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A B S T R A C T   

We critically review existing models for the adsorption-desorption noise in bio-chemical sensors, in particular the 
model based on simplified forward Kolmogorov equation and the models based on Langevin sources. For the 
latter models, we propose a generalized version to handle cases beyond the branched surface reactions (a binding 
site that can be alternatively occupied by different ions/molecules) and the chained reaction (a binding site that 
sequentially binds with ions/molecules). The models are benchmarked against kinetic Monte Carlo (kMC) 
simulations considering relevant case studies such as pH-sensitive ions, selective molecules binding on a func-
tionalized surface and multi-layer adsorption on bare surfaces. It is found that although the mathematical 
formulation of the modeling approaches appears different, when dealing with independent binding sites, they are 
fully equivalent and perfectly match the kMC results. The case of competitive binding considering the correlation 
between the occupation of the binding sites has also been analyzed.   

1. Introduction 

Biosensors are devices able to interact with target analytes and to 
convert such interaction into a viable physical quantity, typically a 
voltage difference, an electric current, or changes in a resonance fre-
quency [1]. The major challenge of these sensors is that the target an-
alyte is always present in a multianalyte environment, where one or 
more (interfering) species can interact similarly with the sensing 
element, thus limiting selectivity. In conventional ion-sensitive field 
effect transistors (ISFETs), the target analytes are ions involved in a 
sequence of binding events that determine the surface charge density at 
the gate channel [2,3]. But regardless of whether the analyte is involved 
in a chained cascade of binding events, competing with interfering 
species, or even a combination of the two cases, the knowledge of such 
surface mechanisms is fundamental for the interpretation of the sensor 
response. For pH-sensitive ISFETs, chained reaction events are described 
by the so-called site-binding (SB) model [4]. 

If the number of sensing sites is small, i.e., when sensing small 
concentrations of the analyte or even in single-molecule detection, the 
kinetics of the binding events resulting from binding/unbinding fluc-
tuations (see top panel in Fig. 1) convey additional information that is 
also transduced by the sensor. The spectral information encoded in such 

signals (lower right panel in Fig. 1) can be used to distinctively uncouple 
processes according to their characteristic frequencies [5–7]. To this 
aim, modeling frameworks addressing the chemical noise (i.e., compute 
the power-spectral density, PSD, of the fluctuations) for specific re-
actions have been proposed in the literature [6,8,9]. Recently, two in-
dependent works [10,11] have also addressed this problem from a wider 
perspective, providing a general framework to calculate the spectral 
noise of adsorption/desorption processes based on an arbitrary set of 
surface reactions. 

In this work, we critically compare the modeling approaches for 
adsorption/desorption noise considering some relevant case studies 
ranging from pH sensing to molecule deposition on sensing surfaces. 
Furthermore, these models are compared with kinetic Monte Carlo 
(kMC) simulations. We also propose a methodology to extend the 
approach of [11,12] to arbitrarily complex surface reactions, although 
limited to independent binding sites. 

The manuscript proceeds as follows. After introducing the general 
framework and the use of the Markov chains to describe the evolution 
during time of the state of independent surface sites, Section 2 describes 
the different models (the one based on the simplified forward Kolmo-
gorov equation and the ones based on Langevin sources) as well as the 
kMC simulator. Simulation results for independent surface sites are 
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provided in Section 3. The effect of the correlation between sites in the 
case of competitive binding on a sensing surface is discussed in Section 
4. Conclusions are drawn in Section 5. 

2. Description of the modeling approaches for independent 
binding sites 

2.1. General framework 

We consider a surface with Nsites binding sites with the same prop-
erties. The sites are independent, so one can derive the statistical 
properties of a single site and then extend the analysis to multiple sites. 
In particular, we will deal with the power-spectral-density (PSD) of the 
fluctuations around a steady-state condition. The overall PSD is thus the 
PSD of the fluctuations associated to a single site multiplied by Nsites. 

The adsorption-desorption of analytes on the binding sites can be 
described by a Markov chain where the site evolves toward different 
states during the time following a Poisson process. For example, in the 
simplest situation, a site can be in the states empty or occupied. In the 
steady state, a fraction of sites will be empty and a fraction will be 
occupied. In any case, a single site will oscillate between the two states, 
giving rise to adsorption-desorption noise. In general, the states can be 
more than two. For example in the site-binding model for adsorption of 
protons on oxide surfaces, the site can capture one or two protons or be 
deprotonated, so it can be in three different states. 

