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Abstract: The persistence of long-term coronavirus-induced disease 2019 (COVID-19) sequelae
demands better insights into its natural history. Therefore, it is crucial to discover the biomarkers of
disease outcome to improve clinical practice. In this study, 160 COVID-19 patients were enrolled,
of whom 80 had a “non-severe” and 80 had a “severe” outcome. Sera were analyzed by proximity
extension assay (PEA) to assess 274 unique proteins associated with inflammation, cardiometabolic,
and neurologic diseases. The main clinical and hematochemical data associated with disease outcome
were grouped with serological data to form a dataset for the supervised machine learning techniques.
We identified nine proteins (i.e., CD200R1, MCP1, MCP3, IL6, LTBP2, MATN3, TRANCE, α2-MRAP,
and KIT) that contributed to the correct classification of COVID-19 disease severity when combined
with relative neutrophil and lymphocyte counts. By analyzing PEA, clinical and hematochemical
data with statistical methods that were able to handle many variables in the presence of a relatively
small sample size, we identified nine potential serum biomarkers of a “severe” outcome. Most of
these were confirmed by literature data. Importantly, we found three biomarkers associated with
central nervous system pathologies and protective factors, which were downregulated in the most
severe cases.

Keywords: proximity extension assay; inflammation; cardiometabolic; neurologic disease; COVID-19

1. Introduction

Since its first outbreak in Wuhan in 2019, the global pandemic of COVID-19, caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more
than 300 million people and caused more than 5.5 million deaths (https://covid19.who.int,
accessed on 15 January 2022) [1,2]. From a clinical standpoint, COVID-19 is a challenge due
to the heterogeneity of both individual susceptibilities to SARS-CoV-2 infection and disease
severity, which ranges from an asymptomatic form to a critical illness with high rates of
lethal complications [3–6].

Part of this heterogeneity could be attributed to the high mutation rates of SARS-CoV-2,
a single-stranded enveloped RNA virus. In analogy with other coronaviruses (CoV), with
which it shares 79% of sequence identity, the Spike (S) protein of SARS-CoV-2 is required
for cell infection via the Angiotensin Converting Enzyme (ACE)-2 receptor [7]. Crucial
mutational events, involving the coding sequence of the S protein, enable bat coronavirus to
infect human cells and possibly account for the zoonotic transfer [2,8]. Recent studies have
demonstrated the high complexity of the SARS-CoV-2 transcriptome owing to numerous
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recombination events, including the presence of different ORFs bearing fusions, deletions,
and/or frameshift mutations [9]. When these events also involve the coding region of
the Spike protein, novel, more infectious variants emerge that could escape the immune
system, as in the case of Omicron (B.1.1.529) [10].

Another component responsible for the heterogeneity of the clinical presentation could
be ascribed to host features. Aside from ethnicity and social determinants, age, sex, smoking
habits, and comorbidities, such as diabetes, obesity, cardiovascular and cerebrovascular
disease, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD),
and chronic liver disease and malignancy have been associated with COVID-19 poor
outcome [5,11]. Additionally, the genetic background of the individual has been associated
both with susceptibility and disease severity. Among the most important elements, we
should acknowledge genomic variants affecting the expression of factors critically involved
in: viral entrance (e.g., ACE2, Transmembrane Serine Protease 2-TMPRSS-, Cathepsin B and L,
the blood group antigens A and O), innate antiviral response (e.g., Oligoadenylate Synthetase-
OAS- and Interferon (IFN) alpha/beta Receptor 2-IFNAR2-), inflammation (e.g., Dipeptidyl
Dipeptidase 9-DPP9-, Tyrosine Kinase 2-TYK2-, Toll-like Receptor 7-TLR7-, and C-C Chemokine
Receptor Type 2-CCR2-), and immunity (e.g., Human Leukocyte Antigen E-HLA-E-, Killer Cell
Lectin-like Receptor C2-KLRC2-) [11–13]. Finally, the persistence of memory T cells cross-
reactive with other coronaviruses has been evoked as a potentially protective factor against
SARS-CoV-2 infection [6].

Critically ill patients are characterized by a hyperinflammatory state associated with
endothelitis, hypercoagulability, organ damage, and death [4]. Indeed, a dysregulated
immune response is associated with patient outcomes and, in extreme cases, can also
trigger multi inflammatory syndrome in children (MISC) [14]. Indeed, literature data
show that SARS-CoV-2 infection causes an increased secretion of Interleukin (IL)-1β, Inter-
feron (IFN)-γ, Interferon Gamma-Induced Protein 10 (IP-10), Monocyte Chemoattractant
Protein (MCP)-1, IL-4, and IL-10 [15], while disease severity has been associated with an
elevation of IL-2, IL-7, Granulocyte Colony-Stimulating Factor (GCSF), Macrophage In-
flammatory Protein-1 Alpha (MIP-1A), Tumor Necrosis Factor alpha (TNF-α), IL-10, IP-10,
and MCP-1 [15–17]. The cardiovascular system is also crucial in dictating the outcome
of COVID-19 patients, and cardiac damage markers, such as troponins and brain-type
natriuretic peptide (BNP), have been associated with increased mortality [7]. Last, several
neurological (e.g., anosmia and ageusia) and psychiatric symptoms have been described in
COVID-19 patients, most of which are independent from a direct affection of the central
nervous system (CNS) by the virus but are considered to be secondary to the immune
reaction [18,19]. CNS involvement is also relevant for the post-acute sequelae of SARS-
CoV-2 infection (PASC), a spectrum of symptoms experienced by COVID-19 patients that
persist after the resolution of the infection, which is characterized by the high prevalence of
neurologic symptoms [19,20]. However, novel studies investigating the evidence of CNS
involvement in COVID-19 patients are needed [21].

Identifying new biomarkers associated with disease severity is both crucial to help
understand the natural history of COVID-19 and to prospectively identify patients at high
risk of developing a critical illness in order to target the allocation of resources, the escalation
of care, and inclusion in experimental clinical trials to those who are in most need.

