
University of Udine
Polytechnic Department of Engineering and Architecture
Intelligent Optimization Lab (IOLab)
Ph.D. in Industrial and Information Engineering - XXXVI cycle

Ph.D. Thesis

Multi-Neighborhood Search
for Combinatorial Optimization

Candidate:
Roberto Maria Rosati

Advisor:
Prof. Andrea Schaerf

Contents

Ringraziamenti 9

Acknowledgements 11

Abstract 13

1 Introduction 14
1.1 Context . 15
1.2 Motivations and objectives . 18
1.3 Structure of the thesis . 20

I Methods 22

2 Multi-Neighborhood Search 23
2.1 Local search concepts . 23

2.1.1 Search space . 24
2.1.2 Cost function . 26
2.1.3 Neighborhood exploration and acceptance criterion . . 26
2.1.4 Local search and metaheuristics 27

2.2 Multi-Neighborhood Search 29
2.2.1 Exploration and move selection 31
2.2.2 Internal biases . 32
2.2.3 Differential cost evaluation 32
2.2.4 Redundant solution representations 33
2.2.5 Deterministic sequences 34
2.2.6 Repair chains . 34

2.3 Multi-Neighborhood Simulated Annealing 35
2.3.1 Initial solution . 35
2.3.2 Acceptance criterion 36

3

2.3.3 Cooling scheme and cut-off 36
2.3.4 Stopping criterion . 37
2.3.5 Algorithm description 38

2.4 Parameter tuning . 39
2.5 Further combinations of neighborhoods 40

3 Construct, Merge, Solve, and Adapt 42
3.1 The CMSA Algorithm . 42

3.1.1 Construct: construction procedure 44
3.1.2 Merge: sub-instance 45
3.1.3 Solve: exact solver 45
3.1.4 Adapt: aging . 46

3.2 Multi-Constructor CMSA . 46
3.3 Parameter tuning in CMSA 49

II Applications of Multi-Neighborhood Search 50

4 Minimum Interference Frequency Assignment 51
4.1 Problem definition . 52
4.2 Related work . 54
4.3 Solution method . 57

4.3.1 Search space and initial solution 57
4.3.2 Multi-neighborhood 58
4.3.3 Metaheuristic and move selection 61
4.3.4 Adaptation to MI-FAP-I and MI-FAP-II 62

4.4 Experimental results . 63
4.4.1 Benchmarks . 63
4.4.2 Parameter tuning . 67
4.4.3 Comparison results for MI-FAP-I 67
4.4.4 Comparison results for MI-FAP-II 68

4.5 Discussion . 71
4.5.1 Larger neighborhoods 73
4.5.2 Instance-based tuning 74

4.6 Conclusions . 74

5 Sports Timetabling 76
5.1 Related work . 77
5.2 Problem formulation . 78
5.3 Solution method . 83

4

5.3.1 Search space . 84
5.3.2 Initial solution generation 84
5.3.3 Multi-neighborhood 88

SwapHomes . 89
SwapTeams . 89
SwapRounds . 90
PartialSwapTeams . 90
PartialSwapRounds . 91
PartialSwapTeamsPhased 91

5.3.4 Metaheuristic . 93
5.4 Experimental results . 94

5.4.1 Instances . 95
5.4.2 Parameters and tuning 97
5.4.3 Analysis of the results 98
5.4.4 Analysis of PartialSwapTeamsPhased 104

5.5 Comparison with other algorithms 105
5.6 Conclusions . 108

6 Home Healthcare Routing and Scheduling 110
6.1 Related work . 111
6.2 Problem definition . 113
6.3 Solution method . 116

6.3.1 Search space . 117
6.3.2 Initial solution . 119
6.3.3 Multi-neighborhood 119

Neighborhood MovePatient 120
Neighborhood SwapPatients 120
Neighborhood InRouteSwap 121
Composition of neighborhoods 122

6.3.4 Metaheuristic . 123
6.4 Datasets and generators . 123

6.4.1 Dataset by Mankowska et al. 123
6.4.2 Dataset by Kummer 125
6.4.3 Our generator and dataset 126
6.4.4 File formats . 127

6.5 Experimental analysis . 129
6.5.1 Parameter tuning . 129
6.5.2 Comparative results on the dataset of Mankowska et al.130
6.5.3 Comparative results on Kummer’s dataset 133
6.5.4 Results on our new dataset 133

5

6.6 Conclusions . 140

7 Capacitated Dispersion Problem 141
7.1 Related work . 142
7.2 Problem definition . 143
7.3 Solution method . 144

7.3.1 Search space . 144
7.3.2 Initial solution strategy 145
7.3.3 Multi-neighborhood 145
7.3.4 Move selection . 146
7.3.5 Cost function . 147
7.3.6 Metaheuristic . 148

7.4 Datasets and generators . 148
7.5 Experimental analysis . 151

7.5.1 Tuning . 153
7.5.2 Results . 154
7.5.3 Algorithmic insights 158

7.6 Conclusions . 160

III Applications of CMSA 162

8 Bus Driver Scheduling 163
8.1 Problem description . 164

8.1.1 Problem input . 164
8.1.2 Solution . 165
8.1.3 Work and break regulations 165

Driving time regulations 166
Working time regulations 166
Split shifts . 167

8.1.4 Objectives . 167
8.2 Related work . 167
8.3 The CMSA approach to the BDS problem 169

8.3.1 Greedy heuristic . 170
8.3.2 Sub-instance and exact solver 171

8.4 Experimental results . 173
8.4.1 Parameter tuning . 173
8.4.2 Analysis of the results 175

8.5 Conclusions . 176

6

9 Maximum Disjoint Dominating Sets Problem 177
9.1 Graphical problem illustration 179
9.2 Related work . 181
9.3 Integer linear programming formulations 183

9.3.1 Model 1 with symmetry breaking constraints 184
9.3.2 Model 2 with symmetry breaking constraints 184

9.4 Multi-Constructor CMSA for the MDDSP 184
9.4.1 Constructors . 185

Color-Ddsr . 186
P-Maxr, P-Minr and R-Lidr 187
Iamr . 189
Mdds-Ghr . 189
Constructor selection 190

9.4.2 Sub-instance . 190
9.4.3 Lexicographic objective function 191
9.4.4 Parameters . 192
9.4.5 Algorithmic details . 194

9.5 Experimental results . 195
9.5.1 Instances . 196
9.5.2 Parameter tuning . 199
9.5.3 Results . 200

Results on random geometric graphs 201
Results on random graphs, Watts-Strogatz and

Barabási-Albert networks 203
ILP model results . 205

9.5.4 Statistical analysis . 208
9.6 Conclusions . 210

IV Reinforcement Learning 217

10 Reinforcement Learning for Multi-Neighborhood Search and
Multi-Constructor CMSA 218
10.1 Related work . 220
10.2 Reinforcement learning strategy 221
10.3 RL for Multi-Neighborhood Search 223

10.3.1 Case studies . 225
Examination Timetabling 225
Sports Timetabling . 226

10.3.2 Experimental results 227

7

Results for Examination Timetabling 228
Results for Sports Timetabling 229

10.3.3 Discussion . 231
10.4 RL for Multi-Constructor CMSA 233

Results . 234
10.4.1 Conclusions . 237

11 Conclusions 238
11.1 Research contributions . 238
11.2 Results . 239
11.3 Future research directions . 240

List of publications 242

Bibliography 266

8

Ringraziamenti

Ringrazio il mio supervisore Andrea, a cui devo la maggior parte di quello che
ho imparato in questi anni. Mi ritengo fortunato ad aver avuto un mentore
intelligente e perspicace, disponibile e mai avaro di tempo. Grazie per avermi
lasciato sempre la libertà di sperimentare e seguire le mie idee.

Grazie a Nysret e Christian, che mi hanno accolto presso i loro laboratori,
a Vienna e a Bellaterra, dandomi la possibilità di lavorare con loro e di
conoscere tecniche e metodi differenti.

Grazie a Luca e Sara, colleghi e co-autori più esperti, che mi hanno
accompagnato in questo percorso, e a tutti i dottorandi con cui avuto modo di
condividere opinioni, gioie e dispiaceri. Una lista parziale include: Eugenia,
Francesco, Francesca, Tommaso, Lucas, Felix, Florian, Tobias, Guillem,
Mehmet, Camilo, Hassan, Amir, Gabriel, Pedram. Da ognuno di voi ho
imparato qualcosa.

Grazie ai revisori di questa tesi, Prof. Thomas Stützle e Prof. Mauricio
Resende, che l’hanno pazientemente letta e commentata, fornendomi
commenti costruttivi e preziosi suggerimenti sulle possibili direzioni future
di questa ricerca.

Questo traguardo non sarebbe stato possibile se non grazie al supporto
incondizionato che ho sempre ricevuto dai miei genitori. Grazie a Patrizia,
che ha fatto tutto quanto ha potuto per concedermi i mezzi per realizzarmi
come persona. Grazie per avermi incoraggiato fin da subito alla lettura,
alla scrittura e al calcolo, ricordandomi costantemente i valori dell’onestà e
del rispetto. Grazie a Enzo, della cui compagnia ho goduto per pochi anni,
ma che, ne sono certo, sarebbe stato orgoglioso di vedermi concludere un
dottorato. Ha saputo trasmettermi la sua curiosità e la sua passione verso
la scoperta. Grazie a Lino, per avermi sempre sostenuto, dandomi i mezzi
e la sicurezza di avere un luogo dove tornare, per aver partecipato alle mie
gioie e per il suo supporto nei momenti difficili.

Vorrei ringraziare molti membri della mia famiglia, ma per motivi di
spazio non mi sarà possibile elencare né descrivere i motivi per cui ognuno di

9

loro ha dato un contributo per questo risultato. In una lista molto limitata,
desidero menzionare i miei nonni Vincenzo e Giovanna, i miei zii Annamaria,
Peppe, Nicla, Giancarlo, Giuliano, Clara, Alessandra, Annamaria. Un grazie
speciale a mio zio Alfredo, per avermi stimolato fin da quando ero bambino
all’uso del calcolatore e del software libero. Essere stato messo davanti al
terminale di Linux in tenera età ha sicuramente avuto un’influenza nelle mie
scelte future.

Un grazie particolare va rivolto a due miei amici, Eugenio e Matteo, il
primo per essere stata la mia spalla nei momenti difficili e in quelli gioiosi,
il secondo per avermi incoraggiato verso la strada della ricerca e per i suoi
preziosissimi consigli durante questi tre anni.

Infine, grazie a mia moglie Yến, irrinunciabile compagna di vita e linfa
vitale dei miei giorni, per il suo supporto a tutte le mie scelte, per avermi
pazientemente accompagnato durante questi anni di dottorato, garantendomi
tutta la serenità e l’amore di cui ho goduto. Poter progettare il futuro insieme
è stata la mia più grande motivazione.

10

Acknowledgements

I thank my supervisor Andrea, to whom I owe most of what I have learned
during this journey. I feel lucky to have had such an intelligent and insightful
mentor, who was always generous with time and who always left me the
freedom to experiment and follow my ideas.

Thanks to Nysret and Christian, who welcomed me into their
laboratories, in Vienna and Bellaterra, giving me the opportunity to work
with them and learn about different research aspects and methods.

Thanks to Luca and Sara, expert colleagues and co-authors, who
accompanied me on this journey, and to all the doctoral students with whom
I had the opportunity to share opinions, joys and sorrows. A partial list
includes: Eugenia, Francesco, Francesca, Tommaso, Lucas, Felix, Florian,
Tobias, Guillem, Mehmet, Camilo, Hassan, Amir, Gabriel, Pedram. From
each of you I learned something.

Thanks to the reviewers of this manuscript, Prof. Thomas Stützle
and Prof. Mauricio Resende, who patiently read and commented on my
thesis, providing me with constructive comments and valuable suggestions
on pontential future research directions.

This achievement would not have been possible if not thanks to the
unconditional support I have always received from my parents. Thanks to
Patrizia, who did everything she could to give me the means to realize myself
as a person. Thanks for encouraging me to read, write and calculate right
from the start, constantly reminding me of the values of honesty and respect.
Thanks to Enzo, whose company I enjoyed for very few years, but who, I
am sure, would have been proud to see me complete a doctorate. He was
able to convey to me his curiosity and his passion for discovery. Thanks to
Lino, for always supporting me, giving me the means and security of having
a place to return to, for sharing my joys and for supporting me in difficult
moments.

I would like to thank many members of my family, but for reasons of space
it will not be possible for me to list or describe the reasons why each of them

11

contributed to this achievement. In a very limited list, I would like to mention
my grandparents Vincenzo and Giovanna, and my uncles Annamaria, Peppe,
Nicla, Giancarlo, Giuliano, Clara, Alessandra, Annamaria. A special thank
to my uncle Alfredo, for encouraging me to use the computer and open source
software since I was a child. Being put in front of the Linux terminal when
I was ten years old certainly had an influence on my future choices.

A felt thank goes to two of my friends, Eugenio and Matteo, the first for
being my shoulder in difficult and joyful moments, the second for encouraging
me towards the path of research and for his invaluable advice during these
three years.

Finally, thanks to my wife Yến, indispensable life partner and lifeblood
of my days, for her support in all my choices, and for patiently accompanying
me during these years of doctoral studies, guaranteeing me all the serenity
and love I have enjoyed. Being able to plan the future together was my
greatest motivation.

12

Abstract

Multi-Neighborhood Search is based on the composition of multiple local
search neighborhoods. With respect to a single neighborhood, it provides a
better connectivity in the search space and gives access to different search
patterns, while also reducing the risk of getting stuck in a particular region
of the search space.

In this thesis, we present a methodological approach to design
Multi-Neighborhood Search methods under a stochastic framework.
Neighborhoods are balanced through fixed rates and internal biases. We
also investigate the use of reinforcement learning for the adaptive tuning of
neighborhood rates. We discuss the interaction with the search space, the
objective function and the metaheuristic that guides the search.

We validate our approach on four challenging combinatorial problems
spanning various domains: the Minimum Interefence Frequency Assignment
Problem, the Sports Timetabling Problem, the Healthcare Routing and
Scheduling Problem, and the Capacitated Dispersion Problem. To solve
them, we design Multi-Neighborhood Search methods that utilize from three
to six distinct neighborhoods each, some of them originally conceived. We
use Simulated Annealing as the metaheuristic that guides the search.

We compare our results on instances from benchmark datasets and we
show that Multi-Neighborhood Search outperforms quite consistently the
state-of-the-art methods from the literature. Furthermore, we demonstrate
through experimental results on the Sports Timetabling Problem and the
Examination Timetabling Problem that the method’s robustness can be
enhanced with reinforcement learning.

Finally, we replicate the schemes from Multi-Neighborhood Search to the
matheuristic Construct, Merge, Solve and Adapt (CMSA), including the use
of reinforcement learning, to shape the Multi-Constructor CMSA, that we
apply to the Maximum Disjoint Dominating Sets Problem. Moreover, we
also employ CMSA to solve a real-world Bus Driver Scheduling Problem
with complex break constraints.