A powerful way to describe a general situation is by using graphs to 
represent the Markov chain [10,13]. Two relevant examples are re-
ported in Fig. 2: a branched process (left plot), representative of selective 
and exclusive binding of different analytes on the site (e.g. the site can 
capture analyte A or analyte B, etc.), and a chained process where 
different analytes can be captured sequentially by the same site (e.g., a 
site on an oxide surface capturing one proton and then a second one or 
the same site over which many layers of analyte can accumulate). These 
will be analyzed as relevant cases in the following, although the theory 
presented here is general and can be applied to graphs with arbitrary 
topology. 

To describe the time evolution of a site, we employ the Kolmogorov’s 
forward equations: 

dP(t)
dt

= GP(t), (1)  

where P(t) is the vector of elements Pj representing the probability for a 
binding site to be in state j. Note that if we have N states numbered from 
0 to N − 1, it holds that: 

∑N− 1

j=0
Pj(t) = 1. (2)  

The matrix G contains the transition probability per unit time: Gij is the 
probability per unit time for a site to jump from state j to state i, as 
indicated in the arrow connecting the different states in Fig. 2. In 
principle, the elements of G may depend on P(t), see for example the 
situation of competitive binding of molecules on a surface discussed in 
[12]. This induces a sort of correlation between the occupation of the 
different sites. In this paper, we consider models that assume the sites to 
be uncorrelated. An example of correlation between sites will be dis-
cussed in Section 4. 

The output of the sensor corresponding to the state of a single 
binding site is given by 

xout =
∑N− 1

j=0
xjPj = xT P (3)  

where x is the vector containing the values of the physical variable 
related to the state of the binding site. For example, if the sensor 
response is related to the surface charge concentration (as in [10,13]) we 
can write xj = qzj/A, where q is the elementary charge, zj the valence of 
the site in state j and A the area of the sensing element. If instead, the 
relevant physical variable is the mass of the analyte(s) sticking in the 
site, xj will be the mass of the analytes present on the site when in state j. 

At equilibrium, we have: 

GP0 = 0 (4)  

where P0 is the vector containing the probability of being in a certain 
state at equilibrium. It is easy to show that if the Markov chain 
describing the transitions between states does not contain loops, we 
have that 

GijP0
j = GjiP0

i . (5)  

This property has been exploited in [13] to derive a procedure to obtain 
the vector P0 for an arbitrary set of surface reactions in potentiometric 
sensors. 

When dealing with adsorption-desorption noise, we are looking to 
deviations ΔPi(t) with respect to P0

i . Since Eq. (2) holds we need to find a 
vector ΔP with size N − 1. In this case Eq. (1) becomes: 

dΔP(t)
dt

= ΩΔP(t). (6)  

The matrix Ω is obtained from the matrix G by removing one state. This 

Fig. 1. Sketch of stochastic adsorption/desorption of analytes on a sensing surface. The process results in noisy sensor waveforms. The target of this paper is to 
compare models for the power-spectral-density of the sensor signal. 
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is done using the matrices T and R [10]: 

Ω = TGR. (7)  

For example, if state N − 1 is removed, we have 

T≜( I 0 );

R≜

(
I

− 1T

)
(8)  

where I is the identity matrix of size (N − 1)× (N − 1), 0 a column vector 
containing (N − 1) elements with value 0 and − 1T is a row vector con-
taining (N − 1) elements with value − 1. 

2.2. Model based on the forward Kolmogorov equation 

The power-spectral density (PSD) vs frequency f of the fluctuations 
of xout(t) associated to the ΔP(t) in Eq. (6) has been derived in [10] as: 

Sxout xout (f ) = 4NsitesxT RΓ
(
ℜ
{
(j2πf I − Ω)

− 1})T
RT x (9)  

where the matrix Γ is linked to the equilibrium state probabilities: 

Γ =

⎡

⎢
⎢
⎣

P0
0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ P0

N− 2

⎤

⎥
⎥
⎦ − P′0( P′0)T

. (10)  

More specifically, the vector P′0 corresponds to the vector P0 after the 
elimination of the element corresponding to the state removed when 
converting G into Ω. 

Notice that P0 can be computed from Eq. (4) (i.e. as the kernel of G) 
or using the methodology described in [13]. 

Eq. (9) has been used in [10] to derive the chemical noise associated 
with binding-unbinding of ions in potentiometric chemical sensors. The 
treatment is however general and the equation can be applied to any 
generic situation where analytes bind to a surface. 