Analytically, there is the need to increase the number of biomolecules assessed per
volume of sample to maximize the information obtained and spare biological material [22].
Proximity extension assay (PEA) is a high-throughput technology developed for the high-
multiplex analysis of proteins, allowing a successful detection and quantification of several
biomarkers [23] by incubating a low amount of the biological sample. To date, some com-
prehensive studies identifying sera biomarkers correlated with COVID-19 disease severity
have been published [24–29], but only few of them [25] have employed machine learning
techniques to reach a holistic view that summarizes an extensive clinical characterization
(including demographic, comorbidity, clinical, and hematochemical data) of the patients
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with a large number of potential biomarkers in order to identify those that more effectively
classify patients with adverse prognosis.

Given these premises, we decided to compare the serum levels of 274 proteins associ-
ated with inflammation, cardiometabolic, and neurologic diseases employing PEA analysis
in a case series of 160 COVID-19 patients, dichotomized based on COVID-19 severity. Age,
comorbidities, and vaccination status significantly differed between the two groups of
patients. Analyses were carried out employing machine learning techniques and nine
proteins were identified as being able to classify, when combined with relative lymphocyte
and neutrophil counts, disease severity. Of note, neurology-associated protein biomarkers
were among the strongest predictors of COVID-19 severity.

2. Results
2.1. Patients’ Characteristics

Between February and September 2021, we enrolled 160 subjects infected by SARS-
CoV-2, including 80 patients who were either paucisymptomatic or affected by a mild to
moderate form of the disease (here referred to as “non-severe”) and 80 patients who were
either affected by a severe to critical COVID-19 at disease onset or who had moderate
disease at the onset that worsened and required admission to the ICU (here referred to as
“severe”). Demographic, risk factor, and comorbidity data of the enrolled population are
summarized in Table 1. Enrolled patients were mainly males, older than 65 years, on aver-
age overweight (median BMI 28.2), and had a median Charlson comorbidity index (CCI)
of 3. Importantly, having been conducting the enrollment at the beginning of the vaccine
campaign, 85% of patients had still not been vaccinated. Although the genotypization of
the SARS-CoV-2 strain was conducted only in a minority of patients, available data indicate
that they were affected mostly by either the alpha (B.1.1.7) or delta (B.1.167.2) variants
of concern (VOC), in consistence with the survey conducted by the Istituto Superiore di
Sanità (ISS, Italy) and the data of strain prevalence obtained at our institution during the
same timeframe [30,31]. The “severe” patients were characterized by significantly older
age, higher CCI, and lower vaccination rate in comparison to the “non-severe” ones.

Table 1. Summary of baseline characteristics of enrolled patients. Baseline demographic, clinical
features (comorbidities), and vaccination status of the enrolled patients (n = 160). Patients were
stratified according to the severity of the disease into a “non-severe” group and a “severe” one. Data
are presented as either percentage or median and interquartile range (IQR). Results of the comparison
between “non-severe” vs. “severe” patients are shown in the right column (p-value). Significant
results are shown in bold.

Total
(N = 160)

Non-Severe
(N = 80)

Severe
(N = 80) p-Value

Gender, n (%)
0.251Female 59 (36.9) 33 (41.2) 26 (32.5)

Male 101 (63.1) 47 (58.8) 54 (67.5)

Age, years, median (IQR) 67 (56–76) 61 (50–74) 70 (63–77) 0.001
BMI, median (IQR) 28.2 (24.9–31.2) 27.8 (24.9–31.1) 28.5 (25.5–31.5) 0.541

Smoking habit, n/N (%)
0.411Non-smoker 79/107 (73.8) 41/53 (77.4) 38/54 (70.4)

Smoker 28/107 (26.2) 12/53 (22.6) 16/54 (29.6)

Charlson comorbidity index,
median (IQR) 3 (1–5) 2 (1–5) 4 (2–5.5) 0.007

Comorbidities, n/N (%)
Hypertension 79/155 (51.0) 39/76 (51.3) 40/79 (50.6) 0.932

Obesity 64/134 (47.8) 30/66 (45.4) 34/68 (50.0) 0.598
Diabetes 31/155 (20.0) 13/76 (17.1) 18/79 (22.8) 0.377

COPD 16/156 (10.3) 5/77 (6.5) 11/79 (13.9) 0.126
Cardiovascular disease 57/156 (36.5) 27/77 (35.1) 30/79 (38.0) 0.706

Liver disease 5/155 (3.2) 1/76 (1.3) 4/79 (5.1) 0.187
Renal impairment 13/156 (8.3) 6/77 (7.8) 7/79 (8.9) 0.809

Immunocompromised 14/147 (9.5) 6/67 (9.0) 8/80 (10.0) 0.830

COVID-19 vaccination, n (%) 24 (15.0) 20 (25.0) 4 (5.0) <0.001
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The clinical outcome of the enrolled patients is summarized in Table 2. As expected,
the clinical presentation of the whole case study was heterogeneous, including paucisymp-
tomatic and critical patients, requiring invasive mechanical ventilation (IMV) in the In-
tensive Care Unit (ICU). The median duration of in-hospital stay was 9 days, and the
mean rate of in-hospital death was 56%. The duration of in-hospital stay and the necessity
for Continuous Positive Airway Pressure (CPAP) and IMV were significantly higher in
the “severe” group of patients. Lastly, while no patient in the “non-severe” group was
either admitted to the ICU or died, 51% and 56% of those in the “severe” group met these
unfavorable outcomes.

Table 2. Summary of clinical characteristics of enrolled patients. Stratification of the enrolled patients
according to the disease severity, necessity for invasive and non-invasive ventilation, admission to
the intensive care unit, the duration of hospitalization, death rate, and the duration of infection. Data
are presented as either percentage or median and interquartile range. Results of the comparison
between non-severe vs. severe patients are shown in the right column (p-value). Significant results
are shown in bold.

Total
(N = 160)

Non-Severe
(N = 80)

Severe
(N = 80) p-Value

Acute COVID-19 severity, n (%)

<0.001

Paucisymptomatic 16 (10.0) 16 (20.0) 0 (0.0)
Mild 55 (34.4) 55 (68.7) 0 (0.0)

Moderate 14 (8.7) 9 (11.3) 5 (6.3)
Severe 71 (44.4) 0 (0.0) 71 (88.7)
Critical 4 (2.5) 0 (0.0) 4 (5.0)

CPAP, n (%) 69 (43.1) 1 (1.2) 68 (85.0) <0.001

Invasive mechanical ventilation
(IMV), n (%) 45 (28.1) 0 (0.0) 45 (56.2) <0.001

Length of in-hospital stay, days,
median (IQR) 9 (5–15.5) 5.5 (4–9) 14 (9–19) <0.001

ICU, n (%) 51 (31.9) 0 (0.0) 51 (63.7) <0.001

In-hospital death, n (%) 56 (35.0) 0 (0.0) 56 (70.0) <0.001

Duration of nasal swab
positivity days, median (IQR) 19 (14–24) 17 (12–20) 21.5 (17.5–29.5) 0.008

These data indicate that the two subsets of “severe” and “non-severe” patients
have distinct, non-overlapping demographic and clinical baseline features with opposing
clinical outcomes.

