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A B S T R A C T   

Advanced damage tolerance design of materials and mechanical components heavily relies on fracture failure analysis. A 
robust, efficient, and versatile software (GPFniCS) is developed and provided for public access to perform fracture 
analyses based on the Generalised Phase-Field Method. GPFniCS software is developed on top of FEniCS, an open-source 
finite element library. One-dimensional and two-dimensional mixed mode problems are validated with GPFniCS and 
provided as illustrative examples in a public repository. The software shows excellent potential for computational fracture 
studies, and it is open to further developments in various fields like thermal loading, fatigue loading, solidification, and 
many more.   
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C4 Legal code license GNU General Public License v3.0 
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Python3, FEniCS, and ParaView 
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Linux 
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1. Motivation and significance 

In today’s era of modern industrialisation, the use of resources up to their 
maximum capacity is a key objective to reduce costs and impact on the 
environment. To achieve these goals, designing mechanical components/ 
machines for realistic operating conditions plays a significant role. The 
computer-aided designing and numerical analysis software such as stress 
analysis, fracture failures, life prediction, tear and wear analyses, tempera-
ture effects, and multi-physics coupling help for better designs. Among these 

analyses, numerical studies of fracture failures received a remarkable 
attraction because these can estimate the structural life of engineering prod-
ucts and assess to which extent these can operate in the presence of damage 
(or nucleated cracks), i.e., during stable crack propagation. GPFniCS is 
developed to assist structural engineers and scientists to simulate and predict 
fracture failures numerically. 

The methods used for the numerical analysis of fracture are broadly 
categorised into discrete and smeared methods [1], referred to as the nu-
merical representation of cracks. The most commonly used numerical anal-
ysis method is Finite Element Method (FEM), which itself is a discrete method. 
However, FEM is not a well-suited option for fracture analysis as the dis-
cretisation of geometry should be aligned with the crack propagation path, 
and after every crack propagation step, re-discretisation along with data 
transfer from old to new discretisation is necessary. These issues can be 
overcome by advanced variations of discrete methods like the eXtended Finite 
Element Method (XFEM), boundary element method, meshfree method, and 
many more [2]. The analysis for the cases of crack nucleation, crack 
branching, complex crack paths, and crack merging are still tricky tasks in 
discrete methods [3]. On the other hand, smeared approaches like the Phase 
Field Method (PFM) or gradient-enhanced damage models can tackle these 
issues [4-5]. In smeared methods, the crack is modelled as a variable in a 
diffusive way, and the value of this variable, generally ranging from 0 to 1, 
describes the presence of crack. PFM is based on the variational formulation 
of Griffith’s theory. In PFM, a smooth transition from crack to bulk is devised, 
which allows capturing several phenomena, like crack branching, merging, 
and interplay with other physics of the problem. PFM acquired a lot of 
recognition because it is robust, efficient, and easy to implement. FEM is 
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usually employed to couple and solve the continuum mechanics problems with 
PFM, in which the crack is traced automatically with the value of the phase 
field on the same discretised geometry [6]. In PFM, a characteristic length is 
defined, which controls the smeared crack width description. A small value of 
this length is required for a sharp crack representation, which demands a fine 
discretisation and makes numerical analysis computationally expensive [7]. 
Therefore, an efficient discretisation of geometry is essential for PFM [8]. 

The classical PFM was initially developed for purely brittle fracturing 
processes that have been widely exploited and applied to materials showing a 
homogeneous linear elastic behaviour. However, quasi-brittle fracture 
modelling is still not well explored. Recently, a novel constitutive phase field 
model based on classical PFM was proposed, which can reduce to the cohesive 
zone model as the characteristic length tends to zero. Thus, this modified PFM 
is named as cohesive zone phase field method (CZ-PFM). In CZ-PFM, general 
types of softening, like linear, exponential, and hyperbolic, can be modelled 
by adjusting parameters in the total energy term [9], as explained in the next 
section. The same approach is implemented for gradient-enhanced damage 
model [10] and multi-physics problems [11]. 