2.3. Models using Langevin sources 

Many models for adsorption-desorption noise in bio-chemical sen-
sors based on Langevin sources have been proposed [11,12,14–16]. The 
equations in the above references can be re-cast using our symbols as: 

Sxout xout (f ) = NsitesxT R(− Ω + j2πf I)− 1Sξ
[
(− Ω − j2πf I)− 1]T

RT x. (11) 

The matrix Sξ depends on the type of process. For branched processes 
(left plot of Fig. 2), it is a diagonal matrix [12]: 

Sξ = 4

⎡

⎢
⎢
⎣

G0,1P0
1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ G0,N− 1P0

N− 1

⎤

⎥
⎥
⎦ (12)  

where the state ‘0’ is the root of the graph describing the branched 
relation and it is removed when converting G into Ω. 

For chained reactions, [11] assumes that Sξ is diagonal: 

Sξ = 4

⎡

⎢
⎢
⎣

G0,1P0
1 + G1,2P0

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ GN− 2,N− 1P0

N− 1

⎤

⎥
⎥
⎦ (13)  

where the state ‘0’ is the leftmost state of the graph describing the 
chained relation and it is removed when constructing Ω. 

One should note that Eq. (11) is actually the projection on the output 
vector x of the PSDs given by Eq. (82) [17]. So, the two cases above (Eqs. 
(12) and (13)) should be particular cases of the most general [17]: 

Sξ = − 2
(
ΩΓ+ΓΩT) = − 4ΩΓ (14)  

where it is easy to show that the last equality comes from Eq. (5). 
With some tedious matrix manipulations, one can show that Eq. (12) 

is indeed equivalent to Eq. (14), while this does not apply to Eq. (13). In 
fact the matrix Sξ for chained reactions should posses also off-diagonal 
terms and read:   

Fig. 2. Example of graphs describing the time evolution of the Markov chain representing the different possible states for a binding site. (a) Branching process. (b) 
Chained process. The circles represent the states, with occupation Pj, while the arrows are the transition rates (probability per unit time to jump between two states). 

Sξ = 4

⎡

⎢
⎢
⎢
⎢
⎢
⎣

G0,1P0
1 + G1,2P0

2 − G1,2P0
2 0 ⋯ 0

− G2,1P0
1 G1,2P1

1 + G2,3P0
3 − G2,3P0

3 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 − GN− 1,N− 2P0

N− 2 GN− 2,N− 1P0
N− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (15)   
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2.4. Equivalence between the two models 

Although Eqs. (9) and (11) may look quite different, we show below 
that, after substituting Eq. (14) into the latter, one gets exactly the same 
expression. In other words, it is true that: 

Γ
(
ℜ
{
(j2πf I − Ω)

− 1})T

=
1
2
( − Ω + j2πf I)− 1(

− ΩΓ − ΓΩT)[( − Ω − j2πf I)− 1]T
.

(16)  

The equivalence above can be proven in the following way. From the 
relation: 

ΩΓ = ΓΩT (17)  

it follows that 

( − Ω+ j2πf I)Γ = Γ
(
− ΩT + j2πf I

)
. (18)  

Multiplying with inverse matrix of − ΩT + j2πfI both members, we have 

( − Ω+ j2πf I)Γ
(
− ΩT + j2πf I

)− 1
= Γ. (19)  

Multiplying both members by ΩT + j2πfI, the previous expression be-
comes 

( − Ω+ j2πf I)Γ
(
− ΩT + j2πf I

)− 1(ΩT + j2πf I
)
= Γ

(
ΩT + j2πf I

)
. (20) 

Expanding the matrix multiplication at the right-hand side, and 
adding ΩΓ at both members: 

( − Ω+ j2πf I)Γ
(
− ΩT + j2πf I

)− 1(ΩT + j2πf I
)
+ ΩΓ − j2πf Γ

= ΓΩT + ΩΓ. (21)  

Factoring out the matrix Γ at the left-hand side and multiplying both 
members by the inverse matrix (ΩT + j2πfI)− 1, the previous equality 
turns into 

( − Ω + j2πf I)Γ
(
− ΩT + j2πf I

)− 1
− ( − Ω + j2πf I)Γ

(
ΩT + j2πf I

)− 1
=

(
ΓΩT + ΩΓ

)(
ΩT + j2πf I

)− 1
.