13

Chapter 1

Introduction

Local search is a procedure based on the idea of beginning from an initial
problem solution and iteratively making small adjustments to progress
toward better solutions. It closely mirrors the way we, as humans, approach
practical problems. Consider a scenario where we’ve recently moved to a new
house and need to organize our belongings on shelves in different rooms. Like
most people, we would initially arrange our items based on an idea in mind
or a plan predetermined beforehand. However, after considerable physical
effort, we might realize that the new house doesn’t look exactly like we
were dreaming, and improvements can be made. At this point, it is rare
for someone to decide to remove all the items they’ve arranged over many
hours of work and start again from scratch. Instead, we typically refine the
current state by iteratively adjusting the positions of individual items until
we achieve an overall satisfactory layout. This process closely resembles how
local search works in the context of combinatorial optimization. Naturally,
moving single objects around might not be enough to efficiently reach the
desired state. In addition, we can swap the positions of pairs of items,
remove items no longer needed, insert items that we can buy from the shop
across the street or that we have previously removed, and perform even
more complex moves, like a permutation of books in a bookcase that changes
their order from alphabetical to chronological. Multi-Neighborhood Search
operates on this principle, by leveraging the combination of multiple local
search neighborhoods rather than relying on a single one.

Our research is based on the hypothesis that a well-chosen combination
of local search neighborhoods within a multi-neighborhood structure,
stochastically explored and exploited by a well-established metaheuristic like
Simulated Annealing (SA), can significantly enhance solution capabilities

14

Introduction

in tackling challenging combinatorial problems. Therefore, the primary
focus of this thesis is Multi-Neighborhood Search (MNS). Beyond this core
focus, we also explore the transference of MNS principles to the matheuristic
Construct, Merge, Solve & Adapt (CMSA), introducing the novel concept
of Multi-Constructor CMSA. Finally, we investigate the use of a common
reinforcement learning strategy to automate the choice of the policy for
operator selection in both MNS and Multi-Constructor CMSA.

To validate our hypothesis, we implement and test our solution methods
on a diverse set of real-world combinatorial problems: Minimum Interference
Frequency Assignment, Sports Timetabling, Home Healthcare Routing and
Scheduling and Capacitated Dispersion for what concerns MNS, and Bus
Driver Scheduling and Maximum Disjoint Dominating Sets for what concerns
CMSA. They are characterized by their complexity, rich sets of constraints,
and large-scale instances.

We assess the contributions of individual components through
statistically-principled analysis and compare the results against
state-of-the-art algorithms on instances from benchmark datasets from the
literature.

In the following, we introduce key concepts in design of algorithms for
combinatorial optimization, discuss the motivations for this research, and
provide an overview of the thesis structure and content.

1.1 Context

When we talk about a combinatorial problem, we assume that it contains,
in part or completely, discrete variables, that can only assume values from a
finite set. Solving an instance of a combinatorial problem consists in selecting
a solution S in the solution space S, which comprises all the possible solutions
to the problem instance. We distinguish into decision problems, that are
solved answering a question about whether a solution exists or not, search
problems, that, in addition, require to determine the actual solution, and
optimization problems, that are solved by finding a solution that minimizes
or maximizes a given function f : S → R, called objective function. If the
problem is a minimization one, the goal is to find a solution S̄ such that
f(S̄) ≤ f(S), ∀S ∈ S. Conversely, if the problem is a maximization one, the
goal is to find a solution S̄ such that f(S̄) ≥ f(S), ∀S ∈ S. The solution
S̄ is known as global minimum (respectively, maximum), or global optimum.
In this thesis, we focus on combinatorial optimization problems.

In principle, to solve to the optimality a combinatorial optimization

15

Introduction

problem, we could enumerate all the combinations of discrete values
that the variables can assume and select, among them, the combination
associated with a feasible solution of minimum cost. For example, if
we have 10 binary variables, we can easily enumerate the 210 = 1024
solutions. However, this number grows exponentially with the number of
the input variables, and with only 100 binary variables (which would be
a small instance in most problem) the number of combinations is already
2100 = 1267650600000000060967983513600. Enumeration can be made more
efficient in many ways, for example by using a backtracking technique, that
prunes branches that surely leads to infeasible or not optimal leaves. Even
so, however, the number of combinations is likely to remain too large to be
computed in a reasonable amount of time. Therefore, in most real-world
cases, and in all the problems discussed in this thesis, we need to resort to
more complex mathematical or algorithmic methods.

Solution methods for combinatorial optimization are divided into exact
methods, that guarantee that a proven optimal solution S̄ is found (including
the aforementioned enumeration technique), and heuristic methods, that
do not provide such guarantee. The challenge in solving combinatorial
problems comes from the discreteness of the variables. Indeed, if we only
had continuous variables and linear constraints, we could formulate a linear
programming model of the problem, that can be solved in polynomial
time (Khachiyan, 1979), for example by means of the interior-point
method1 (Karmarkar, 1984). However, the discreteness of the variables
makes problems much harder. Besides discreteness, many combinatorial
problems are also nonlinear or nonconvex and are known for being
NP-complete or NP-hard, meaning that no polynomial-time algorithm exists
for their solution2 (Karp, 1972). There are, naturally, exact methods that
can solve to the optimum combinatorial problems. A majority of them
are based on or derived from the Branch and Bound procedure, originally
proposed by Land and Doig (1960). In specific cases, exact algorithms
have obtained remarkable results, like in the case of the Traveling Salesman
Problem (TSP, Applegate et al., 2009). However, the computational
complexity of combinatorial problems is such that, even with the most
powerful computers that we have nowadays and we will have in the next
decades, in the large majority of situations it is not and it will not be possible
to design exact algorithms that solve them to optimality in reasonable
time. This consideration extends to quantum computing: while there is no

1The well-known simplex method is not polynomial in the worst-case scenario.
2Unless P = NP

16

Introduction

consensus yet on the achievements that quantum computers will deliver for
combinatorial optimization, at the moment they cannot provide more than
a quadratic speed-up with respect to the classical computer on NP-complete
problems (Bennett et al., 1997; Preskill, 2023), which is achieved by the
Grover’s algorithm (Grover, 1996). Therefore, the design and ideation of
heuristic algorithms will remain for long time the most viable method to
tackle combinatorial problems.

Under the name of heuristics, many different algorithms are grouped,
from simple greedy algorithms to more complex methods. They renounce to
the guarantee of finding the optimal solution but exploit the knowledge of the
problem and of the solution space in order to reach good solutions in a limited
number of iterations. As a well-established algorithmic paradigm, local
search is at the basis of many successful heuristics, such as the Lin-Kernighan
heuristic for solving the TSP (see Lin and Kernighan, 1973; Helsgaun, 2000).

While a heuristic is tailored on the problem it was designed for, a
metaheuristic is a problem-independent framework for the development of
problem-specific heuristics (meta comes from the Ancient Greek word μετα΄,
that means “after”, “beyond”). This term seems to have been suggested
by Glover (1986). Historically speaking, metaheuristics gained popularity
in the 80s. Famous metaheuristics based on local search are Simulated
Annealing (SA, Kirkpatrick et al., 1983; Černý, 1985), Tabu Search (TS,
Glover, 1989, 1990), Greedy Randomized Adaptive Search Procedures
(GRASP, Feo and Resende, 1995), Variable Neighborhood Search (VNS,
Mladenović and Hansen, 1997), and Iterated Local Search (ILS, Lourenço
et al., 2003).

Not all metaheuristics are based on local search. Other paradigms
encompass population-based metaheuristics, that evolve a population of
solutions instead of a single one, matheuristics, that partially destroy
solutions and repair them with an exact solver, and hyper-heuristics,
where the operators are low-level heuristics. Among population-based
methods we mention Genetic Algorithms (GA, Holland, 1992), Particle
Swarm Optimization (PSO, Kennedy and Eberhart, 1995), and Ant Colony
Optimization (ACO, Dorigo et al., 2006). About matheuristics, we remark
about Large Neighborhood Search (LNS), proposed by Shaw (1998) and
made famous in its adaptive variant by Ropke and Pisinger (2006), Local
Branching (Fischetti and Lodi, 2003) and CMSA (Blum et al., 2016). For
what concerns hyper-heuristics, we forward the reader to Burke et al. (2003,
2013, 2019).

A more recent trend in combinatorial optimization, in general, and
in metaheuristics, specifically, is the use of machine learning inside the

17

Introduction

algorithm to simulate expert behavior or to learn the best policy for certain
algorithmic decisions (Bengio et al., 2021).

The idea of systematically studying the different compositions of local
search neighborhoods was proposed by Di Gaspero and Schaerf (2006).
Even though the possibility of using multiple neighborhoods, mostly in a
sequential manner, had already emerged in metaheuristics like VNS and
ILS, the novelty in the approach of Di Gaspero and Schaerf was the
idea of considering the multi-neighborhood as an independent algorithm
component from the metaheuristic. To date, we find in the literature
a discrete number of successful applications of the Multi-Neighborhood
Search paradigm, to solve a variated set of problems, including Examination
Timetabling (Di Gaspero and Schaerf, 2003; Bellio et al., 2021), the
Traveling Tournament Problem (Anagnostopoulos et al., 2006; Ribeiro and
Urrutia, 2007; Di Gaspero and Schaerf, 2007), the Maximum Weight Clique
Problem (Wu et al., 2012), Patient Assignment in healthcare (Demeester
et al., 2010; Ceschia and Schaerf, 2011), and Vehicle Routing (Ceschia et al.,
2011; Jin et al., 2012; Soto et al., 2017). In the large majority of cases, the
underlying metaheuristic is TS or SA.

1.2 Motivations and objectives

Earlier studies have shown the benefits of Multi-Neighborhood Search, that
enhances connectivity in the search space, offers access to diverse search
trajectories, and reduces the likelihood of being trapped within a specific
region of the search space. However, despite the substantial growth in
the research interest towards metaheuristics, the combination of multiple
neighborhoods, especially in the context of stochastic exploration, has not
been systematically investigated after the work of Di Gaspero and Schaerf.

This gap in the literature has been noticed by Franzin and Stützle
(2019). After analyzing in their article “Revisiting simulated annealing: a
component-based analysis” all the variants of SA emerged over almost four
decades of research, the authors conclude that the key components for the
algorithm performance are the acceptance criterion and the neighborhood
exploration. Not only they derive this clear result from data, but they
literally comment: “More surprising is maybe the high importance for the
neighborhood exploration, a component often neglected in the SA literature”.

The lack of interest for the neighborhood relation, that happened in
spite of the fact that it is indisputably the core of the whole local search
paradigm, might be due to various reasons. One reason is that it is often

18

Introduction

taken for granted in metaheuristic design and, as pointed out by Franzin and
Stützle. Another factor is the trend towards the continuous development
of new metaheuristics that has occurred over the last two decades, often
resulting in the disregard of basic algorithmic components in the pursuit of
constant novelty.

In fact, boosted by the initial success of methods inspired by biological
phenomena, such as the aforementioned GA, PSO and ACO, we have assisted
to a dramatic increment in the number of published articles introducing
supposedly new metaheuristics that exploit metaphors of natural, biological,
and anthropological phenomena (which we, on purpose, do not mention
here). This trend has nonetheless drawn the attention of some meticulous
scholars who have shed light on the fact that many of them are just disguises
of well-known methods under new catchy names and have contributed very
little, if anything, scientifically (see Weyland, 2015; Sörensen, 2015; Aranha
et al., 2022; Camacho-Villalón et al., 2023). Since then, a significant portion
of the scientific community has become increasingly critical of this worrisome
way of conducting research, that obfuscates actual improvements and creates
confusion about the various methodologies, especially in researchers and
practitioners from outside the field. Moreover, it drains energy away from
the actual focus of our research, that is the improvement in our capabilities
to solve hard combinatorial problems, gaining comprehension of what are
the components that make algorithms effective.

With the recognition of the importance of placing neighborhood design
back at the center of the research agenda, this thesis aims at establishing a
methodology for the design of competitive stochastic Multi-Neighborhood
Search algorithms. Our approach embraces how neighborhoods are
composed together, as well as their behavior and interaction with each
other and with the search space, their relation with the cost function,
and their integration inside a metaheuristic. In addition to developing a
structured approach, we design and implement actual Multi-Neighborhood
Search solution methods capable of challenging the current state-of-the-art
across a diverse range of combinatorial problems. Furthermore, we foster
the transition from the static nature of the neighborhood rates toward
an adaptive approach that makes use of reinforcement learning. Finally,
we show that it is possible to transfer certain principles derived from
Multi-Neighborhood Search to another method, the matheuristic Construct,
Merge, Solve & Adapt (CMSA), through the introduction of the concept of
Multi-Constructor CMSA.

Aware of the importance to step back from the metaphor trap, in
conducting our research we join the choir of scientists advocating for

19

Introduction

simplicity and clearness in the algorithm design approach and in its
disclosure. We believe that the proper way of conducting our research is
through a rigorous methodology based on statistically-principled analysis
of the contribution of individual algorithm components. This methodology
aims to retain only useful components and at to keep algorithm design as
simple as possible, while avoiding vague and complicated metaphors that
divert from the actual essence of the algorithm.

1.3 Structure of the thesis

This thesis is organized into four distinct parts, each dedicated to a specific
aspect of the research.

Part I is titled “Methods” and introduces and elaborates on the
fundamental techniques employed in the study. It includes chapters
Chapters 2 and 3 on Multi-Neighborhood Search and CMSA.

Part II is titled “Applications of Multi-Neighborhood Search” and delves
into the design of Multi-Neighborhood Search methods to solve real-world
problems. It covers Chapters 4 to 7, about the Minimum Interference
Frequency Assignment (MIFAP), the Sports Timetabling Problem (STT),
the Home Healthcare Routing and Scheduling Problem (HHCRSP) and the
Capacitated Dispersion Problem (CDP).

Part III is titled “Applications of CMSA” and covers Chapters 8 and 9.
It includes a practical application of the classic CMSA to a Bus Driver
Scheduling (BDS) problem, and the introduction of the Multi-Constructor
CMSA, which is applied to the Maximum Disjoint Dominating Sets Problem
(MDDSP).

The final part, Part IV, titled simply “Reinforcement Learning”,
explores the integration of reinforcement learning techniques into both
Multi-Neighborhood Search and Multi-Constructor CMSA.

The manuscript is completed by the conclusions, at Chapter 11.
This thesis presents work that has been published or submitted for

publication in peer-reviewed journals and conferences. With reference to
the list of publications, we report in Table 1.1 the correspondence between
the chapters and the publications. Other publicly available material include
the source code, instance generators and validators, instance solutions and
new generated datasets. When present, they are indicated in the respective
chapters.

20

Introduction

Table 1.1: Correspondence between chapters and publications.

Chapter Topic Publications Reference

Chapter 4 MIFAP 1 Ceschia et al. (2022)
Chapter 5 STT 2,8 Rosati et al. (2022); Van Bulck et al. (2023)
Chapter 6 HHCRSP 9 Ceschia et al. (2024a)
Chapter 7 CDP 10 Rosati and Schaerf (2024)
Chapter 8 BDS 6 Rosati et al. (2023b)
Chapter 9 MDDSP 3,5 Rosati et al. (2023a, 2024)
Chapter 10 RL 7 Ceschia et al. (2024b)

21

Part I

Methods

22

Chapter 2

Multi-Neighborhood Search

The local search paradigm, also known as neighborhood search, is based on
the idea of starting the exploration of the search space from a solution of
the problem and then moving, at each iteration, to a neighboring solution.
This is done by applying small perturbations to the values of one or more
solution components.

In this chapter, after a recall of the general notions of local search, we
describe in detail our Multi-Neighborhood Search approach. We assume,
without loss of generality, that we deal with a minimization problem.