CZ-PFM has a great potential to model fracture failures in composites for 
various loading conditions and coupling with other physics. However, no 
public software/codes to perform simulations using CZ-PFM are available. 
Therefore, a generalised software, GPFniCS, is developed and made available 
to the interested community to perform fracture analyses using PFM/CZ-PFM 
while helping future researchers to develop new features. This software is 
based on the open-source library FEniCS. FEniCS is an intuitive, flexible, and 
efficient library to solve partial differential equations by FEMs [12]. With the 
current version, GPFniCS can simulate fracture failure in two-dimensional 
linear elastic isotropic materials subject to monotonic loading. It can 
compute mode I, mode II, and mixed mode fractures. GPFniCS is validated 
for various cases and presented in this article for the sake of reference. 
GPFniCS can be further extended to three-dimensional geometries [13], 
including the effect of other physics, different types of loading like fatigue 
[14-15], residual stresses [16-17], and material damaging phenomena. The 
article consists of five major sections. Section 1 describes the scientific 
importance and significance of GPFniCS and its capabilities. Section 2 con-
tains the architecture and key components of GPFniCS, along with details of 
the pre-processing and post-processing steps. The validations and illustrative 
examples of GPFniCS are provided in Section 3. In Section 4, the contribu-
tions and capabilities of GPFniCS are presented. At last, conclusions are given 
in Section 5. 

2. Software description 

GPFniCS is developed in the Python 3.8.10 environment. The whole code 
can be downloaded from https://github.com/Manishkumar923/GP 
FniCS.git. This code is based on the FEniCS and NumPy libraries available 
on https://fenicsproject.org/download/ and https://numpy.org/install/ 
, respectively. For post-processing, open-source software ParaView is used for 
contour plotting, while line plots are generated via Python 3.8.10. The 
installation procedure for FEniCS can be found at https://docs. 
fenicsproject.org/dolfinx/main/python/installation.html#source. The 
architecture and functionalities of GPFniCS are explained in the following 
sub-sections. 

2.1. Software architecture 

The governing equation of PFM consists of stored energy (strain energy) 
and dissipation energy, as shown in Eq. (1) [9,18]. The strain energy is 
reduced by the degradation function, which is a function of the phase field 
variable. The dissipated energy depends on the phase field dissipation 
functional. 

The function and functional control the existence and extent of the soft-
ening regime by changing the values of involved parameters, which can be 
found in [9]. The fundamental detail of the PFM is provided in the Github 
repository that is available on https://github.com/Manishkumar923/G 
PFniCS/blob/main/Phase_Field_Method.pdf. In current work, the crack 
growth is considered to be triggered only by the presence of tensile stresses; 
therefore, strain is decomposed into two parts: positive and negative parts, 
using strain spectral decomposition [19-20]. These are the fundamental as-
pects used in the development of GPFniCS. 

The key components and architecture of GPFniCS are shown in Fig. 1 
[21]. The material properties and discretised geometry are the primary inputs 
for GPFniCS. The current version supports only the T3 (Linear triangular 
element) element type. Therefore, the geometry must be discretised using 
either structured or unstructured T3 elements. First, the required libraries are 
imported into the software, followed by defining the material parameters. The 
discretised geometry is called in .xml format using the mesh command in 
GPFniCS. A subdomain is created to calculate reaction force, and boundaries 
are identified to apply boundary conditions. The function spaces and element 
type are defined according to the unknown fields; for instance, the 
displacement field is a vector, and the phase field is a scalar. Therefore, in the 
provided version of GPFniCS, function spaces are defined with Continuous 
Galerkin (CG: standard Lagrange family) element type of degree one using 
VectorFunctionSpace and FunctionSpace commands for displacement and 
phase fields, respectively. According to the governing equations, Functions, 
TrialFunctions, and TestFunctions are declared using the earlier defined 
function spaces. Several Python functions are defined to perform various 
computations such as eps, sigma_0, sigma, a, w, eps_positive, and eps_-
negative, respectively, for strain, stress, degraded stress, strain energy 
degradation function, dissipation functional, positive part of strain, and 
negative part of strain. 