(22)  

We can then factor out (− Ω + j2πI)Γ at the left-hand side and then 
multiply both members by the inverse of ( − Ω+ j2πI). We get: 

Γ
[(

− ΩT + j2πf I
)− 1

−
(
ΩT + j2πf I

)− 1
]

=

( − Ω + j2πf I)− 1( ΓΩT + ΩΓ
)(

ΩT + j2πf I
)− 1

(23)  

Multiplying both sides by − 1/2 and considering that the real part of a 
matrix A can be written as Re{A} = 1

2 (A+A∗) (where the ∗ stand for the 
complex conjugate), one gets Eq. (16). 

Since Eqs. (9) and (11) (after substituting Eq. (14)) are fully equiv-
alent, in the following we will plot one single curve for the two models 
and refer to it as general model as opposed to the use of Eq. (11) with 
either Eqs. (12) or (13) that are derived for particular cases. As antici-
pated before it can be shown that Eqs. (11) with (12) is exact in the case 
of branched graphs, whereas for chained cases, Eq. (13) should be 
replaced by Eq. (15). 

2.5. Kinetic Monte Carlo 

To verify the validity of Eqs. (9) and (11) we have developed a simple 
kinetic Monte Carlo (kMC) algorithm to study the stochastic evolution of 
a single site [18]. 

Assuming to start with the site in state i, the site remains in this state 
for a time 

Δti = −
1

∑N
j=1,j∕=iGji

lnr1 (24)  

where r1 is a random number uniformly distributed between 0 and 1. 
After that time, state k is selected if 

∑k− 1

j=1,j∕=i

Gji < r2 ≤
∑k

j=1,j∕=i

Gji (25)  

where also r2 is a random number uniformly distributed between 0 and 
1. 

The kMC thus provides a sequence piecewise constant waveform 
where xout(t) = xi for a time Δti. The Fourier transform of each of these 
constant steps (after subtracting the average value of xout(t) over the 
simulation time) is a sinc function. The combination of all these sinc 
functions gives the PSD of the random variable xout(t). This should be 
multiplied by Nsites to get the PSD of the whole surface. 

Note that we compute the PSD considering only the second half of 
the time evolution of xout(t) to avoid any spurious effect due to the 
arbitrary choice of the initial state. The PSD is not plotted for frequencies 
below twice the inverse of the simulation time since fluctuations below 
that frequency are not sampled by the kMC procedure. 

We have also developed a kMC for multiple independent sites and 
obtained exactly the same PSD as using a single site and multiplied the 
PSD by Nsites. The algorithm is more complicated and much less 
numerically efficient, so it is not detailed here and, in the following, we 
will employ the kMC for a single site. 

3. Results for independent binding sites 

The equivalence between the PSD provided by Eqs. (9) and (11) 
(with Sξ from Eq. (14)) has been already proved analytically in Section 
2.4. We have further verified that they provide a PSD very close to the 
kMC results considering a wide variety of Markov chains with various 
topologies and rates. In this section, we report some examples relevant 
to bio-chemical sensing based on particles/molecules adsorption- 
desorption on surfaces. 

3.1. pH sensing with Pt surface 

As a relevant example, we consider the PSD of the surface charge 
fluctuation on a Pt surface for different pH of the sample electrolyte. 
Parameters of the site binding model have been calibrated in [19]. 

The Markov chain of the chemical reactions is sketched in Fig. 3 and 
the model parameters are reported in Table 1. The molar concentration 

Fig. 3. Markov chain of the site binding model. The protonation of state 0 (i.e. 
MO− site) with probability per unit time kf

a[HS]P0 moves the site to state 1 
(MOH). This can be further protonated with probability per unit time kf

b[HS]P1 

and moves to state 2 (MOH+
2 ). States 1 and 2 are de-protonated with rate kb

aP1 

and kb
bP2, respectively. kf

a, kf
b, k

b
a and kb

b are the reaction rate coefficients of the 
different surafce reactions. [HS] is the concentration of protons in the proximity 
of the sensing surface. 
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of protons at the surface is computed as 

[HS] = 10− pHexp
(

−
qψS

KBT

)

(26)  

where the surface electrostatic potential ψS (considering as reference the 
potential in the bulk of the electrolyte) has been computed by solving 
the Poisson-Boltzmann equation assuming a background NaCl concen-
tration of 50 mM. The number of sites is just the product between the 
concentration of sites per area NS extracted in [19] and the surface area 
A. 