2.2. Clinical and Hematochemical Variables Associated with Patient Outcome

Next, we analyzed 32 different hematochemical variables collected at the time of
enrollment (Supplementary Table S2) describing the hematologic, coagulation cascade,
liver, kidney, and cardiac compensation of the enrolled patients together with 26 additional
demographic and anamnestic variables (Supplementary Table S2). The identification,
among the 58 variables, of the strongest classifiers of COVID-19 severity was assessed by
employing an elastic net logistic regression approach with cross-validation. As shown in
Figure 1, vaccination against SARS-CoV-2 and female sex had a protective effect, while
patient age was weakly associated with a worse outcome.

Hematological abnormalities associated with unfavorable outcomes mostly involved
the white blood cell (WBC) lineage. Specifically, while the WBC count was weakly associ-
ated with a worse outcome, relative neutrophilia, relative monocytopenia, and a relative
reduction of basophils and eosinophils were more strongly associated with a worse clinical
outcome. The defects also involved the red blood cell lineage, where increased mean cor-
puscular volume and mean cell hemoglobin were associated with disease severity. These
data are consistent with what has already been reported in the literature [32,33]. Concerning
the coagulation cascade, we observed that prothrombin time (PT) and activated partial
thromboplastin time (aPTT) increases were associated with disease severity. Furthermore,
kidney dysfunction (increased blood urea nitrogen—BUN) and electrolyte imbalance were
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both associated with adverse outcomes in our cohort. Last, we found, in line with liter-
ature data, that severe patients are characterized by increased levels of the markers of
cell damage (e.g., lactate dehydrogenase—LDH) [34], vascular permeability, stabilization
of microcirculation (e.g., mid regional pro-adrenomedullin—MR-ProADM) [35,36], and
inflammatory markers (e.g., C reactive protein—CRP) [37]. The model built by employing
the above-described parameters showed an excellent ability to classify the patients of the
independent dataset, with an area under the curve (AUC) of 0.868 (95% CI 0.785–0.952).
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2.3. Identification of Serum Proteins Associated with Clinical Outcome

To add new pieces of information concerning the role of the immune, cardiovascular,
and nervous systems in COVID-19 pathophysiology, we analyzed patient sera for the
expression of 274 different proteins.

First, cardiometabolic-related proteins were analyzed to identify classifiers of disease
severity using elastic net logistic regression with cross-validation. Results are shown in
Figure 2 and literature data confirming our findings are quoted in Table 3. The complete
model containing the 13 markers showed, by ROC analysis, an excellent ability to correctly
classify the remaining 80 patients of the dataset, with an AUC of 0.931 (95% CI 0.873–0.989).

Next, we analyzed inflammatory biomarkers, employing the same approach. Results
are shown in Figure 3 and literature data confirming our findings are quoted in Table 3. The
model containing the eight markers was able to correctly classify the remaining 80 patients
with an AUC of 0.906 (95% CI 0.832–0.980).

The last analyzed panel included neurology-related protein biomarkers. Results are
shown in Figure 4 and literature data confirming our findings are quoted in Table 3. Again,
the complete model had an excellent ability to classify severe cases with an AUC of 0.918
(95% CI 0.853–0.948).
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Figure 2. Cardiometabolic biomarkers associated with COVID-19 severity. (a) Elastic net logistic
regression with cardiometabolic variables. Coefficients of each variable are shown in the left panel as
horizontal bars. The right panel shows that the receiver operating characteristic (ROC) and area under
the curve (AUC), with its 95% confidence interval (CI) of the model, are 0.931 (95% CI 0.873–0.989).
(b) Violin plots showing the distribution of the normalized protein expression (NPX) values of each
variable included in the model in “non-severe” (blue) vs. “severe” (red) patients; p values for each
comparison are shown at the bottom of each plot.
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Table 3. Summary of elastic net logistic regression analyses of biomarkers associated with
disease severity.

Short Name Biomarker
Category

Association with
Outcome

Literature
Data

Tissue inhibitor of metalloprotease 1 TIMP-1 Cardio Direct [38]

Latent-Transforming Growth Factor
Beta-Binding Protein 2 LTBP2 Cardio Direct [39]

Insulin-like Growth Factor Binding Protein 3 IGFBP3 Cardio Inverse [40]

Fetuin B FETUB Cardio Inverse [41]

Tenascin-C TNC Cardio Direct [42]

KIT proto-oncogene receptor tyrosine kinase KIT Cardio Inverse

Complement C3d Receptor 2 CR2 Cardio Inverse

Complement component 2 C2 Cardio Direct [43]

Apolipoprotein M APOM Cardio Inverse [44]

Immunoglobulin Lambda Constant 2 IGLC2 Cardio Direct [45]

Nidogen-1 NID1 Cardio Direct [46]

Endoglin ENG Cardio Inverse [47]

Growth Arrest Specific 6 GAS6 Cardio Direct [48]

Carbonic Anydrase CA3 Cardio Direct [49]

Monocyte Chemoattractant Protein 3 MCP3 Inflammatory Direct [50]

Interleukin 6 IL6 Inflammatory Direct [16,51]

Interleukin 12B IL12B Inflammatory Inverse [52]

Osteoprotegerin OPG Inflammatory Direct [53,54]

C-X3-C Motif Chemokine Ligand 1 CX3CL1 Inflammatory Direct [54]

Tumor necrosis factor ligand superfamily
member 11

TNFSF11 or TRANCE,
RANKL, OPGL Inflammatory Inverse [54]

T-cell differentiation antigen CD6 CD6 Inflammatory Inverse [54]

Leukemia Inhibitory Factor LIF Inflammatory Direct [55]

Tumor Necrosis Factor Receptor Superfamily
member 12A TNFRSF12A Neurology Direct [56]

