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Abstract: Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glu-
cosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical
cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted
to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease
(GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. How-
ever, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a
new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP
deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and
chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1
mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase
activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-
mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual
GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes pro-
teasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient
fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the
ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in
GBA1-linked GCase deficiency.
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1. Introduction

Glucocerebrosidase (GCase), is a lysosomal enzyme belonging to the glycosyl hydro-
lase 30 family that catalyzes the breakdown of the glycosphingolipid Glucosylceramide
(GlcCer) into ceramide and glucose.

The enzyme is encoded by the GBA1 gene located on chromosome 1q21 (Gene Cards
ID: GC01M159917), which generates two transcripts of 2.2 and 2.6 kb [1]. The GBA1 mRNA
presents two in-frame ATG start codons, which can both be used to produce a functional
protein isoform—isoform long and isoform short [2,3]—of 536 and 516 amino acid residues,
respectively. The longer isoform has a signal sequence encompassing residues 1 to 39 and
has been chosen as the “canonical” sequence, while the shorter isoform, lacking the first
20 residues, presents a signal sequence encompassing only 19 residues. After the cleavage
of the 39 and 19 leader sequences, both isoforms generate the same 497 residues protein
with a predicted molecular weight of 55,598 Da [2].
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The GCase enzyme is synthesized in the endoplasmic reticulum (ER) and undergoes
co-translational glycosylations that are essential for catalytic activity in vivo, during transit
through the Golgi [4–6]. In mammalian cells, lysosomal proteins are usually targeted to
lysosomes through the recognition of their mannose-6-phosphate terminal residues by
mannose-6-phosphate receptors (MPRs) [7]. However, GCase is trafficking to the lysosomal
compartment in a mannose 6-phosphate-independent manner through its association with
the lysosomal integral membrane protein type 2 (LIMP-2), a heavily N-glycosylated type
III transmembrane protein encoded by SCARB2 gene [8]. GCase and LIMP-2 interact in
the pH-neutral environment of the ER to form a complex that passes through the Golgi
and eventually reaches the lysosome, where acidic pH causes dissociation and subsequent
release of active GCase [8].

In order to degrade lysosomal GlcCer, GCase requires the presence of negatively
charged lipids and saposin C (SapC), the activator protein. SapC belongs to a family of
four small lysosomal glycoproteins—SapsA, B, C, and D—all generated by the proteolytic
processing of a common precursor, prosaposin, encoded by the PSAP gene [9–11].

GCase activity is essential for the normal catabolism of glycosphingolipids. Thus, its
deficiency leads to the accumulation of GlcCer and other lipids within the lysosomes. The
most frequent cause of GCase deficiency is the presence of biallelic pathogenic variants
in the GBA1 gene leading to Gaucher disease (GD), one of the most common lysosomal
storage disorders [12–14]. The presence and severity/rate of progression of neurological
involvement have been historically used as discriminating factors for GD classification into
three different clinical phenotypes, although the clinical picture presents as a phenotypic
continuum. Type 1 GD (MIM No. 230800) represents the most common phenotype, and it
is characterized by enlargement of the liver and spleen, anemia, thrombocytopenia, and
bone damage, leading to infarctions and fractures. Although type 1 GD is considered
a non-neuronopathic form, there is increasing evidence of neurological manifestations
(i.e., Parkinson’s syndrome, seizures, oligophrenia, perceptive deafness). Type 2 GD
(MIM No. 230900) is a rare phenotype associated with an acute neurodegenerative course
and death at a very early age. Finally, type 3 GD, the chronic neuronopathic GD (MIM
No. 231000), comprises an extremely heterogeneous group of patients with either mild or
severe systemic disease associated with some form of neurological involvement; the onset
of symptoms might range from childhood to early adulthood.

Very rarely, deficiency of GCase activity can be caused by biallelic pathogenic variants
in the PSAP gene, leading to a deficiency in the GCase activator SapC or, in the SCARB2
gene, causing the deficiency of the GCase transporter LIMP-2. While patients affected by
SapC deficiency display typical GD clinical phenotype, patients with biallelic pathogenic
variants in the SCARB2 gene present action myoclonus renal failure syndrome (AMRF,
MIM No. 254900), a condition that shares some neurological clinical features with type
3 GD, such as myoclonic epilepsy. However, AMRF-affected patients do not present the
characteristic hematological and visceral manifestations of GD3, strongly suggesting that
in some tissues—in particular in blood cells—GCase may be transported to the lysosomes
in a LIMP-2-independent mechanism [15].

In this paper, we present an in-depth characterization of biochemical and cellu-
lar features of patients presenting a deficiency of GCase activity due to the ultra-rare
presence of biallelic pathogenic variants in PSAP or SCARB2 genes, comparing them to
GBA1-linked GCase deficiency, highlighting the characteristic laboratory features that
differentiate these disorders.

2. Results

In order to compare the biochemical and cellular features of patients presenting with a
deficiency of GCase activity due to biallelic pathogenic variants in GBA1, PSAP, or SCARB2
genes, we analyzed two AMRF patients (LIMP2_PT1 already described by Dardis and
colleagues [15,16], and LIMP2_PT2 presented below as Case 1), one patient with PSAP
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deficiency presented below as Case 2 (PSAP_PT), and 8 GD patients presenting GBA1
biallelic pathogenic variants (GBA1_PTs—Supplementary Table S1).

2.1. Case Reports

Case report 1 (LIMP2_PT2) presented during pregnancy when she was 34 years
old, with upper extremity limbs action myoclonic jerks, triggered by movements and
exacerbated by anxiety and auditory stimuli, associated with mild proteinuria.