The topology of the Markov chain in Fig. 3 can be interpreted both as 
a chained process (numbering as state ‘0’ the one on the left, as done in 
the figure) or as branched one (numbering as ‘0’ the state in the middle). 
When employing the general model (i.e. either Eqs. (9) or (11) with Sξ 

from Eq. (14)), the numbering of the states does not matter. If the 
Markov chain is intended as branched, one can use Sξ from Eq. (12) 
together with Eq. (11) and get exactly the same results as using the 
general model (not shown). 

Fig. 4 shows that the general model closely follows the kMC results, 
which confirms the correctness of Eq. (9) (and of Eq. (11) with Sξ from 
Eq. (14)). When one instead uses for Eq. (11) the expression of Sξ from 
Eq. (13), the results deviate from the kMC. 

It is worth noting that in this analysis we kept frozen the surface 
electrostatic potential ψS, which means keeping constant the concen-
tration of protons in proximity of the surface (see Eq. (26)). Indeed our 
aim is to compare the different modeling approaches to compute the 
surface charge fluctuations for given parameters of the Markov chain. 
However, the charge fluctuations associated to stochastic binding/un-
binding result in potential fluctuations and eventually in fluctuations of 
the concentration of protons close to the sensing surface. However, 
factors such as the density of sites per unit area and the background ionic 
strength of the solution can minimize the extent of these fluctuations. A 
powerful way to account for potential fluctuation is through an equiv-
alent circuit, as extensively discussed in [10,19]. 

3.2. Competitive binding of neutral molecules on a surface 

We now consider the competitive binding of neutral molecules on a 
finite set of sites present on a surface. This phenomenon and the asso-
ciated fluctuation noise have been extensively studied in [12,16]. 

Assuming that all sites are independent (we will extensively discuss 

Table 1 
Model parameters for the site-binding model of Fig. 3 taken from Bellando et al. 
[19]. M stands for mol/L.  

Parameters Value Meaning 

kf
a 1.05⋅104 (Ms)− 1 forward reaction rate coefficient for protonation 

of state MO−

kb
a 0.1053 s− 1 backward reaction rate coefficient for 

protonation of state MO−

kf
b 1.43⋅106 (Ms)− 1 forward reaction rate coefficient for protonation 

of state MOH 
kb

b 0.1429 s− 1 backward reaction rate coefficient for 
protonation of state MOH 

NS 5.5⋅1016 m− 2 sites per unit area 
A 1 μm2 area of the sensing surface  

Fig. 4. Simulated PSD of the charge fluctuation per unit area for pH sensing 
using a Pt surface. The label general model refers to Eq. (9) that is completely 
equivalent to Eq. (11) using Eq. (14). The label Djuric10 refers to Eq. (11) using 
Eq. (13) from Djurić et al. [11]. The figure also reports the kMC results. 

Fig. 5. Graphs describing the time evolution of the Markov chain for the 
competitive binding of three different types of molecules on a sensing surface. 
The label “Mol X” stands for “site occupied by the molecule of type X”. 
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this point later), the process can be described by a Markov chain with 
branched topology, see Fig. 5: the site can be either empty or occupied 
by one of the molecules (three different types in the figure and in the 
following results). The adsorption rate is proportional to the concen-
tration (CSi) of molecules of species i in proximity of the surface multi-
plied by the forward reaction rate kFi. The desorption rate is indicated as 
kRi. 

The vector x contains the mass of the molecules of different species: 

x = [0,m1,m2,m3] (27) 

As long as the surface concentration of the species is constant over 
time, the occupations of the different sites are uncorrelated and one can 
use the theory presented in the previous section. However, as discussed 
in [12,16], the surface concentrations indeed depend on the occupation 
of the sites. In fact, in steady-state conditions, the flux of particles from 
the bulk of the electrolyte toward the surface can balance with the 
adsorption/desorption rate: 

Akmi(COi − CSi)NA103 = kFiCSi

(

Nsites −
∑

j
Nj

)

− kRiNi (28)  

where NA is Avogadro’s number, the COi are the concentrations in the 
bulk of the electrolyte in mol/L and the factor 103 converts m3 in liters. 
The kmi are kinetic parameters ruling the mass transfer from the bulk of 
the electrolyte toward the sensing surface. The flux of molecules of 
species i toward the surface is assumed to be proportional to the dif-
ference between COi and CSi. Ni is the number of molecules of ith species 
bound on the surface. On the other hand, the factors kFi and kRi control 
the binding/unbinding of the molecules on the sensing surface. Eq. (28) 
gives: 

