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Abstract: The lack of precise and comprehensive information about the health of bridges, and in par-
ticular long span ones, can lead to incorrect decisions regarding maintenance, repair, modernization,
and reinforcement of the structure itself. While the consequences of inadequate interventions are
quite apparent, incorrect decisions can also result in unnecessary or misdirected actions. For example,
an inadequate assessment of the structural health can lead to the modernization and replacement
of some components that are still sound. Structural Health Monitoring (SHM) involves the use
of time series derived from periodic measurements of the structure’s behavior, considered in its
operational and load environment. The goal is to determine its response to various solicitations and,
in particular, to highlight any critical issue in the structure’s behavior that may affect its reliability
and safety due to anomalies and deterioration. This paper proposes an SHM method applied to the
Valgadena bridge, one of the tallest viaducts in Italy and Europe (maximum height 160 m), located
on the Altopiano dei Sette Comuni in the Province of Vicenza. Despite the fact that the viaduct itself
had already been monitored during its construction using classical geometric leveling techniques, the
methodology proposed here is based instead on the use of affordable dual-frequency GNSS (Global
Navigation Satellite System) receivers to determine static and dynamic components of the bridge
movements. Specifically, an effective combination of time series analysis methods and machine
learning techniques is proposed in order to determine the vibration modes of the monitored viaduct.
Monitoring is performed in regular operation conditions of the bridge (operational modal analysis
(OMA)), and the use of certain machine learning methods aims at supporting the development of an
effective automatic OMA procedure. To be more specific, the random decrements technique is used in
order to make the vibration characteristics of the collected signals more apparent. Time-domain-based
subspace identification is applied in order to determine a proper model of the collected measurements.
Then, clustering methods, namely DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) and GMMs (Gaussian Mixture Models), are used in order to reliably estimate the system poles,
and hence the corresponding vibration characteristics. The performance of the considered methods
is compared on the Valgadena bridge case study, showing that the use of GMM clustering reduces,
with respect to DBSCAN, the impact of the choice of certain parameter values in the considered case.

Keywords: structural health monitoring; automatic operational modal analysis; low-cost GNSS;
GMM; DBSCAN

1. Introduction

Bridge monitoring is a fundamental practice for ensuring safety, functionality, and
longevity of bridge structures. The importance of such practice has became even more
apparent after the tragic collapse of the Polcevera viaduct in Genoa, Italy, better known
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as the Morandi Bridge, which occurred on 14 August 2018: inspection and monitoring
of bridges, in particular long span ones, such as cable-stayed and suspension bridges,
are crucial activities in order to schedule proper maintenance interventions and prevent
tragic events. To such aim, geomatic monitoring techniques encompass a diverse array of
methodologies aimed at comprehensively assessing various aspects of bridge behavior and
condition. Among these techniques, geometric leveling stands as one of the traditional yet
highly effective methods for monitoring structural deformations and movements. Geomet-
ric leveling involves the precise measurement of vertical height differentials between points
using optical instruments, namely levels and levelling rods (also called “level staffs”) [1].
By comparing repeated measurements over time, engineers can detect subtle changes in
the bridge’s vertical alignment, which may indicate structural deformations or settlements.
While geometric leveling provides accurate results, its application can be labor-intensive
and time-consuming, especially for large-scale bridge networks.

To address these challenges, Structural Health Monitoring (SHM) takes advantage of
sensor data, provided by a properly designed monitoring system, in order to supplement
and substitute, if possible, long human-made inspections [2]. A wide range of technologies
have already been considered for such aim, ranging from more classical ones, such as
strain gauges [3] and accelerometers [4], fiber optic sensors [5], to modern geomatic mon-
itoring approaches, such as Global Navigation Satellite System (GNSS) [6], vision-based
methods [7], also for degradation monitoring [8], Terrestrial Laser Scanning (TLS), and
RADAR (Radio Detection and Ranging, and, in particular satellite InSAR - Interferometric
Synthetic Aperture Radar [9]), where each of such technology can be appropriate for assess-
ing different kinds of information, such as strains, displacements and deformations, and
vibrations [10]. Strain gauges are traditionally used in order to assess material deforma-
tions, but vibrating wire strain gauges can be used to determine vibration characteristics
as well. Since accelerometers do not make it possible to determine absolute object posi-
tions, they are typically used for analysis of local position changes, e.g., vibration-based
monitoring. GNSS technology enables the continuous real-time monitoring of bridge
movements and deformations by tracking the positions of GNSS receivers installed on the
structure [11]. TLS facilitates high-resolution 3D mapping of bridge surfaces, allowing for
detailed analysis of structural conditions and detecting localized deformations or dam-
ages [12]. Additionally, remote sensing techniques, including satellite and aerial imagery,
complement geomatic monitoring efforts by providing broad-scale assessments of bridge
infrastructure and surrounding environments [13]. In particular, InSAR recently proved to
be an effective tool for monitoring bridge deformations [14]. Together, these monitoring
methods offer a comprehensive toolkit for bridge health assessment, enabling proactive
maintenance, early detection of potential hazards, and informed decision-making for infras-
tructure management and safety enhancement [15]. SHM is a very popular research topic,
and as a comprehensive review of SHM approaches is beyond the scopes of this paper, the
reader is referred to [16–22], and more specifically to [23–29] for the SHM of bridges for a
more complete overview of the state-of-the-art SHM methods.

Either model-based or data-driven monitoring techniques are usually implemented
[30,31]: the first aim is to properly describe the physical system with a proper finite element
model, which however often may either lead to too complex and computationally inefficient
models, or require the introduction of some simplifying assumptions that, on the other
hand, may reduce the overall reliability of the system. Differently, data-driven methods
aim at directly inferring the system characteristics from the collected data, typically leading
to reliable results when the amount of available data is sufficiently large.

The quite recent success of machine (and deep) learning methods for data analysis in a
number of applications motivated their usage also for SHM: for instance, machine and deep
learning-based analysis of multi-sensor time series, e.g., using multiple accelerometers,
has been investigated in [32,33] for damage classification, whereas vision-based methods
have also been implemented for surface damage detection [34,35] and for determining the
structure vibrations even at the sub-millimeter level [36,37]. It is worth noting that, despite
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the fact that in principle the usage of machine learning methods is not constrained to
neither model-based nor data-driven-based approaches, the typical large data availability
associated to data-driven methods make them quite ideal for the use of this kind of methods,
as is also considered in this work. The reader is referred to [31,38,39] and references therein
for more complete overviews on the use of machine learning methods in SHM applications.

In the specific case of SHM for viaduct monitoring using GNSS techniques, as consid-
ered in this work, some feasibility studies have already been conducted, such as in [40],
wherein high-frequency receivers have been deployed, or integrating GNSS with other
sensors, such as accelerometers [41,42], while some have developed studies on the use
of mobile GNSS receivers [43]. Recently, some investigations have been dedicated to the
feasibility of employing low-cost GNSS receivers [44,45], while, finally, certain studies have
delved into the examination of algorithms tailored to the specific application of quality
control data for bridge monitoring [46].