In the following years, proteinuria increased, and renal failure occurred; action my-
oclonus worsened, also affecting sitting, walking, eating, and speech. Indeed, she used
walking aids, and her husband helped her cut food and eat.

At the age of 37 years, molecular analysis by NGS proved homozygous for the known
pathogenic variant c.1087C>A, p.(H363N) in the SCARB2 gene, confirming the diagnosis of
action myoclonus renal failure (AMRF).

Case report 2 (PSAP_PT) is a 4-month-old baby presented with hepatosplenomegaly
and severe neurological disease characterized by hypotonia, nystagmus, and swallowing
difficulty. The diagnosis of GD type 2 was hypothesized. Chitotriosidase activity was mea-
sured as a screening test and resulted significantly elevated (in the range of GD-affected
patients). The GBA1 gene was then analyzed by specific PCR amplification followed by
Sanger sequencing and multiplex ligation-probe amplification (MLPA); however, no genetic
variants were identified. Considering this result, a PSAP deficiency was suspected, and
the diagnosis was confirmed detecting the already described pathogenic variant, c.889G>T,
p.(E297*) in the PSAP gene, in homozygosis. The analysis of the mRNA expressed in fibrob-
lasts in the presence or absence of anysomicin, which inhibits nonsense-mediated decay,
showed that the mutant transcript is degraded by this process (Supplementary Figure S1).
The genotype was confirmed in the child’s parents, who were healthy carriers of the
identified pathogenic variant. A few months after diagnosis the patient died.

2.2. Plasma GD Biomarkers

We measured the plasma levels of the most widely used biomarkers of GD: chitotriosi-
dase activity, a marker of macrophage activation, and glucosylsphingosine (GlcSph), the
deacylated forms of the Glucosylceramide. As shown in Table 1, chitotriosidase was
highly increased in PSAP_PT and GBA1_PTs, while it was normal or slightly increased in
LIMP2_PTs. All patients presented increased levels of GlcSph in plasma.

Table 1. Plasma GD biomarkers. Abbreviations: NA = non-available.

Chitotriosidase Activity
(Range: nmol/mL/h)

GlcSph
(Range: ng/mL)

Healthy controls (n = 100) 21.2–137.1 0.1–1.8
GBA1_PTs 977.0–12,137.0 27.3–126.7
LIMP2_PT1 25.0 NA
LIMP2_PT2 186.8 23.3
PSAP_PT 2951.0 19.0

2.3. Other Plasma Biomarkers

As we routinely perform multiplex assessment of glycosphingolipid biomarkers, we
analyzed the plasma levels of Globotriaosylsfingosine (Lyso-Gb3) and N-palmitoyl-O-
phosphocholineserine (PPCS) in both LIMP-2 and PSAP deficient patients. As shown in
Table 2, PSAP_PT presented increased levels of Lyso-Gb3 and PPCS.
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Table 2. Other plasma biomarkers. Abbreviations: NA = non-available; ND = non-detectable.

Lyso-Gb3
(Range: ng/mL)

PPCS
(Range: ng/mL)

Healthy controls (n = 100) ND–0.87 9.8–200.9
GBA1_PTs 0.17–0.74 19.0–100.1
LIMP2_PT1 NA NA
LIMP2_PT2 0.40 35.2
PSAP_PT 1.98 745.9

2.4. GCase Activity

Second, we compared the GCase activity in plasma, fibroblasts, and leukocytes whenever
available. While, as expected, the activity in plasma was undetectable in patients carrying
biallelic variants in GBA1 (GBA1_PTs; n = 5, Supplementary Table S1) and the PSAP_PT, it was
increased in those carrying biallelic variants in SCARB2 (LIMP2_PTs) (Table 3). All patients
presented deficient GCase activity in cells. However, the residual activity in leukocytes was
higher in LIMP2_PTs than in GBA1_PTs (n = 5, Supplementary Table S1), whereas fibroblasts
of LIMP2_PTs and GBA1_PTs (n = 4, Supplementary Table S1) presented comparable results.
Unfortunately, the GCase activity in the leukocytes from the PSAP_PT was not available;
however, the residual activity in fibroblasts was higher than the activity present in GBA1_PTs
and LIMP2_PTs (Table 3).

Table 3. GCase activity. Abbreviations: NA = non-available; ND = non-detected.

Leukocytes Fibroblasts Plasma
(nmol/mg/h)
Mean ± SD

[Range]

% of Healthy
Controls

(nmol/mg/h)
Mean ± SD

[Range]

% of Healthy
Controls (nmol/mL/h)

Healthy
controls *

17.6 ± 2.3
[15.4–20.8] 100 127.4 ± 34.1

[97.9–179.9] 100 ND

GBA1_PTs 1.0 ± 0.3
[0.6–1.4] 5.7 4.9 ± 3.1

[1.7–7.6] 3.8 ND

LIMP2_PT1 3.9 22.2 1.7 1.3 10.5
LIMP2_PT2 2.2 12.5 5.2 4.1 27.4
PSAP_PT NA NA 19.7 15.5 ND

* Leukocytes: n = 20; fibroblasts: n = 15; plasma n = 20.

Regarding LIMP2_PTs, the reduction of GCase activity in cells and the presence of
activity in plasma were expected, as previous studies in cells from LIMP2_PT1 had already
shown that reduced GCase intracellular activity was due to the partial degradation of the
enzyme in the Endoplasmic reticulum via proteasome and the concomitant increased secre-
tion of the enzyme [15,16]. On the contrary, the reduction of GCase activity in fibroblasts
from PSAP_PT was quite unexpected since SapC is not needed for the in vitro action of
GCase using the synthetic 4MU substrate.