CSi =
COi + kRiNi

/(
kmiANA103

)

1 + kFi

(
Nsites −

∑
jNj

)/(
kmiANA103

) (29) 

A proper treatment of the fluctuation should then go beyond the 
approximation of independent sites embraced by the models analyzed in 
this work. Even the kMC algorithm described in Section 2.5 is not 
adequate for that. In the following, we thus assume km→∞ so that CSi =

COi. We will discuss the more general case in Section 4. With this 
assumption, we can use the kMC and compare it with the general model 
(i.e., either Eqs. (9) or (11) with Sξ from Eq. (14)). It can be demon-
strated analytically that the general model fully matches the model in 
[12] when km→∞, so that only the general model is plotted in the 

comparison between model and kMC shown in Fig. 6. 
The simulation parameters are reported in Table 2. The ratios kFi/kRi, 

the bulk concentrations, and the number of sites are taken from [12]. We 
set the rates kRi to reproduce the PSD reported in [12]. 

When implementing the general model, the state 0 (empty site) of 
Fig. 5 has been removed, and the equilibrium occupation probabilities 
needed in Eq. (10) are computed as [12]: 

P0
i =

kFi
kRi

COi

1 +
∑3

j=1
kFj
kRj

COj
. (30) 

Fig. 6 shows the perfect agreement between the kMC results and the 
general model discussed in this paper. As stated above, the general 
model is fully consistent (it can be proven analytically with tedious 
calculations not reported here) with the model for competitive binding 
presented in [12]. The latter can be applied also to the case when the kmi 

are finite, as we will see in Section 4. 

3.3. Multi-layer adsorption of neutral molecules 

In this section, we consider the adsorption of a single species (elec-
trically neutral) on a finite number of independent surface sites. Mole-
cules/particles can pile up and create more than one layer. This situation 
has been analyzed in [11] and can be summarized with the Markov 
chain in Fig. 7: each site can bind an increasing number of particles. In 
principle, the chain should extend to infinity, but we limited it to a 
maximum number of n = 10 particles per site and verified that this 
number is large enough to make the results independent of this choice. 

The detaching rate from state k goes as 

τk = τ0exp
Edk

RT
(31)  

where τ0 = 0.1 ps and the detaching energies are Ed1− 6 =

15.5/12.5/10.5/10/9.5/9 kcal /mol, Edk = 8 kcal /mol for k > 6 [11]. 
The adsorption rate is given by ak⋅p, where p is the pressure in the 
chamber and 

ak =
αSk

(Nsites/A)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πMakBT

√ (32)  

where Ma = 28 Da [20] is the mass of the adsorbed particle and we set 
αSk = 1 for all k (i.e., we assume that all molecules hitting the sensing 
surface are adsorbed). The density of sites is Nsites/A = 1018 m− 2 [11]. 
The temperature is T = 300 K. Eq. (32) can be easily derived bearing in 
mind that, since αSk is the probability for a molecule impinging the 
surface to be adsorbed, akp/αSk is the number of molecules per unit time 
hitting the area belonging to one site (assumed to be the total area of the 
sensing surface divided by the number of sites). According to Boltzmann 
statistics, the molecules impinging the surface have an average velocity 
normal to the surface equal to |v⊥| =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2kBT/(πMa)

√
. The flux impinging 

the surface is |v⊥|NAc/2, where c is the molar concentration of the 
molecules in the chamber and the factor 1/2 stands from the fact that 
only half of them are oriented toward the surface. The law of ideal gases 
states that the pressure in the chamber is p = cNAkBT. Putting all 
together: 

Fig. 6. Simulated PSD (multiplied by the frequency) of the mass fluctuation 
related to competitive binding of molecules on a surface. The general model (i.e. 
Eq. (9) that is completely equivalent to Eq. (11) using Eq. (14)) is compared 
with the kMC results. Parameters are reported in Table 2, except that kmi are set 
to infinity. 

Table 2 
Model parameters for the competitive binding of molecules on a surface.  

