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ABSTRACT  
Neural Radiance Field methods are innovative solutions to derive 3D data from a set of oriented images. This paper introduces new 
real and synthetic image datasets - called NeRFBK - specifically designed for testing and comparing NeRF-based 3D reconstruction 
algorithms. More and more reconstruction algorithms and techniques are available nowadays, raising the need to evaluate and compare 
the quality of derived 3D products currently used in various domains and applications. However, gathering diverse data with precise 
ground truth is challenging and may not encompass all relevant applications. The NeRFBK dataset addresses this issue by providing 
multi-scale, indoor and outdoor datasets with high-resolution images and videos and camera parameters for testing and comparing 
NeRF-based algorithms. This paper presents the design and creation of the NeRFBK set of data, various examples and application 
scenarios, and highlights its potential for advancing the field of 3D reconstruction. 
 

1. INTRODUCTION 

Generating high-quality 3D models is a central objective of many 
research and studies in computer vision and photogrammetry. 
Nowadays, 3D reconstructions are commonly produced in 
several sectors and for various applications (such as quality 
controls, 3D monitoring, 3D inspections, robotics, virtual and 
augmented reality, and / or medical imaging. Over the past 
decades, improvements in image-based 3D reconstruction 
algorithms have made it essential to evaluate and compare their 
performance. In particular, NeRF-based algorithms are 
increasingly attracting the attention of the research community, 
interested to explore their potential in 3D reconstruction.  
A benchmark dataset is a set of data used by scientists to evaluate 
and compare the performance of sensors, platforms, or 
processing algorithms against a reliable and accurate ground truth 
(GT). However, obtaining enough diverse data poses a challenge 
due to the associated costs, time, and the need for precise 
annotations and accurate GT. The dataset should comprise data 
with various characteristics, such as different scale or 
environments, and should be accompanied by reliable and 
accurate annotations and GT data. 
Since Mildenhall et al. (2021), vanilla NeRF was introduced, a 
novel 3D reconstruction approach based on view synthesis which 
can represent a scene through a continuous volumetric function 
and be parameterized by multilayer perceptions to generate the 
volume density and directional emitted radiance at each point 
(Hedman et al., 2021; Verbin et al., 2022; Xu et al., 2022). This 
sparked a major revolution in the 3D reconstruction field. 
Different from many other 3D neural representations 
(Vijayanarasimhan et al., 2017; Ibrahimli et al., 2023), NeRF 
models are self-supervised and can learn a scene starting from a 
set of multi-view images and poses, without the requirement of 
3D/depth supervision. NeRF methods have found large potential 
applications in many fields, including robotics, autonomous 
navigation, virtual reality/augmented reality, industrial 
inspection, etc. (Gao et al., 2022). According to some studies 
(Yen-Chen et al., 2022; Mazzacca et al., 2023; Remondino et al., 
2023; Jäger et al., 2023), NeRF-based methods are considered to 
have great potential and application prospects as they can 
potentially achieve better results with respect to traditional 

 
1 https://www.tanksandtemples.org/  

image-based 3D reconstruction techniques such as Multi-View 
stereo (Schönberger et al., 2016; Wang et al., 2021a; Wang et al., 
2021b; Stathopoulou and Remondino, 2023) and RGB-D-based 
methods (Truong et al., 2020a; Truong et al., 2020b; Liu et al., 
2021) when dealing with texture-less, metallic, highly reflective, 
transparent objects due to the view-dependent nature of the NeRF 
model. To accurately develop, evaluate, and compare NeRF-
based techniques, it is essential to have access to high-quality 
data that includes precise ground truth. However, gathering 
synthetic and real-world data with different characteristics (such 
as featureless, well-textured, refractive, and reflective surfaces, 
in various sizes and shapes) can be difficult and may not 
encompass all relevant domains and applications. To overcome 
this issue, a new real and synthetic collection of datasets called 
NeRFBK is presented for testing and comparing NeRF-based 
algorithms. Our benchmark consists of multi-scale, indoor, and 
outdoor datasets, high-resolution images and videos, camera 
parameters (interior and exterior parameters), and ground truth. 
The dataset includes both real and synthetic images featuring 
different surfaces, size, and linked to three main domains 
(industry, cultural heritage, and geospatial sector). The NeRFBK 
datasets enables addressing different challenges in 3D 
reconstruction and advancing the field. The paper reports the 
usefulness of the NeRFBK datasets by presenting the results of 
experimental tests conducted with the shared data.  
 