2.5. GCase Protein Expression in Fibroblasts

To confirm data obtained in the LIMP2_PT1 and to better understand the causes
leading to the detection of low in vitro levels of GCase activity in cells from the PSAP_PT,
we analyzed the levels of GCase protein expression and ER-to-Golgi transition of GCase in
patient’s fibroblasts by digesting cells with endoglycosidase H (Endo H) or endoglycosidase
F (Endo F). Endo H specifically cleaves high mannose (>4 mannose residues) but not
mature N-glycan complexes, allowing differentiation between immature glycoproteins
that have not reached the mid-Golgi (Endo H-sensitive) and mature glycoproteins (Endo
H-resistant). By removing all aspargine-linked glycans, Endo F serves as a positive control
for glycoprotein digestion (despite their mature status) and migration to SDS-PAGE.
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As shown in Figure 1A, in both LIMP2_PT1 and LIMP2_PT2 the abundance of GCase
was decreased compared with wild-type (wt) cells, and the protein was completely retained
in the ER. Furthermore, treatment of cells with the proteasomal inhibitor MG132 resulted
in a partial rescue of GCase protein abundance (Figure 1B,C).
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Figure 1. (A) Western blot analysis of GCase expression in WT, LIMP2_PT1, and LIMP2_PT2
fibroblasts treated (+) or not (−) with Endo H or Endo F; (B) western blot analysis of GCase expression
in WT, LIMP2_PT1, and LIMP2_PT2 fibroblasts treated (+) or not (−) with the proteasomal inhibitor
MG132; (C) quantitation of GCase expression in LIMP2_PT1, and LIMP2_PT2 fibroblasts treated with
the proteasomal inhibitor MG132; (D) western blot analysis of GCase expression in WT and PSAP_PT
fibroblasts treated (+) or not (−) with Endo H; (E) western blot analysis of GCase expression in WT
and PSAP_PT fibroblasts treated (+) or not (−) with the lysosomal proteases inhibitor cocktail lPIC;
(F) quantitation of GCase expression of PSAP_PT fibroblasts treated with lPIC. Results are expressed
as mean ± SD of three independent experiments. * p-value < 0.05; *** p-value < 0.001.

In PSAP_PT cells, the levels of GCase protein were also decreased compared with wt
cells. However, although a small portion of GCase protein was retained in the ER, it is
clear that a fair amount of protein reaches the lysosome (Figure 1D). To test whether the
GCase protein that reaches the lysosome was further subjected to lysosomal degradation,
we analyzed the GCase abundance in the presence of lysosomal protease inhibitor cocktail
(lPIC). As shown in Figure 1E,F, the inhibition of lysosomal degradation resulted in a
significant rescue of GCase protein abundance. Taken together, these results confirm data
already reported showing that in LIMP-2-deficient cells, GCase is completely retained in
the ER and subjected to proteasomal degradation [15,17] and demonstrate that in PSAP-
deficient cells, low GCase protein levels are at least in part due to increased degradation
within the lysosome.

2.6. Cholesterol Accumulation in Fibroblasts

The elevation in plasma PPCS levels, used as a biomarker of Niemann–Pick C disease
(NPCD), in PSAP_PT prompted us to hypothesize an impairment in cholesterol homeostasis
in this condition. Although normal levels of PPCS were identified in LIMP2_PT2, a role of
LIMP-2 in cholesterol trafficking alongside NPC1 and NPC2 has recently been proposed.
Based on this evidence, we assessed the intracellular cholesterol storage in LIMP-2- and
PSAP-deficient fibroblasts by filipin staining. Fibroblasts from an NPC patient were used
as positive control. As shown in Figure 2 and Supplementary Figure S2, even though
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cholesterol accumulation was not as pronounced as in NPCD fibroblasts, both LIMP2_PTs
and PSAP_PT fibroblasts accumulate a fair amount of this lipid. Interestingly, PSAP_PT
showed a more pronounced accumulation than LIMP2_PTs; in addition, cholesterol storage
seems to be higher in LIMP2_PT2 in comparison with LIMP2_PT1. These observations
suggest an impairment of cholesterol metabolism in PSAP and LIMP-2 deficiencies.
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Figure 2. Filipin stained intracellular unesterified cholesterol of LIMP2_PT1, LIMP2_PT2, PSAP_PT
fibroblasts, fibroblasts from a healthy control (WT), and Niemann–Pick type C-affected patient (NPC).
Scale bar 100 µm.

3. Discussion

In this paper, we highlighted the characteristic laboratory features that differentiate
the ultra-rare deficiencies of GCase activity due to biallelic pathogenic variants in PSAP or
LIMP-2 encoding genes from the more common GCase deficiency due to biallelic pathogenic
variants in GBA1 gene.

To the best of our knowledge, 35 families affected by LIMP-2 deficiency and 9 affected
by PSAP deficiency have been described so far. Among them, only 8 LIMP-2-deficient
and 7 PSAP-deficient patients have been assessed for GCase activity and/or plasma GD
biomarkers (Tables 4 and 5), including the present study.
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Table 4. LIMP-2 deficiency in literature. Reference transcript: NM_005506.4; reference protein: NP_005497.1. Description of DNA and protein sequence variants
are indicated according to HGVS nomenclature guidelines. Abbreviations: NA = non-assessed, F = fibroblasts, LC = leukocytes, LP = lymphocytes; P = plasma;
chito = chitotriosidase activity.