2.1 Local search concepts

The neighborhood relation N , also know simply as neighborhood, defines the
transformation rule that is employed to move from the current solution to
a neighboring solution. A neighbor is a solution that can be reached from
the current candidate solution through the application of the neighborhood
relation N . For any given solution S, N (S) is the set of neighbors.

The size of a neighborhood N with respect to a solution S is its
cardinality |N (S)|. If, on average, |N (S)| is small, we say that a
neighborhood is small, otherwise we talk of a large neighborhood.

A move is a concrete application of the neighborhood rule that transforms
a solution Si in a solution Sj ∈ N (Si), and we denote it with the letter m.
A move modifies selected solution components. We say that move m⟨s, v⟩
assigns value v to component s. The notion of solution component depends
on the specific problem representation, but, to generalize, we can think of
them as the variables of the problem. Neighborhoods that only modify one
or a limited number of components are called atomic, and are typically small,

23

Multi-Neighborhood Search

while neighborhoods that modify a great number of components are typically
large.

The cost of a move is the difference between the cost of the new solution
and the cost of the previous solution. If a move brings from Si to Sj , the
cost of the move is defined as ∆f(Sj , Si) = f(Sj) − f(Si). It is also called
delta cost or differential cost. If ∆f(Sj , Si) < 0, the move is called improving
move, if ∆f(Sj , Si) > 0 it is called worsening move, if ∆f(Sj , Si) = 0, the
move is called sideways move.

A local minimum for the neighborhood N is a solution S∗ such that
f(S∗) ≤ f(S), ∀S ∈ N (S∗), that is, no improving moves can be found
among the neighbors of solution S∗. A strict local minimum is a solution
S∗ such that f(S∗) < f(S), ∀S ∈ N (S∗), that is, in addition to improving
moves, also sideways moves are not found among the neighbors of solution
S∗. A local minimum is also known as local optimum. Differently from
the concept of global minimum, that is a property of the instance, the
local minimum depends on the neighborhood. A local minimum for the
neighborhood relation Ni is not necessarily a local minimum for a different
neighborhood relation Nj .

1 2 3 4

5678

⇒
1 2 3 4

5678

Figure 2.1: Execution of a 2-opt move for the TSP.

Fig. 2.1 shows an example of local search neighborhood. It is the 2-opt
neighborhood for the TSP (Flood, 1956; Croes, 1958), that takes two edges
in the route and exchanges them with two edges not in the route. On the
left, we have the solution before the move, and on the right the solution after
its application. For simplicity, we only draw the part of the route affected
by the move.

2.1.1 Search space

The search space Σ is the set of all the valid solutions that can be accessed
by the search algorithm. We say a solution is valid if it is allowed in the
search space, independently from its feasibility.

The search space can be restricted to make the search more efficient. The
restriction is done by imposing additional rules on the validity of the solution,

24

Multi-Neighborhood Search

Figure 2.2: Search spaces are complicated landscapes, affected by
ruggedness, plateaus, basins of attraction and several local minima

that preclude the possibility to reach certain feasible solutions. Conversely,
one may consider expanding the search space to explore the infeasible
regions. It is helpful especially when promising regions in the search space
are interconnected solely through paths that traverse the infeasible region.
However, it is essential to acknowledge that including the infeasible region
significantly enlarges the search space. Often, a balance is found by allowing
the violation of certain hard constraints while excluding others from the
search space.

The search space of a combinatorial problem is a complex landscape
characterized by ruggedness, basins of attractions, and plateaus. The
ruggedness is higher where there is a greater density of local minima, and,
in general, if the search landscape is not smooth. The search can be
particularly hampered if these local minima are shallow, as it might get
repeatedly trapped in them and miss the good descents. The basin of
attraction of a local minimum is the region in which the search is “attracted”
by the local minimum. Basins of attraction might be mistaken for promising
descents. They can trap the search in a region of the search space where
the objective function is not generally good, and lead to idling around the
same local minimum. A plateau is a region where the objective function is
constant. The presence of plateaus is problematic for local search, because
they make it difficult to find the direction that lead to better solutions. A
visual representation of a search landscape is provided in Fig. 2.2, where the

25

Multi-Neighborhood Search

elevation represent the objective function value.

2.1.2 Cost function

The cost function, denoted as F (S), is the internal function used by the
local search algorithm to evaluate the cost of the moves. In some cases it
coincides with the objective function f(S), but, in general, it can differ. This
typically happens when we include the infeasible region in the search space.
In that case, the cost function is designed to penalize the violation of the
hard constraints, in addition to minimizing the objective function, as follows:

F (S) = whH(S) + f(S) (2.1)

where H(S) is a measure of the violations of the constraints and wh is a
suitably high weight that penalizes the violation of the constraints. A higher
weight given to wh makes solutions in the infeasible region less desirable,
while a lower weight makes the infeasible region more attractive.

In problems that present many plateaus, we can employ a lexicographic
cost function. Taking advantage of expert knowledge, we add an artificial
objective that discriminates among solutions in the plateau, and guide the
search toward more promising areas in the search space. To keep the cost
function linear, the new cost component can be combined inside F (S) with
a very low weight, so that it is taken into account only when the other
objectives are equal.

2.1.3 Neighborhood exploration and acceptance criterion

In local search, the exploration criterion defines how the neighborhood
is explored, while the acceptance criterion defines whether a neighbor is
accepted as new current solution.

The exploration criterion can be sequential or stochastic. Given a
solution S, the sequential exploration starts from a neighbor Si ∈ N (S)
and then explores sequentially the other neighbors. Therefore, to perform
a sequential exploration of the neighborhood, a rule that allows a ordering
of the moves is needed. In case we evaluate all neighbors from the first
to the last, we talk about exhaustive exploration. Naturally, exhaustive
exploration is computationally expensive, especially for large neighborhoods.
The alternative is stochastic exploration: a neighbor is selected at random,
usually according to the uniform distribution.

The most used acceptance criterions are: first improving, best improving,
and cost difference. First improving criterion accepts the first improving

26

Multi-Neighborhood Search

neighbor that is encountered, either sequentially or by repeated random
draws. Best improving accepts the best improving among all the neighbors,
and it is coupled with sequential exhaustive exploration. Cost difference
imposes accepting a neighbor if the difference of cost between the neighbor
and the current solution is below a certain threshold.

It is not uncommon to see in the literature that the notions of
neighborhood, the exploration rule and the acceptance criterion are confused.
For example, the actions “choose the best improving move in N (S)”
and “choose a random move in N (S)”, refer to different exploration and
acceptance criterion, but are sometimes regarded as distinct neighborhoods.
In this thesis, we make a clear distinction between these concepts.

2.1.4 Local search and metaheuristics

The term local search itself does not refer to a specific algorithm, but rather
to an optimization paradigm based on the neighborhood relation. Therefore,
to execute local search, we have to design a local search algorithm.

Fig. 2.3 shows an example of execution of a local search algorithm.
It starts from an initial solution and, iteratively, explores the neighboring
solution and moves to one of the neighbors, until the stop criterion is met.

The simplest local search algorithm is the following: first, determine at
random or with a constructive heuristic an initial solution Si ∈ S. Then,
find the best improving neighbor Sj ∈ N (Si), that is, Sj : ∆F (Sj , Si) ≤
∆F (Sj , S), ∀S ̸= Sj ∈ N (Si), and move to it. Third, repeat iteratively the
step until a local minimum is found and no improving moves are possible.
This algorithm is also known as steepest descent. It is completely unbalanced
toward exploitation, efficiently finding a local minimum but offering limited
opportunities for discovering good local minima.

It is important to acknowledge that the effectiveness of a local search
algorithm is determined by its ability to escape local minima, basins of
attraction, and navigate plateaus, rather than just the way it exploits
descending slopes. This balance between exploration of the solution space
and exploitation of the slopes leading to local minima is the key to a
successful local search algorithm.

A potential solution comes in the form of metaheuristics, general
problem-independent algorithmic frameworks that provide a guidance to
build problem-specific heuristics. They incorporate general strategies to
escape local minima and to navigate the search space and can be easily
adapted to very different problems. There is a very rich literature on
metaheuristics based on local search, and there is common consensus that

27

Multi-Neighborhood Search

(a) Initial solution, move evaluation and selection

(b) Second move evaluation and selection

(c) Last move evaluation and selection

Figure 2.3: Local search path in the search space

28

Multi-Neighborhood Search

using the local search paradigm inside a state-of-the-art metaheuristic
constitutes a best practice. Widely used methods are Simulated
Annealing (Kirkpatrick et al., 1983; Černý, 1985), Tabu Search (Glover,
1989, 1990), GRASP (Feo and Resende, 1995), Variable Neighborhood
Search (Mladenović and Hansen, 1997), and Iterated Local Search (Lourenço
et al., 2003). We refer to Glover and Kochenberger (2006) for a
comprehensive review.

2.2 Multi-Neighborhood Search

We have understood that exploring the search space of a complex problem
is not a trivial and straightforward task. Help comes in the form of a
metaheuristic structure that provides with state-of-the-art methodologies
to escape local minima and to navigate the search space. However, the
metaheuristic alone doesn’t guarantee the success of the search process and
the quality of the final solution. Navigating the search space with a single
local search neighborhood might not be sufficient to prevent being trapped
in local minima, basins of attraction, or plateaus. No metaheuristics can
enhance the capability of exploring of the search space if the neighborhoods
are not adequate for the purpose.

Multi-Neighborhood Search is the local search paradigm based on the
composition of multiple neighborhoods. It enhances the search capabilities
and overcomes the aforementioned limitations. A multi-neighborhood N∪ is
defined as:

N∪ =
K⋃
k=1

Nk (2.2)

where N1, . . . ,NK are the individual neighborhoods, and K is the number
of neighborhoods that compose N∪. Given that this multi-neighborhood is
obtained by the union of the individual neighborhoods, we also talk about
union neighborhood.

The motivations to compose multiple neighborhoods together are many.
First of all, a local minimum, a plateau or a basin of attraction of a
neighborhood is not necessarily a local minimum, a plateau or a basin of
attraction of another one. Consequently, the multi-neighborhood reduces the
likelihood of the search getting trapped in unpromising regions of the search
space. Additionally, the composition of multiple neighborhoods shapes a
larger neighborhood, which enhances the connectivity in the search space.
That is, the probability to find a path from a solution to another is higher.
Finally, a portfolio of neighborhoods makes the search more robust against

29

Multi-Neighborhood Search

variations in the features of the instances and in the characteristics of the
search space.

S1 S2 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 S13 S14 S15 S16

S17 S18 S19 S20 S21 S22 S23 S24

S25 S26 S27 S28 S29 S30 S31 S32

S33 S34 S35 S36 S37 S38 S39 S40

Figure 2.4: Connectivity of different neighborhoods in the search space.

Fig. 2.4 illustrates how Multi-Neighborhood Search enhances the
connectivity in the search space. The small search space in the example
has 40 solutions, labeled from S1 to S40. We have three neighborhoods,
distinguished by three colors: red (dotted line), blue (dashed line) and
green. If a solution Sj is a neighbor of solution Si, an edge with the color
of the corresponding neighborhood connects the two solutions. We notice
immediately that only the blue neighborhood connects completely the search
space. Despite what one might think at first sight, the green neighborhood is
constrained by the choice of the initial solution. For example, if we start the
search from solution S20, solutions S12, S19, S21, and S28 cannot be reached
in any way using the green neighborhood alone. Therefore, one could decide
to use the blue neighborhood. However, it is very inefficient. For example,
to move from solution S13 to solution S5, it requires at least nine moves, and
this path may contains plateaus, local minima, and other traps. If, instead,
we use the red neighborhood, one move is enough, and two moves suffice to
a combination of the blue neighborhood with the green one. Therefore, the
best choice in this scenario is to explore the search space with a combination
of the red, the blue and the green neighborhoods in a multi-neighborhood,
that provides all the possible paths to navigate the search space.

An ideal requisite is that the neighborhoods that compose the

30

Multi-Neighborhood Search

multi-neighborhood are disjoint, that is, for any given solution S, Ni(S) ∩
Nj(S) = ∅, ∀Ni,Nj ∈ N∪. Even though it is not always possible to
ensure that the intersection gives the empty set, an ideal multi-neighborhood
contains as few repeated neighbors as possible. If multiple neighborhoods
contain identical neighbors, the exploration is biased, and, by sampling the
same neighbor more often than desired, leads to a waste of computational
resources.

2.2.1 Exploration and move selection

Analogously to the single-neighborhood case, the multi-neighborhood
exploration can be sequential or stochastic.

In sequential exploration, the neighborhoods are sorted and are explored
sequentially. Inside each neighborhood, the neighbors are also explored
sequentially.

In stochastic exploration, every neighborhood Nk ∈ N∪ is assigned with
a probability σk ∈ [0, 1] such that

∑K
k=1 σk = 1. The probabilities σk

are referred to as rates or weights. The move choice is performed with
the two-step move selection. First, we choose a random neighborhood,
according to the probability vector, with a biased random selection. After
a neighborhood is chosen, the move inside the neighborhood is selected
stochastically, according to the uniform distribution. The two-step move
selection is resumed as follows:

1. Neighborhood selection: Nk ← RandomNH(N∪, {σ1 . . . σK})

2. Move selection: m← RandomMove(S,Nk)

In this thesis, we focus on stochastic exploration. A motivation is that
a multi-neighborhood is larger than a single neighborhood and sequential
and exhaustive exploration can be computational expensive. Moreover, the
idea of having a portfolio of neighborhoods that are explored sequentially
has been exploited by other metaheuristics, like Variable Neighborhood
Search (Mladenović and Hansen, 1997), while the idea of selecting them
stochastically received less attention. In principle, it is possible to mix the
two approaches, by using a sequential exploration of the neighborhoods and a
stochastic exploration of the moves inside the neighborhood, and vice versa.
However, these possibilities are out of the scope of this thesis.

31

Multi-Neighborhood Search

2.2.2 Internal biases

In addition to the probabilities σk, the multi-neighborhood can be equipped
with internal biases. They are used, for example, to distinguish between a
full and a restricted version of a neighborhood, where the restricted version
is designed in order to contain only elite moves.

The internal bias of a neighborhood is guided by a parameter b ∈ [0, 1].
If the neighborhood is selected, a biased random selection is done before the
choice of the move: with probability b, we employ the restricted version of
the neighborhood, and, with probability 1−b, we employ the general version.
Thus, the two-step move selection becomes a three-step move selection, that
involves, in order: neighborhood, bias, move.

Within this thesis, examples of use of internal biases are found in
Chapters 4 and 7.

2.2.3 Differential cost evaluation

A local search algorithm may evaluate millions or even billions of moves
during its execution. Normally, many more moves are evaluated than
accepted, and therefore, it is crucial to compute the difference ∆F (Sj , Si)
efficiently. A naive way to do it consists in simulating the move by
building the new solution Sj , computing F (Sj), and obtaining the difference
F (Sj)−F (Si). However, this is not efficient, given that a new solution must
be built at every move evaluation. Even if we had a way to build the new
solution from the current one efficiently, the evaluation of the cost function
alone can be an expensive operation. Therefore, a key factor for the speed
of Multi-Neighborhood Search is the implementation of efficient differential
cost evaluations, that evaluate the cost of a local search move without the
need to perform it.