2. BENCHMARKING NERF 

2.1 Repositories 

In recent years, NeRF has emerged as a powerful technique for 
high-quality 3D reconstruction from 2D images. As the field is 
growing, the need for benchmarks to evaluate and compare their 
different performance is crucial. Some datasets for testing or 
evaluating NeRF-based methods are already available and 
hereafter reported.  
Tanks and Temples1 (Knapitsch et al., 2017): it includes various 
indoor and outdoor scenes of varying size and complexity 
captured under realistic conditions using high-resolution video 
sequences, as well as ground truth camera poses. The GT data of 
each dataset is derived from terrestrial laser scanner acquisitions 
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and COLMAP (Schönberger and Frahm, 2016) camera poses 
estimation. From the video sequences, high-frame rate datasets 
can be extracted and used for NeRF processing. 
Scannet2 (Dai et al., 2017): Containing 2.5Mil RGB-D images 
from 1513 scans acquired in different space, this dataset covers 
various kinds of indoor scenes. In addition to the calibration 
parameters and camera poses, it also provides instance-level 
object category labels for 3D object classification and 
segmentation, and CAD models for matching the objects in 
different scans. 
BlendedMVS3 (Yao et al., 2019): it is a large-scale synthetic 
dataset for multi-view stereo training, consisting of about 17000 
rendered images with a maximum resolution of 2048 x 1536 
pixels. It contains 113 scenes, each with 20-1000 blended images 
and includes GT camera poses, depth maps, and 3D surface 
models. It also includes BlendedMVG, a superset multi-purpose 
large-scale dataset for solving multi-view and geometry-related 
problems. 
NeRF4 (Mildenhall et al., 2021): it contains three parts: Diffuse 
Synthetic 360◦ with simple geometry, Realistic Synthetic 360◦ 
with complicated geometry and realistic non-Lambertian 
materials, and real images of complex scenes captured with a 
smartphone. The synthetic renderings are captured at 512x512 or 
800x800 pixels from viewpoints sampled on the upper 
hemisphere or full sphere, while the real images are captured at 
1008x756 pixels. GT is not available for these datasets. 
Shiny dataset5 (Wizadwongsa et al., 2021): it is comprised of 8 
scenes captured with a smartphone that exhibit a range of 
complex view-dependent effects, including reflections, 
refractions, and specular highlights on metallic and ceramic 
materials, as well as detailed thin structures. All images in the 
dataset have a resolution of 1008 x 756 pixels. No GT is 
available. 
UrbanScene3D 6 (Lin et al., 2022): it is designed for research of 
urban scene perception and reconstruction. It has 128K high-
resolution images generated by 10 synthetic scenes and 6 real 
urban scene using drone. The images and GT of synthetic scenes 
are produced by CAD while for the real scenes, no ground truth 
for the whole scene is available but the ground-truth meshes of 
some buildings in the scenes which are generated by Trimble X7 
LiDAR scanners loaded with GPS localization devices are 
provided. The dataset also provides manually annotated instance 
labels for each building that can be used for segmentation.  
Mip-NeRF 3607  (Barron et al., 2022): it comprises 9 scenes, 
encompassing 5 outdoor and 4 indoor settings, each exhibiting a 
complex central object or area along with a detailed background. 
The dataset was acquired using two mirrorless digital cameras, 
with the initial camera position serving as a reference view. The 
images are obtainable at variable resolutions ranging from 1 Mpx 
to 15 Mpx. In order to mitigate color harmonization problems, 
the outdoor scenes were captured when the sky was overcast, 
while the indoor scenes employed large diffuse light sources to 
avert casting shadows. The dataset lacks any GT. 
X-NeRF dataset8 (Poggi et al., 2022): it includes 16 forward-
facing scenes captured by different sensors, one high-resolution 
(12.4Mpx) RGB camera and two low-resolution (1Mpx) IR and 
MS cameras. For each camera, it took approximately 30 
viewpoints, so that around 90 views are obtained per scene. IR 
and MS images encoded with colormaps and RGB images with 
corresponding camera poses estimated by COLMAP have been 
released to the public. 

 
2 http://www.scan-net.org/  
3 https://github.com/YoYo000/BlendedMVS  
4 https://paperswithcode.com/dataset/nerf  
5 https://nex-mpi.github.io/  
6 https://vcc.tech/UrbanScene3D  
7 https://jonbarron.info/mipnerf360/  