Family N◦ of Patients Pathogenic Variant Predicted Protein Type of Variant GCase Activity Plasma GD Biomarkers References

1 2 c.533G>A/c.533G>A p.(W178*)/p.(W178*) Nonsense Reduced (F), normal (LC),
increased (P)

Increased (GlcSph); normal
(chito) [17,18]

2 1 c.1087C>A/c.424-2A>C p.(H363N)/p.? missense/splicing Reduced (F), slightly
reduced (LC), increased (P)

Increased (GlcSph); normal
(chito)

[15,16,19,20],
present study

3 1 c.1270C>T/c.1270C>T p.(R424*)/p.(R424*) Nonsense Reduced (F), slightly
reduced (LP), increased (P) NA [21]

4 1 c.434_435dup/c.862C>T p.(W146Sfs*161)/p.(Q288*) frameshift/nonsense Reduced (LC) NA [22]

5 1 c.704+1G>A/c.704+1G>A p.?/p.? Splicing Reduced (LC) Slightly increased (GlcSph);
normal (chito) [23]

6 3 c.862C>T/c.862C>T p.(Q288*)/p.(Q288*) Nonsense NA NA [24,25]
7 1 c.434_435dup/c.434_435dup § p.(W146Sfs*161)/p.(W146Sfs*161) Frameshift NA NA [24,25]
8 1 c.1239+1G>T/c.1239+1G>T p.?/p.? Splicing NA NA [25]
9 1 c.296del/c.704+5G>A p.(N99Ifs*34)/p.? frameshift/splicing NA NA [25,26]
10 1 c.434_435dup/c.434_435dup p.(W146Sfs*161)/p.(W146Sfs*161) frameshift NA NA [25]
11 3 c.111del/c.111del p.(I37Mfs*7)/p.(I37Mfs*7) frameshift NA NA [24,27]
12 4 c.704+1G>A/c.704+1G>A p.?/p.? splicing NA NA [28,29]
13 1 c.434_435dup/c.434_435dup p.(W146Sfs*161)/p.(W146Sfs*161) frameshift NA NA [26]
14 1 c.434_435dup/c.434_435dup p.(W146Sfs*161)/p.(W146Sfs*161) frameshift NA NA [26]
15 5 c.134del/c.134del p.(N45Mfs*88)/p.(N45Mfs*88) frameshift NA NA [30]
16 2 c.134del/c.134del p.(N45Mfs*88)/p.(N45Mfs*88) frameshift NA NA [31]
17 1 c.104del/c.104del p.(Q35Rfs*9)/p.(Q35Rfs*9) frameshift NA NA [32]
18 1 c.956del/c.956del p.(L319Rfs*6)/p.(L319Rfs*6) frameshift NA NA [33]
19 2 c.423+1G>A/c.423+1G>A p.?/p.? splicing NA NA [34]
20 2 c.704+1G>A/c.704+1G>A p.?/p.? splicing NA NA [35]
21 1 c.40dup/c.40dup p.(L14Pfs*35)/p.(L14Pfs*35) frameshift NA NA [36]
22 1 c.434_435dup/c.704+5G>A p.(W146Sfs*161)/p.? frameshift/splicing NA NA [37]
23 1 c.1114-2A>C/c.1114-2A>C p.?/p.? splicing NA NA [19,20]
24 2 c.704+1G>A/c.704+1G>A p.?/p.? splicing NA NA [19,20]
25 1 c.1258del/c.1258del p.(E420Rfs*6)/p.(E420Rfs*6) frameshift NA NA [19,20]
26 1 c.666_670del/c.666_670del p.(Y222*)/p.(Y222*) nonsense NA NA [19,20]
27 1 c.862C>T/c.1187+3insT p.(Q288*)/p.? nonsense/splicing NA NA [19,26]
28 1 c.1016dup/c.1016dup p.(H341Tfs*7)/p.(H341Tfs*7) frameshift NA NA [38]

29 1 c.1385_1390delinsATGCATGCACC/c.1385_
1390delinsATGCATGCACC p.(G462Dfs*34)/p.(G462Dfs*34) frameshift NA NA [39]

30 1 c.1385_1390delinsATGCATGCACC/c.1385_
1390delinsATGCATGCACC p.(G462Dfs*34)/p.(G462Dfs*34) frameshift NA NA [40]

31 1 c.361C>T/c.361C>T p.(R121*)/p.(R121*) nonsense NA NA [40]
32 2 c.1270C>T/c.1270C>T p.(R424*)/p.(R424*) nonsense NA NA [41]
33 2 c.995-1G>A/c.995-1G>A p.?/p.? splicing NA NA [42]
34 1 c.1187+5G>T/c.1187+5G>T p.?/p.? splicing NA NA [43]

35 1 c.1087C>A/c.1087C>A p.(H363N)/p.(H363N) missense/missense Reduced (F), slightly
reduced (LC), increased (P)

Increased (GlcSph); slightly
increased (chito) Present study

§ Authors cannot exclude hemizygosity of the variant (due to a wide deletion within chromosome 4), as parental DNA was not available for testing.
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Table 5. PSAP deficiency in literature. Reference transcript: NM_002778.3; reference protein: NP_002769.1. Description of DNA and protein sequence variants are
indicated according to HGVS nomenclature guidelines. Abbreviations: NA = non-assessed, F = fibroblasts.