Consider an objective function given by the linear combination of c cost
components. If we also allow violations of hard constraints in the search
space, we add other h penalties. The resulting cost function used by the local
search is F (S) = H(S)+ f(S), where f(S) = w1f1(S)+ · · ·+wcfc(S) is the
objective function of the problem and H(S) = wc+1H1(S)+ · · ·+wc+hHh(S)
is the combination of weighted penalties for the hard constraint violations.
Constants w1, . . . , wc and wc+1, . . . , wc+h are, respectively, the weights of the
objective function and of the hard components. The computation of the cost
of a new solution implies the recalculation of the c + h cost components in
f(S) and H(S).

If we solve the problem using a multi-neighborhood of size K, we can

32

Multi-Neighborhood Search

speed up the cost evaluation by breaking down the differential cost evaluation
of ∆F (Sj , Si) into K(c + h) delta cost evaluation functions, one for every
combination of neighborhood and cost component. Recalling that, with the
two-step move selection, we first select a neighborhood Nk and then a move
m ∈ Nk, the delta cost for move m is written as follows:

∆Fk(Sj , Si) =
c∑

l=1

wl∆fl,k(Sj , Si) +
h∑

p=1

wc+p∆Hp,k(Sj , Si) (2.3)

where ∆fl,k(Sj , Si) and ∆Hp,k(Sj , Si) are, respectively, the delta costs of the
l-th cost component of f(S) and the p-th cost component of H(S), for the
k-th neighborhood.

This may seem to have the same complexity of computing the original
cost difference, but it presents several advantages. First of all, given that a
local search move modifies the solution locally, we can compute these delta
costs very efficiently, if we consider only the specific parts of the solution that
are perturbed by the move. This is much more efficient than recomputing
the cost of the whole solution. Additionally, it is possible that not all cost
components are affected by the move, so that we have to compute fewer than
c+ h delta costs, with the others being zero.

Consider, for example, the 2-opt neighborhood shown in Fig. 2.1. In this
case, only the pairs of edges that are removed and inserted are affected by
the move. We can compute the delta cost efficiently, by subtracting the cost
of the two removed edges and adding the cost of the two inserted edges. We
don’t need to recompute the cost of the whole route, which involves a much
larger number of edges.

Even though the differential cost evaluation is not usually treated
in the literature about local search, because it is considered more an
implementation detail rather than a research aspect, it is a crucial component
for the efficiency of any Multi-Neighborhood Search algorithm and it should
always be incorporated into its design. In all the problems discussed in
Part II, we have implemented a differential cost evaluation technique, even
when not explicitly specified.

2.2.4 Redundant solution representations

The efficiency of the delta cost evaluation is based on the assumption that
many more moves are evaluated than they are accepted. The possibility to
implement efficient delta cost evaluations, however, does not come for free in
terms of solution structure and usually relies on the definition of redundant
representations of the solution.

33

Multi-Neighborhood Search

These redundant data structures are used to speed up the computation
of delta costs. In particular, they allow constant time look-ups and reduce as
much as possible searches of components in vectors and nested cycles. Every
time a move is executed, all the redundant data structures are updated,
which implies inevitably a computational overhead. However, if the number
of move executions is much smaller than the number of move evaluations,
it is still largely advantageous to implement as many redundant solution
representations as required by the delta costs.

Similarly to the delta cost evaluation, we include redundant solution
representations in all problems presented in Part II.

2.2.5 Deterministic sequences

Due to the complexity of many combinatorial problems, we don’t always want
all solution components to be modified as a consequence of a neighborhood
choice. A way to restrict the search space is to decide that only certain
solution components are modified by the neighborhood relations, while
others are deterministically repaired after the application of the move.

An example of deterministic sequence to compute part of the solution
after neighborhood moves, is provided in Chapter 6.

2.2.6 Repair chains

In complex neighborhoods, even identifying the solution components
involved in the move can be a challenging task. Consider a neighborhood
that modifies a subset {s1, . . . , sk} of solution components, not necessarily
of fixed cardinality. Consider that a move in the neighborhood leads to an
invalid solution if the subset is not constructed properly. This neighborhood
is potentially very large and we cannot just select random moves, if the
probability to select a valid move is low.

A repair chain is a deterministic procedure to compute the components
modified by the move. We define the move only on a limited number of
components, for example a single component s1 or a couple of components
{s1, s2}. Then, if the solution is invalid, we repair it by iteratively adding
the components s3, . . . , sk to the subset, ensuring that each new component
is added consistently with those already in the partial subset. We follow the
procedure until we bring the move in a state of validity, or until there are no
more components that can be added and we declare the move invalid.

The use of repair chains makes the move computation more expensive,
but guarantees that only valid moves are generated, consistently reducing

34

Multi-Neighborhood Search

the overall computational cost of the neighborhood.
An example is provided in Chapter 5, where we solve the Sports

Timetabling Problem using a multi-neighborhood composed of six
neighborhoods, three of which are complex and require the use of repair
chains.

2.3 Multi-Neighborhood Simulated Annealing

Like classic local search, also Multi-Neighborhood Search requires the
guidance of an algorithm. Given that our approach is designed for stochastic
exploration, a natural candidate is Simulated Annealing (SA).

SA relies on a parameter T ∈ R called temperature, that guides the
acceptance rate of worsening moves. At each iteration, a move m is sampled
at random and it is accepted according to the Metropolis criterion, which
implies that improving and sideways moves are always accepted, while
worsening moves are accepted with probability e−∆F/T . The temperature
T starts from an initial value T0, and decreases following a geometric cooling
scheme, until a final value Tf (0 < Tf < T0). Therefore, the cooling scheme
reduces the likelihood of acceptance of worsening moves during the search.

Many variants of the SA procedure have been proposed in the literature,
but along this thesis we use its basic version, as originally proposed by
Kirkpatrick et al. (1983), with some minor arrangements described in
this section. We forward the reader to Franzin and Stützle (2019) for a
comprehensive and in-depth review of the SA variants.

2.3.1 Initial solution

Local search always starts from an initial valid solution S ∈ Σ, and SA
is no exception. The initial solution can be generated using a random
procedure that assigns random values to the solution components in a
controlled manner, or by a probabilistic or deterministic greedy procedure.
Alternatively, one can initialize the SA procedure with the best solution
found by an external solver or from previous runs of the same SA procedure.
This is known as warm start.

We will not delve into the details of the initial solution generation since
it is not among the critical components in Simulated Annealing (see Franzin
and Stützle, 2019). Moreover, in Chapter 5, we show that a comparison
of greedy and random initial solution strategy for the Sports Timetabling
Problem does not significantly influence the performance of the algorithm.

35

Multi-Neighborhood Search

2.3.2 Acceptance criterion

A key component of SA is the Metropolis acceptance criterion (Metropolis
et al., 1953). After a move m with cost cost ∆F > 0 is sampled, a random
real number is drawn in the interval (0, 1). If its value is below e−∆F/T , the
move m is accepted, otherwise it is rejected. If ∆F ≤ 0, the move is always
accepted.

Figure 2.5: Metropolis acceptance criterion in Simulated Annealing.

Fig. 2.5 shows the value −∆F/T on the x-axis and, on the y-axis, the
acceptance probability e−∆F/T . For every value of −∆F/T , the acceptance
probability is the height of the curve in that point. The area painted in
green represents the area where moves are accepted, while the area painted
in red corresponds to rejected moves. When −∆F/T < 0, the value e−∆F/T

is comprised between 0 and 1 and defines the acceptance probability. It
decreases as we go towards greater negative values, which are given by either
lower temperature T or higher positive ∆F .

2.3.3 Cooling scheme and cut-off

The temperature starts from value T0, and reaches the final value Tf ,
evolving through intermediate temperatures T1, T2, . . . , Tf−1. A parameter

36

Multi-Neighborhood Search

Ns defines the number of sampled moves at each temperature level (s stands
for sampled). A variable ns counts the number of moves sampled at the
current temperature. When counter ns hits the value Ns, the temperature
cools down according to the geometric cooling scheme Tk+1 = αTk, where
α ∈ (0, 1] is the cooling rate. Afterwards, ns is reset to zero.

Knowing T0, Tf , and α, we can determine the number of temperatures
f in a SA run. Given that Tf = T0 · αf , we obtain that

f = logα

(
Tf

T0

)
is the number of temperatures in a Simulated Annealing run.

In order to speed up the early stages of the search, we adopt the
so-called cut-off mechanism (see Johnson et al., 1989), which decreases the
temperature when a fixed number of moves Na has been accepted (a stands
for accepted). The intuition behind this is that there’s no need to remain
at a given temperature level if most of the worsening moves are accepted, as
it is a symptom of random roaming in the search space. We use a counter
na to record the number of accepted moves in the temperature. In case na

reaches the value Na while ns < Ns, the cut-off is applied and we decrease
the temperature. We redistribute the Ns − ns iterations what would be lost
among the remaining temperatures, adapting Ns after the cooling step, as
follows:

Ns ← Ns +
Ns − ns

logα

(
Tf

T

)
where the quantity logα(Tf/T) is the number of remaining temperatures,
computed at the current temperature T .

In order to ease the determination of Na, we define the parameter
ρ = Na/Ns (with 0 < ρ ≤ 1) which represents the fraction of the initial
number of iterations per temperature Ns that must be accepted to apply the
cut-off. Therefore, Na = ρ · Ns. Nevertheless, as Ns is adapted during the
search to save iterations, the value of Na is still considered as an independent
parameter and it is not updated.

2.3.4 Stopping criterion

We have previously seen how to compute the number of temperatures f in
a Simulated Annealing run. Given Ns, we obtain that the total number of
local search moves evaluated I is:

I = f ·Ns

37

Multi-Neighborhood Search

In general, however, we want to decide the length of the run beforehand,
and therefore we set the value I. Given that also T0, Tf and α are given as
input parameters, Ns is computed as a dependent parameter, as follows:

Ns =
I
f
=

I

logα

(
Tf

T0

)
We point out that the use of I as length of the algorithm run guarantees

the reproducibility of the experiments, and all the works presented in Part II
follow this approach. Conversely, the works presented in Part IV use a
fixed runtime. The motivations for this choice and its implications on
reproducibility are discussed in the respective chapter.

2.3.5 Algorithm description

The Multi-Neighborhood Simulated Annealing (MNSA) that uses the
algorithm components described in this chapter is presented in Fig. 2.6.
We provide hereafter its detailed description, given that it is the baseline
metaheuristic employed in the work presented in Part II.

It takes as input the search space Σ, a multi-neighborhood N∪ =⋃K
k=1Nk, the total iterations I, a cost function F , values for the parameters

T0, Tf , α, ρ, and the neighborhood rates σ1 . . . σK .
The algorithm starts at line 1 with the initialization of the temperature

T to T0 and the computation of the values Ns and Na. At line 2 the initial
solution is generated, which is also assigned as the best solution found so
far.

The main loop from lines 3 to 20 is executed until the temperature doesn’t
go below the final value Tf . Line 4 initializes the counters ns and na of
sampled and accepted neighbors in the current temperature. Lines from 5
to 18 contain the inner loop that is repeated to sample up to Ns neighbors,
or up to Na accepted moves.

The multi-neighborhood exploration takes place at lines 6–7, according
to the two-step move selection approach.

The move delta cost ∆F is computed at line 8, using the efficient delta
cost computation. In case ∆F ≤ 0 (line 9) the move is always accepted
(line 10) and the counter na is incremented (line 11). Furthermore, at
lines 12–13 a potential new best solution is detected and the best-so-far
is updated. A worsening move, instead, is accepted only if it respects the
Metropolis criterion (lines 15–17). Finally, the counter of the number of
sampled neighbors is updated at line 18.

38

Multi-Neighborhood Search

procedure Multi-Neighborhood Simulated Annealing
(SearchSpace Σ, Multi-Neighborhood N∪, Iterations I,
CostFunction F , Parameters T0, Tf , α, ρ, {σ1 . . . σK})

1: T ← T0, Ns = I/logα (Tf/T0), Na = ρNs

2: S ← RandomState(), Sbest ← S
3: while T ≥ Tf

4: ns ← 0, na ← 0
5: while ns < Ns ∧ na < Na

6: Nk ← RandomNH(N∪, {σ1 . . . σK})
7: m← RandomMove(S,Nk)
8: ∆F ← F (S ⊕m)− F (S)
9: if (∆F ≤ 0)
10: S ← S ⊕m
11: na ← na + 1
12: if (F (S) < F (Sbest))
13: Sbest ← S
14: else
15: if (RandomReal(0, 1) < e−∆F/T)
16: S ← S ⊕m
17: na ← na + 1
18: ns ← ns + 1
19: T ← T · α
20: Ns → Ns + (Ns − ns) /logα (Tf/T)
21: return Sbest

Figure 2.6: Multi-Neighborhood Simulated Annealing procedure

After exiting the inner loop, the temperature is updated at line 19
according to the geometric cooling scheme, that depends on the parameter
α. If the inner loop was completed because the number of accepted
neighbors reached the threshold Na, the unused Ns − ns move evaluations
are redistributed equally among the remaining temperatures (line 20). The
outcome of the algorithm is the best solution found Sbest (line 21).

2.4 Parameter tuning

The multi-neighborhood needs input values for the neighborhood rates
σ1, . . . , σK , and the possible internal biases bk. Moreover, the SA has its
own parameters: the start temperature T0, the final temperature Tf , the
cooling rate α, and the cut-off ratio ρ.

In general, we can safely assume that the values of the

39

Multi-Neighborhood Search

multi-neighborhood parameters and those of SA are independent between
each other. Even though this is not true in a strict sense, it allows to tune
them separately, simplifying the parameter space. We employ this approach
in all the works presented in Part II.

Regarding SA parameters, the values of T0 and Tf are related with the
average delta costs encountered during the search, as both the temperature
and the delta cost appear in the Metropolis acceptance criterion. Conversely,
α and ρ are less affected by the features of the instance.

An appealing characteristic of the multi-neighborhood approach would
be its ability to self-adjust, meaning that it can autonomously adapt the
neighborhood rates during the search. We explore this in Part IV, where we
propose an online tuning mechanism for σ1, . . . , σK through a reinforcement
learning approach. In this way, we reduce the computational cost of the
tuning procedure and we do not have to assume independence with the SA
parameters. At the same time, this makes the multi-neighborhood robust
against changes in the instance landscape.

Finally, we underline the importance of always conducting a statistically
principled tuning procedure, minimizing premature commitment in choosing
parameter values. To do so, we employ automated algorithm configuration
tools that incorporate state-of-the-art techniques to sample points in the
parameter space and to evaluate configuration on the basis of statistical
tests, conducted on the experimental results.

2.5 Further combinations of neighborhoods

This thesis focuses on the union neighborhood, which is the
multi-neighborhood obtained by the union of individual neighborhoods. It
is not the only possible way to combine neighborhoods together, and, even if
it is not in the scope of this thesis, we briefly discuss here some alternatives.

The product neighborhood is obtained by the sequential application of
two neighborhoods and it is defined as N1×2 = N1 ×N2. The advantage of
applying two neighborhood moves at once resides mostly in its possibility to
perform longer jumps. Imagine that we have two neighborhoods N1 and N2

and that exists a path in the search space Si → Sj → Sk, with Sj ∈ N1(Si),
Sk ∈ N2(Sj). Consider also that ∆f(Sk, Si) < 0, and that Sk is not reachable
from Si with any of the neighborhood relations and that ∆f(Sj , Si) > 0. In
this case, it might be that the move that brings from Si to Sj is never
performed because it is worsening, and the promising path from Si to Sk

is never walked. The neighborhood N1×2 contains the improving move that

40

Multi-Neighborhood Search

brings from Si to Sk, which has a delta cost ∆f(Sk, Si) < 0.
The Cartesian neighborhood is the union of all the product

neighborhoods. It is defined as follows:

N∏ =

K⋃
i,j=1,i ̸=j

Ni ×Nj (2.4)

We remark that a Cartesian neighborhood is much larger than a union
neighborhood. A Cartesian neighborhood made up by K neighborhoods
contains K(K − 1) product neighborhoods, that becomes K2 if we allow
i = j in Eq. (2.4). Moreover, we don’t want to lose the possibility to employ
individual neighborhoods, which adds other K neighborhoods.