Mill 199 (Turki et al., 2022): it contains two large-scale scenes 
recorded by drone around CMU. The scene one is an industrial 
building with a 500x250 m2 square and another scene is selected 
nearby a construction area where is full of debris. 1940 and 1768 
images with 4608x3456 px resolution are captured from scene 
one and scene two respectively, and the camera poses are refined 
by PixSFM (Lindenberger et al., 2021). No 3D GT is available. 
Block-NeRF10 (Tancik et al., 2022): it consists of 13.4 hours 
driving record from 1330 different data collection runs on 
different public roads in San Francisco. The videos are captured 
by 12 cameras (8 cameras provide a complete surround view on 
the top of the car, 4 additional cameras fixed at the front of 
vehicles pointing forward and sideways) mounted on data 
collection vehicles, and totally more than 2.8M images and 
corresponding camera poses are generated. This dataset is 
suitable for the research about city-scale reconstruction and 
autonomous driving. 
OMMO11  (Lu et al., 2023): it is a large-scale outdoor multi-
model dataset consisting of 33 scenes with 14000 calibrated 
images. The highest resolution of the images can be up to 4K and 
all of them are generated by the videos released in YouTube or 
captured from drones. Camera poses generated by COLMAP and 
prompt annotations for multi-model NeRF labelled by manual 
and CLIP (Radford et al., 2021) are provided, but GT is not 
available.  
Relighting NeRF12 (Toschi et al., 2023): it is a public benchmark 
created for view synthesis and relighting method. Images are 
captured by two robotic arms (one controls the camera and the 
other controls the light source) about 20 scenes with different 
challenging objects. The data acquisition is designed based on 
one-light-at-time (OLAT) (Zhang et al., 2021) illumination, 
which used 50 camera viewpoints and took 2000 images per 
scene under 40 OLAT light conditions. This dataset provides a 
totally of 40000 images with the pose of both camera and light 
source, but lacks GT data for 3D evaluations. 
 
All (and other) described datasets feature different characteristics 
but most of them lack 3D GT data for evaluating the 3D results 
of NeRF methods. The proposed NeRFBK set of data tries to fill 
this gap (Section 3). 
 
2.2 Metrics 

Besides data for benchmarking algorithms, the use of standard 
metrics for evaluating methods plays an important role. Common 
metrics (Mousavi et al., 2018; Mohammadi et al., 2021) used in 
the 3D reconstructions field include: 
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8 https://amsacta.unibo.it/id/eprint/7142/  
9 https://meganerf.cmusatyalab.org/  
10 https://waymo.com/research/block-nerf/  
11 https://ommo.luchongshan.com/  
12 https://eyecan-ai.github.io/rene/  
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Industrial objects Transparent and reflective objects Aerial scenes 

          
Industrial A Industrial B Synthetic Synthetic 

Metallic 
Glass Cup Bottle Synthetic 

Glass 
Drone Dortmund 

Heritage scenarios 

          
Doss 

Trento 
Cyprus Statue Vase Metopa Tunnel Neptune 

Temple 
Trento 
Duomo 

Modena Baalshamin 

Table 1: Visual summary of the NeRFBK datasets, data and more info available at https://github.com/3DOM-FBK/NeRFBK  

where N is the number of observed vertices, Pj denotes the closest 
distance of each vertex to the corresponding reference vertex, and 
P denotes the average observed distance. 
Accuracy and completeness, sometimes also called precision and 
recall (Nocerino et al., 2020; Remondino et al., 2023) are also 
used. The accuracy can measure the percentage of overlap 
between the reconstructed results and GT, while completeness 
reflects how much percentage of points in GT have been 
reconstructed. A threshold distance is used and decided based on 
the data density and noise levels to calculate the fraction or 
percentage of points fall within the threshold. The calculation of 
accuracy and completeness is shown as follows: 
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where DisT denotes the point distance between source mesh to 
corresponding point in ground truth and DisS represent the 
opposite. S and T are the total number of points in source mesh 
and ground truth respectively, while Th is the threshold distance, 
used to filter the points outside the range we set. 
 

3. THE PROPOSED NERFBK  

The NeRFBK datasets are composed by real and synthetic 
scenes. In the real-world datasets, high-resolution images are 
captured in various scenarios, under different lighting conditions, 
cameras, scales and Ground Sample Distance (GSD), as well as 
3D GT data. Images and GT for synthetic scenes are created in 
Blender, by modelling different-shape and different-size objects 
and defining various camera paths for the simulated image 
acquisition. As shown in Table 1, NeRFBK consists of different 
types of datasets, including: 
• Industrial: two metallic real objects and two synthetic datasets 

are available. These objects have complex geometry, poor 
texture and reflective surfaces, causing challenges for 3D 
reconstruction using traditional and learning-based methods. 

• Transparent and reflective: three real and one synthetic 
textureless objects are available. The main processing 
challenge is related to image matching. Their appearance 
depends on the object’s shape, surrounding background and 
lighting conditions. Refraction and specular reflections, with 
light travelling through the surface, are normally present. 