Matrilin 3 MATN3 Neurology Direct [54]

CD200 Receptor 1 CD200R1 Neurology Inverse [54,57]

Tenascin R TNR Neurology Inverse

Ezrin EZR Neurology Direct [54]

Interleukin 12 IL12 Neurology Inverse [52]

Neurotrophic Receptor Tyrosine Kinase 3 NTRK3 Neurology Inverse [54]

Neuronal Cell Adhesion Molecule NrCAM Neurology Direct [58]

Netrin receptor UNC5C Neurology Direct [54] †

Cathepsin S CTSS Neurology Direct [54]

Dorsal Inhibitory Axon Guidance Protein DRAXIN Neurology Direct [54]

Contactin 5 CNTN5 Neurology Inverse [54]

Granzyme A GZMA Neurology Inverse * [54]

Cadherin 3 CDH3 Neurology Direct [54] †

Neurotrophic Receptor Tyrosine Kinase 2 NTRK2 Neurology Inverse [54]

Cardiometabolic, inflammatory, and neurology disease biomarkers associated with disease severity, according to
the elastic net logistic regression analyses. Columns indicate, for each biomarker, its full name, its short name,
whether a direct or inverse relationship between the biomarker level and disease severity was identified, and
literature data supporting our findings. Biomarkers highlighted in grey have not yet been associated with severe
COVID-19 by other authors. * an opposite, yet significant association was described in the literature. † literature
results do not reach significance.
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are shown at the bottom of each plot.
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2.4. Correlation Discovery Analysis

Last, we aimed to identify the most relevant parameters, able to stratify COVID-19
severity by combining the clinical, demographic, anamnestic, and hematochemical data of
each patient with the biomarkers of the three different panels.
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For this purpose, we first employed the elastic net logistic regression approach with
the cross-validation described previously. Results are shown in Figure 5a and Table 4.
The complete model was characterized by an 89.2% sensitivity (95% CI 74.6–97), an 88.4%
specificity (95% CI 74.9–96.1), an 86.8% positive predictive value (95% CI 71.9–95.6), a 90.5%
negative predictive value (95% CI 77.4–97.3), and 0.776 Youden’s J statistic.
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interval (CI) are 0.910 (95% CI 0.837–0.984). (b) Results of the mutual information analysis. On the
x-axis, the dataset parameters are provided ranked based on their MI value related to the target
variable. (c) Ranking of the dataset parameters based on the GINI index values obtained by the
adopted random forest mode. (d) The ranking of the features obtained through the RFE algorithm.
(e) The graph was obtained through the SHAP analysis approach. On each row of the graph, the
value of the corresponding feature for each instance of the dataset is represented by a dot. The
color of the dot indicates how large the value of the feature is in that instance (blue dot: small
value, red dot: large value). Furthermore, the position of the dot with respect to the central vertical
line indicates whether that feature led the model to classify the patient as a severe case (dot on
the right side of the line) or not (dot on the left side). As a clarifying example, we can see that for
the MCP3 parameter higher values are correlated with a severe condition for the patient, as the
red dots are mostly on the right side of the graph, while the instances in which the MCP3 value is
low are often correlated with a non-severe condition for the patient. In (b–e), the parameters are
color-coded to represent their category (red: hematochemical; yellow: inflammatory biomarkers;
orange: cardiometabolic biomarkers; blue: neurological biomarkers; green: clinical data). (f) Venn
diagram of the variables shared between the five models. The eight variables shared by all the models
are Neutrophil count, MCP3, IL6, TRANCE, MCP1, CD200R1, MATN3, and LTBP2; KIT and a-MRAP
are shared by four models.

Table 4. Summary of biomarkers emerging from the correlation discovery analyses.

Short Name Model Literature Data

C-X3-C Motif Chemokine Ligand 1 CX3CL1 ENLR [54]

CD200 Receptor 1 CD200R1 ENLR, MI, GINI, SHAP, RFE [54,57]

Complement component 2 C2 ENLR [43]

CUB domain-containing protein 1 CDCP1 SHAP [54]

Dorsal Inhibitory Axon Guidance Protein DRAXIN MI [54]

Ezrin EZR MI, GINI, RFE [54]

Fetuin B FETUB ENLR [41]

Glial Cell Derived Neurotrophic Factor
Receptor α-3 GDNFR-α 3 GINI [54]

Growth/Differentiation factor 8 GDF8 MI [54]

Hepatocyte Growth Factor HGF MI, GINI [26,55]

Insulin-like Growth Factor Binding Protein 3 IGFBP3 ENLR [40]

Intercellular Adhesion Molecule 1 ICAM1 MI [52] †

Interleukin 12 IL12 ENLR [52]

Interleukin 12B IL12B ENLR [52]

Interleukin 6 IL6 ENLR, MI, GINI, SHAP, RFE [16,51]

Interleukin 8 IL8 GINI, SHAP [17,39,55]

KIT proto-oncogene receptor tyrosine kinase KIT MI, GINI, SHAP, RFE

Kynureninase KYNU MI [54]

Latent-Transforming Growth Factor
Beta-Binding Protein 2 LTBP2 ENLR. MI, GINI, SHAP, RFE [39,58]

Leukemia Inhibitory Factor LIF ENLR, GINI [55]

Matrilin 3 MATN3 ENLR, MI, GINI, SHAP, RFE [54]

Monocyte Chemoattractant Protein 1 MCP1 ENLR, MI, GINI, SHAP, RFE [17,24]

Monocyte Chemoattractant Protein 3 MCP3 ENLR, MI, GINI, SHAP, RFE [50]

Netrin receptor UNC5C ENLR [54] †

Neuronal Cell Adhesion Molecule NrCAM ENLR [58]

Neurotrophic Receptor Tyrosine Kinase 2 NTRK2 SHAP [54]

Neurotrophic Receptor Tyrosine Kinase 3 NTRK3 ENLR [54]

Osteoprotegerin OPG ENLR [54]
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Table 4. Cont.