Family N◦ of Patients Pathogenic Variant Predicted Protein Type of Variant GCase Activity Plasma Biomarkers References

1 2 c.1A>T/c.1A>T p.?/p.? start-loss Reduced (F) NA [44–46]
2 1 c.794del/c.794del p.(C265Lfs*10)/p.(C265Lfs*10) frameshift NA NA [47]
3 1 c.794del/c.? § p.(C265Lfs*10)/p.? frameshift NA NA [47,48]
4 1 c.1A>T/c.1A>T p.?/p.? start-loss Reduced (F) NA [49]
5 1 c.148C>T/c.148C>T p. (Q50*)/p.(Q50*) nonsense NA NA [50]
6 1 c.1006-2A>G/c.1006-2A>G p.?/p.? splicing Reduced (F) NA [51]

7 1 c.889G>T/c.889G>T p.(E297*)/p.(E297*) nonsense Reduced (F) Increased (GlcSph and
Lyso-Gb3) [52]

8 1 c.828_829del/c.828_829del p.(E276Dfs*27)/p.(E276Dfs*27) frameshift Reduced (F) Increased (GlcSph and
Lyso-Gb3) [51,52]

9 1 c.889G>T/c.889G>T p.(E297*)/p.(E297*) nonsense Reduced (F) Increased (GlcSph,
Lyso-Gb3, and PPCS) Present study

§ Hulkovà and colleagues [47] revised the diagnosis of this patient (previously reported as Niemann–Pick type C [48]). Unfortunately, no material for genotyping was available; however,
they identified the c.794del variant in maternal fibroblasts.
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In all cases of patients affected by LIMP-2 deficiency in which GCase activity was
measured, it resulted to be strongly reduced in fibroblasts [16,17,21,53], increased in
plasma [16,53], and slightly reduced or normal in leukocytes/lymphocytes [16,17,21–23,53].
No changes in chitotriosidase activity were reported [16,17,23], and increased levels of Glc-
Sph were identified in plasma and fibroblasts [23,53]. Finally, the whole amount of GCase
expressed by LIMP-2 deficient fibroblasts was immature and retained in the ER [15,17].

The biochemical features of LIMP2_PT2 fit in this picture being consistent with previ-
ously reported observations. It is worth noting that although the plasma level of GlcSph
in this patient is more than 10 times higher than the levels found in healthy controls, it
was below the range found in GD patients due to GBA1 biallelic pathogenic variants.
Assuming that the GlcSph detected in plasma is mainly released by the cells from the
monocyte-macrophage system, this finding would be consistent with the presence of a
quite high residual activity of GCase detected in blood cells, which would prevent massive
accumulation of substrate.

Taken together, these data and those obtained using different cellular and animal
models of LIMP-2 deficiency [15,53,54] strongly suggest that while in fibroblasts and
neurons, GCase targeting to the lysosomes is completely dependent on LIMP-2, in blood
cells, GCase is partially targeted to lysosomes by a LIMP-2-independent mechanism; even
though the existence of a putative secondary mechanism has been suggested, further
studies are needed to identify the secondary transporter.

Compared with previously described patients, LIMP2_PT2 presents a higher reduction
of GCase activity in leukocytes and a slight increase of plasma chitotriosidase activity,
indicating some degree of macrophage activation. Two different hypotheses might explain
these findings. On one hand, it is possible that in this patient the LIMP-2 independent
mechanism for lysosomal sorting of GCase in blood cells would be less active. On the other
hand, these features could be associated with the nature of the SCARB2 pathogenic variant
identified in the patient. Indeed, she was homozygous for the missense variant p.(H363N).
This is the only missense variant described in patients affected by AMRF, while all other
pathogenic variants, including the one present in one allele of LIMP2_PT1, are splicing,
nonsense, or small deletions/insertions leading to the generation of premature stop codons
(Table 4), likely causing the degradation of the expressed mRNA, and/or the expression of
truncated proteins, most probably unable to bind GCase [15,21,26,40,43,55]. Conversely, it
has been demonstrated that the p.H363N LIMP-2 mutant protein is retained in the ER and
binds GCase with a higher affinity compared with the wt protein [55]. Considering this
scenario, it is possible to hypothesize that in blood cells carrying this particular variant in
homozygosis, a higher amount of GCase remains associated with LIMP-2 in the ER, leaving
less GCase available to be delivered to the lysosome by the LIMP-2 independent pathway.

Recently, LIMP-2 was reported to act in parallel with NPC1-NPC2, mediating a sec-
ondary lysosomal cholesterol efflux [56]. Thus, it is not surprising that LIMP-2 deficient
fibroblasts do accumulate a fair amount of this lipid. The magnitude of this increase is
lower than the one observed in PSAP deficiency: this may explain why no changes in PPCS
levels in plasma of LIMP2_PTs were recorded. As both LIMP2_PT1 and LIMP2_PT2 carry
the same pathogenic variant in the SCARB2 gene, the reason beyond the slightly different
amount of cholesterol storage observed in the two patients cannot be due to the features of
the mutant protein itself: this may suggest a certain grade of interpersonal variability.

As mentioned above, the GCase activator SapC derives from the prosaposin precursor
PSAP, which is encoded by the PSAP gene, synthesized in the ER, transported to the Golgi,
and eventually trafficked to the lysosome, where it is cleaved into the four saposins: SapA,
SapB, SapC, and SapD [9,11]. These four proteins act as activators for several enzymes (e.g.,
SapA works as activator for galactoserebrosidase, SapB is the activator of arylsulfatase A,
SapC is the activator of GCase, and SapD is the activator of the acid ceramidase). Thus, an
impaired GCase activity in vivo due to a deficiency of its activator could be caused by PSAP
biallelic pathogenic variants affecting the expression of the PSAP precursor and therefore
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resulting in the absence of all saposins ([44–52], and present study), or by missense variants
in the SapC domain, affecting the sole SapC function [57–68].

The patient described here presented a nonsense variant in homozygosis, leading to
a degradation of the PSAP mRNA by nonsense-mediated decay and thus resulting in a
deficiency of all four Saps.