• Heritage: ten different scenarios are available, including the 
temple of Baalshamin in Syria, which was tragically destroyed 
in 2015, whose images were collected from the REKREI online 
repository (Vincent et al., 2016). 

• Aerial: two datasets are available, one from a UAV flight and  
 

another acquired with an aerial oblique camera over the city of 
Dortmund (Nex et al., 2015). 

Each dataset consists of sets of images, original video (for some 
scenes), point clouds or mesh models as ground truth.  
In Section 4, some of these datasets are leveraged for testing some 
NeRF-based algorithms, reporting performances and quantitative 
results. 
 

4. EXPERIEMENTS AND RESULTS 

This section presents experimental findings to evaluate and 
compare the performance of different NeRF-based techniques. 
Experiments are based on SDFStudio (Yu et al., 2022a) and 
Nerfstudio (Tancik et al., 2023), two comprehensive collections 
of NeRF methods, including Instant-NGP (Müller et al., 2022), 
Nerfacto (Tancik et al., 2023), MonoSDF (Yu et al., 2022b), 
Tensorf (Xu et al., 2022), VolSDF (Yariv et al., 2021), Neus 
(Wang et al., 2021c), Unisurf (Oechele et al., 2021), and some 
variants such as Neus-Facto and Mono-Neus. Experiments are 
performed using some of the datasets available in the NeRFBK 
repository using an NVIDIA GeForce A40 GPU. 
 
4.1 Industrial objects 

The 3D reconstruction of textureless shiny metallic surfaces is 
problematic for many active and passive sensors (Karami et al., 
2021). NeRF could offer a valuable alternative for this task. We 
evaluated the performance of various NeRF-based methods using 
the images available for the Industrial B object (Table 1): it 
consists of 220 sequential images extracted from a smartphone 
video with a resolution of 1920x1080 pixels. The comparison 
results (Figure 1) show that Mono-Neus achieved the best results, 
with Neus as second among all methods. Their RMSE were only 
0.34 mm and 0.35 mm, respectively. Accuracy and completeness 
with respect to the ground truth (GT) data were also computed 
for all methods (Figure 2). 
As shown in Figure 2, Mono-Neus outperforms the other 
methods. Instant-NGP rank low in terms of completeness as well 
as accuracy. This is because the generated mesh using Instant-
NGP is quite noisy compared to Mono-Neus and can sparsely 
cover the GT. It is interesting to notice that the estimated 
accuracy for Nerfacto is similar to TensoRF, but the 
completeness is much worse. 
 
4.2 Reflective objects 

Reflective and transparent surfaces are challenging for 
conventional 3D reconstruction methods due to the lack of 
diffuse reflection and surface texture. Photogrammetric 3D 
reconstruction methods often produce incomplete or noisy results 
in such cases (Karami et al., 2022).
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Figure 1. Metrics for the mesh-to-mesh comparisons of several NeRF-based methods applied to the Industrial B object [unit: mm]. 

 
Figure 2. Estimated accuracy and completeness for NeRF-based methods using the Industrial B object of NeRFBK [unit: mm]. 

However, NeRF-based methods can learn to generate geometric 
information by leveraging the view-dependent nature of the 
NeRF model.  
The Synthetic Glass dataset of NeRFBK repository is considered: 
it consists of 300 sequential images extracted from a rendered 
video with a resolution of 1080x1920 pixels. Neuralangelo (Li et 
al., 2023) and Nerfacto are the only methods that could 
successfully reconstruct the object (Figure 3 and Table 2). We 
selected 3s as the min/max errors of the comparison analysis 
with respect to the ground truth. As shown in Figure 3, 
Neuralangelo achieves a better result among RMSE, MAE and 
STD compared to Nerfacto as the mesh for former is obviously 
cleaner while another one is full of noisy. The result for 
completeness in Figure 4 also verified the previous conclusion as 
we can see Neuralangelo outperforms than Nerfacto in accuracy. 
However even if the result generated by Nerfacto is noisy, its 
reconstruction result is more complete while the other one is full 
of holes. 

 
Figure 3. Mesh-to-mesh comparison [mm] for Nerfacto (left) 
and Neuralangelo (right) on the Synthetic Glass object. 

 
Method RMSE MAE STD Mean_E 

Nerfacto 2.34 2.25 2.48 2.10 
Neuralangelo 1.57 1.70 1.91 1.30 
Table 2. Metric assessment [mm] of the tested NeRF methods. 
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Figure 4. Accuracy and completeness for NeRF-based methods 
on the Synthetic Glass object. 