Short Name Model Literature Data

Stem Cell Factor SCF GINI [17]

Tenascin R TNR ENLR

Tissue inhibitor of metalloprotease 1 TIMP-1 ENLR, MI, GINI [38]

Tumor necrosis factor ligand superfamily
member 11

TNFSF11 or TRANCE, RANKL,
OPGL ENLR, MI, GINI, SHAP, RFE [54]

Tumor Necrosis Factor Receptor Superfamily
member 12A TNFRSF12A ENLR, RFE [56]

α2-microglobulin receptor-associated protein α2-MRAP MI, GINI, SHAP, RFE [54]

Correlation discovery analyses results. Table summarizing biomarkers associated with disease severity in the
analyses conducted on the complete dataset, including demographic, clinical, anamnestic, hematochemical, and
immunometric parameters. The columns show in which of the five models the biomarker was associated with the
severity of the disease and which literature data confirm our results. Biomarkers highlighted in grey have not
yet been associated with severe COVID-19 by other authors. ENLR: elastic net logistic regression; MI: mutual
information analysis; GINI: GINI index analysis; SHAP: Shapley additive explanations analysis; RFE: recursive
feature extraction analysis. † the literature results do not reach significance.

As machine and deep learning techniques are becoming more and more prominent in
the medical field [59] with notable examples, especially in automated diagnosis [60] and
biomedical images anomaly detection [61], we provided a complementary approach, which
relies on four different feature correlation algorithms aiming to highlight the correlation be-
tween each of the parameters present in the complete dataset, including the 26 demographic,
clinical, and anamnestic parameters; the 32 hematochemical and immunometric param-
eters together with the plasma proteomics data of 274 different proteins; and the target
variable indicating the severity of the each patient’s conditions. Both model-independent
and model-dependent approaches were employed.

Results of the model-independent mutual information (MI) analysis [62] are reported
in Figure 5b and Table 4. Specifically, MI identified four hematochemical parameters (i.e.,
relative neutrophil and lymphocyte counts, LDH, and procalcitonin), the clinical parameter
PaO2/FiO2, seven neurology associated markers, five inflammatory markers, and four
cardiometabolic factors associated with outcome.

The results obtained by three model-dependent approaches are reported in Figure 5c–e
and Table 4. Specifically, GINI index analysis (Figure 5c) identified two hematochemical
parameters (i.e., relative neutrophil and lymphocyte counts) together with eight inflam-
matory markers, five neurology associated markers, and three cardiometabolic factors
associated with outcome. Recursive feature extraction analysis (RFE, Figure 5d) identified
four hematochemical parameters (i.e., relative neutrophil and lymphocyte counts, LDH, and
procalcitonin), combined with five neurology-associated markers, and two cardiometabolic
factors associated with outcome. Last, according to the Shapley additive explanations
(SHAP, Figure 5e) analysis, two hematochemical parameters (i.e., relative neutrophil and
lymphocyte counts), combined with six inflammatory markers, four neurology-associated
markers, and two cardiometabolic factors were correlated with the outcome. Intriguingly,
no clinical parameter emerged from model-dependent approaches.

Finally, we assessed which variables were associated with disease severity that
were shared in all the above-mentioned approaches (Figure 5f and Table 4). The rela-
tive Neutrophil count, together with the inflammatory markers MCP3 [50], IL6 [16,51],
TRANCE [63], and MCP1 [24]; the neurology-associated markers CD200R1 [54] and
MATN3 [54]; and the cardiometabolic marker LTBP2 [39] emerged in every analysis con-
ducted. Lymphocyte count, KIT, and α2-MRAP [54] were shared by the four different
feature correlation algorithms.

2.5. Functional Enrichment Analysis of Proteins Associated with the Disease Outcome

To associate a functional role to the proteins discriminating the “severe” patients from
the “non-severe” ones, potential biomarkers emerging from the cardiometabolic, inflamma-
tion, and neurology panels were subjected to the ClueGO functional enrichment analysis.
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The elastic net logistic regression model built by employing the proteins profiled with the
three panels together with clinical, demographic, and hematochemical data (Figure 5a)
included, except for MCP1, all the predictors emerging from the analyses conducted by
separately employing every single panel. Therefore, we decided to group the proteins
emerging from the first three models (Figures 2–4) and to conduct the functional analysis,
distinguishing those positively associated with disease severity from those negatively asso-
ciated with a “severe” COVID-19. As shown in Figure 6a, most of the proteins positively
associated with disease severity pertained to the functional terms “expression of STAT-3 up-
regulated extracellular proteins”, followed by “Post-translational protein phosphorylation”,
“FAM20C phosphorylates FAM20C substrates”, “Regulation of bone resorptions”, “Netrin-1
signaling”, “Regulation of neuroinflammatory response”, and “Eosinophil chemotaxis”.
Employing the same dataset to query the Molecular Signature Database (MSigDB) [64], we
observed that the upregulated genes were associated with the hallmarks: “inflammatory
response”, “allograft rejection”, and “epithelial to mesenchymal transition”. Consistently,
several mesenchymal cell types emerged.
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Figure 6. Functional enrichment analysis of proteins associated with a “severe” outcome. Pie charts
representing the most enriched functional terms (padj ≤ 0.05) related to proteins whose coefficients
were positively (a) and negatively (b) associated with the “severe” class. The Cytoscape [65] app
ClueGO [66] was used to query the following functional databases: GO (BiologicalProcess and
ImmuneSystemProcess), KEGG, REACTOME, CLINVAR, WikiPathways, and CORUM-3.0.
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Conversely, proteins negatively associated with disease severity (Figure 6b) are en-
riched in the functional terms: “IL12A-IL12B translocate from ER lumen to Golgi”, “Devel-
opment and heterogeneity of the ILC family”, “Positive regulation of receptor signaling
via JAK-STAT”, “Neurotrophin receptor activity”, and “Positive regulation of vascular
associated smooth muscle cell differentiation”. The MSigDB analysis of the terms inversely
associated with severity identified several lymphocyte-related terms.

3. Discussion

Here we present the results of an extensive analysis of the serum proteome of 160 adult
patients affected by the SARS-CoV-2 infection during a phase of the COVID-19 pandemic
(i.e., February–September 2021) dominated by the VOC Alpha and Delta [30,31]. In this
study we extensively used PEA, an emerging technology that can simultaneously measure,
with high sensitivity and specificity, 92 proteins across 96 samples, using only 1 µL of
serum [67]. Given the involvement of both inflammation [3] and cardiac injury (triggered
both by direct [68] and indirect mechanisms [69]) in the pathophysiology of COVID-19, two
commercial panels containing 92 “inflammation” and “cardiometabolic” biomarkers were
employed. Since a large number of neurological manifestations (e.g., headache, confusion,
neuroinflammatory, and cerebrovascular disease) have been described to occur in the acute
and chronic phase of COVID-19 [20,70], we additionally employed a commercial panel
containing 92 “neurology” biomarkers.