There are other ways of using multiple neighborhoods that are not
strictly multi-neighborhoods. One option is the token ring, which
involves alternating between neighborhoods each time a local minimum
is encountered. The token ring at the basis of Variable Neighborhood
Search (Hansen et al., 2017). However, we do not classify it as a
multi-neighborhood according to our definition, because it only connects
the neighbors associated with the currently active neighborhood. This is in
contrast to the union and Cartesian neighborhoods, which allow to reach
all neighbors in all available neighborhoods at every step of the search.
Despite this distinction, the token ring is a highly effective approach, and
in particular its use within the VNS metaheuristic has yielded remarkable
results on a large class of combinatorial problems.

41

Chapter 3

Construct, Merge, Solve, and
Adapt

Construct, Merge, Solve & Adapt (CMSA) is a general matheuristic for
combinatorial optimization originally proposed by Blum et al. (2016), based
on the idea of constructing a reduced instance of the full problem by means
of merging solution components obtained, for example, by the repeated
execution of a randomized construction heuristic, and the solution of the
reduced instance by means of an exact solver. The algorithm is also equipped
with an aging mechanism to ensure that unpromising solution components
are discarded after a certain number of iterations. Existing applications of
CMSA encompass various hard combinatorial optimization problems. We
mention, among many, the multi-dimensional knapsack problem (Blum and
Ochoa, 2021), prioritized test data generation (Ferrer et al., 2021), and
refueling and maintenance planning of nuclear power plants (Dupin and
Talbi, 2021). Extensions include the Self-Adaptive CMSA (Akbay et al.,
2022) and the Multi-Constructor CMSA, that we introduce in Chapter 9 of
this thesis. In the following sections, we provide an overview of the general
method, adopting the terminology from Blum et al.. Moreover we give a
brief introductory discussion of the novel Multi-Constructor CMSA and we
discuss the parameter tuning for CMSA.

3.1 The CMSA Algorithm

We define a set C to encompass all conceivable components that could make
up solutions in a combinatorial problem. In this context, a valid solution S is
represented by a subset of the solution components in C, denoted as S ⊆ C.

42

Construct, Merge, Solve, and Adapt

On the majority of combinatorial problems, C is large, and finding good
or optimal solutions might be challenging even with modern MIP solvers.
Nevertheless, if we had a way to build a restricted set C′ ⊆ C, which only
contains promising solution components, we could affordably find a proven
optimal solution on C′. In this context, we say that C′ is a sub-instance of C.

Initialize parameters and
an empty sub-instance

Probabilistically
CONSTRUCT solutions

MERGE new solution
components with the sub-instance

SOLVE the MIP model
based on the sub-instance

Apply the aging criterion
to ADAPT the sub-instance

Stop
criterion?Return best solution

no
yes

Figure 3.1: General CMSA flow

The CMSA algorithm, represented in Fig. 3.1, is composed by four
iterated phases:

Construct: A number of feasible solutions are constructed.

Merge: The solution components from these solutions are merged into C′.

Solve: A (possibly) exact solver is applied to the sub-instance C′.

Adapt: C′ is adapted by removing unpromising solution components.

A key factor for a successful application of CMSA is the ability to keep
the sub-instance into reasonable sizes: it shouldn’t be too small, because it
would not contain enough diverse components to find good solutions, but it
shouldn’t be too large either, because it would be too hard to solve and the
exact solver might not find any good solution. The size of the sub-instance
in relation to the size of the problem instance depends on several factors,

43

Construct, Merge, Solve, and Adapt

including the nature of the constructive heuristic, the number of solutions
generated at each iteration, and the aging mechanism.

When we have an integer linear or non-linear programming model for the
problem, one way to define the set of solution components is by considering
each combination of a variable with one of its values as a solution component.

In the following, we discuss the four phases of the CMSA algorithm on
the assumption that we have an integer linear model of the problem in the
form:

min cTx (3.1a)
subject to: Ax ≥ b (3.1b)

x ∈ {0, 1}n (3.1c)

where x ∈ Rn is a vector of binary variables, c ∈ Rn is the vector of
coefficients of the objective function and b ∈ Rm and A ∈ Rm×n are a
vector and a matrix that define the constraints. For a given x ∈ x we define
two solution components: x = 0 and x = 1.

3.1.1 Construct: construction procedure

In the Construct phase, we call constructor the algorithm responsible
for generating nsols feasible solutions. A reasonable strategy is to employ,
in the role of constructor, a probabilistic constructive heuristic, such as
a randomized greedy algorithm. Greedy algorithms start with an empty
solution and iteratively add components to the partial solution based on a
problem-specific greedy function, until a complete solution is built.

A deterministic greedy can be suitably randomized using a deterministic
rate parameter drate ∈ [0, 1] and a candidate list, with size clist ∈ N. Before
every insertion of a new component in the partial solution, a random number
is drawn between 0 and 1. If the number falls below drate, the step is
taken deterministically, and the best candidate component according to the
greedy function is added to the solution. Otherwise, a list containing the
clist candidate components that score best in the greedy function is built,
and a random component is chosen uniformly from the list.

It is worth noting that introducing randomness, especially early in
the construction process, can lead to significant variation in the resulting
solutions, even when using high deterministic rates.

44

Construct, Merge, Solve, and Adapt

3.1.2 Merge: sub-instance

A sub-instance C′ is composed by all the solution components that have
been generated at least once by the construction procedure, and haven’t
been eliminated yet because of aging.

In the nsols solutions coming from the Construct phase, each variable
x ∈ x has taken either always the value 1 in all solutions, or always the
value 0, or 0 in certain solutions and 1 in others. If a variable has taken both
values 0 and 1, than both the components x = 0 and x = 1 are added to the
sub-instance. If the variable has taken only value 1 or only value 0, then only
the corresponding component is added to the sub-instance. Except from the
first iteration, the sub-instance is not empty and therefore the components
are merged with the existing ones.

A possible variation is to include always the component x = 0, even if a
given variable x is consistently found with value 1 by the constructor.

3.1.3 Solve: exact solver

A solver is called to find a solution using solely the components in the
sub-instance. The intuition is that we can discover solutions that are
better than the best solution generated by the repeated execution of the
constructor.

First, we fix in the model the variables x ∈ x for which only the
component x = 0 or only the component x = 1 is present in the sub-instance.
This is done, for example, by imposing the constraints x = 0 or x = 1.
We say that these are the fixed variables. The variables that present both
components x = 0 and x = 1 are not constrained and are free to take any
value in the domain {0, 1}. We call them released variables.

The reduced model that we obtain is smaller than the original model.
A MIP solver that was unable to solve the original model, might be able
to solve the reduced one in a reasonable running time. It might still be
convenient, however, to impose a time limit texc on the solver, for example
to prevent long run times required just to prove the optimality of a solution,
at the expenses of experiment reproducibility. Therefore, the outcome of the
Solve phase can be either a proven optimal solution on the sub-instance, or
the best solution found within the time limit texc.

A best practice is to perform a warm start, which provides the solver
with the best-so-far solution.

45

Construct, Merge, Solve, and Adapt

3.1.4 Adapt: aging

While CMSA shares some features in common with other matheuristics like
LNS (Shaw, 1998) and Kernel Search (Angelelli et al., 2010), a key difference
from other existing methods is its aging mechanism. The intuition behind
the aging mechanism of CMSA is that only profitable solution components
should be kept into the sub-instance in the long term, where profitable means
that they are chosen by the solver in the Solve phase. Conversely, the
presence in the sub-instance of components that are consistently discarded
by the exact solver do not provide any advantage, but rather constitutes a
disturbing computational load.

The aging mechanism is based on the concept of age of a solution
component, which is a non-negative integer value associated to all solution
components in the sub-instance. For every new component x = 0 or x = 1
that we merge in the sub-instance, we set the counter of its age to zero. If
the MIP solver finds a solution with x = 0 or x = 1, we reset the age of
the corresponding component to 0. Otherwise, we increase the age of the
component by one. When the age of a component reaches the threshold
agelimit, the component is removed from the sub-instance.

The aging mechanism plays a crucial role in maintaining the size of
the sub-instance reasonable, which is vital because MIP solvers are highly
sensitive to the size of the input. The sub-instance size is guided by the
parameter agelimit, in relation also with nsols, drate, and clist. Naturally, the
sub-instance is considered “small” or “large” in relation to the capabilities
of the exact solver to solve it within the granted computational time texc.
In general, increasing nsols and agelimit leads to a larger sub-instance size,
while a higher drate reduces it. Finding a good balance among these values
is important to ensure the performance of CMSA.

3.2 Multi-Constructor CMSA

The novelty that we introduce in this thesis is the Multi-Constructor CMSA,
which extends the original CMSA by allowing the use of multiple independent
constructors, into the Construct phase. Differently from the original
CMSA, that uses a single construction procedure, every solution is generated
by a constructor chosen from the pre-defined portfolio of constructors. The
intuition is that a diversity in the constructors leads to a higher diversity in
the solution components in the sub-instance C′. More importantly, it might
be that certain solution components are not accessible to a given constructor
because of the nature of its constructive procedure, and if a component is

46

Construct, Merge, Solve, and Adapt

never generated it cannot be found in the sub-instance. Therefore, using
multiple constructors, we can access areas of the search space that are not
reachable by means of a single constructor.

Leveraging the principles of Multi-Neighborhood Search (Chapter 2),
we propose a stochastic selection criterion for the constructors in
Multi-Constructor CMSA. In order to bias the choice towards the most
promising constructors, probabilities, also named weights or rates, are
associated with them. Given a Multi-Constructor composed by K
constructors H1, . . . ,HK , the probabilities are parameters σ1, . . . , σK such
that σi ∈ [0, 1] and

∑K
i=1 σi = 1.

procedure Multi-Constructor CMSA
(Problem instance, values for parameters
nsols, agelimit, texc, probabilities {σ1, . . . , σK})

1: Sbsf ← null
2: C′ ← ∅
3: while stop criterion not met
4: for i = 1, ..., nsols

5: Hk ← ChooseConstructor({H1, . . . ,HK}, {σ1, . . . , σK})
6: S ← ProbabilisticSolutionGenerator(Hk, C)
7: for all c ∈ S and c /∈ C′
8: age[c]← 0
9: C′ ← C′ ∪ {c}
10: Sopt ← ApplyExactSolver(C′, texc)
11: if Sopt is better than Sbsf

12: Sbsf ← Sopt

13: for all c ∈ C′
14: if c ∈ S′

opt

15: age[c]← 0
16: else
17: age[c]← age[c] + 1
18: if age[c] ≥ agelimit

19: C′ ← C′ \ c
20: return Sbsf

Figure 3.2: Multi-Constructor CMSA

The pseudo-code of the Multi-Constructor CMSA is presented in Fig. 3.2.
The algorithm takes as input a problem instance, the number of solution
constructions per iteration nsols, and a maximum allowed age for the solution
components agelimit. It returns a solution Sbsf , which is the best solution
found during its execution.

47

Construct, Merge, Solve, and Adapt

The algorithm begins with the initialization of the best-so-far solution
Sbsf to null and the sub-instance C′ to an empty set, at lines 1 and 2. The
main loop is comprised in the lines from 3 to 19, and continues as long as
the stop criterion is not met. A suitable stop criterion is the total number
of CMSA iterations.

At each iteration, nsols feasible solutions are probabilistically generated
in the Construct phase. Here is the main difference with respect to the
original CMSA. At every solution generation, a constructor Hk is chosen at
random at line 5, according to the probabilities σ1, . . . , σK , from the pool of
K constructors H1, . . . ,HK . Then, a solution is generated with the chosen
constructor (line 6).

The solution components associated with these solutions are subsequently
merged into C′ (Merge phase, lines 7–9). The age of the new components
added to the sub-instances is set to zero (line 8).

An exact solver is then applied to optimize C′ (Solve phase, line 10),
possibly within a given time limit texc. The best-so-far solution is
updated if the solution found is better than the current best-so-far solution
(lines 11–12).

Finally, in lines 13–19, the so called Adapt phase takes place. First
of all, the age of all solution components found in Sopt is set to zero
(lines 14–15), while, the age of solution components in C′\Sopt is increased by
one (line 16–17). Moreover, the solution components in C′ that have reached
the maximum age (agelimit) are removed from the sub-instance (lines 18–19).

There are many advantages that come from using multiple constructors
in CMSA. First of all, constructors can be of different nature. For example, a
greedy constructor that builds complete solutions and, therefore, guarantees
that at least a valid solution is present in the sub-instance, can be used
together with constructors that only build partial solutions. Additionally,
while it is not trivial to come up with different constructors for the same
problem, that are together high-quality and diverse, in many cases there
exist already in the literature efficient greedy algorithms that can be easily
randomized and used as constructors.

In conclusion, the Multi-Constructor CMSA is an extension of CMSA
that provides a general strategy for using different constructors within the
CMSA procedure. The introduction of the Multi-Constructor CMSA, along
with its initial application, can be found in Chapter 9, where we adapt six
greedy algorithms from the literature as constructors to solve the Maximum
Disjoint Dominating Sets Problem.

48

Construct, Merge, Solve, and Adapt

3.3 Parameter tuning in CMSA

Several parameters have been introduced in this chapter for CMSA. We have
the number of solutions generated at each iteration nsols, the maximum
age of solution components agelimit, which are strictly CMSA parameters.
Additionally, we set a time limit for the exact solver texc. Furthermore,
we consider the parameters of the construction procedure that are the
deterministic rate drate and the candidate list size clist. Finally, the
probabilities of the constructors σ1, . . . , σK are specific parameters of the
Multi-Constructor CMSA. As mentioned before, it is important that the
size of the sub-instance is kept reasonable, in order to allow the exact solver
to find a solution in the given time limit, and this makes parameter tuning
a critical task. Moreover, if for a certain problem the instances are very
different in size, we have to keep into account that a single set of parameter
values might be ineffective and we might need to tune the parameters
separately for size ranges, or to include a feature-based relationship that
links the parameters to the size of the instance.

49

Part II

Applications of
Multi-Neighborhood Search

50

Chapter 4

Minimum Interference
Frequency Assignment

Allocating radio spectrum resources is a crucial problem in the design and
operation of mobile communication networks. In particular, the Frequency
Assignment Problem (FAP) consists in assigning, in an efficient way, a
limited number of frequencies to communication links (Murphey et al.,
1999). In this chapter, among all the possible frequency assignment models,
we consider the Minimum Interference Frequency Assignment Problem
(MI-FAP), which is the most studied model, mostly due to its practical
importance. The MI-FAP aims at allocating frequencies so that interferences
between adjacent frequencies in geographically close links are minimized.

We undertake the two versions of the problem proposed in the COST
259 project (Correia, 2001) and by Montemanni et al. (2001), respectively,
as they both come along with a very challenging dataset, that have been
used as benchmark for many studies.