The movements of a bridge–viaduct are characterized by static/semi-static and dy-
namic components. The static component remains unchanged over time, while the semi-
static component identifies the trend over a medium-length time interval. The short-term
component comprises dynamic displacements and noise, wherein the former rapidly
changes over time as a consequence of a physical process, and the latter is typically ran-
domly distributed, with some possible specific characteristics due to the adopted mea-
surement method and instruments. GNSS is frequently used to assess static and dynamic
movement components, even in real time, while conventional monitoring using accelerom-
eters and extensometers does not make it possible to determine static and semi-static dis-
placements [47]. Estimating motion with geotechnical sensors like accelerometers presents
challenges such as contamination with errors like drift and their capability to measure
only relative displacements of a structure. Advances in GNSS sensors and processing
algorithms mitigate positioning errors; integrating GNSS with supplementary sensors like
accelerometers and extensometers improves position estimation accuracy. High-frequency
GNSS sensors (>1 Hz) can be used, for instance, to exploit the RTK (Real-Time Kinematic)
positioning approach; however, the obtained measurements are typically affected by errors
and noise characterized by different statistical distributions (colored noise and white noise),
which must be filtered out before displacement and deformation monitoring. This has been
achieved in previous works by implementing time series analysis techniques, allowing for
the extraction of semi-static and dynamic movement components [48].

In this work, we adopt a modal analysis approach; that is, we focus on the study of the
vibration characteristics of the bridge: the aim is that of properly formulating a methodology
to assess the main vibration characteristics of the bridge, which are supposed to change in
case of damage; hence, monitoring the stability of such vibration characteristics over time
shall make it possible to determine when/whether maintenance or human intervention is
needed. To be more specific, this work focuses on the determination of bridge vibration
characteristics on a specific dataset, in order to determine the standard vibration behavior
of the bridge, whereas the application of the implemented methodology for long-time
monitoring will be considered in our future works.

From an operative point of view, we consider an effective combination of different
processing techniques of GNSS data in order to provide a reliable modal identification to
properly characterize the bridge movements, and, consequently, enable vibration-based
SHM by the detection of changes in the GNSS principal modes. Despite the fact that, for
several mechanical systems, proper identification of a system’s vibration characteristics can
be implemented in controlled operating conditions, e.g., in laboratory tests, where both
excitation signals and the system output are available, this is usually hard to replicate for
periodic monitoring of several civil infrastructures, such as bridges. Hence, it is important
to develop infrastructure monitoring procedures that can be effective even during their
regular working conditions, by exploiting ambient vibration, e.g., excitation inputs induced
by natural or human causes during the standard operations of the infrastructure. This kind
of monitoring technique is usually referred to as Operational Modal Analysis (OMA) [49].
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To be more specific, this paper focuses on Automatic OMA (AOMA), i.e., on procedures
to automatically determine and analyze the modal characteristics of a certain infrastructure
from data collected during its regular operating conditions [50–53]. Similarly to [54], this
paper focuses on the use of clustering techniques (i.e., DBSCAN (Density-Based Spatial
Clustering of Applications with Noise [55,56])) in order to reliably determine the most
representative vibration frequencies of an infrastructure. However, differently from [54],
this work investigates the use of DBSCAN on different parameters characterizing the
system and evaluates different alternatives in order to properly assess the uncertainty
on the estimated mode frequencies, which can be of major importance for the final aim
of ensuring good monitoring performance over time. Furthermore, the use of Gaussian
Mixture Models (GMMs), instead of DBSCAN, is also investigated in order to provide an
assessment of the representative vibration frequencies, and of their estimation uncertainties,
from the models determined with subspace identification.

This work compares the results obtained with the considered methods, applied on
GNSS measurements collected with affordable receivers, on the case study of the Valdagena
bridge (Section 2). The overall workflow is composed by a combination of several tools, as
detailed in Section 3: (i) low-pass filtering in order to separate static/semi-static and dy-
namic components, (ii) random decrement as a powerful noise-reduction tool, (iii) system
identification, and (iv) machine learning tools in order to support the automatic implemen-
tation of the modal analysis procedure. The obtained results are shown in Section 4, while
some discussion and conclusions are drawn in Section 5.

2. Valgadena Bridge, Reference Leveling and Installed GNSS Stations
2.1. Reference Monitoring via Geometric Leveling

The Valgadena viaduct is located in the Veneto region (Italy), as seen in Figure 1a. It is
a first-category bridge supported by two cement pillars, measuring 300 m in length and
160 m in height (Figure 1b). Please notice that, due to the non-orthogonal viewing angle
of the satellite, the bridge direction appears slightly different in Figure 1a with respect to
Figure 1b.

(a) (b)

Figure 1. (a) Location of the Valgadena bridge viaduct (WGS84 coordinates). (b) Orthophoto of the
bridge: red, blue, and green disks identify locations of GNSS station 1 and 2, and of the base station.
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The Valgadena viaduct is well known to the authors, who have repeatedly been
involved in its monitoring since its initial inspection, which is briefly described below. The
initial inspection took place on 24 November 1990, utilizing classical geometric leveling
techniques employing Wild/Leica NA2 levels with parallel plate and invar staffs spaced
less than 30 m apart, thus constituting a high-precision geometric leveling (Figure 2). The
inspection occurred within a single day, employing 20 vehicles with a total weight of
1000 tons, arranged in precise and progressive loading configurations to test the bridge
behavior once subjected to loads exceeding those set during design. The settlements and
corresponding returns to initial positions, on one hand, and local deformations in critical
areas of the most stressed cross-sections of the bridge, as previously mentioned, were
measured using high-precision leveling (0.1 mm on vertical displacement components
compared to expected displacements on the order of centimeters) and through vibrating
wire strain gauges (with a sensitivity of microns on strain gauge lengths of 500 mm),
connected to two electronic data acquisition and processing units. For dynamic testing, a
series of accelerometers were positioned on the bridge at predetermined points under the
action of vehicular traffic, providing information on the modes and natural frequencies
of vibration of the viaduct, as well as other structural parameters. The dynamic test was
conducted to enable subsequent repetition, allowing for any variations in stiffness and
damping parameters of the structure to be identified.

Figure 2. Scheme of the leveling network.

2.2. GNSS-Based Monitoring System

The Valgadena viaduct, following the just described initial inspection, has subse-
quently undergone multiple monitoring sessions, resulting in a well-documented record of
its behavior. All monitoring activities, up to the most recent ones, have been conducted
using classical, reliable but laborious, geometric leveling. Instead, the proposed methodol-
ogy, which is based on a proper processing of GNSS measurements, is operationally and
logistically much simpler to execute.

The movements of the structure, which is made of reinforced concrete, were assessed
by using two low-cost multi-constellation (GPS—Global Positioning System, GLONASS—
GLObal NAvigation Satellite System, Galileo, BeiDou, QZSS—Quasi-Zenith Satellite Sys-
tem) multi-band GNSS Emlid M2 receivers (each costing less than EUR 1000) as rovers, also
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named hereafter station 1 (St1) and 2 (St2), positioned along the viaduct bridge, as shown
in Figure 1b, above the safety barriers in order to reduce the impact of the multi-path effect.
St1 and St2 were positioned at approximately one-third and two-thirds of the bridge’s
length, and they acquired data at 10 Hz. Such sampling frequency imposes a limit on the
maximum frequency of the detectable modes with the proposed approach; nevertheless,
the use of higher-rate GNSS receivers (e.g., 50–100 Hz) can overcome such limitation [6].
GNSS measurements were obtained by exploiting the corrections (in Real-Time Kinematic
mode) provided by a base station, an Emlid RS2 receiver, located approximately 300 m
from St1 and St2. The obtained solution takes into account of the observations provided
by all the available constellations/satellites (≥14 satellites were available at each epoch).
Details on the technical specifications of the GNSS receivers deployed in this work can be
found on the manufacturer’s website [57].