The upper and lower limits of the phase field (0 to 1) are initially declared 
on the phase field function space. Phase field boundary conditions are also 
applied to these limits. Strong forms of the governing equations are defined 
using the pre-defined functions, and their derivatives are computed using the 
derivative operator of FEniCS with respect to trial and test functions. In 
GPFniCS, the displacement and phase field are solved through a staggered 
approach, given the higher efficiency than the monolithic approach. In the 
staggered approach, both fields are calculated in an iterative way, which 
means the converged displacement field is used to compute the phase field and 
the newly calculated phase field is used to re-evaluate the displacement field. 
This process continues until convergence is achieved for the phase field. 
NonlinearVariationalSolver class with mumps solver and PETSc-
TAOSolver class with umfpack solver are used to compute displacement and 
phase fields, respectively. Many other solvers are available in FEniCS, but 
these turned out to be best suited for this problem to date, as comprehensively 
explored by the authors. At the end of each load increment, displacement and 
phase fields are saved in a .pvd file, which can be opened in ParaView for 
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graphical visualisation. The crack propagation path can be easily shown by 
the phase field contour plots. For plotting the load-vs-displacement, load and 
displacement values at the interested location are recorded in a text file. This 
load-displacement data can be used in any plotting tool as per the user’s 
choice. The final step before the new load step is to update the lower limit of 
the phase field. In the formulation of PFM, the propagated cracks cannot heal, 
so this effect is enforced by imposing a phase field that never lowers its actual 
value, so the current phase field is assigned as the lower bound. The 
PETScTAOSolver class provides the solution in the bounded limits. Updating 
the lower bound of the phase field removes the requirement for the history 
variable used in the available phase field codes. 

2.2. Software functionalities 

The discretised geometry and material properties are primary inputs for 
GPFniCS. The displacement boundary conditions (Neumann and Dirichlet) 
and phase field boundary conditions must change according to the problem. 
In the terminal, use the command: python3 filename.py to execute the code. 

In the provided version of GPFniCS, a variable load step is implemented to 
speed up the computation in loading regimes where the fracture process is not 
supposed to occur. For instance, linear elastic behaviour is expected during 
the initial loading time, which is obtained via large load steps, while near the 
peak and softening regime, small load steps are used to capture nonlinear 
effects accurately. Fields like stress or strain can also be calculated by 
defining the tensor function space (TensorFunctionSpace) with one degree 
less than the displacement function space. Before saving the stress/strain .pvd 
file, it is required to transfer it to tensor function space using project operator. 
The computed fields can be exported as .pvd, as mentioned in the previous 
subsection. This Python script to plot the force-displacement curve is also 
provided with the GPFniCS library. 

3. Illustrative examples 

The developed code GPFniCS is validated with the one-dimensional and 
two-dimensional mixed mode fracture specimens of linear isotropic elastic 
material subjected to monotonic loading. A uniaxial bar subjected to tensile 

Fig. 1. Outline of key components and architecture of the GPFniCS.  
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load is analysed for linear and Cornelissen softening. A three-point bend and 
L-shaped specimens are examined and compared to the experimental obser-
vations to validate the software. The details of these studies are as follows: 

3.1. Uniaxial bar in tension 

A one-dimensional uniform bar of unit cross-sectional area and 200 mm 
length is simulated using the developed GPFniCS to obtain the load- 
displacement behaviour. The vertical left-hand-side edge of the bar is fixed, 
and a displacement is applied on the right end of the bar, as shown in Fig. 2. 
The material properties of the bar are taken as Young’s modulus (E0) = 30.0 
GPa, Poisson ratio (v0) = 0.2, fracture strength (ft) = 3.0 MPa and fracture 
energy (Gf) = 0.12 N/mm. Two types of softening (Linear and Cornelissen) 
are simulated for various values of characteristic length (b) and mesh element 
size (h), whose details are reported in Tables 1 and 2. A displacement of 
0.120 mm and 0.216 mm is applied in the case of linear and Cornelissen 
softening, respectively. The simulated linear softening and Cornelissen soft-
ening results are shown in Figs. 3 and 4. The numerical results show a similar 
trend as reported in the literature [9]. 