Parameters Molecule 1 Molecule 2 Molecule 3 Units 

COi varied 5× 10− 8 10− 7 M 
kFi 8× 107 4× 104 3.2× 104 M− 1s− 1 

kRi 0.08 0.01 0.01 s− 1 

kmi 5× 10− 6 10− 6 10− 6 m/s 
Nsites/A  3× 1015  m− 2 

A  10− 9  m2  
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akp
αSk

= |v⊥|NA
c
2

A
Nsites

=

̅̅̅̅̅̅̅̅̅̅̅

2kBT
πMa

√

1
2

p
kBT

A
Nsites

(33)  

which gives Eq. (32). 
The vector x associated to the Markov chain in Fig. 7 contains the 

mass adsorbed in the single site for each state: 

x = [0,Ma,⋯, kMa,⋯, nMa] (34)  

When applying the general model, we construct the matrices T and R to 
eliminate state 0. 

It is easy to show that the occupation probabilities at equilibrium are 
given as 

P0
k =

α1⋅⋯⋅αk

1 + α1 + ⋯ + α1⋅⋯⋅αk + ⋯ + α1⋅⋯⋅αn
(35)  

where αk = akpτk. One can easily see that if all αk are larger than 1, the 
occupation probabilities increase with k (i.e., more probable to have 
many layers per site), meaning that the probability of state n is the 
largest and tends to be close to 1. If one increases n, this 1 just moves to 
the last state, i.e., the system is unstable and the number of layers grows 
indefinitely over time. With the parameters employed here, this happens 
when p is larger than approximately 500 Pa. For this reason, we have 
limited our analysis to p ≤ 100 Pa. 

Results are reported in Fig. 8. As expected, for low pressure (top 
graph) the general model discussed in this paper (that is Eq. (9) or, 
equivalently, Eq. (11) using Eq. (14)) and the model in [11] (i.e. Eq. (11) 
using Eq. (13) and with all elements of x equal to Ma as from Eq. (5) in 
[11]) are very close, since all sites capture at most one single molecule 
and the noise follows the Langmuir model as already shown in [11]. 
When the pressure increases (middle and bottom graphs in Fig. 8) the 
two models start to deviate, and only the general model matches the 
kMC results (although the kMC becomes very noisy at high pressures, 
requiring extremely long simulation times). As discussed previously, the 
main reason for this difference is that Eq. (13) used in [11] should be 
replaced by Eq. (15). Furthermore, the elements of x should not be all 
equal to Ma as in [11], but, instead, follow Eq. (34). When these two 
aspects are modified into the model of [11], it becomes coincident with 
the general model, as can be shown analytically and demonstrated 
numerically (not shown in the plots since these curves are perfectly 
overlapped). 

4. Correlation between sites in the case of competitive binding 

The main limitation of the approach analyzed here (summarized by 
either Eq. (9) or by Eq. (11) with Sξ from Eq. (14)) is that it assumes that 
all sites are independent. This allows us to compute the PSD of the 
fluctuation of a single site using the matrix Γ obtained via Eq. (10) and 
then just multiply by the number of sites. If the occupation of the sites is 
correlated, this approach cannot be used. A relevant case study is the 
competitive binding of molecules, analyzed in Section 3.2: the mole-
cule’s concentration at the surface is given by Eq. (29) and depends on 
the actual number of molecules bound on the surface. It is easy to show 
that the equilibrium concentration on the surface (that is obtained from 

Fig. 7. Graphs describing the time evolution of the Markov chain for the multi-layer adsorption of particles on a surface.  

Fig. 8. Simulated PSD of the mass fluctuation in the case of multi-layer 
adsorption on a sensing surface. The label general model refers to Eq. (9) that 
is completely equivalent to Eq. (11) using Eq. (14). The label Djuric10 refers to 
Eq. (11) using Eq. (13) from Djurić et al. [11]. The figure also reports the 
kMC results. 
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Eq. (29) writing Ni = NsitesP0
i ) is equal to the bulk concentration COi. 

However when Ni fluctuates, CSi fluctuates too, so that the transition 
rates for a given site would depend on the occupation of the other site. 
The analytical solution for this situation has been derived in [12]. The 
model employs Eq. (11), the expressions for Ω and Sξ are reported in the 
reference. To validate that model and compare it with the case of in-
dependent sites, we have developed a kMC algorithm specific to this 
problem. We know from [12] that the time evolution of the number of 
molecules of species i on the surface follows: 

dNi

dt
= kFi

COi + kRiNi
/(

kmANA103
)

1 + kFi

(
Nsites −

∑
jNj

)/(
kmANA103

)

(

Nsites −
∑

j
Nj

)

− kRiNi,

(36)  

as can it be easily derived from the Markov chain in Fig. 5 expressing the 
CSi from Eq. (29). In the kMC, the first term at the r.h.s. of Eq. (36) is the 
probability per unit time to increase Ni by 1, while the second term is the 
probability per unit time to decrease Ni by 1. These probabilities need to 
be recomputed after each event. The adsorbed mass is then computed as 
∑

iNimi and the PSD of the fluctuations is computed as in Section 2.5. 
Fig. 9 shows that the model proposed in [12] (solid lines) nicely 

matches the kMC results (symbols). The figure also reports the results 
obtained with the models discussed in this paper (that are all equivalent 
in the case of branched reactions). These models assume independent 
sites and deviate from the kMC results at low frequencies. 