The methodology described in the next section considers the projected coordinates
determined from the data collected by St1 and St2 as inputs for the remaining of the
procedure. To be more specific, the results shown in Section 4 will consider three cases:
using data only from St1, only from St2, or from both of them (St1 + St2). Furthermore, it is
worth to notice that, despite the fact that in this paper only the RTK case was considered, a
similar procedure could be implemented with NRTK measurements as well.

3. Methodology

The proposed methodology is based on properly processing GNSS measurements, in
order to significantly reduce measurement noise in the signal dynamic component and
automatically determine the principal system modes. To this aim, the following workflow
is proposed:

• High-frequency GNSS position measurements for St1 and St2 were obtained by ex-
ploiting corrections from a local base station very close to St1 and St2. The obtained
positions were expressed in an ad hoc local (Cartesian) coordinate reference system
(CRS), where the x and y axes correspond to the bridge longitudinal and transverse
horizontal directions and z to the vertical one. The use of an ad hoc local reference
system was previously suggested in [58–60] in order to ensure the best result accuracy.
Alternatively, the positions can be projected in UTM (Universal Transverse Mercator)
coordinates, leading however to a minor processing precision. Then, the coordinates
are separately processed as described in the following steps.

• The static/semi-static component was computed by means of low-pass filtering.
Hence, the dynamic component was obtained by subtracting the outcome of the
low-pass filtering step from the original signal.

• Random decrement signatures were computed in order to reduce the noise impact
and ease the identification of vibration modes.

• Automatic modal analysis was implemented by executing the following steps:

1. Subspace system identification of the signals collected by the GNSS receiver/s,
varying the system order (i.e., the complexity of the system model), whose correct
value is usually unknown.

2. Apply machine learning techniques, based on the use either of DBSCAN or
GMM, in order to automatically determine the repetitive presence of certain
poles in models identified at the previous step, when varying the system or-
der, while discarding non-repetitive poles, considered as outliers, e.g., typically
caused by noise. A vibration mode is associated to each cluster of poles and its
statistical characteristics are determined based on the values of the poles within
such cluster.

The workflow is summarized in Figure 3, and, more specifically, in Figure 4 for what
concerns the last part of the procedure for determining the system modes. The next
subsections describe each step of the procedure in detail.



Remote Sens. 2024, 16, 3971 7 of 26

Figure 3. Proposed workflow.

Figure 4. Details on the procedure to determine the system modes from random decrement signatures.

Once a model is determined based on the current data, a comparison, for instance
on the values of the estimated frequencies, is made with previously identified values of
the considered structure. The rationale of OMA is that structural issues usually cause
changes in the bridge vibration behavior, which should hence be visible when comparing
vibration modes computed in different time instants: providing a reliable assessment of
the modes and of the corresponding estimation uncertainty is fundamental to such aim;
hence, comparisons on the reliability of the estimated uncertainties will be considered in
the following as well.

It is worth to notice that the two options that will be considered in Section 3.4 in
order to implement Automatic OMA, i.e., DBSCAN and GMM, are currently considered
as alternatives: GMM is proposed in this paper as a potential substitute of DBSCAN,
which has already been proposed in [54]. Furthermore, in addition to such two options,
two different alternatives concerning the inputs for DBSCAN and GMM will be considered
and compared as well.

3.1. Separation of the Dynamic Component

This subsection aims at presenting the implemented method in order to partially
reduce signal noise and extract the dynamic component from the original signal, in order
to properly perform vibration analysis. The semi-static component of a structure behavior
is often extracted by low-pass filtering, with several kinds of filtering approaches which
have been quite effectively implemented in the literature: sufficiently long moving average
(MA) filters, Chebyshev and wavelet ones [61,62], just to mention certain of the most
commonly adopted. Previous studies have already shown that multipath error affecting
GNSS measurements is mainly distributed on relatively low frequencies, i.e., ≤0.2 Hz [63].
Hence, a low-pass (fourth order) Butterworth filter with a cut-off frequency of 0.2 Hz was
used in order to isolate the semi-static component. Such one-dimensional Butterworth
filter is separately applied to each of the projected components of the GNSS measurements.
Then, the dynamic component is obtained by subtracting the semi-static part from the
original signal, as shown in Figure 3.

3.2. Random Decrement

The random decrement technique for vibration signature analysis dates back to the
late 1960s [64]. It has already been widely used for modal analysis of structures and
infrastructures [65], even in the OMA case [66]. Furthermore, despite the fact that this
technique was originally thought for linear stationary systems, it has recently been extended
in order to deal with non-stationary [67,68] and non-linear [69] ones too. A brief summary
of the standard version for linear stationary systems is reported in the following.
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Given a certain time history of a signal, its basic idea is that of averaging a certain
number of signal segments properly extracted from the available time samples. Despite the
fact that several criteria can be used to choose the segments to be selected, the simplest,
and most commonly used one, is that of specifying a certain signal threshold in order to
trigger the selection of a segment. Let x(t) be the considered 1D signal at time t, with
known history for instance from time t0 to t f . Hence, given the discrete-time nature of
our measurements, the available samples are assumed to be {x(t0), x(t0 + Ts), x(t0 +
2Ts), . . . , x(t f )}, where Ts is the sampling period. Let x̄ be the triggering threshold, and
nRD the length of each extracted segment, e.g., the number of samples in the segment. Then,
x(t1) is selected as the starting point of an extracted segment (i.e., (x(t1), x(t1 + Ts), x(t1 +
2Ts), . . . , x(t1+(nRD−1)))) if the signal crosses the x̄ value there. It is also worth to notice
that: (i) x̄ usually is expressed as a properly scaled version of the standard deviation of
x, (ii) the triggering criteria can involve a condition for the first derivative of x(t) as well;
hence, the triggering condition can be seen as a common initial condition (in terms of the
value of x and of its time derivative) for all the extracted segments. The general triggering
condition, introduced in [70], is as follows:

x̄1 ≤ x(t) ≤ x̄2 , ¯̇x1 ≤ ẋ(t) ≤ ¯̇x2 (1)

where x̄1, x̄2, ¯̇x1, ¯̇x2 are properly selected thresholds, e.g., ref. [69] suggests to choose x̄i and
¯̇xi, for i = {1, 2}, within the following intervals: (0.75σx, 2.2σx) and (0, 2σẋ), where σx and
σẋ represent the standard deviation of x and ẋ, respectively.

Then, the random decrement Dx(τ) of the signal x at time τ is computed as follows,
where navg is the number of extracted segments:

Dx(τ) =
1

navg
∑

j
x(tj + τ) (2)

for all the τj such that tj is in the set TRD of the starting instants of an extracted signal
segment, i.e., x(tj) (and/or its derivative) satisfies the triggering condition. When the
triggering condition is just the equality of x with a certain prefixed value, the random
decrement Dx(·) can be interpreted as the system free vibration response [66].