Even though the technology has evolved substantially since these
formulations have been proposed, the frequency assignment problem remains
relevant on more recent environments, such as 5G (Lin et al., 2015), edge
computing (Zhang et al., 2020), D2D networks (Zhao et al., 2018), and
military applications (Wang and Henz, 2017; Lal et al., 2018). However,
no specific new formulation and benchmarks have emerged so far, therefore
these datasets remain the most popular and challenging benchmarks.

For the solution of this problem we have designed and implemented a
Multi-Neighborhood Search approach based on a suitable combination of
different neighborhoods, driven by a Simulated Annealing (SA) procedure.
SA has been used also by many other authors for FAP with good results,

51

Minimum Interference Frequency Assignment

suggesting that it is particularly suitable for this type of problems (see
Section 4.2 on Related work).

In order to obtain the best configuration of the algorithm for the
specific problem versions and datasets, we have tuned the algorithm using a
comprehensive and statistically-principled tuning procedure.

We also performed an extensive experimentation with the aim of
comparing our results with previous literature. Although a totally precise
comparison is not possible, the outcomes of the experiments show that our
solution method is able to outperform all those reported for the version of
Correia (2001) for most of the instances and to reach the same level of the
best results for the version of Montemanni et al. (2001), on the respective
datasets. In addition, we have reached many new best-known solutions for
the COST 259 dataset.

Finally, in order to foster future comparisons, we published our solutions
on the web. To this aim, we created a novel data format for both input
and output files based on JSON. All data is available for inspection and
comparison at https://opthub.uniud.it. Our repository is conceived in
such a way that also other researchers can validate and upload their solutions,
so that they become immediately available for everybody along with the
timestamp of the upload.

4.1 Problem definition

For the sake of completeness, we describe here informally the two versions
of the MI-FAP problem, and we forward the reader to Correia (2001) and
Montemanni et al. (2001) for more details on the specific formulations and
for the precise mathematical models.

We proceed by firstly describing the problem version proposed within the
COST 259 project, and then we move to the simpler variant proposed by
Montemanni et al. (2001). In the following, for conciseness, we refer to the
two versions as MI-FAP-I and MI-FAP-II, respectively.

The key elements of MI-FAP-I are the following ones:

Cells: a cell is an equipment that provides communication service to a given
geographical area and has a fixed number of transmitters.

Transmitters: a transmitter is a single device that transmits the signal,
and requires the assignment of a frequency. For each cell, one of
the transmitters is designated to carry the control signal whereas the
others carry traffic signals. The control signal needs special treatment

52

Minimum Interference Frequency Assignment

in terms of separation constraints, as explained below (see handover
separation rule).

Frequencies: a fixed number of frequencies (or channels) are available, each
one identified by an integer value. Frequencies that are adjacent in
terms of actual transmission bandwidth are assigned to consecutive
values. Some frequencies can be forbidden either for a given cell or
globally for the entire area.

Sites: a site is a physical installation where several cells (typically three)
are located.

In order to avoid disturbance in the communication, the assignment of
frequencies to transmitters has to satisfy a set of separation rules:

Co-cell: transmitters belonging to the same cell must have a given frequency
separation. The typical separation value is 3 and it is defined at
global level, but some cells can have specific (and different) separation
requirements.

Co-site: transmitters belonging to cells at the same site must have a given
frequency separation, typically 2.

Handover: cells that are geographically adjacent might suffer from the
so-called handover effect, therefore requiring a specific separation
among the transmitters of those cells on the basis of their specific
type (i.e., control / traffic). Typically, there must be a separation of 2
between the control channels, a separation of 1 or 2 between a control
channel and a traffic channel, and a separation of 1 between traffic
channels.

Additional separations: ad hoc separations between pairs of cells due to
specific conditions might be required, and they have to be enforced on
all pairwise combinations of transmitters of the two cells involved.

In addition to these mandatory channel separations, which must be
always fulfilled (i.e., they are so-called hard constraints), also a milder
interference of frequencies between cells has to be taken into account in
terms of an objective function to be minimized. In detail, for each pair
of cells the interference cost that occurs in case of assignment to the same
frequency (same-channel interference) or to adjacent (i.e., whose distance

53

Minimum Interference Frequency Assignment

is 1) frequencies (adjacent-channel interference) is specified as a pair of
real-valued numbers.

When the cells are geographically apart, there is no interference, so there
will be no penalty for assigning the same frequency or an adjacent one. It
might also be possible that only the same-channel interference is relevant
and the adjacent-channel interference is zero (the opposite is obviously not
possible). In this version of the problem, no interference penalty is ever
assigned in case of frequencies at distance 2 or more.

The specification for MI-FAP-II is much simpler, as there are no explicit
notions of cell, site, and handover. Constraints are expressed directly at
the transmitter level, by specifying the required separation between pairs
of transmitters and the cost of its violation. The penalty for violating
the separation is fixed, independently of the degree of violation. This is
different from MI-FAP-I in which same- and adjacent-channel interferences
are weighted differently. Finally, there is no explicit distinction between hard
and soft constraints, though, in some instances, there are separations with
an extremely high cost (108), that we interpreted as a hard one.

4.2 Related work

The literature on Frequency Assignment is very vast. For this reason, we
focus our overview specifically on the Minimum Interference formulation. We
refer to the comprehensive and enlightening survey by Aardal et al. (2007) for
the general problem and to the FAP website (Eisenblätter and Koster, 2000)
for other publications, benchmark instances, and results (unfortunately not
very up-to-date).

The MI-FAP originates from the study by Allen et al. (1987) and was
thereafter investigated in many other works (Duque-Antón et al., 1993;
Kapsalis et al., 1995; Aardal et al., 1996; Crisan and Mühlenbein, 1998;
Borndörfer et al., 1998; Koster et al., 1999; Tiourine et al., 2000; Koster
et al., 2002; Björklund et al., 2005; Kolen, 2007), mainly in connection to
the CALMA project (Aardal et al., 2002).

The MI-FAP-I formulation emerged within the COST 259 project
“Wireless Flexible Personalised Communications” (Correia, 2001), which
involved more than 200 European research institutions and companies in
the area of mobile radio during the years from 1996 to 2000. One of the
contributions of the project was a dataset of 32 realistic instances, which
has become well-known and a very challenging benchmark for GSM network
planning (see Section 4.4.1 for details about this dataset).

54

Minimum Interference Frequency Assignment

Over the years, MI-FAP-I has been mainly tackled by metaheuristic
methods, because large-size scenarios of the COST 259 dataset are still
beyond the reach of exact approaches. Among the metaheuristics methods,
a Simulated Annealing (SA) approach for MI-FAP-I was firstly proposed by
Beckmann and Killat (1999). This approach relies on a cell-based local search
neighborhood with some restrictions: a cell is randomly selected, then the
frequency of the transmitter (within the cell) with the largest interference
cost is substituted with a new permitted frequency causing the smallest
interference cost.

Hellebrandt and Heller (2000) apply a variant of SA, the threshold
accepting algorithm, where a new solution is accepted if the deterioration
of the value of the objective function is less than a given threshold, which
is reduced during the search process. They implement a basic neighborhood
(i.e., the one that changes the frequency to a single transmitter) but
forbidding those moves that produce violations of the hard constraints. In
addition, they also employ at each iteration a one-cell reoptimization process,
by means of a dynamic program that performs a simultaneous exchange of
all the frequencies assigned to a cell when this improves the current solution.

The dynamic programming method has been generalized to cliques of
vertices by Mannino et al. (2007), who also employ a Simulated Annealing
algorithm as their main search procedure. They also show that, for some
restricted cases under some specific hypothesis on the subsets of transmitters,
the MI-FAP can be reduced to a maximum weighted stable set problem,
which is solvable in polynomial time. This theoretical result has been
exploited to search effectively in a large-scale neighborhood, defined as the set
of all transmitters whose frequency can be simultaneously replaced without
incurring in any violation.

Montemanni et al. (2003) propose a Tabu Search procedure with a
dynamic length tabu list in which the neighborhood relation changes the
frequency of a single transmitter involved in at least one constraint violation.
They also implement cell re-optimization by means of a recursive depth-first
search procedure.

More recent works on MI-FAP-I deal with multi-objective optimization
variants of the problem (Aardal et al., 2007). In particular, besides the
minimization of the total interference, Laidoui et al. (2018) studied the
trade-off between interference and the blocking probability, as a function of
the number of frequencies assigned to each cell. Instead, Kiouche et al. (2020)
dealt with the problem of simultaneously minimizing also the maximum
interference and the number of frequencies used. In both cases, the authors
implemented genetic algorithms hybridized by combining elements related

55

Minimum Interference Frequency Assignment

to game theory for Laidoui et al. (2018) and to Artificial Immune Systems
for Kiouche et al. (2020).

The MI-FAP-II, also known as Fixed-Spectrum Frequency-Assignment
Problem, was introduced by Montemanni et al. (2001) as a generalization of
the Graph Coloring Problem. The authors propose different lower bounding
techniques that are tested on a new dataset, whose main characteristics are
discussed in Section 4.4.1. Lower bounds for MI-FAP-II have been further
improved in (Montemanni et al., 2004). For the solution of MI-FAP-II,
a number of effective Tabu Search algorithms have been proposed by
Montemanni et al. (2003), Montemanni and Smith (2010), and Lai and
Hao (2015). In particular, Lai and Hao (2015) devise a population based
strategy with relinking operators tailored to MI-FAP-II, which were able to
create solution paths connecting the two high-quality solutions and generate
new promising solutions. The Tabu Search algorithm of Montemanni and
Smith (2010) has also been tested on a small subset of the MI-FAP-I dataset.

Segura et al. (2016) developed an evolutionary algorithm with a
diversification strategy to avoid premature convergence of the population.
This was obtained by converting MI-FAP-II to a multi-objective problem
that considers the original objective and, as an auxiliary objective, the
contribution of each individual to the diversity. The solution method was
evaluated both on MI-FAP-II and on a complex formulation, which arose
from two real-world instances coming from the cities of Denver and Seattle
(Luna et al., 2007, 2011). In this new formulation, there is no notion of
sites and separations involve only transmitters in the same cell (co-cell).
Analogously to MI-FAP-I the interference matrix is defined at the cell level,
but interferences are not given explicitly and they are computed through a
probabilistic model.

Similarly to Lai and Hao, Siddiqi and Sait (2018) proposed a
population-based heuristic that employs Tabu Search to drive the exploration
of the neighborhood of each solution in the population. The search process
is guided by the principles of non-dominated sorting, considering both
the interference and the entropy criteria (as a measure of the diversity of
individuals of a population).

Finally, Lahsinat et al. (2018) developed a Variable Neighborhood Search
(VNS) that explores increasingly large neighborhoods, from the smallest one
that changes the frequency of a single transmitter, to the largest that changes
simultaneously the frequency of 5 transmitters. In addition, the authors
introduced different perturbation schemes for helping the VNS process to
escape from local optimum.

Although many works on this topic used neighborhood search, and

56

Minimum Interference Frequency Assignment

specifically Simulated Annealing, to tackle this problem our contribution
distinguishes from existing literature mainly in the following two aspects.
First of all, differently from the surveyed approaches, we investigate the use of
the combination of complex neighborhood structures for solving the problem.
Secondly, no previous approach dealt with the MI-FAP-I and MI-FAP-II
formulations in a comprehensive way.

4.3 Solution method

Our search method is based on local search, therefore we now introduce,
step by step, the search space definition, the initial solution strategy, the
neighborhood operators, and the metaheuristic that guides the search.

Before proceeding we introduce some notation and terminology that will
be useful to illustrate these concepts. We consider the graph in which each
single transmitter is taken separately, without their aggregation in cells and
sites. This graph is called the split graph by Chiarandini and Stützle (2007).
Following the graph-coloring terminology, from this point on we will call the
transmitters as nodes.

We are then given a set of nodes N = {1, . . . , N} and a set of frequencies
F = {1, . . . , F}. We call S the integer-valued N×N matrix such that Sn1,n2

is the required separation between nodes n1 and n2. We are also given for
each node n a set of frequencies Un, representing the forbidden frequencies
for node n, with Un ⊂ F for all n.

Given these preliminaries we are now able to illustrate the key features
of our Multi-Neighborhood Search.

4.3.1 Search space and initial solution

The search space is represented by an integer-valued array φ, so that φ(n)
is the frequency assigned to node n ∈ N .

The array φ is complemented by redundant data structures that help us
in accelerating the computation of the difference of costs between neighboring
solutions (we call them delta costs). The main data structure, which has also
been used by Chiarandini and Stützle (2007), is an integer-valued matrix Γ
that stores, for each pair ⟨n, f⟩, the number of conflict violations that would
be created by reassigning node n to frequency f in the current state. In
addition, we maintain an array of sets Λ that stores, for each node n, the set
of nodes that are in conflict (i.e., violated separation) with n in the current
state.

57

Minimum Interference Frequency Assignment

For MI-FAP-I, that has real-valued interferences, in order to exploit the
faster arithmetic of the integers, we multiply all interference values by a fixed
number, suitably high so as not to lose precision (108). This is not necessary
for MI-FAP-II, for which the values are natively integers.

The initial solution is generated by assigning one node at the time a
uniformly-selected random frequency, among those that are not forbidden
for that node. That is, separation violations are admitted, but forbidden
frequency violations are not. Indeed, forbidden frequency violations are kept
outside the search space, as all neighborhoods discussed below do not include
moves that reassign a node n to a frequency in Un.

4.3.2 Multi-neighborhood

The typical neighborhood relation used in FAPs is the replacement of the
frequency assigned to one node. We call this neighborhood Change, which is
defined as follows:

• Change(C): the move C⟨n, f⟩ assigns frequency f to node n.
Preconditions: ϕ(n) ̸= f , f ̸∈ Un.

The preconditions state that a node must be assigned to a new frequency
(ϕ(n) ̸= f) and that it cannot be a forbidden one (f ̸∈ Un). Moves that do
not satisfy the preconditions are removed from the neighborhood, and thus
never drawn.

Similarly to the approach followed by Bellio et al. (2021) for the
Examination Timetabling, which has a similar structure, we complement this
atomic neighborhood with larger ones that allow us to make more complex
movements in one single step. The first one is the so-called Kick move that
reallocate two nodes simultaneously, assigning the first one to the frequency
of the second one, and the second one to a new frequency.

• Kick(K): the move K⟨n1, n2, f⟩ assigns φ(n2) to n1 and f to n2.
Preconditions: Sn1,n2 > 0, φ(n1) ̸= φ(n2), φ(n2) ̸= f , φ(n2) ̸∈
Un1 , f ̸∈ Un2 .

The intuition of the Kick neighborhood is to move a node to a potentially
favorable frequency even in presence of a conflicting node, given that at the
same time the second one is “kicked out”.

Fig. 4.1 shows graphically an example of a Kick move, in which the new
assignments are shown in light grey.

58

Minimum Interference Frequency Assignment

n1 n2

φ(n1)

Frequencies

1 2 FF-1… …

kφ(n2)

n1 n2

Figure 4.1: A Kick move

The precondition that n1 and n2 must have a separation (Sn1,n2 > 0) is
meant to restrict Kick moves only to those that are most effective to overcome
a cost barrier, with respect to others that could be obtained by a sequence
of two cost-independent Change moves. The other preconditions ensure that
the move is effective and it does not assign forbidden frequencies.

Notice that f , the new frequency for n2, could also be equal to φ(n1),
resulting in swapping the two assignments. As a consequence, the Kick
neighborhood is a superset of the Swap neighborhood, also used in the
literature (see Galinier and Hertz, 2006).

