HE detection measured using AP@0.5, 
Precision, and Recall, confirmed that the DL model was able to correctly identify the right regions on the images. 
Moreover, the obtained Pearson score indicates a statistically significant correlation between the number of HEs 
manually annotated and the ones predicted by the AI system, enforced by a very low P-value. The model has 
been positively evaluated also by expert ophthalmologists, from a qualitative point of view. In fact, despite the 
complexity of this task due to the small size of HEs and the possible presence of confusing elements, the predicted 
boxes pointed out the regions of interest. These positive results indicate a possible future clinical usefulness.

Regarding the DRIL classification, looking at the overall accuracy, it is possible to validate the remarkable 
results of our AI system. In particular, high values on sensitivity and specificity confirm the robustness of the 
model that shows no difficulties in the target classes. This fact is also supported by statistical indicators such as 
p-value and Kappa coefficient. Moreover, the Kappa scores per each “AI-rater” pair highlight how the AI proposed 
model reaches comparable performance as the pool of three specialists.

All these results were achieved thanks to the design of our pipeline, which exploits both object detection and 
classification, to build a complex AI system. Moreover, we also paid attention to computational costs, and we 
optimized the inference time of our model, getting the image analyzed in less than one second.
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As previously stated, this is one of the first studies on this topic and represents a preliminary investigation of 
AI in retinal diseases such as diabetic retinopathy that could be implemented enriching the dataset and analyz-
ing other biomarkers. Moreover, we plan to run more experiments on different network architectures and more 
complex solutions in order to further investigate on the criticalities of the studied tasks. In particular, we will 
focus future works on dataset improvements, additional data augmentation analysis, and more sophisticated 
algorithms.

In conclusion, this study demonstrated the capability of AI in identify and/or quantify OCT biomarkers in 
DME. Application of AI and in particular deep learning models on OCT images could fasten OCT biomarkers 
assessment at baseline allowing correlation with visual function and prediction of treatment.

Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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