However, assuming the signal to be output of a linear, time-invariant system, excited
by a zero-mean Gaussian random process, then it is possible to prove that the ensemble
average (of segments extracted from the same time history) corresponds to averaging over
all the possible signal realizations (under an ergodicity assumption), and the above equation
corresponds to computing the following conditional expected value:

1
navg

∑
j
x(tj + τ) ≈ E[x(t + τ)|t ∈ TRD] (3)

where E[·] stands for the expectation operator. This corresponds to computing the expected
value of x(t + τ) given a proper “initial condition” for x(t) (and ẋ(t), if needed).

When the triggering condition depends only on a triggering level x̄ on the x(t) value,
the random decrement Dx results to be proportional to the autocorrelation of the signal [64]:

Dx(τ) =
Rx(τ)

Rx(o)
x̄ (4)

where Rx(τ) is the autocorrelation function of the random process x, i.e., Rx(τ) = E[x(t +
τ)x(t)]. The reader is referred to [69,71] for the relation between random decrement and
the autocorrelation function in the most general case. Cross-random decrements, involving
different signals, can be considered as well [72].

In this work, random decrements were computed on the dynamic component extracted
from the projected coordinates, derived as described in the previous subsection. It is worth
to notice that, differently from the previous subsection, random decrements have not been
computed independently on each dimension of the dynamic component. To be more
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specific, in order to avoid losing the temporal correlation between the different dimensions
of the dynamic component signal, the triggering condition was computed at each time
instant on the norm of the dynamic component vector, and, consequently, the set TRD is the
same for all the dimensions of the considered random decrements, e.g., (2) is applied to
the three dimensions of the dynamic components of the projected GNSS coordinates, but
keeping for all of them the same set of starting instants TRD.

3.3. Subspace System Identification

This subsection describes the implementation of a time domain system identification
method (first step of the procedure in Figure 4), as frequently performed in combination
with the random decrement technique [66], in order to properly determine the modal
characteristics of the time domain “response” computed in terms of random decrements.
Nevertheless, differently from most of the previously implemented approaches, in the
next subsection system identification will be combined with some automatic procedures
(see also [53,54]) in order to enable automatic modal analysis. This subsection follows
with a short introduction on subspace identification, and in particular on the implemented
method, while the last part of the subsection is dedicated to describe the relation of sub-
space identification with the random decrements produced as outcomes of the procedure
presented in the previous subsections. The reader is referred to [73] for a more detailed
presentation of subspace identification methods.

For simplicity of notation, consider a discrete time representation of the system, where
the system time period is conventionally 1, being trivial the adaptation of such system
description to the general case, i.e., time period = Ts, as previously stated. Then, assume
that the system behavior can be described (in innovation form [73–76]) as follows:

x(t + 1) = Ax(t) + Bu(t) + Ke(t) (5)

y(t) = Cx(t) + Du(t) + e(t) (6)

where x(t) is the system state at time t, e(t) is assumed to be white noise, u(·) is the system
input, y(·) the output, and A, B, C, D, K describe the system characteristics: A describes the
system time dynamics, C represents the relation between state x(t) and output y at any time
t, in the most general case the input u can be related both to the state x by means of B and
to directly to the output through D, whereas in the innovation form system representation
the random noise e(t) directly influences the output y(t) while it is pre-multiplied by
K in order to provide its contribution to x(t + 1). Furthermore, the size n of the state
vector x(t) is also called the system order. The reader is referred to [75,77] for a more
in-depth description of stochastic linear system state models. System identification aims at
determining the values of the parameters A, B, C, D, K given the values of system inputs
and outputs in a certain time interval. Given the aims of this work, our major interest
is on the eigenvalues of A, which are clearly strongly related with the system dynamic
characteristics [75,77]. It is worth to notice that the state-space innovation form of a linear
stochastic system, reported in (5) and (6), is strictly related to Kalman filtering theory. A
detailed description of stochastic linear system characteristics and the derivation of such
innovation from system representation is out of the scope of this work; nevertheless, to
such aim we refer the readers to the sections dedicated to the description of the innovation
representation in [73,75,78] and to [75,77,79,80] for a description of stochastic linear systems,
other properties of Kalman filtering, and estimation theory.

Since in this work the random decrements, here thought as the system output, can
be interpreted as the system free vibration response, inputs can be assumed to be zero
hereafter, the system model can be assumed to be that in (7) and (8), and the identifica-
tion problem reduces to estimating A, C, K. In accordance with such observation, this
work implements the subspace system identification method described in the following.
Nevertheless, other system identification approaches could be considered, in particular in
order to deal with inputs, typically involving the oblique projection of the future observa-
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tions onto the past (e.g., N4SID—Numerical algorithms for Subspace State Space System
Identification, MOESP—Multivariable Output Error State Space, PBSID—Predictor Based
Subspace IDentification [73,76]).

x(t + 1) = Ax(t) + Ke(t) (7)

y(t) = Cx(t) + e(t) (8)

Using a notation similar to [79], let the past and future data matrices, Y−
t and Y+

t , the
state Xt and the noise E+

t matrices be defined as follows:

Y−
t =


y(0) y(1) . . . y(N − 1)
y(1) y(2) . . . y(N)

...
... . . .

...
y(t − 1) y(t) . . . y(t + N − 2)

 (9)

Y+
t =


y(t) y(t + 1) . . . y(t + N − 1)

y(t + 1) y(t + 2) . . . y(t + N)
...

... . . .
...

y(2t − 1) y(2t) . . . y(2t + N − 2)

 (10)

Xt =
[

x(t) x(t + 1) . . . x(t + N − 1)
]

(11)

E+
t =


e(t) e(t + 1) . . . e(t + N − 1)

e(t + 1) e(t + 2) . . . e(t + N)
...

... . . .
...

e(2t − 1) e(2t) . . . e(2t + N − 2)

 (12)

Let Γ, the extended observability matrix, and Hs be as follows:

Γ =


C

CA
CA2

...
CAt−1

 (13)

Hs =


I 0 . . . 0 0

CK I . . . 0 0
...

...
. . .

CAt−2K CAt−3K . . . CK I

 (14)

The observability matrix is related to the observability property of a linear system,
i.e., it is related to the level at which the system state can be inferred from the outputs [75].
Instead, despite being a lower triangular matrix, Hs is partially similar to a Hankel ma-
trix [78], which is often used in stochastic realization (e.g., Ho-Kalman algorithm [81,82])
and subspace identification approaches [73,76,83].

Then, from (5) and (6), discarding the inputs:

Y+
t = ΓXt + HsE+

t (15)

It is worth to notice that the state component ΓXt in the above equation “belongs to
the past”; hence, it can reasonably be computed as the part of Y+

t predictable from the past.
Let Σ̂+−, Σ̂++, Σ̂−− be
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Σ̂+− =
1
N

Y+
t Y−

t
⊤ (16)

Σ̂++ =
1
N

Y+
t Y+

t
⊤ (17)

Σ̂−− =
1
N

Y−
t Y−

t
⊤ (18)

Then, compute the best prediction E[Y+
t |Y

−
t ] of Y+

t given Y−
t , compute its Singular

Value Decomposition (SVD) and take its best n-order approximation:

ΓXt ≈ E[Y+
t |Y

−
t ] = Σ̂+−Σ̂−1

−−Y−
t = USV⊤ ≈ UnSnV⊤

n (19)

where Un and Vn are the matrices obtained by considering only the first n columns from U
and V, whereas Sn is obtained by selecting the fist n rows and columns from S. Actually,
as noticed in [73], the above approach can be generalized by factorizing WrE[Y+

t |Y
−
t ]Wc,

where different choices for the matrices Wr and Wc lead to different implementations
proposed in the literature.