Furthermore, we employed machine learning (ML) techniques to identify the strongest
predictors of disease severity, by aggregating 26 clinical, demographic, and anamnestic
parameters (including the major risk factors for severe COVID-19 and the vaccination status
of the enrolled patients) and 32 hematochemical and immunometric parameters (compris-
ing markers of inflammation—CRP [71], myocardial injury—cardiac Troponin [72], severe
bacterial infection—procalcitonin [72], and emerging markers of sepsis—MR-proADM [72],
which have been associated with COVID-19 outcome) together with the plasma proteomics
data of 274 different proteins. Although several works aiming at identifying the biomarkers
of severe COVID-19 have been published [24–27,29,45], some of which have also taken
advantage of PEA technology, we believe that our work has two major strengths: (1) this is
one of the largest cohorts of adult patients profiled so far, after [25,27,29], and (2) ML ap-
proaches were employed to explore which of the clinical, hematochemical, and biomarker
parameters characterizing patients at admission are able to stratify outcomes.

To analyze our database, we first employed an elastic net logistic approach with cross-
validation, a method that performs well even in the case of highly correlated predictors and
in the presence of many variables over a smaller sample size. We additionally employed
four different ML approaches, both model-independent and model-dependent. The main
feature of model agnostic approaches is that they do not rely on a ML model to identify
the correlation between the dataset parameters, but they work only on the data itself.
The only model-independent approach we selected was the one based on the correlation
identification through mutual information (MI) analysis [62]. Concerning model-dependent
approaches, they rely on a ML model to infer the correlation between each parameter
and the target variable. Here, we specifically selected RFE analysis, feature selection
through GINI Index, and SHAP analysis. Each of these provides a higher degree of
descriptiveness, which allowed us to gain a deeper understanding of the highlighted
correlations. Since these approaches rely on a ML model, the quality of the parameter
correlation predictions highly depends on the performance of the latter for the task at hand,
in this case, the classification of patients based on the severity of their conditions. The
model we selected for our analysis is a random forest [73], consisting of 200 decision trees,
while the metrics we adopted to assess its performance during the classification task are, as
for the previously described statistical approaches, the ROC–AUC calculated by employing
a 10-fold-cross-validation process on the dataset. The obtained result is a ROC–AUC of
0.942 (95% CI 0.935–0.950), which allowed us to proceed with further correlation analysis
with confidence.
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To identify the variables most strongly associated with COVID-19 severity, we fi-
nally compared the results of the five different approaches and observed that the relative
neutrophil and lymphocyte count, together with the inflammatory markers MCP3 [50],
IL6 [16], TRANCE [63], and MCP1 [24]; the neurology-associated markers CD200R1 [54],
α2-MRAP [54], and MATN3 [54]; and the cardiometabolic markers KIT and LTBP2 [39]
emerged in at least four of the analyses conducted.

From a pathophysiological standpoint, the dysfunction of both the innate and adaptive
immune responses characterize patients with severe COVID-19 [74,75]. Although increased
neutrophils and neutrophil-to-lymphocyte ratio have been described in cases of severe
COVID-19 [38,76], the active role of neutrophils in COVID-19 pathophysiology has been
debated [77]. However, some pieces of evidence support their importance; SARS-CoV-2
can directly induce the release of neutrophil extracellular traps (NETs) from donor-derived
neutrophils [78]. These web-like chromatin structures have a role in viral clearance, but
excessive NET levels exacerbate inflammation in acute respiratory distress syndrome and
have been associated with COVID-19 complications, ranging from thrombosis to CNS
involvement [77]. Granulocytes and monocytes activated by a continuous and weak sig-
nal (e.g., cytokines) have an immature phenotype and produce immunosuppressive and
anti-inflammatory factors [79]. Indeed, the presence of immature neutrophils with re-
duced functional properties is associated with COVID-19 severity [38,76]. Consistently,
most of the patients with severe outcome had microbial superinfections [76], a finding
consistent with the recurrence of procalcitonin variable in most of the ML models in our
dataset. The profound alterations of the hematopoietic stem cell maturation are observed
in COVID-19 patients (i.e., the expansion of the “granulocyte-monocyte progenitor” and
the “erythroid progenitor” cell pools, at the expense of the lymphoid cell pool) [80]. In
line with this, the emergence of monocytes expressing low levels of HLA-DR and anti-
inflammatory molecules, together with neutrophils expressing the immune checkpoint
protein PD-L1 [81] coupled with the exhaustion and anergy of T cells, are all hallmarks
of severe COVID-19 [82]. Consistently, the relative Lymphocyte count was identified to
be associated with disease severity by all the feature correlation algorithms we employed.
Moreover, elastic net logistic regression analysis showed an inverse relationship between
CR2 plasma levels and disease severity. CR2 (also known as CD21) is present on B lym-
phocytes, where it is required for their activation. CD21 shedding follows B lymphocyte
activation [83], thus a soluble form of CD21 can be found in plasma, reflecting the activity
of B-cells [84]. Our results therefore suggest that COVID-19 severity is higher in those
patients that show a lower B-cell response. To the best of our knowledge, this association
has not been described in the literature yet.

Concerning inflammatory biomarkers associated with disease severity, a hyperinflam-
matory response with high levels of interferons, cytokines, and chemokines characterizes
patients with bad prognosis [15,85]. In line with this, in our cohort, IL6, MCP1, and MCP3
emerged among the strongest independent predictors of disease severity. More complex is
the involvement of TRANCE (alias RANKL) in modulating COVID-19 severity. Indeed,
this cytokine and its soluble decoy receptor OPG may play a relevant role in the context
of acquired immunity [86]. Although these are the main regulators of bone metabolism,
TRANCE also enhances the immune response by promoting dendritic cell viability and
function [86]. Indeed, the stimulation of dendritic cells with TRANCE triggers an anti-viral
CD8+ T cell cytotoxic response [87]. Therefore, it is not surprising that we and other authors
found TRANCE levels to be inversely associated with disease severity [56].