 
 
4.3 Heritage objects 

The synthetic Statue dataset (Marelli et al., 2023) is selected to 
compare Instant-NGP and conventional photogrammetry with 
respect to the available GT. The Statue is approximately 2x1x5 
m, and 50 images were used for the NeRF 3D reconstruction. The 
metric assessment (Figure 5) shows that photogrammetry 
performed better than NeRF with a subset of 50 images captured 
from camera 1. RMSE and STD for the photogrammetric 
reconstruction are respectively 5.71 mm and 10.81 mm, while for 
NeRF are 10.47 mm and 15.35 mm. 
To check whether small geometric details are reconstructed, 
cross-sections are extracted from the reconstructed geometries 
and compared (Figure 6). The photogrammetric profile (blue 
line) results in smaller distances from the with respect to the 
NeRF one (red line). 
The Vase object, measuring approximately 40 x 30 cm, was 
acquired using a smartphone Google Pixel2, for a total of about 
50 images at a resolution of 4024x3016 pixels. Instant-NGP, 
Nerfacto and Neuralangelo methods were tested with this dataset, 
and results compared to the available ground truth (a 
photogrammetric reconstruction performed with a Reflex 
camera). All three methods exhibit high levels of accuracy when 
compared to the ground truth mesh, as seen in the metrics (Figure 
7, Table 4), with Nerfacto and Neuralangelo considerably 
outperforming Instant-NGP. 
The completeness analysis (Figure 8) reveals similar 
performance for Neuralangelo and Nerfacto, while Instant-NGP 
reaches higher levels of completeness but a much lower accuracy 
with respect to the other methods. Neuralangelo mesh has the 

least amount of noise, as visible in Figure 8, and exhibits the best 
results in terms of both completeness and accuracy.  
 

 
Figure 5. Comparison results [mm] of Photogrammetry (left) 
and NeRF (right) on the Statue object. 

 
Method RMSE MAE STD Mean_E 

Photogrammetry 5.78 8.58 10.26 -1.28 
Instant-NGP 10.47 12.85 15.35 6.27 

Table 3. Evaluation metrics [mm] for the Statue object. 
 

 
Figure 6. Cross-section profiles on the Status object. 

 
Method RMSE MAE STD Mean_E 

Neuralangelo 0.30 0.31 0.42 -0.01 
Nerfacto 0.28 0.31 0.37 0.19 
Instant-NGP 0.79 0.86 1.11 0.36 

Table 4. Metric assessment [mm] for the Vase object. 
 
4.4 Aerial scene 

Aerial scene is another challenging dataset for NeRFBK due to 
the large-scale scenario, varying camera parameters and large 
image size.  The Drone dataset is chosen: 244 nadir high 
resolution images with 7952x5304 px over an urban and rural 
area. The only NeRF method able to deliver successful results 
was Neuralangelo (Li et al., 2023). Visuals and metrics are 
reported in Figure 9 and Table 5.  
 

 
Figure 7. Mesh-to-mesh comparison [mm] for the tested NeRF-based methods on the Vase object. Metrics in Table 4. Instant-NGP 
apparently has more noisy results with respect to the other two methods.  
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Figure 8. Accuracy and completeness for NeRF-based 
methods on the Vase object. 

 

 
Figure 9. GT (left), Neuralangelo textured mesh model 
(centre) and mesh-to-mesh comparison [m] for the Drone 
dataset. 

 
Method RMSE MAE STD Mean_E 

Neuralangelo 0.90 0.96 1.29 -0.26 
Table 5. Metric assessment [m] for the Drone dataset. 

 
 

5. CONCLUSIONS 

The paper presented a new set of data - called NeRFBK - 
comprising real and synthetic data specifically designed for 
testing and comparing NeRF-based 3D reconstruction methods. 
In order to address the issue of gathering precise GT data for the 
evaluation of NeRF-based algorithms, NeRFBK provides multi-
scale, indoor and outdoor datasets with high-resolution images, 
videos and camera parameters. The datasets in NeRFBK contain 
both real and synthetic data, representing objects from different 
domains (industry, cultural heritage, geospatial), with different 
surface characteristics (featureless, well-textured, refractive and 
reflective), and various objects size and shape.  
The presented experiments evaluate and compare the 
performance of some NeRF-based techniques with metrics and 
3D comparisons. The results show that there is not a winner and 
performances vary according to the scene/object. More 
investigations and developments are surely necessary to make 
NeRF more efficient and competitive with conventional 
photogrammetric methods but for some types of surfaces NeRF 
methods are relay promising. 
In the future, the NeRFBK benchmark will be constantly 
enriched with more datasets in various challenging and 
complicated scenarios to encompass as more relevant 
applications as possible. 
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