From the equation above it immediately follows that ΓXt ≈ UnSnV⊤
n ; hence, Γ and Xt

can be set as follows:

Γ = UnS1/2
n (20)

Xt = S1/2
n V⊤

n (21)

Finally, the A matrix, whose eigenvalues define the system modes, can be extracted
from Γ exploiting for instance the shift invariance method: let Γu and Γd be the portions
of Γ obtained by discarding the last and the first block, respectively. Then, it is clear from
(13) that A can be obtained as A = Γ−L

u Γd, where Γ−L
u is the left inverse of Γu. The reader is

referred to [73,79] for details on the computation of the other parameters of the system (7)
and (8).

Subspace system identification is applied in this work to the random decrements com-
puted as described in the previous subsection, i.e., the time series of the output signal y(·)
is composed by the random decrements on the different dimensions (e.g., two planimetric
and the up direction), obtaining estimates of the system matrices, in order to obtain a good
representation of the observations by means of the Equations (7) and (8). Since this work
deals with modal analysis, focusing on determining reliable estimates of the values of the
eigenvalues of A is of major importance: the next subsection will deal with this problem.

3.4. Clustering to Support Automatic OMA

This subsection describes the steps in the procedure in Figure 4 after the system
identification one.

It is worth to notice that the system order n plays a fundamental role in the identified
model (described by (7), (8)). The “correct” system order for an infrastructure is typically
initially unknown; hence, the procedure described in the previous subsection is usually
applied for different values of the system order n and, then, a suitable system order shall
be selected according to a proper criterion. Despite the fact that several criteria have
been proposed in the system identification literature in order to select a proper model,
such criteria mostly deal with the description ability of the considered model with respect
to the model complexity. Instead, as suggested in [53,54], in this work modal analysis
takes into account of the most reliable vibration characteristics emerging from different
identified models.

To such aim, first, the system identification procedure is applied to the random decre-
ments for N different order values, from nmin to nmax. Then, the list L of all the determined
system poles {pi}, computed as the eigenvalues of the identified A matrices, is analyzed.
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The rationale of considering such list of poles, is that poles associated to real oscillatory
modes shall be present in a significant portion of the identified models. Differently, poles
caused by noise shall be present in only a few of the computed models.

Similarly to [53,54], Hard Validation Criteria (HVC) are applied to such pole list,
selecting poles according to the following:

• Only oscillatory modes, hence associated to vibrations in a free decay response, are
considered, i.e., those associated to poles complex conjugated.

• Only poles associated to positive dampings can be associated to mechanical systems
and infrastructures. Furthermore, infrastructures should realistically have damping
ratios lower than a certain threshold, e.g., 20% in [53].

Then, in accordance with the rationale mentioned above, [54] proposed the use of
DBSCAN, applied to the coordinates of poles in L, in order to separate them in different
clusters. Then, from each detected cluster is derived just one “confirmed” pole (which can
be determined by, for instance, averaging those in its cluster, as will be described more
precisely in the following), considered as a real one at the end of the procedure. In addition
to such a possibility, this work considers other alternative options, leading to the following
four cases, where the first, case 1A, corresponds to the already mentioned one:

• Case 1A: DBSCAN applied to the coordinates of poles in L.
• Case 1B: DBSCAN applied to frequencies and damping ratios associated to the poles

in L.
• Case 2A: GMM applied to the coordinates of poles in L.
• Case 2B: GMM applied to frequencies and damping ratios associated to the poles in L.

Such four cases are considered in this work as alternatives, whose performance will
be compared in Section 4. The four cases will be described in the following, along with a
brief description of the characteristics of DBSCAN and GMM, the procedure to exploit their
results in order to automate the assessment of the most representative system vibration
modes, and the proposed methods to assess the uncertainties on the estimated modes.

The clustering performance of the DBSCAN algorithm relies on properly setting the
values of two design parameters: ϵ, the radius of a point neighborhood to be considered in
order to determine whether such point is an outlier (to be discarded) or part of a cluster,
and minPts, which is the minimum amount of pole instances needed in order to support
the existence of the corresponding cluster. Hence, interestingly, DBSCAN is able to quite
effectively perform outlier rejection. Nevertheless, properly setting the values of ϵ and
minPts may be difficult for the following reasons:

• Since a real mode should have been identified in a significant portion of the models,
the value of minPts shall be set depending on N, the number of considered models,
e.g., ≈N/3.

• A possible choice for selecting a meaningful value for ϵ, see for instance [53,84], is that
of using the elbow rule on the k-distance graph of the pole coordinates.

Let us consider case 1A: once clusters have been determined, each of them should be
associated to a mode and hence the corresponding estimates for frequency f and damping
ratio ξ should be provided for each of them. To be more precise, each determined cluster
Lj identifies a mode, whose characteristics, in terms of f and ξ, are computed from those
of the poles {pi} in Lj: let fi and ξi be the frequency and damping ratio values computed
for the pole pi in Lj; then, the estimated frequency f j and damping ratio ξ j associated to
such cluster are determined as the averages of the frequencies and damping ratios of all the
pi in Lj, i.e., f j = ∑pi∈Lj

fi
Nj

, ξ j = ∑pi∈Lj
ξi
Nj

, where Nj is the number of poles in Lj. Then,
uncertainties σ̂f j

and σ̂ξ j on f j and ξ j are assessed by computing the standard deviation
from the same samples.

Since DBSCAN results are influenced by the choice of ϵ and minPts, the impact of
such parameters on the estimated pole parameters is assessed by repeating DBSCAN
clustering for different values of ϵ and minPts, including in the considered ranges of
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all their reasonable values, determined taking into account of a visual inspection of the
diagram of poles and to the number of identified systems N. Then, the average value and
variability of the estimates for f and ξ are assessed considering the results of DBSCAN
clustering over all the considered cases. Let f j be the frequency estimate provided for the
j-th cluster and let f j,k be the estimate of such frequency coming from the corresponding
cluster on the k-th run of DBSCAN. Then, f j is obtained as the average of the f j,k for all the
values of k corresponding to DBSCAN runs wherein such cluster has been detected (it may
not have been detected in certain runs), where the detection criterion for a certain cluster is
the closeness to the frequency of the corresponding mode up to the considered DBSCAN
run (when a cluster detected in run k is not compatible with any of the previously detected
clusters it is considered as a new one, whereas if is compatible with more than a previously
considered cluster it is assigned to the closest one). The damping ratio estimate ξ j can be
obtained similarly.

Then, variability on the determined values f j and ξ j is assessed in the following
two alternative ways:

(i) σf j
is obtained as the standard deviation of the estimates f j,k used to compute f j:

σf j
=

√√√√∑
nj
k=1( f j,k − f j)2

nj − 1
(22)

where nj is the number of DBSCAN runs where a f j,k contributing to f j has been found.
σξ j is computed similarly.

(ii) Standard deviations σ′
f and σ′

ξ are computed by directly taking into account of the
frequencies and damping ratios of the poles in all the clusters associated to f j in the
different DBSCAN runs. It is worth to notice that the same pole may be counted
several times, depending on the DBSCAN iterations where it has been considered in
the cluster associated to f j.