One of the most innovative findings of our work is that three biomarkers that are also
altered in neurological diseases (CD200R1, α2-MRAP, and MATN3) are among the strongest
predictors of a negative outcome in the complete model. This finding is supported by the
identification, through the functional enrichment analysis of proteins associated with the
disease outcome and with “Regulation of neuroinflammatory response” and “neurotrophin
receptor activity” terms. Intriguingly, several neurological and psychiatric symptoms have
been described in COVID-19 patients, most of which are independent of a direct affection
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of the central nervous system (CNS) by the virus but are considered to be secondary to the
immune reaction [18]. Consistently, we observed an inverse relationship between CD200R1
serum levels and COVID-19 severity. CD200R1 is the receptor for CD200 and has been
involved in the inhibition of neuroinflammatory pathways in aging, stroke, and multiple
sclerosis [88]. CD200R is also expressed by cells of innate immunity (e.g., monocytes and
neutrophils) and regulates their function and maturation [89]. Importantly, the expression
of CD200R1 on infiltrating lymphocytes dictates the survival of mice exposed to brain
injury by regulating the post-stroke immune suppression and vulnerability of animals to
superinfections [90]. Interestingly, the direct injection of the S1 subunit of the SARS-CoV-2
Spike protein in the brain of mice induces neuroinflammation and, after an initial increase,
reduces the levels of Cd200r1 under the level of control animals [19]. Concerning the
other neurological markers positively associated with a negative outcome, α2-MRAP (also
known as LDL receptor-related protein associated protein -1 or LRPAP1) is involved in
the trafficking of LDL receptor family members. Specifically, it regulates the amount of
LRP that is expressed in the liver and the brain. LRP binds ApoE and α2-macroglobulin,
a protein involved in the clearance of β-amyloid (Aβ). Consistently, LRP-1 is involved in
the export of Aβ from the brain [91], while LRPAP1 gene polymorphisms are associated
with late-onset Alzheimer’s disease [92]. Importantly, viral infections can drive Aβ for-
mation or deposition, providing a possible link between COVID-19, neuroinflammation,
and neurodegeneration [93]. Although recent literature data confirms the association of
MATN3 with COVID-19 severity [54], its pathophysiological role is not clear. An additional
neurology associated marker that emerged only from the elastic net logistic regression
analysis and has not been reported in the literature yet is Tenascin R (TNR). This is a
member of the tenascin family of extracellular proteins that is specifically expressed in
the CNS. Although another proinflammatory member of this family (i.e., Tenascin C) has
been identified in the exosomes of COVID-19 patients [42], no data on Tenascin R could be
found in COVID-19-related literature. TNR is part of the highly specialized perineuronal
networks of the extracellular matrix, which repel adjacent dendrites and axons to maintain
the established synaptic networks [94]. Reduced TNR levels have been described in the
cerebro spinal fluid of patients affected by amyotrophic lateral sclerosis (ALS), reflecting
the loss of immunoreactivity in the spinal cord of ALS patients. This finding suggests that
the control of TNR levels is important to prevent CNS abnormalities [95]. These data are
consistent with ours, since patients affected by severe COVID-19 have significantly reduced
TNR levels.

Concerning the cardiometabolic biomarker panel, while LTBP2 was higher in patients
with a “severe” outcome, KIT showed the opposite behavior. LTBP2 expression increases in
response to myocardial stressors (e.g., pressure overload [96] or isoproterenol [97]) and has
been associated with both cardiac [96] and pulmonary fibrosis [39]. Consistently, in patients
with COVID-19, LTBP2 levels are related to pulmonary fibrosis [39] and are associated
with disease severity [98]. In adulthood, the KIT receptor and its ligand SCF are mainly
expressed by stem cells and mastocytes and regulate their function [99]. Intriguingly, while
hematopoietic stem cells express low levels of ACE2, this receptor, which is involved in
SARS-CoV-2 virus entry, is upregulated during erythroid differentiation and parallels KIT
expression. Consistently, erythroid progenitors are susceptible to coronavirus infection
and possibly account for the increased circulation of nucleated red blood cells following
SARS-CoV-2 infection [33]. Regarding mastocytes, lung biopsies have shown an abundant
infiltrate of KIT+ cells in COVID-19 patients and SARS-CoV-2-infected African green
monkeys, suggesting the early recruitment of mastocyte progenitors to the alveolar septa.
This morphologic finding was also coupled with interstitial and alveolar edema, suggesting
a relevant pathophysiological role for this cell type [100,101]. How these alterations relate
to our findings could not be predicted at this time. However, to the best of our knowledge,
the serum levels of KIT have not yet been associated with COVID-19 patient outcomes.

By combining a novel high-throughput proteomics approach with ML techniques
in a patient population deeply characterized from the clinical standpoint, we identified
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potential serum biomarkers of a “severe” outcome of COVID-19-affected patients. Our
study was limited by its retrospective nature and the limited number of enrolled patients.
Although we did not have a validation cohort and we could not find any open access
datasets containing the same clinical and hematochemical information we employed, we
must underline that most of the biomarkers that emerged from our analysis are confirmed
by many, unrelated authors in the literature, further supporting the solidity of our approach.
However, to our knowledge, this is the one of the largest studies that used extensive PEA
analysis applied to such a large cohort (n = 160) of COVID-19-affected patients. One of the
major novelties of this work is the demonstration that the markers of neurological disease
are among the strongest predictors of COVID-19 severity, when combined with relevant
laboratory data, such as lymphocyte and neutrophil counts. Our findings are hypothesis-
generating and stimulate studies aimed at understanding the pathophysiological role of
neuroinflammation in the longer-term outcome of COVID-19 patients.

4. Materials and Methods
4.1. Examined Cohort
4.1.1. Patient Enrollment and Ethics

The study, authorized by the Regional Ethic Committee (2020-Os-033; Em. Sost. N. 1
versione 1 data 16 August 2021), was conducted according to the declaration of Helsinki
and signed informed consent was collected from enrolled patients. Inclusion criteria were
age > 18 years and nasopharyngeal swab positivity for the SARS-CoV-2 genome.

4.1.2. Study Design

This work aims at identifying serum proteins discriminating “non-severe” from “se-
vere” COVID-19 patients, in analogy with recently published works [27]. We classified as
“severe”, on top of severe and critical patients according to the WHO classification [102],
also those patients presenting a moderate disease at onset that worsened over time, requir-
ing admission to the intensive care unit at a later stage.