Although the correlation between sites occupation due to mass 
transfer from the bulk toward the surface has an effect on fluctuation 
noise, it has no effect on the sensor response. The response is indeed 
given by the steady-state occupation of the sites. This can be found by 
setting to zero the time derivatives in Eq. (36). With simple calculations 
one can find that the fraction of sites bound with molecules of type i is 
given by: 

N0
i

Nm
=

kFi
kRi

COi

1 +
∑3

j=1
kFj
kRj

COj
. (37)  

We see that the kmi terms disappear so the results are the same as for 
independent sites (Eq. (30)). The sensor response (i.e. the surface mass 

given as m1N1 + m2N2 + m3N3 to the bulk concentration of molecules of 
type 1 is reported in Fig. 10 either considering the simulation parame-
ters of Table 2 (plot a) or setting to zero the concentration of interfering 
molecules of type 2 and 3. In both cases, we see a plateau at high con-
centrations due to saturation of the binding sites. The presence of 
interfering molecules (plot a) induces a plateau also at low concentra-
tion (i.e., the sensor responds to the interfering molecules), whereas 
when only the target molecules are present, the response is proportional 
to the bulk concentration of the target molecules. 

The r.m.s. value of the noise (i.e., the square root of the PSD inte-
grated over a bandwidth from 0 to 1Hz) has been plotted by comparison 
using either the model for correlated sites (red solid line) or the model 
for independent sites (red dashed line). We see that, consistently with 
the previous analysis, correlation between sites has an effect of noise. 
While in the presence of interfering molecules (plot a) the sensor 
response at low concentration is limited by surface selectivity to the 
target molecules, when only target molecules are present with low 
concentration, noise becomes the limiting factor (plot b). In this 

Fig. 9. Product between fluctuation PSD and frequency for the case of 
competitive binding of 3 different molecules on a surface. Compared to the 
analysis presented in Section 3.2, here the effect of the number of bound 
molecules on the surface concentrations is taken into account. Model parame-
ters are from Table 2. The kMC results are compared with the model proposed 
in [12] and with the model presented in this work (Eq. (9) or, equivalently, Eq. 
(11) coupled with Eq. (14) of Eq. (12)), indicated as linear model since it does 
not account for the effect of the number of bound molecules on the transi-
tion rate. 

Fig. 10. Signal (black curve) and noise (red curves) for the case of competitive 
binding of molecules on a sensing surface. The noise trace is the integral of the 
PSD in the band from 0 to 1Hz. The red solid curve has been obtained from the 
model proposed in [12] (that includes correlation between sites), while the red 
dashed curve with the model presented in this work, that assumes independent 
sites. Plot (a) uses the default parameters from Table 2, while in plot (b) we set 
CO2 and CO3 to zero. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

F. Bettetti et al.                                                                                                                                                                                                                                  



Applied Surface Science Advances 18 (2023) 100472

9

situation, the estimation of the lower-limit-of-detection significantly 
changes considering independent sites. 

5. Conclusions 

We have shown that the model for fluctuation noise due to adsorp-
tion/desorption of particles on a surface proposed in [10] using the 
simplified forward Kolmogorov equation is fully consistent with the 
models based on Langevin sources proposed in different papers [11,12], 
although the model in [11] should be modified by considering the 
non-diagonal terms in the Sξ matrix. We have also shown that the 
models in [11,12] can be generalized following the approaches for 
fluctuation noise discussed in [17], while the original papers were 
dealing with particular cases. This generalized formulation is completely 
equivalent to the one in [10]. 

The main limitation of these general approaches, however, is that 
they assume that all sites are independent. This limitation was overcome 
in [12] for the particular case of competitive binding. Developing a 
model able to account for correlation between sites in general cases 
would be an interesting future perspective, but is well beyond the scope 
of this work. 
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