In case 1B, clustering is considered on a different set of parameter values related to
the poles in L: DBSCAN is applied to the set of frequency and damping ratio parameters
related to the poles in L. Since the range of frequencies and damping ratios may be quite
different, centering and normalization of such parameter values are performed before
clustering. Centering is obtained just by subtracting the respective mean values, whereas
normalization is obtained by dividing by the maximum absolute variation.

Similarly to case 1A, estimates are obtained for manually optimized values of the
DBSCAN parameters and according to the investigation among different runs of DBSCAN,
as explained above.

Since the selection of such parameter values, and in particular of ϵ, can have reper-
cussions on the DBSCAN clustering results, in this work a different approach is proposed,
aiming at reducing the dependence of the results on the parameter selection. To be more
specific, this work investigates the use of GMMs for clustering the N identified poles
(cases 2A and 2B).

In case 2A, GMM aims at representing the distribution of the pole coordinates as a
mixture of Gaussian distributions:

p(x) =
nG

∑
i=1

wiN (x; µi, Σi) (23)

where p(x) represents the probability density of the pole position x according to the
Gaussian mixture, given by the sum of nG Gaussians, with weights {wi} and characterized
by the means {µi} and covariances {Σi}, where the values of the mixture parameters are
usually assessed by means of the Expectation Maximization (EM) algorithm [85].
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Since the ideal number of Gaussians is unknown, a GMM is learned for several values
of nG. Then, the Akaike Information Criterion (AIC, [86]) is used for model selection among
the computed GMM models.

Once a GMM has been selected among the computed ones, the Gaussian centers can be
used as the identified poles and the covariances to determine the corresponding estimation
uncertainties. Furthermore, the covariance matrix also enables the determination of the
poles in L which are present in any of the clusters of interest. To be more specific, the
following criterion is used to determine whether the pole with frequency fi and damping
ξi is within cluster k, the latter associated to the already detected mode with frequency fk
and damping ratio ξk.

[
fi − fk ξi − ξk

]
Σ−1

k

[
fi − fk
ξi − ξk

]
≤ thr (24)

where, in our tests, thr = 3. If a pole satisfies the above condition for more than a detected
mode, then it is assigned to the one minimizing the value on the left of the above inequality.
It is worth to notice that, differently from DBSCAN, GMM does not have an explicit
mechanism to implement outlier rejection. To such aim, it has proven useful in our tests to
discard those Gaussians in the GMM representation (23) characterized by a weight wi ≤ w̄,
where the threshold value w̄ was set to 0.05 in our tests.

Similarly to case 1B, in case 2B GMM is applied directly to the frequencies and damping
ratios of the poles. It is worth to notice that the covariance matrices of the Gaussians in
GMM make it possible to differentiate along different directions; hence, differently from
case 1B, normalization of the variables, before applying GMM, is not considered here. With
the exception of the variables on which GMM is applied, the rest of the procedure of case
2B is analogous to 2A.

Finally, it is worth to notice that, since in cases 2A and 2B the order nG selection has
been obtained by means of the AIC criterion, the investigation previously conducted for
DBSCAN results, varying the DBSCAN input values ϵ and minPts, is not replicated for
cases 2A and 2B.

4. Results

This section presents the results obtained on data collected over 4 h at the Valdegana
bridge on 29 May 2024, in low-wind conditions. First, the semi-static component of the
local CRS coordinates of St1 and St2 is extracted by applying, separately on each of the
three directions, a low-pass Butterworth filter, as shown in Figure 5a for the up direction for
St2, just as an example (similar figures can clearly be obtained for the other directions and
for St1). Then, the dynamic component is obtained by subtracting the extracted semi-static
component from the projected GNSS coordinates (see Figure 5b for checking the results on
the up direction for St2). Figure 5 shows the results on the up direction being this the one
of major interest in this case study, as the displacements of the dynamic component along
the two planimetric coordinates are significantly smaller than those along the up direction.

The random decrement technique, described in Section 3.2, is applied to the dynamic
components, leading to the results shown in Figure 6 for the up direction for St2. Similar
results were obtained for St1 as well. Figure 6a shows the response decay over a 4000 s time
interval, whereas certain vibration modes are more clearly distinguishable in Figure 6b,
on a 200 s interval. In addition to the up direction, Figure 6b also shows the random
decrements along the longitudinal and transverse directions of the bridge. Vibrations along
the up direction are apparently larger than those along the other directions: in terms of
signal energy, computed on the 4000 s interval, longitudinal and transverse direction ones
are one order of magnitude smaller with respect to the up one. Since the maximum value
of the random decrements is strictly related to the threshold used as triggering condition,
in order to show results more independent with respect to such value, the vertical axes in
Figure 6a,b have been normalized with respect to their maximum value.
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(a) (b)

Figure 5. Up coordinate of the projected GNSS measurements of St2 on a 200 s interval: (a) displace-
ments along the up direction with respect to its average value in the collected dataset (dotted blue)
and its semi-static component (solid black); (b) dynamic component of the up displacements.

(a) (b)

Figure 6. Normalized random decrements of the up coordinate of the projected GNSS measurements
of St2 on a 4000 s (a), and on a 200 s interval, including random decrements along the bridge’s
longitudinal and transverse directions as well (b).

Then, subspace system identification is used in order to properly assess the parameters
of the dynamic model described by (7) and (8). In our tests, model order is varied from 2 to
30 (N = 15). Then, poles are computed, as eigenvalues of the A matrices of the identified
models, and the unfeasible ones are filtered out taking into account of the HVC criteria
(see Figure 7a, for the poles obtained using data from both St1 and St2). The final selection
of the system poles is performed either taking into account the clusters computed with
DBSCAN or the GMM results, as shown in the following, focusing first on two alternatives
for DBSCAN and then on GMM.

The list L of pole coordinates was determined based on poles detected for both St1
and St2. Then, Figure 7b shows DBSCAN results obtained setting ϵ according to the elbow
rule (see Section 3.4) and minPts to 5, which experimentally proved to be a reasonable
choice in this case study, making it possible to determine the most representative clusters,
highlighted also for most of the other choices of the minPts value, but having also a
good outlier rejection effect. As previously explained in Section 3.4, once clusters have
been determined, estimates for frequency f and damping ratio ξ associated to a cluster
are obtained in terms of the average values of those of each pole instance in the cluster.
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Focusing, for simplicity, on the numerical results for what concerns the detected vibration
mode with lowest frequency fmin, Table 1 reports the obtained results, distinguishing
between those obtained while using only measurements from one of the two GNSS stations
and from both of them. As a side effect of clustering on the pole, real and imaginary
coordinates, in certain cases damping values for pole instances forming a cluster, may
vary quite significantly. This issue can clearly be reduced by reducing the ϵ value, which
however typically leads to a larger number of identified clusters.

(a)

(b)

Figure 7. (a) Frequency, damping, and model order of all poles after HVC, obtained using data from
both St1 and St2. (b) Colored x-marks show the clusters computed by DBSCAN once applied on the
pole coordinate domain (case 1A), where each color identifies a different cluster.