The Kick neighborhood is typical for graph coloring problems (see, e.g.,
González-Velarde and Laguna, 2002). However, FAPs have the peculiarity
that conflicts can occur also between nodes assigned to different frequencies.
In order to deal with this situation, we propose an extension of the Kick
neighborhood, that we call GKick (G for generalized), that moves the first
node to a frequency close to the second node, and moves the second node
away.

• GKick(G): the move G⟨n1, f1, n2, f2⟩ assigns f1 to n1 and f2 to n2.
Preconditions: Sn1,n2 > 0, φ(n1) ̸= φ(n2), φ(n1) ̸= f1, φ(n2) ̸=
f2, f1 ̸∈ Un1 , f2 ̸∈ Un2 , |f1 − φ(n2)| < Sn1,n2 .

The behavior of the GKick neighborhood is analogous to the one of the
Kick neighborhood, except that n1 can be assigned to a frequency f1 that
differs from φ(n2), but is close enough to it that still creates a separation
conflict with n2 (see precondition |f1 − φ(n2)| < Sn1,n2).

Like for the Kick neighborhood, we can identify here a subset of the
neighborhood that we call GSwap in which f2 is close to φ(n1), in particular

59

Minimum Interference Frequency Assignment

closer than the separation between n1 and n2.
As will be shown in Section 4.4.2, the subneighborhoods Swap and GSwap

play a prominent role in the search. In detail, we will see that it is more
effective to bias strongly the random move generation of Kick (resp. GKick)
toward Swap (resp. GSwap) moves, rather than to pure kicks. For this reason,
we include in our neighborhood portfolio a larger one, called 3-Swap, that
involves 3 nodes, but makes only swap movements.

• 3-Swap(T): the move T⟨n1, n2, n3⟩ assigns φ(n2) to n1, and φ(n3) to
n2, and φ(n1) to n3.
Preconditions: Sn1,n2 > 0, Sn2,n3 > 0, φ(n1) ̸= φ(n2), φ(n2) ̸=
φ(n3), φ(n3) ̸= φ(n1), φ(n1) ̸∈ Un2 , φ(n2) ̸∈ Un3 , φ(n3) ̸∈ Un1 .

The intuition for introducing the 3-Swap neighborhood is that, on the
one hand, we aim at exploring larger neighborhoods, and on the other hand
a general 3-node kick (either generalized or not) would be too large, and
thus practically ineffective. Therefore, considering the usefulness of the bias
toward swap movements for the Kick and GKick neighborhoods mentioned
above, we decided that it is wiser to focus only on swaps, and thus the 3-Swap
neighborhood seems to be a good trade-off.

Our next neighborhood, called FSwap (F for Frequency), swaps all nodes
assigned to one frequency with all assigned to another one.

• FSwap(F): the move F⟨f1, f2⟩ assigns all nodes n such that φ(n) = f1
to f2, and all nodes n such that φ(n) = f2 to f1
Preconditions: f1 ̸= f2

The FSwap neighborhood is used in graph coloring and its intuition is
that the simultaneous movement of all nodes assigned to the same color
(frequency in our case) does not increase the number of violations This move
however might be less effective in FAPs as, differently from graph coloring,
the conflicts come also from nodes in adjacent frequencies. For this reason we
define also a partial version of the same move, that swaps a limited number
of nodes so that it results less disruptive.

We thus design the neighborhood called PFSwap (P for Partial).

• PFSwap(P): the move P⟨f1, f2, N1, N2⟩ assigns all nodes n1 ∈ N1 to f2,
and all nodes n2 ∈ N2 to f1
Preconditions: f1 ̸= f2, for all n1 ∈ N1 we have φ(n1) = f1, and for all
n2 ∈ N2 we have φ(n2) = f2.

60

Minimum Interference Frequency Assignment

f1

Frequencies
1 2 FF-1… …

f2

N1

N2

Figure 4.2: A PFSwap move with k = 7

The selection of N1 and N2 is random, except that the cardinalities are
kept equal or differ by one. That is, the selection of the sets is preceded by
the selection of a number k, and the number of nodes in N1 and N2 is ⌈k/2⌉
and ⌊k/2⌋, respectively. The value of k is selected between 3 and a fixed
maximum value Km.

Fig. 4.2 shows graphically an example of a PFSwap move (with k = 7).

4.3.3 Metaheuristic and move selection

We employ the Multi-Neighborhood Simulated Annealing described in
Chapter 2. Our composite Multi-Neighborhood is Change ∪ Kick ∪ GKick ∪
3-Swap ∪ FSwap ∪ PFSwap.

The move selection is done in two stages: first we select the atomic
neighborhood and then the specific move inside the neighborhood. The first
selection is based on the fixed probabilities σK , σG, σT , σS , and σP , such
that at each step neighborhoods Kick, GKick, 3-Swap, FSwap, PFSwap, and
Change are selected with probability σK , σG, σT , σS , σP , and 1−σK −σG−
σT − σS − σP , respectively. Within the single neighborhood, the specific
move is selected uniformly, except for Kick and GKick where a move from
the Swap (resp. GSwap) sub-neighborhood is selected through an internal
bias bs (resp. bg) and a pure kick is selected with probability 1 − bs (resp.
1−bg). In this way, bs and bg are included in the pool of parameters. In turn,
the PFSwap neighborhood is parameterized by the parameter Km mentioned
above, representing the maximum number of nodes involved in the move.

61

Minimum Interference Frequency Assignment

4.3.4 Adaptation to MI-FAP-I and MI-FAP-II

We discuss now how we adapt the local search components introduced above
to the specific features of the two versions of the problem. For MI-FAP-I,
the presence of many hard constraints due to co-cell, co-site, and handover
separations make the problem of finding a feasible solution non-trivial.

Therefore, in order to deal with the feasibility problem properly, but also
not to waste time in checking moves that create violations, we make use
of a two-stage approach, that performs two independent runs of Simulated
Annealing. The first stage starts from a random solution, whereas the second
stage starts from the best solution of the first one. Each stage stops according
to its own setting of the number of iterations.

In the Feasibility Stage, we use only the Change neighborhood and we
include also separation violations in the cost function, with a suitably high
weight. That is, the cost function that guides the search is the sum of
soft constraints (e.g. interference costs) and hard constraints violations.
For MI-FAP-I the interference costs occur for same-channel interferences or
adjacent channel interferences. On the contrary, hard constraints violations
are related to mandatory separations: co-cell frequency separation, co-site
frequency separation, frequency separation for cells suffering the handover
effect, and ad-hoc separations.

This first stage is rather short in relation to the second one, the
Optimization Stage, but long enough to obtain a feasible solution. The
purpose of the Feasibility Stage is not only to reach feasibility, but also
to execute quickly the initial steep descent phase, by using only the Change
neighborhood, which is computationally the cheapest.

In the Optimization Stage, we use the neighborhood portfolio, and we add
the precondition that moves do not introduce violations of hard constraints.
As a consequence, for this stage the cost function coincide with the objective
function that is to minimize the interference costs.

It turned out that for FSwap and PFSwap it is very rare to find feasible
moves, so that most of the time is spent in generating and rejecting moves.
For this reason, for MI-FAP-I these two neighborhoods are excluded.

For MI-FAP-II the search method can be simplified in a few ways. First,
there are no hard constraints in the strict sense, but a few occurrences of a
very high cost. These few high values are considered like all the others, so
that the search method proceeds in one single stage. Thus the cost function
sums up the cost of transmitter separation violations. Furthermore, there
are no forbidden frequencies, so that we don’t have to check that a frequency
is not available for the node.

62

Minimum Interference Frequency Assignment

The other difference between the two versions is in the computation of
the costs: for MI-FAP-II each separation violation must be multiplied by its
weight, whereas for MI-FAP-I interference depends on the distance (same or
adjacent channel).

A peculiarity of Frequency Assignment problems, that is shared by
MI-FAP-I and MI-FAP-II, is that certain nodes are indistinguishable, in
the sense that they share exactly the same separations and interference
levels. For MI-FAP-I this is made explicit by the fact that they are members
of the same cell and of the same type (control or traffic), for MI-FAP-II
indistinguishable pairs are detected by preprocessing the input data. To
improve efficiency, we remove moves that involve two indistinguishable nodes,
as they would not change the structure and the cost of the solution.

4.4 Experimental results

The software was implemented in C++ and compiled using g++ (v. 9.3) in
-O3 mode. The experiments were run on AMD Ryzen Threadripper PRO
3975WX 32-Cores (3.50 GHz) with Ubuntu Linux 20.4. One single core was
dedicated to each experiment.

4.4.1 Benchmarks

Both formulations are equipped with a specific dataset that has been
used in previous works. We refer to Eisenblätter and Koster (2000) and
Montemanni (2001), respectively, for an accurate description of the origin of
these instances.

In order to save time, we decided to identify and remove the “easy”
instances. We classify as easy those instances in which the same scores
are obtained consistently by all configurations of our technique and by the
most effective previous works.

The features of the non-easy instances are summarized in Tables 4.1
and 4.2, for MI-FAP-I and MI-FAP-II respectively. For MI-FAP-I we
consider the number of sites (S), the number of cells (C), the number of
nodes/transmitters (N), the number of frequencies (F), and the average
number of available frequencies per transmitter (AF). We consider the split
graph corresponding to the separations and we report its density (SD) and
the average separation value (SV). Finally, we report the density of the
interference split graph (ID).

For MI-FAP-II we consider the number of nodes/transmitters (N), the list
of numbers of frequencies (Fs), the density of the interference graph (ID), the

63

Minimum Interference Frequency Assignment

average separation (IS), and the average cost (P). For this version, the same
instance is used with different number of frequencies, therefore we report
here the list of them (Fs) rather than a single value (F). From the average
costs we exclude the artificial high value used to state the hard separations.
The number of hard separations is reported in the last column (H).

Notice that MI-FAP-I instances are generally much larger than those of
MI-FAP-II in terms of number of nodes. For MI-FAP-I, we also notice that
only four instances, namely siemens1, siemens2, siemens3 and swisscom, have
forbidden frequencies, shown by the fact that the value of the column AF is
smaller than the value in the column F. In particular, siemens1 and siemens2
have only globally forbidden frequencies, whereas siemens3 and swisscom have
also locally forbidden ones. For swisscom the AF value is particularly low,
and only for this instance it is particularly difficult to find a feasible solution.

Regarding MI-FAP-II, we notice that, based on the average separation
cost (P), the dataset can be split on three distinct groups of instances. In
detail, there is a group that has all costs equal to one, a second group with
medium values (on the order of tens), and a final one with larger costs
(on the order of thousands). This partition reflects, with a few exceptions,
the different generation procedures: the first set is obtained from existing
minimum span problems by limiting the number of available frequencies; the
second set is composed of random scenarios generated using a basic graph
generator, and the last set is obtained by adapting some fixed spectrum
GSM problems to MI-FAP-II. As the cost values have a significant impact on
the SA behavior, as described in the next section, we consequently perform
separate tuning for these three groups.

Other datasets for MI-FAP have been proposed in the literature, like the
Philadelphia and CALMA ones (see Anderson, 1973; Aardal et al., 2002).
These cases however are rather simple to solve (most of the instances have
been solved to optimality), so that we decided to skip them. On the contrary,
the two instances Denver and Seattle proposed by Luna et al. (2007) are
supposed to be difficult, but unfortunately they refer to a different version
of the problem.

We translated MI-FAP-I instances from their original file format to a
novel JSON-based one. The original format is rather complex to parse, so
that we believe that this new one could foster the dissemination of these
instances, which in fact has been quite limited in the recent times. On the
contrary, for MI-FAP-II, the original format is extremely simple, so that we
kept it as is.

64

Minimum Interference Frequency Assignment

Table 4.1: Features of the instances for MI-FAP-I.

Instance S C N F AF SD SV ID

bradford_nt-1-eplus 649 1886 1971 75 75.0 0.0041 2.01 0.1305
bradford_nt-10-eplus 649 1886 4145 75 75.0 0.0045 1.90 0.1305
bradford_nt-10-free 649 1886 4145 75 75.0 0.0044 1.90 0.0525
bradford_nt-10-race 649 1886 4145 75 75.0 0.0044 1.90 0.0406
bradford_nt-2-eplus 649 1886 2214 75 75.0 0.0042 2.02 0.1310
bradford_nt-4-eplus 649 1886 2775 75 75.0 0.0043 1.99 0.1304
bradford-0-eplus 649 1886 1886 75 75.0 0.0041 2.00 0.1319
bradford-1-eplus 645 1878 2947 75 75.0 0.0050 2.13 0.1286
bradford-1-free 645 1878 2947 75 75.0 0.0049 2.13 0.0519
bradford-1-race 645 1878 2947 75 75.0 0.0049 2.13 0.0392
bradford-10-eplus 644 1876 4871 75 75.0 0.0052 2.02 0.1314
bradford-10-free 644 1876 4871 75 75.0 0.0052 2.02 0.0532
bradford-10-race 644 1876 4871 75 75.0 0.0052 2.03 0.0395
bradford-2-eplus 644 1876 3406 75 75.0 0.0051 2.12 0.1295
bradford-2-free 644 1876 3406 75 75.0 0.0051 2.12 0.0524
bradford-2-race 644 1876 3406 75 75.0 0.0051 2.12 0.0389
bradford-4-eplus 649 1886 3996 75 75.0 0.0051 2.08 0.1292
bradford-4-free 649 1886 3996 75 75.0 0.0051 2.09 0.0526
bradford-4-race 649 1886 3996 75 75.0 0.0051 2.09 0.0385
K 92 264 267 50 50.0 0.0297 2.00 0.5382
siemens1 179 506 930 75 43.0 0.0140 2.07 0.0764
siemens2 86 254 977 83 76.0 0.0373 2.08 0.4550
siemens3 366 894 1623 55 51.2 0.0175 2.03 0.0743
siemens4 276 760 2785 39 39.0 0.0072 2.14 0.0978
swisscom 87 148 310 68 29.0 0.0832 1.53 0.0433

65

Minimum Interference Frequency Assignment

Table 4.2: Features of the instances for MI-FAP-II.

Instance N Fs ID IS P H

AC-95-17 95 15 0.51 1.15 1.00 0
GSM-93 93 9/13 0.25 1.28 1.00 0
GSM-246 246 21/31 0.25 1.32 1.00 0
Test95 95 36 0.27 2.37 1.00 0
Test282 282 61/71/81 0.26 2.38 1.00 0
P06-3 153 31 0.79 1.59 1.00 0
P06-5 88 11 0.79 1.58 1.00 0
P06b-3 153 31 0.79 1.39 1.00 0
GSM2-184 184 39 0.40 1.20 1670.23 609
GSM2-227 227 29/39/49 0.39 1.18 1746.91 918
GSM2-272 272 34/39/49 0.39 1.16 1721.07 1155
1-1-50-75-30-2-50 75 5/10/11/12 0.30 1.26 10.81 0
1-2-50-75-30-4-50 75 9/11 0.30 1.62 11.09 0
1-3-50-75-30-0-50 75 7 0.30 1.00 10.97 0
1-4-50-75-30-2-1 75 6/10 0.30 1.25 1.00 0
1-5-50-75-30-2-100 75 10/12 0.30 1.26 21.35 0
1-6-50-75-30-0-1000 75 10/13 0.30 1.00 2068.48 0

66

Minimum Interference Frequency Assignment

4.4.2 Parameter tuning

The tuning procedure was performed using the tool json2run (Urli,
2013), which uses configurations generated according to Hammersley and
Handscomb (1964), known as the Hammersley point set. json2run uses the
F-Race procedure (Birattari et al., 2010) for selecting the best configuration,
which is based on the Friedman and Wilcoxon statistical tests for removing
inferior configurations as soon as possible.