A revision of the literature showed that the in-vitro levels of GCase activity were
found to be significantly reduced in cells from all PSAP-deficient patients in which this
enzyme has been measured [44–46,49,51,52]. In general, the detected residual activity was
higher than the activity usually found in patients affected by GD due to GBA1 biallelic
pathogenic variants. In addition, accumulation of GlcCer or its deacylated form GlcSph and
Globotriaosylceramide (Gb3) or its deacylated form Lyso-Gb3 were observed [44–47,49,52].
Thus, the PSAP-deficient patient described here presented the same biochemical profile as
previously reported cases.

Furthermore, we found increased levels of PPCS and increased activity of chitotriosi-
dase (reflecting the macrophage activation), and non-detectable levels of GCase in plasma.
All these parameters might be of use for differential diagnosis.

Once again, it is worth noting that although the plasma levels of GlcSph in the
PSAP_PT are higher than the levels found in healthy controls, they were below the range
found in GD patients due to GBA1 pathogenic variants. However, this result is not un-
expected considering that GlcSph is generated from GlcCer by the action of the acid
ceramidase which requires the activator SapD, a protein lacking in patients with complete
PSAP deficiency.

Patients missing only SapC share some biochemical features with PSAP-deficient
patients. For instance, accumulation of GlcCer or its deacylated form GlcSph was ob-
served whenever assessed [57–62,65,68]. Moreover, these patients present an increased
activity of chitotriosidase [63,65,67]. However, these patients are not expected to accumu-
late other glycosphingolipids and, probably being SapD-unaffected, would accumulate
higher levels of GlcSph compared to PSAP-deficient patients. Further studies are needed
to confirm this hypothesis.

The reduction of GCase activity in cells from PSAP-deficient patients is quite intriguing
since it is well known that SapC is not needed for the degradation of the artificial substrate
used to measure the GCase activity in vitro. However, our data suggest that the in vitro
reduction of GCase activity found in PSAP-deficient patients is likely to be due to reduced
levels of GCase protein [52]. Furthermore, our data suggest that this reduction is mainly
caused by increased levels of lysosomal degradation of GCase. Since SapC and GCase
interact within the lysosome, it seems reasonable to hypothesize that SapC is needed to
prevent GCase lysosomal degradation [69].

In line with the increased plasma levels of PPCS, we observed lysosomal accumulation
of unesterified cholesterol. Lysosomal accumulation of cholesterol was already reported
in four SapC-deficient patients [64]: thus, it is not surprising to observe the storage of this
lipid in PSAP-deficient cells as well. The reason beyond this observation may rely on the
role of Saps as cholesterol transporters: these small molecules were indeed reported to
form complexes with many lipids, including cholesterol; in particular, SapA seemed to act
similarly to HDL [70–73] and was reported to deliver cholesterol to LIMP-2 [56].

Taking together our findings and those already reported in the literature, it is possible
to depict a model in which the mechanism leading to these characteristic laboratory features
that differentiated deficient GCase activity disorders is highlighted (Figure 3).
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Figure 3. GCase fate in a normal cell and in cells presenting GCase-deficient activity due to biallelic
pathogenic variants of SCARB2, PSAP, or GBA1 genes. (A) In a normal cell, GCase is synthesized
in the ER, subsequently processed in the Golgi, and eventually delivered to the lysosome by its
transporter LIMP-2. In the lysosome, GCase catalyzes the degradation of GlcCer in the presence of its
activator SapC. (B) In SCARB2-linked deficiency of GCase activity, GCase fate differs according to the
cell type. In LIMP-2-deficient fibroblasts, wt GCase cannot reach the lysosome and is degraded via
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proteasome and possibly also released outside the cell ([15,17,53] and present study); consequently,
GlcSph accumulates within lysosomes ([53]). In LIMP-2-deficient blood cells, wt GCase undergoes
proteasomal degradation, is released outside the cells and, in small amounts, also somehow reaches
the lysosome, where it seems able to degrade GlcCer to some extent, resulting in moderate plasma
release of GlcSph ([15–17,21–23,53], and present study). In addition, due to the lack of one of its
transporter LIMP-2, lysosomal cholesterol (Chol) efflux is partially impaired ([64], and present study).
(C) In PSAP-linked deficiency of GCase activity, wt GCase can effectively reach the lysosome but is
unable to actively degrade GlcCer, as SapC is missing. Thus, the wt GCase is degraded by lysosomal
proteases and GlcCer and GlcSph are accumulating ([47,49,52], and present study). Likely due to the
lack of SapD, low plasma levels of GlcSph are observed in comparison with GBA1-linked deficiency
of GCase activity. In addition, since all Saps are lacking, other glycosphingolipids and cholesterol
(Chol) are accumulating ([64] and present study). (D) In GD cells, GBA1 biallelic pathogenic variants
lead to the progressive accumulation of GlcCer and its deacylated form GlcSph which is abundantly
released outside the cells resulting in high plasma levels of this glycosphingolipid. According to
the type of GBA1 variant, the loss of GCase activity may depend on nonsense-mediated decay of
mutant GBA1 mRNA, proteasomal degradation of ER-retained mutant GCase protein, lysosomal
degradation of mutant GCases that are delivered to lysosomes ([74–77]). Parts of the figures were
drawn using pictures from Servier Medical Art. ServierMedical Art by Servier is licensed under a
Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.
0/, accessed on 14 April 2024).

In conclusion, the data presented here could be useful for the differential diagnosis of
these conditions and the development of specific therapeutic strategies.