Table 1. Estimates of fmin obtained in case 1A, using data from either both the stations or just one of
them, applying DBSCAN minPts = 6 and ϵ selected according to the elbow rule.

f̂ [Hz] σ̂ f [Hz] ξ̂ σ̂ξ

St1 + St2 0.133 0.009 0.14 0.07
St1 0.132 0.002 0.18 0.02
St2 0.134 0.011 0.13 0.08

Since DBSCAN results are influenced by the choice of ϵ and minPts, as mentioned
in Section 3.4, to assess the impact of such parameters on the estimated system pole
parameters, Table 2 compares the results obtained for the estimate of fmin while varying
ϵ and minPts in the ranges of [0.005, 0.1] and [3, 10], respectively. The minPts value is
typically suggested to be similar to N/3, as previously stated in Section 3.4. Hence, the
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range of minPts values to be investigated was chosen to be reasonably centered with respect
to N/3 = 5 and N = 6, which experimentally proved to give good results in this case study.
Instead, the interval of values for ϵ were chosen after a visual inspection of the diagram of
poles in order to include all the range of reasonably possible values for such parameter in
the considered case study. Average value and variability of the estimated values for f and ξ
are evaluated taking into account the estimates out-coming from DBSCAN clustering over
all the considered cases, as explained in Section 3.4. Table 2 compares the results of such
analysis distinguishing between those obtained while using only measurements from one
of the two GNSS stations and from both of them. The results reported in Table 2 confirm
those of Figure 7: variability on the estimated damping ratios is proportionally higher than
that on f . Furthermore, comparing the estimated values and their corresponding variability,
uncertainty (due to the unknown correct input parameter values) assessed with σf and σξ

appears to be more realistic than with σ′
f and σ′

ξ .

Table 2. Estimates of fmin obtained in case 1A: analysis of the results on different runs of DBSCAN
varying its input parameter values.

f̂ [Hz] σ f [Hz] σ′
f [Hz] ξ̂ σξ σ′

ξ

St1 + St2 0.133 0.002 0.005 0.17 0.01 0.01
St1 0.132 0.001 0.001 0.17 0.01 0.01
St2 0.135 0.001 0.007 0.14 0.02 0.07

Furthermore, Figure 8 shows the variability in the number of clusters with respect to
the values of minPts (a) and ϵ (b) in case 1A, considering for simplicity only the station 1
case, whereas the variability in σf and σξ with respect to ϵ is visible in Figure 9. Since the
variability in minPts has a quite minor impact with respect to ϵ on the values of σf and σξ ,
the corresponding figures are not shown here.

(a) (b)

Figure 8. Estimated number of clusters in case 1A, varying the value of minPts (a) and ϵ (b).

(a) (b)

Figure 9. Variability in σf , in (a), and σξ , in (b), with respect to ϵ in case 1A.
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Then, considering case 1B, DBSCAN was applied to the pole frequency and damping
values instead, obtaining the results shown in Figure 10, for data from both St1 and St2,
selecting ϵ according to the elbow rule and minPts = 6. To be more precise, the point
coordinates used as inputs for DBSCAN were obtained by centering and normalizing
frequency and damping pole values. Normalization was obtained by dividing by the
maximum absolute variation. Figure 10 shows that damping ratio and frequency variations
within an identified cluster appear to be very limited in this case. Table 3 shows the results
for what concerns the estimate of fmin.

Figure 10. Pole frequencies and damping ratios of the poles in L are shown as black x-marks. Colored
x-marks show the clusters computed by DBSCAN once applied on the normalized and centered pole
frequencies and damping ratios, where each color identifies a different cluster.

Table 3. Estimates of fmin obtained in case 1B, using data from either both the stations or just one of
them, applying DBSCAN minPts = 6 and ϵ selected according to the elbow rule.

f̂ [Hz] σ̂ f [Hz] ξ̂ σ̂ξ

St1 + St2 0.130 0.013 0.175 0.011
St1 0.132 0.001 0.167 0.009
St2 0.128 0.019 0.182 0.007

Then, Table 4 compares the variability in the results obtained, by applying DBSCAN
to the pole frequency and damping values, for the estimate of fmin while varying ϵ and
minPts in the ranges of [0.005, 0.1] and [3, 10], respectively. In comparison with Table 2,
the results in Table 4 show a lower difference in the estimates provided in the different
cases and a lower estimated variability as well.

Table 4. Estimates of fmin obtained in case 1B: analysis of the results on different runs of DBSCAN
varying its input parameter values.

f̂ [Hz] σ f [Hz] σ′
f [Hz] ξ̂ σξ σ′

ξ

St1 + St2 0.133 0.002 0.005 0.174 0.021 0.007
St1 0.133 0.001 0.001 0.164 0.003 0.007
St2 0.130 0.002 0.012 0.176 0.003 0.006

Figure 11 shows the variability in the number of clusters with respect to the values of
minPts (a) and ϵ (b) in case 1B, considering for simplicity only the station 1 case, whereas
the variability in σf and σξ with respect to ϵ is visible in Figure 12. Since the variability
of minPts has a quite minor impact with respect to ϵ on the values of σf and σξ , the
corresponding figures are not shown here.
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(a) (b)

Figure 11. Estimated number of clusters in case 1B, varying the value of minPts (a) and ϵ (b).

(a) (b)

Figure 12. Variability in σf , in (a), and σξ , in (b), with respect to ϵ in case 1B.

For what concerns cases 2A ad 2B, several instances of GMM are run, varying the
system order up to nG = 10, and selecting the best model according to the AIC method.
The cluster detection performance obtained by using GMM, as described in Section 3.4, can
be visually evaluated in Figures 13 and 14 (for data from both St1 and St2), for case 2A and
2B, respectively. It is worth to notice that, in the latter case, differently from the procedure
implemented for DBSCAN, frequencies and damping ratios have not been centered and
normalized. Clusters were considered only if formed by at least minPts = 7 of the poles
in L.

Figure 13. Pole frequencies and damping ratios of the poles in L are shown as black x-marks. Colored
x-marks show the clusters computed by GMM once applied on the pole coordinates (case 2A), where
each color identifies a different cluster.
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Figure 14. Pole frequencies and damping ratios of the poles in L are shown as black x-marks. Colored
x-marks show the clusters computed by GMM once applied on the pole frequencies and damping
ratios (case 2B), where each color identifies a different cluster.

Focusing on fmin, Table 5 shows the estimates and the corresponding uncertainties
obtained in case 2A and 2B, when considering any of the two GNSS stations or both of
them. It is worth to notice that, in the first case, the uncertainty was evaluated as the sample
standard deviation of the frequencies (or damping ratios) of the poles in L which are in a
cluster (similarly to σ′

f and σ′
ξ for DBSCAN). Instead, in case 2B, uncertainties were directly

derived from the covariances {Σi} of the estimated Gaussians (see (23)), as the square roots
of the corresponding diagonal elements. It is worth to notice that the results in terms of
estimates and uncertainties in both case 2A and 2B appear to be quite similar, those of 2B
being slightly more similar to those obtained with DBSCAN, and the use of two stations
instead of just one is clearly more reliable.

Table 5. Estimates of fmin obtained with GMM: cases 2A and 2B, and varying the used stations.

Case f̂ [Hz] σ f [Hz] ξ̂ σξ

2A: St1 + St2 0.135 0.003 0.14 0.04
2A: St1 0.136 0.002 0.14 0.03
2A: St2 0.134 0.003 0.13 0.04

2B: St1 + St2 0.134 0.004 0.17 0.03
2B: St1 0.132 0.002 0.17 0.02
2B: St2 0.138 0.022 0.19 0.03

Finally, Figures 15 and 16 show the variability in σf (a) and σξ (b) with respect to nG,
in case 2A and 2B, respectively. For simplicity, these figures are shown only for the case
involving the use of both the stations.