3.2. Three-point bend specimen 

A three-point bend specimen of 450 mm length is taken to validate the 
GPFniCS, as shown in Fig. 5(a). The dimensions, boundary conditions, and 
the considered physical notch in the specimen are also provided in Fig. 5(a). 
The material properties are considered as E0 = 20.0 GPa, v0 = 0.2, Gf =

0.113 N/mm and ft = 2.4 MPa. The mesh density in the probable failure 
region is taken high so that the size of the elements is of the same order of 
characteristic length. The geometry of the three-point bend specimen is dis-
cretised into 12,974 three-noded linear triangular elements (T3), and the 
element’s size in the potential failure area is 0.25 mm. A displacement of 1.0 
mm is applied in a ramped fashion. The simulations for two different char-
acteristic lengths (b = 1.5 mm and 2.5 mm) are performed, and the load vs 
displacement response and crack growth path for the Cornelissen softening 
model are shown in Fig. 5(b) and (c), respectively. The numerical results of 
load vs displacement behaviour for maximum load and dissipation within 
experimental bounds and show an even better match than the literature [9]. 

3.3. L-shaped specimen 

The L-shaped specimen is considered to validate the mixed mode capa-
bilities of GPFniCS. The dimensions and the boundary conditions used in the 
simulation are presented in Fig. 6(a), along with the expected failure region 
for reference. The material properties are considered as E0 = 25.85 GPa, v0 
= 0.18, Gf = 0.09 N/mm and ft = 2.7 MPa. To study the effect of mesh 
density, sizes of mesh elements 1 mm and 0.5 mm are considered in the po-
tential area of failure. Therefore, the specimen’s geometry is discretised into 
123,059 and 36,119 T3 elements for 0.5 mm and 1.0 mm mesh sizes. The 
effect of characteristic length is also studied with different characteristic 
lengths of 5 mm and 10 mm for the mesh of 0.5 mm. A displacement of 0.84 
mm is applied for all the cases. The load vs displacement response and crack 
growth path for the Cornelissen softening model are shown in Fig. 6(b) and 
(c), respectively. The numerical results are very close to the numerical studies 
in the literature [9]. 

A deviation is observed from the experimental bounds with the material 
properties used in the simulations. In literature [22], some studies are per-
formed with reduced Young’s modulus for the same problem to match initial 
stiffness, which is not considered in the presented study. The numerically 
computed crack propagation path lies in the expected region predicted by 
Ambati [7] and is depicted in orange in Fig. 6(a). 

4. Impact 

GPFniCS is a novel and robust software to perform numerical simulations 
for fracture failures. The capabilities of the GPFniCS have the following 
impact and possibilities for further improvements: 

Fig. 2. Schematic illustration of a uniaxial bar in tension with boundary conditions.  

Table 1 
Mesh size and characteristic length used for linear softening simulation.  

Case b/h b h number of elements a1 a2 a3 

L_10_5 10 5 0.5 400 320/π − 0.5 0 
L_20_5 20 5 0.25 800 320/π − 0.5 0 
L_50_5 50 5 0.1 2000 320/π − 0.5 0 
L_100_5 100 5 0.05 4000 320/π − 0.5 0 
L_200_5 200 5 0.025 8000 320/π − 0.5 0 
L_10_10 10 10 1.0 200 160/π − 0.5 0 
L_20_10 20 10 0.5 400 160/π − 0.5 0 
L_50_10 50 10 0.2 1000 160/π − 0.5 0 
L_100_10 100 10 0.1 2000 160/π − 0.5 0 
L_200_10 200 10 0.05 4000 160/π − 0.5 0 
L_10_20 10 20 2.0 100 80/π − 0.5 0 
L_20_20 20 20 1.0 200 80/π − 0.5 0 
L_50_20 50 20 0.4 500 80/π − 0.5 0 
L_100_20 100 20 0.2 1000 80/π − 0.5 0 
L_200_20 200 20 0.1 2000 80/π − 0.5 0 
L_10_50 10 50 5 40 32/π − 0.5 0 
L_20_50 20 50 2.5 80 32/π − 0.5 0 
L_50_50 50 50 1 200 32/π − 0.5 0 
L_100_50 100 50 0.5 400 32/π − 0.5 0 
L_200_50 200 50 0.25 800 32/π − 0.5 0  