4. Materials and Methods
4.1. Patients

Plasma, DNA, leukocytes, and/or fibroblasts from two patients affected by AMRF due
to biallelic variants in the SCARB2 gene (LIMP2_PT1; LIMP2_PT2), one patient affected by
prosaposin deficiency (PSAP_PT) and 8 patients affected by the neuronopathic phenotype
of GD due to biallelic GBA1 variants (3 GD3 and 5 GD2 = GBA1_PTs) were obtained
during the diagnostic workup at the Regional Coordinator Centre for Rare Diseases, Udine.
Clinical and genetic characteristics of LIMP2_PT1 were previously reported [16], while
those from LIMP2_PT2 and PSAP_PT are described above. Informed consent was obtained
from all subjects.

4.2. Cell Culture, MG132, lPIC, and Anisomycin Treatments

Primary human fibroblasts were cultured and maintained in Dulbecco’s modified
Eagle’s medium High glucose (EuroClone, Pero, Italy) containing 10% fetal bovine serum
(Gibco-Thermo Fisher, Waltham, MA, USA), and 1% penicillin/streptomycin (Sigma, St.
Louis, MO, USA) in a humidified atmosphere containing 5% CO2 at 37 ◦C.

To assess GCase proteasomal degradation, 300 × 103 fibroblasts were grown in a T25
flask and treated for 96 h with 0.2 µM MG132 (Sigma, St. Louis, MO, USA) dissolved
in dimethyl sulfoxide (DMSO—Sigma, St. Louis, MO, USA) or with an equal volume of
vehicle (DMSO) as a negative control (treatment was repeated every other day).

To assess GCase lysosomal degradation, 300 × 103 fibroblasts were grown in a T25
flask and treated for 48 h with a lysosomal proteases inhibitor cocktail consisting of 50 µM
chymostatin (Sigma, St. Louis, MO, USA) dissolved in DMSO, 50 µM Leupeptin (Sigma, St.
Louis, MO, USA) dissolved in water, 10 µM Pepstatin (Sigma, St. Louis, MO, USA) dissolved
in DMSO, E64d 5 µM (Sigma, St. Louis, MO, USA) dissolved in DMSO, or with an equal
volume of vehicle (DMSO), as negative control (treatment was repeated every 24 h).

To inhibit nonsense-mediated decay, primary fibroblasts were treated with 100 µg/mL
Anisomycin (Sigma, St. Louis, MO, USA) for 5 h.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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4.3. Filipin Staining

To assess primary fibroblasts for cholesterol accumulation, cells were plated on glass cov-
erslips and starved for 48 h. LDL (L3486, Invitrogen, Waltham, MA, USA) were subsequently
provided to the cells, and after 24 h, the staining was performed as previously described [78].
Briefly, cells were washed with PBS, fixed with 3% paraformaldehyde (Sigma, St. Louis, MO,
USA) for 30 min, rinsed with PBS, incubated with 1.5 mg/mL (Sigma, St. Louis, MO, USA)
for 10 min, and eventually stained with filipin (0.05 mg/mL in PBS 10% FBS, Sigma, St. Louis,
MO, USA) for 2 h. Cells were visualized, and images were obtained with a live cell imaging
dedicated system consisting of a Leica DMI 6000B microscope connected to a Leica DFC350FX
camera (Leica Microsystems, Wetzlar, Germany).

4.4. Protein Extraction, Western Blot, Endo H, and Endo F Digestion

In order to evaluate expression levels of GCase, cells were pelleted, lysed in cell lysis
buffer TNN (Tris-HCl 100 mM pH 8, NaCl 250 mM, NP40 0.5%), sonicated, and centrifugated
(10 min at 4 ◦C at 14,000 rpm). Supernatants representing the protein extracts were quantified
for protein content using the Biorad-Protein Assay (BioRad, Hercules, CA, USA).

Upon denaturing the samples for 5 min at 95 ◦C, 30 µg of protein extracts were
separated on a 4–20% gradient Mini-Protean TGX pre-cast gel (BioRad, Hercules, CA, USA)
in running buffer (Running Buffer 10 X: Tris 25 mM, Glycine 0.191 M, SDS 0.1% w/v).
Fractionated proteins were transferred to nitrocellulose membrane (BioRad, Hercules, CA,
USA) in transfer buffer (Tris 25 mM, Glycine 0.189 M, 20% MeOH), and membranes were
blocked in 5% Blotting-Grade Blocker (BioRad, Hercules, CA, USA) in PBS-T (0.1% Tween
20 in PBS) for 2 h. Then, membranes were incubated overnight at 4 ◦C with the appropriate
primary antibody 1:1000 (GBA 2E2 (H00002629-M01—Abnova, Taipei City, Taiwan), actin
(A2066, Sigma, St. Louis, MO, USA), and then washed, incubated with the appropriate
secondary antibody (anti-mouse HRP A9044—Sigma, St. Louis, MO, USA; anti-rabbit
31460—Invitrogen, Waltham, MA, USA) for 1 h at RT, and developed with SuperSignal
West Pico reagents (Thermo Fisher Scientific, Waltham, MA, USA). Blots were quantified
by using a Uvitech Cambridge (UVITEC, Cambridge, UK).

To identify the mature GCase fraction, 30 µg of total protein deriving from treated
and untreated fibroblasts was digested at 37 ◦C overnight with 2.5 µL of Endo H or 1 µL
of Endo F (Roche, Basel, Switzerland) in the appropriate buffer (Endo H Buffer: Buffer
sodium citrate 50 mM pH 5.2, PMSF 0.5 mM, SDS 0.1%, Triton X 100 0.5%, Mercaptoethanol
0.1 M; Endo F Buffer: Buffer sodium phosphate 100 mM pH 7.2, EDTA 10 mM, Triton X 100
0.1%, SDS 0.1%, Mercaptoethanol 1%) and then processed as described above.