4.1.3. Clinical Data

Relevant patient data were collected and extracted by a team of physicians (E.S.,
C.T.) from the hospital electronic health records (INSIEL, Trieste, Italy), pseudonymized,
and recorded on a cloud-based clinical data management platform (Castor, The Nether-
lands and the USA). Immunocompromised patients were defined as patients with per-
manent dysfunction of the immune response resulting from immunosuppressive medica-
tion or comorbidities, such as AIDS, or malignancies that cause neutropenia (neutrophil
counts ≤ 500 cells/mm3). Patients with “renal impairment” were defined as having kidney
damage or glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 for 3 months or more,
irrespective of the cause.

4.2. Samples
4.2.1. Blood Sampling and Serum Storage

Blood samples, drawn within 1 day (median value) of hospital admission, were
collected into a 5 mL serum tube with a clot activator and gel separator (Vacuette, Greiner
Bio-One, Nürtingen, Germany), immediately sent to the core laboratory to be processed,
and kept at −80 ◦C until used.

4.2.2. Proximity Extension Assay (PEA)

Sera were analyzed for 92 inflammation-related protein biomarkers (Olink Target
96 Inflammation), 92 cardiometabolic-related (Olink Target 96 Cardiometabolic), and
92 neurology-related protein biomarkers (Olink Target 96 Neurology) employing the prox-
imity extension assay (PEA) technique of Olink® Proteomics (Uppsala, Sweden) [23]. The
quality control of the analyzed samples, data normalization, and the quantification of
protein levels was performed with the Olink Analyze R package [103], using NPX data
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files generated from Olink NPX Manager as input. Levels of proteins were described as
normalized protein expression (NPX), consisting of data normalization to the extension
control (known standard), log2-transformation, and level adjustment using the plate con-
trol (plasma sample). We performed exploratory analysis using the ‘olink_qc_plot’ and
‘olink_pca_plot’ functions, generating QC and PCA plots that allowed us to easily identify
missing and/or problematic samples.

4.2.3. Statistical Analyses

Descriptive statistics for categorical variables are presented as number (percent) and
for continuous variables as mean ± standard deviation (SD) or median (interquartile range
(IQR)). Normality was assessed using Shapiro–Wilk test. Comparisons between categorical
variables were performed using the Chi-square or Fisher’s exact test, as appropriate. Com-
parisons between continuous variables were performed using the t-test or Mann–Whitney
U-test, as appropriate.

An elastic net logistic regression algorithm was used to build different models to
predict a “non-severe” or “severe” outcome [104,105]. The elastic net logistic regression is a
regularization model that combines, through a linear combination of LASSO and Ridge
methods, both L1 and L2 penalties. This model performs a variable selection, forming a
subset of predictors, each one matched with a regression coefficient. Variable importance
is ordered using the absolute value of the regression coefficient, a higher value showing
a bigger contribution to the model. The dataset was split into testing and training set
with a 1:1 proportion. A 10-fold cross-validation was applied to the training set to tune
the hyper-parameters λ, determining the amount of shrinkage and α, and explaining the
presence of L1 and L2 penalties. The model was trained for the clinical and hematochemical
data, inflammatory, cardiometabolic, and neurological PEA panels separately and jointly.
The performance of these model was evaluated on the testing set using the receiver oper-
ating curve (ROC) and the area under the curve (AUC), with its 95% confidence interval,
compared using Long’s test. Analyses were performed using STATA 17. Table S3 provides
hyperparameter and model validation information.

4.2.4. Correlation Discovery Analysis

All the algorithms employed for the correlation discovery analysis have been imple-
mented in Python 3.7.9 by relying on two main tools, the scikit-learn library [106] and
the SHAP package [107]. The former was adopted for the development of the random
forest model as well as for the recurrent feature extraction, mutual information, and GINI
Index approach, while the latter was employed to implement the SHAP component of
the analysis.

The only model-independent approach is MI [26]. MI between two random variables
is a non-negative value, which measures the dependency between the variables. It is equal
to zero if and only if two random variables are independent, and higher values mean higher
dependency. For this reason, a higher MI value indicates a higher correlation between the
selected parameter and the target variable. Concerning model-dependent approaches:

1. Recursive feature extraction (RFE) analysis [108]: an algorithm that at each step removes
the features that have the lowest correlation with the target variable for the considered
task and then retrains the model on the remaining parameters. The features can then
be ranked based on the removal order, where the last feature to be removed is placed
in 1st position regarding importance;

2. Feature selection through GINI Index [73]: this approach is very similar to the already
presented MI one. The main difference is represented by the metric adopted, which
in this case is the GINI Index, a measure that represents the amount of information
with which each feature contributes to determining the final output of the model.
Compared to the RFE algorithm it not only provides a ranking of the features but also
a measure of correlation for each;
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3. SHAP (Shapley additive explanations) analysis [107]: it is the most descriptive of the
proposed approaches, as it not only allows the measure of how much a certain feature
contributes to the outcome to be obtained but also to which of the outcomes the
feature leads the model towards.

The data used for the analysis were kept consistent with the ones described in the
previous sections to provide a meaningful comparison between the different approaches.
For the data preprocessing, we followed a three-step pipeline. The first step consisted of
the removal of those features which, instead of being a predictor of the patient outcome
were depending on it (e.g., patient death, hospitalization of the patient in the Intensive
Care Unit). Following this first step, we relied on a data imputing procedure to introduce
a placeholder where the value for the corresponding feature was missing. Finally, we
standardized the data to avoid the results of the analysis being biased towards the features
characterized by larger-scale values.

4.2.5. Functional Enrichment Analysis

To characterize the functional role of the most interesting, clinically-relevant identi-
fied biomarkers, the Cytoscape app ClueGO was used to query the following functional
databases: GO (BiologicalProcess and ImmuneSystemProcess), KEGG, REACTOME, CLIN-
VAR, WikiPathways, and CORUM-3.0. A two-sided hypergeometric test (corrected using
the Benjamini–Hochberg method to control the false discovery rate, adjusted p ≤ 0.05) was
used to determine the probability that each functional term was assigned to the gene sets
due to chance alone.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23169161/s1.
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