To conclude, Table 6 summarizes the characteristics of the three estimated modes
with higher energies, comparing the results obtained in the four considered cases. The
frequencies of the estimated modes are apparently quite similar, whereas the variability on
the estimated damping ratios is higher, as visible in certain of the previous results as well.

Table 6. Estimates of the three modes with largest energy obtained with DBSCAN and GMM from
measurements of both St1 and St2.

Case f̂ [Hz] ξ̂ f̂ [Hz] ξ̂ f̂ [Hz] ξ̂

1A 0.133 0.17 0.92 0.005 1.897 0.0018
1B 0.133 0.174 0.92 0.005 1.897 0.0018
2A 0.135 0.14 0.93 0.008 1.900 0.0011
2B 0.134 0.17 0.92 0.004 1.901 0.0009
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(a) (b)

Figure 15. Variability in σf , in (a), and σξ , in (b), with respect to nG in case 2A.

(a) (b)

Figure 16. Variability in σf , in (a), and σξ , in (b), with respect to nG in case 2B.

5. Discussion and Conclusions

Despite the fact that the combination of random decrements and time-domain-based
identification methods have already been considered in previous works, in this paper its
application to GNSS measurements acquired with affordable receivers, with corrections
provided with a very short baseline, confirmed the possibility of obtaining quite reasonable
results for what concerns determining the main vibration frequencies of the considered
bridge; for instance, in all the considered cases, the mode with minimum frequency fmin
was detected, despite the fact that the estimation uncertainty was quite different depending
on the considered case.

The acquisition rate of the GNSS receiver clearly introduces a limit on the maximum
frequency of the detectable modes. However, on the one hand the impact of such limitation
can be reduced by using higher-rate GNSS receivers [6], and, on the other hand, since a
significant portion of the first bridge’s natural frequencies usually are ≤5 Hz [63], then
even the use of the considered affordable GNSS receivers should not represent a significant
limitation from this point of view.

A detailed analysis on the application of clustering in order to support automatic
operational modal analysis showed that the results of the previously proposed use of
DBSCAN [54], applied on the detected pole coordinates, are influenced by the selection
of the ϵ and minPts parameter values used by DBSCAN. In particular, Figures 8 and 11
show a significant impact of minPts on the numbers of detected clusters, whereas ϵ had a
more significant impact on the variability in the estimated parameter values (frequencies
and damping ratios), as expected. In particular, variations on the estimated damping ratio
values may be quite significant among the poles within some of the identified clusters, as
can be noticed for instance by visual inspection of Figures 7b and 9b, or by checking the
numerical results for what concerns the uncertainty σ̂ξ in Table 1.

In order to reduce the latter issue, in case 1B, DBSCAN was directly applied to the
frequencies and damping ratio values of the poles in L. Figure 10 shows a reduction,
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with respect to Figure 7b, in the variability in the damping and frequency values for what
concerns the poles within a cluster. Such reduction is confirmed by the overall decrease
in the uncertainty values σf and σξ in Table 4 with respect to Table 2 (and in Figure 12b),
showing a probable convenience in applying DBSCAN to the pole frequencies and damping
ratio values, as in case 1B, which will be better investigated in our future works in different
case studies.

In both case 1A and 1B, but more remarkably in 1A, the assessed parameter value
variations determined as σf and σξ appeared to be more realistic than those estimated as σ′

f
and σ′

ξ (see Tables 2 and 4, where the uncertainties should be such that estimates obtained
with any of the two stations or by both of the two of them should be compatible), hence
proposing σf and σξ as more reliable estimates of such parameter uncertainties. Despite the
fact that this work currently only focuses on the extraction of vibration mode characteristics
from GNSS data, the comparison of such characteristics is of fundamental importance
in OMA applications; hence, also properly assessing the uncertainties in the estimated
parameters is remarkably relevant.

Furthermore, the use of GMM has been investigated in order to reduce the dependency
of the clustering results on the choice of the ϵ and minPts parameter values. In particular,
only w̄ (which plays a role similar to minPts) was used in this case in order to perform
cluster outlier rejection, i.e., to discard unreliable clusters.

Similarly to DBSCAN, GMM was applied both on the pole coordinate domain (case
2A) and directly on pole frequencies and damping ratios (case 2B). Differently from case
1B, since the values in the covariances of the Gaussians in GMM are automatically adapted
to the values of the variables input to the GMM estimator, in case 2B, GMM was applied to
frequencies and damping ratios without centering and normalizing them. Furthermore,
in accordance with the results reported in Table 5, and with Figures 15 and 16, the direct
application of GMM to frequencies and damping ratios (case 2B) seems to have a minor
impact with respect to the 1B case. Indeed, the uncertainties in the estimated values appear
to be quite similar in the two cases in Table 5. The motivation for such slight different
behavior with respect to case 1A–1B is probably the already mentioned greater flexibility
of GMM in terms of the values of its covariances along the two different directions. It
is also worth to notice that, thanks to the estimation of such covariances, the estimated
parameter uncertainties can be conveniently determined directly from them in case 2B.
Overall, comparing 2A and 2B, case 2B provides results more coherent with those of 1A
and 1B, as shown in Table 6. Furthermore, Table 6 confirms that, in all the considered cases,
the estimated modes with highest energies have comparable frequencies, and instead some
more variability is shown in the detected damping ratios, in particular for smaller values.
This aspect will be the subject of our future investigations.

To conclude, the investigation presented in this paper confirmed that clustering could
be effectively used to determine vibration modes from the poles coming from a sequence of
identified models, as previously proposed in [54]. However, this work investigated more
in depth the impact of the input parameter values of DBSCAN on the obtained results, and
two alternative options in order to assess the uncertainties of the estimated parameters.
Furthermore, the use of GMM was proposed to address the impact of input parameters of
the clustering algorithm on the obtained results.

Overall, the obtained results (in particular in terms of estimated value of frequency
and damping ratio of fmin, the system vibration mode with lowest frequency) were quite
similar in all the considered cases. In our tests, the use of DBSCAN clustering directly on
the frequency and damping ratio values was more convenient (case 1B) than applying it
to the original pole coordinates, whereas such convenience was only partially confirmed
when using GMM. The use of GMM instead of DBSCAN reduced the dependence of the
clustering results from the input parameters of the clustering procedure, and in particular
from ϵ, whose value showed to have an impact on the DBSCAN results, e.g., on the
uncertainties on the estimated parameters. While stating the overall superiority of GMM
from just a case study is unreliable, given the above-mentioned convenience and the similar
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obtained results, GMM proved to be a valid alternative to DBSCAN in this case study,
and, potentially, more in general in AOMA applications. Overall, the provided analysis
indicated both certain critical aspects and some advantages in using clustering methods in
AOMA applications, including some considerations on the evaluation of the uncertainty
level of the estimated parameters.

Future investigations will involve the extension of the use of the developed proce-
dure on other case studies in order to better highlight the pros and cons of the different
considered options, and to confirm or disprove the conclusions derived by the results
obtained in this work. Furthermore, the integration of the proposed methodology within a
fully operative monitoring application, hence including the analysis and comparison of the
system characteristics with data acquired at different epochs, will be considered as well.
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