4.5. DNA Extraction, Amplification, and Sequencing

DNA was extracted using DNeasy blood and tissue kit (Qiagen GmbH, Hilden, Ger-
many) according to the manufacturer’s protocols. SCARB2 and GBA1 genes were amplified
and sequenced as previously described [15,16]. Exon and exon-flanking regions of PSAP
gene were amplified using the primers reported in Supplementary Table S2 according to
the following protocol: 95 ◦C 5 min; 35 cycles consisting of 95 ◦C 30 s, 62 ◦C 30 s, 72 ◦C 30 s;
72 ◦C 7 min. PCR products were purified using Exo-Prostar (Cytiva, Marlborough, MA,
USA); BigDye (Applied Biosystem-Thermo Fisher Scientific, Waltham, MA, USA), and each
primer reported in Table S2 was used in sequencing reaction (26 cycles consisting of 95 ◦C
10 s, 50 ◦C 15 s, 62 ◦C 2 min). Sequences were purified and loaded in a 3500xL Genetic
Analyzer (Applied Biosystems-Thermo Fisher Scientific, Waltham, MA, USA). Sequencing
analysis was performed using Chromas software (version 2.6.6, Technelysium Pty Ltd.,
South Brisbane, QLD, Australia). Accession number of PSAP RNA sequence: NM_002778.

4.6. RNA Extraction and PSAP cDNA Amplification

Total RNA was isolated using the QIAShredder and the RNeasy mini kit (Qiagen, Hilden,
Germany). First-strand cDNA synthesis was performed with 2 µg total RNA using Superscript
III Reverse Transcriptase (Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA) according
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to manufacturer’s instructions. PSAP cDNA was amplified using PSAP RNA F and PSAP
RNA R primers (Supplementary Table S2) according to the following protocol: 95 ◦C 5 min;
35 cycles consisting of 95 ◦C 30 s, 60 ◦C 30 s, 72 ◦C 1 min; 72 ◦C 7 min.

4.7. GCase Enzymatic Activity

GCase activity was measured in plasma, leukocytes, and fibroblasts using the fluo-
rigenic substrate 4-methylumbelliferyl-β-D-glucopyranoside (M3663, Sigma-Aldrich, St.
Louis, MO, USA).

Leukocytes were isolated from the peripheral blood, and proteins were extracted and
quantitated by Lowry Assay.

As regards GCase activity in plasma and leukocytes, 10 µL of plasma or 50 µg of
proteins in 40 µL was incubated with 10µL of TDC 2% and 100 µL of substrate 10 mM in
Citrate (0.1 M)/Phosphate (0.2 M) pH 5.2 buffer at 37 ◦C for 2 h. Carbonate buffer 0.5 M
pH 10.7 was used to stop the reaction the fluorescent product was quantified using a
fluorimeter (SPECTRAmax Gemini XPS, Molecular Devices, San Jose, CA, USA) at an
excitation wavelength of 365 nm and emission of 495 nm.

As regards GCase activity in fibroblasts, 10 µL containing 10 µg of proteins was
incubated with 10µL of substrate 5 mM in acetate buffer 0.1 M pH 4.2 at 37 ◦C for 3 h.
Carbonate buffer 0.5 M pH 10.7 was used to stop the reaction the fluorescent product was
quantified using a fluorimeter (SPECTRAmax Gemini XPS, Molecular Devices, San Jose,
CA, USA) at an excitation wavelength of 365 nm and emission of 495 nm.

4.8. Chitotriosidase Activity

Plasma chitotriosidase activity was determined using the fluorigenic substrate 4-
Methylumbelliferyl β-D-N,N′,N′′-triacetylchitotrioside (M5639, Sigma-Aldrich, St. Louis,
MO, USA); 5 µL plasma of was incubated with 100µL of substrate 0.022 mM in Citrate
(0.1 M)/Phosphate (0.2 M) pH 5.2 buffer at 37 ◦C for 15 min. Carbonate buffer 0.5 M
pH 10.7 was used to stop the reaction the fluorescent product was quantified using a
fluorimeter (SPECTRAmax Gemini XPS, Molecular Devices, San Jose, CA, USA) at an
excitation wavelength of 365 nm and emission of 495 nm.

4.9. Glucosylsphingosine (GlcSph), Globotriaosylsphingosine (Lyso-Gb3) and
N-Palmitoyl-O-phosphocholineserine (PPCS) Accumulation

GlcSph, Lyso-Gb3, and PPCS in plasma were measured by LC-MS/MS as previously
described [79]. Briefly, after protein precipitation, evaporation, and reconstitution in mobile
phase, reverse-phase liquid chromatography was performed using a Shimadzu Nexera
CL UHPLC (Shimadzu, Kyoto, Japan) and a Poroshell 120 EC-C8 column, 3.0 × 50.0 mm
with 2.7 µm particle size (Agilent, Santa Clara, CA, USA). Mass spectrometry detection was
carried out with AB Sciex 6500 QTrap tandem mass spectrometer (Sciex, Framingham, MA,
USA) set in positive mode using an electrospray ionization (ESI). D5-glucosylsphingosine,
D7-Lyso-Gb3, and D9-Lyso-SM, were used as internal standards for GlcSph, Lyso-Gb3, and
PPCS, respectively.

4.10. Statistical Analysis

Statistical significance was determined by Student’s t-test; p-value < 0.05 was consid-
ered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25126615/s1.
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