Table 2 
Mesh size and characteristic length used for Cornelissen softening simulation.  

case b/h b H number of 
elements 

a1 a2 a3 

C_10_5 10 5 0.5 400 320/ 
π 

1.3868 0.6567 

C_20_5 20 5 0.25 800 320/ 
π 

1.3868 0.6567 

C_50_5 50 5 0.1 2000 320/ 
π 

1.3868 0.6567 

C_100_5 100 5 0.05 4000 320/ 
π 

1.3868 0.6567 

C_200_5 200 5 0.025 8000 320/ 
π 

1.3868 0.6567 

C_10_10 10 10 1.0 200 160/ 
π 

1.3868 0.6567 

C_20_10 20 10 0.5 400 160/ 
π 

1.3868 0.6567 

C_50_10 50 10 0.2 1000 160/ 
π 

1.3868 0.6567 

C_100_10 100 10 0.1 2000 160/ 
π 

1.3868 0.6567 

C_200_10 200 10 0.05 4000 160/ 
π 

1.3868 0.6567 

C_10_20 10 20 2.0 100 80/π 1.3868 0.6567 
C_20_20 20 20 1.0 200 80/π 1.3868 0.6567 
C_50_20 50 20 0.4 500 80/π 1.3868 0.6567 
C_100_20 100 20 0.2 1000 80/π 1.3868 0.6567 
C_200_20 200 20 0.1 2000 80/π 1.3868 0.6567 
C_10_50 10 50 5 40 32/π 1.3868 0.6567 
C_20_50 20 50 2.5 80 32/π 1.3868 0.6567 
C_50_50 50 50 1 200 32/π 1.3868 0.6567 
C_100_50 100 50 0.5 400 32/π 1.3868 0.6567 
C_200_50 200 50 0.25 800 32/π 1.3868 0.6567  
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Fig. 3. Load vs displacement plot for a uniaxial bar for linear softening (a) b/h = 10, (b) b/h = 20, (c) b/h = 50, (d) b/h = 100, and (e) b/h = 200.  

M. Kumar et al.                                                                                                                                                                                                                                 



SoftwareX 24 (2023) 101594

6

Fig. 4. Load vs displacement plot for a uniaxial bar for Cornelissen softening (a) b/h = 10, (b) b/h = 20, (c) b/h = 50, (d) b/h = 100, and (e) b/h = 200.  
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• GPFniCS provides public access to software to perform the fracture fail-
ures analysis with PFM/CZ-PFM [7,9], which was not available till now.  

• With GPFniCS, it is possible to model brittle and quasi-brittle fractures 
with general types of softening like linear, exponential, and hyperbolic 
[9-11].  

• It will work as the basic code for the user to perform fracture failures 
subjected to monotonic loading and can be further extended to include the 
effect of another loading like thermal [23], fatigue [19, 24], creep [25], 
impact, and combination of these.  

• The material’s non-linearity and other physics like shape memory alloy 
[26] and solidification can be incorporated into the GPFniCS to increase 
the users of the developed software.  

• GPFniCS will encourage the material developer to use PFM/CZ-PFM 
based simulation to understand fracture mechanisms better and 
improve the material design. 

5. Conclusions 

A FEniCS-based efficient software is developed to perform the fracture 

failure analyses using PFM/CZ-PFM. It can model brittle and quasi-brittle 
fractures with general types of softening like linear, exponential, and hy-
perbolic. The spectral decomposition of strain is implemented to prevent crack 
propagation while applying compressive stresses. The validation of one and 
two-dimensional mixed mode cases is presented in the article to show the 
capabilities of the GPFniCS. The general mesh file .xml is used as input for the 
analysis, and .pvd files are extracted for the post-processing in the ParaView. 
GPFniCS can be potentially extended to account for the effect of various types 
of loading like thermal, fatigue, creep, and physics like material non-linearity, 
solidification, and many more phenomena. 
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