The total number of parameters is quite large, hence the parameter
tuning proceeds in phases, assuming that the interaction of the parameters
involved in the different phases is minimal and can be neglected. In each
phase, the parameters belonging to a subsequent phase are set to values
given from preliminary experiments.

The winning configuration for MI-FAP-I is shown in Table 4.3, obtained
with I = 3 · 108 corresponding to a running time of approximately 1500
seconds per run.

Notice the high values of the temperatures, which are due to the fact
that the interference values are integers, obtained by multiplying the actual
values by 108 (for full precision). Notice also the high values of the two bias
parameters bs and bg, which show that the most useful kick moves are indeed
swap ones.

The tuning procedure for MI-FAP-II works along the same tracks, except
that there is no Feasibility Stage and the tuning is done separately for the
three groups of instances, due to the different cost values, which influence the
corresponding temperature ranges. Furthermore, there is an extra parameter
Km which is the maximum length of a PFSwap move, which is not in Table 4.3
as PFSwap is not used for MI-FAP-I. The best value found for Km is 4.

4.4.3 Comparison results for MI-FAP-I

In our experience, for this problem the results improve consistently with the
running time, without any sort of “plateau effect”. As a consequence, the
comparison should take into account the running times and also the CPU
speed. Unfortunately though, a comparison of different CPUs in different
years is rather impractical. In addition, Mannino et al. (2007), which hold
most of the best results so far, granted an extremely long running time to
their experiments (i.e., up to 128 hours per run, depending on the instance).

Therefore, as a fair comparison is not possible and the running times
of Mannino et al. (2007) are impractical also for future comparisons, we
decided for this version of the problem to grant our experiments a fixed

67

Minimum Interference Frequency Assignment

Table 4.3: Parameter tuning for MI-FAP-I.

Name Description Tuning Initial Value
Phase Range

Feasibility Stage

T0 Start temperature 1 [500000, 2500000] 1314815
Tf Final temperature 1 [1000, 10000] 9280
α Cooling rate 1 [0.98, 0.999] 0.995
ρ Accepted moves ratio 1 [0.03, 0.15] 0.076

Optimization Stage

T0 Start temperature 2 [300000, 1000000] 697531
Tf Final temperature 2 [1000, 10000] 8632
α Cooling rate 2 [0.98, 0.999] 0.985
ρ Accepted moves ratio 2 [0.05, 0.2] 0.112

bs Bias toward swap moves 3 [0.0, 1.0] 0.906
bg Bias toward generalized swap moves 3 [0.0, 1.0] 0.906

σK Probability of Kick moves 4 [0.0, 0.4] 0.216
σG Probability of GKick moves 4 [0.0, 0.4] 0.042
σT Probability of 3-Swap moves 4 [0.0, 0.2] 0.009

number of iterations, specifically equal to I = 3 · 109. The results for 10
runs in comparison with the best in the literature are shown in Table 4.4.
Beckmann and Killat (1999) and Hellebrandt and Heller (2000) do not report
the running times. Montemanni et al. (2003) write that the experiments run
for “several days”. Montemanni and Smith (2010) set a timeout of 2h for all
instances.

We can see that we outperformed all previous results on most of the
instances, considering both the best and the average values. Only in six
cases our average results are slightly inferior to the best ones, which however
are obtained with much longer running time (on an older CPU, tough). In
addition, we improve the best known solutions for 23 out of 25 instances.

4.4.4 Comparison results for MI-FAP-II

Table 4.5 shows the results for 30 runs with timeout 2400s, which has
been set also by the other authors. For the path relinking approach by
Lai and Hao (2015), we report the results obtained by both the random
path relinking operator (denoted with rPR) and the randomized and mixed
relinking operator (denoted with mrPR).

68

Minimum Interference Frequency Assignment

T
ab

le
4.

4:
C

om
pu

ta
ti

on
al

re
su

lt
s

fo
r

M
I-

FA
P

-I
on

C
O

ST
25

9
in

st
an

ce
s.

B
ec

km
an

n
H

el
le

br
an

dt
M

on
te

m
an

ni
M

on
te

m
an

ni
M

an
ni

no
SA

19
99

20
00

20
03

20
10

20
07

in
st

an
ce

be
st

be
st

be
st

be
st

av
g

be
st

t[
h]

be
st

av
g

t[
h]

br
ad

fo
rd

_
nt

-1
-e

pl
us

1.
04

0.
86

0.
86

22
0.

87
1

0.
95

1
2.

1
br

ad
fo

rd
_

nt
-1

0-
ep

lu
s

14
8.

12
14

6.
12

14
4.

94
19

14
2.

74
6

14
3.

71
9

3.
7

br
ad

fo
rd

_
nt

-1
0-

fr
ee

8.
63

5.
86

3
5.

42
14

4.
94

5
5.

21
3

3.
3

br
ad

fo
rd

_
nt

-1
0-

ra
ce

1.
73

1.
07

4
1.

09
14

1.
03

5
1.

07
7

4.
2

br
ad

fo
rd

_
nt

-2
-e

pl
us

3.
79

3.
16

8
3.

20
24

3.
15

2
3.

37
2

2.
3

br
ad

fo
rd

_
nt

-4
-e

pl
us

19
17

.7
28

17
.7

2
21

17
.2

09
17

.6
82

2.
7

br
ad

fo
rd

-0
-e

pl
us

0.
8

0.
60

64
0.

59
7

0.
64

1
2.

0
br

ad
fo

rd
-1

-e
pl

us
33

.9
9

33
.8

0
64

32
.3

81
32

.7
35

3.
2

br
ad

fo
rd

-1
-f
re

e
0.

16
0.

12
30

0.
16

4
0.

17
2

3.
2

br
ad

fo
rd

-1
-r

ac
e

0.
03

0.
01

26
0.

00
9

0.
01

1
4.

0
br

ad
fo

rd
-1

0-
ep

lu
s

40
0

39
5.

50
12

8
38

7.
20

6
38

8.
57

3
5.

9
br

ad
fo

rd
-1

0-
fr
ee

11
7.

8
11

3.
70

63
10

4.
61

2
10

5.
99

7
4.

7
br

ad
fo

rd
-1

0-
ra

ce
30

.2
2

27
.3

8
46

23
.7

58
24

.0
72

5.
3

br
ad

fo
rd

-2
-e

pl
us

80
.0

3
79

.3
8

75
76

.6
74

76
.9

84
3.

9
br

ad
fo

rd
-2

-f
re

e
2.

95
2.

69
37

2.
27

5
2.

36
5

3.
6

br
ad

fo
rd

-2
-r

ac
e

0.
42

0.
32

39
0.

20
1

0.
22

2
4.

3
br

ad
fo

rd
-4

-e
pl

us
16

7.
7

16
7.

00
90

16
1.

32
5

16
2.

89
4

4.
5

br
ad

fo
rd

-4
-f
re

e
22

.0
9

20
.0

0
46

17
.8

83
18

.3
48

3.
9

br
ad

fo
rd

-4
-r

ac
e

3.
04

2.
93

36
2.

17
4

2.
27

7
4.

7
K

0.
45

0.
44

7
0.

46
47

0.
48

86
0.

41
5

0.
43

4
0.

4
si
em

en
s1

2.
78

2.
30

1
2.

76
42

2.
84

92
2.

20
5

1.
97

0
2.

03
5

0.
9

si
em

en
s2

15
.4

6
14

.7
51

14
.2

75
14

.9
36

15
.0

57
8

14
.2

7
9

14
.0

05
14

.1
56

2.
7

si
em

en
s3

6.
75

5.
25

9
5.

18
6

6.
64

96
6.

73
58

5.
13

15
4.

85
2

4.
97

1
3.

1
si
em

en
s4

89
.1

5
80

.9
67

81
.8

76
11

0.
97

25
11

2.
48

2
77

.2
5

18
76

.2
98

77
.0

14
5.

6
sw

is
sc

om
27

.3
6

27
.2

11
27

.0
27

29
.4

44
1.

3

69

Minimum Interference Frequency Assignment

T
ab

le
4.

5:
C

om
pu

ta
ti

on
al

re
su

lt
s

fo
r

M
I-

FA
P

-I
I

w
it

h
a

ti
m

e-
lim

it
of

24
00

se
cs

.

M
on

te
m

an
ni

M
on

te
m

an
ni

La
i

La
hs

in
at

SA
20

03
20

10
20

15
20

18
rP

R
m

rP
R

In
st

an
ce

F
be

st
be

st
av

g
be

st
av

g
be

st
av

g
be

st
av

g
be

st
av

g

A
C
-9

5-
17

15
33

33
33

.0
33

33
.0

33
33

.0
33

33
.1

G
SM

-9
3

9
32

32
32

.2
32

32
.2

32
32

.2
33

34
.1

8
32

33
.2

G
SM

-9
3

13
7

7
7.

0
7

7.
0

7
7.

0
8

8.
60

7
7.

0
G

SM
-2

46
21

79
79

80
.2

79
80

.6
78

79
.0

83
84

.7
8

77
78

.9
G

SM
-2

46
31

25
25

26
.1

26
26

.1
24

25
.1

24
24

.7
Te

st
95

36
12

8
8.

0
8

8.
0

8
8.

0
8

8.
00

8
8.

0
Te

st
28

2
61

51
51

53
.2

56
56

.8
56

57
.1

51
54

.3
Te

st
28

2
71

27
27

29
.3

29
30

.5
29

30
.6

27
28

.9
Te

st
28

2
81

10
11

.9
9

10
.9

10
11

.5
9

10
.5

P
06

-5
11

13
3

13
3

13
3.

0
13

3
13

3.
0

13
3

13
3.

0
13

7
13

7.
26

13
3

13
3.

0
P
06

-3
31

11
5

11
5

11
5.

0
11

5
11

5.
0

11
5

11
5.

0
11

5
11

5.
10

11
5

11
5.

0
P
06

b-
3

31
11

2
11

2
11

2.
0

11
2

11
2.

0
11

2
11

2.
0

11
2

11
7.

00
11

2
11

2.
0

G
SM

2-
18

4
39

55
21

54
47

55
98

.8
52

58
52

70
.8

52
50

52
76

.9
58

98
61

80
.7

1
52

50
52

79
.9

G
SM

2-
22

7
29

61
58

6
66

51
0.

0
57

79
0

59
55

5.
4

58
83

4
59

90
7.

7
67

58
6

68
72

1.
00

56
12

2
57

93
2.

6
G

SM
2-

22
7

39
10

97
9

10
55

0
10

89
7.

7
86

56
90

22
.4

87
60

93
29

.7
87

02
90

87
.4

G
SM

2-
22

7
49

24
59

24
59

26
13

.1
19

98
19

98
.0

19
98

20
09

.4
19

98
20

19
.0

G
SM

2-
27

2
34

56
12

8
58

69
1.

4
53

25
4

55
95

4.
2

54
08

5
56

91
6.

3
65

15
0

67
88

8.
30

51
57

9
53

11
8.

9
G

SM
2-

27
2

39
27

41
6

27
41

6
28

48
8.

2
27

50
3

28
29

9.
7

28
07

4
28

88
0.

4
26

47
9

27
16

5.
1

G
SM

2-
27

2
49

77
85

77
85

79
46

.7
71

85
72

65
.2

71
07

72
52

.5
70

75
71

69
.4

1-
1-

50
-7

5-
30

-2
-5

0
5

12
42

12
53

.9
12

42
12

42
.0

12
42

12
42

.0
12

57
12

68
.4

4
12

42
12

42
.0

1-
1-

50
-7

5-
30

-2
-5

0
10

97
10

3.
8

96
96

.0
96

96
.0

96
96

.2
1-

1-
50

-7
5-

30
-2

-5
0

11
59

66
.1

55
55

.0
55

55
.0

55
56

.2
1-

1-
50

-7
5-

30
-2

-5
0

12
36

38
.7

32
32

.0
32

32
.0

32
32

.6
1-

2-
50

-7
5-

30
-4

-5
0

9
67

1
68

0.
6

66
5

66
5.

0
66

5
66

5.
0

67
0

67
4.

18
66

5
66

5.
0

1-
2-

50
-7

5-
30

-4
-5

0
11

31
7

32
5.

0
31

3
31

3.
0

31
3

31
3.

0
31

3
31

3.
6

1-
3-

50
-7

5-
30

-0
-5

0
7

19
4

19
6.

5
19

4
19

4.
0

19
4

19
4.

0
19

6
19

6.
76

19
4

19
4.

0
1-

4-
50

-7
5-

30
-2

-1
6

70
70

.9
70

70
.0

70
70

.0
71

74
.2

0
70

70
.0

1-
4-

50
-7

5-
30

-2
-1

10
19

19
.0

19
19

.0
19

19
.0

19
19

.0
1-

5-
50

-7
5-

30
-2

-1
00

10
17

6
18

3.
8

16
8

16
8.

0
16

8
16

8.
0

16
8

17
3.

6
1-

5-
50

-7
5-

30
-2

-1
00

12
63

69
.3

57
57

.0
57

57
.0

57
57

.7
1-

6-
50

-7
5-

30
-0

-1
00

0
10

68
40

70
64

.3
67

77
67

77
.0

67
77

67
77

.0
67

77
67

77
.0

1-
6-

50
-7

5-
30

-0
-1

00
0

13
12

07
13

65
.2

11
90

11
90

.0
11

90
11

90
.0

11
90

11
90

.0

70

Minimum Interference Frequency Assignment

We can see that for all instances excluding instance GSM2-227 we reach
the best known result, whereas the average results are in some cases worse
than the previous ones, mainly by Lai and Hao. For the GSM2 instances, we
have the best average results for 4 out of 7 instances.

In Table 4.6, we compare our results with those obtained by the
hybrid genetic algorithm (HGA) of Siddiqi and Sait (2018) with a common
time-limit of maximum 2 hours. For SA, the table reports the best and
average values of 10 runs. It can be noticed that for all instances with a
separation cost equal to one or to medium values, the performances of the
two methods are almost equivalent with 14 ties, four instances for which the
results of SA are better than those of HGA and five for which SA is worse.
Conversely, for the last family, which comprises the GSM2∗ instances and the
instance 1-6-50-75-30-0-1000 and that is characterized by large separation
costs, HGA exhibits superior results, being better, equal and worse than SA
in five, two and two cases, respectively.

Finally, in Table 4.7 we present comparative results on a subset of
the MI-FAP-II dataset composed by the most challenging instances for a
time-limit of 48 hours. The first column reports some lower bounds (LB)
computed by Montemanni et al. (2004); for the evolutionary algorithm (EA)
developed by Segura et al. (2016), the table shows average and best values
of 30 runs, for SA those of 5 runs. It can be noticed that SA outperforms
EA in nine out of 13 instances, founding four new best known solutions.
These last cases are marked with an ∗ in the column corresponding to the
best values obtained by SA. We want to remark that the EA was specifically
designed to deal with long-term executions, and it has not been tested on
shorter running times. Indeed, the authors themselves claim that with short
time “high-quality results could not be obtained”.

4.5 Discussion

Our solver works reasonably well for both formulations, though the results
are somewhat better for MI-FAP-I than for MI-FAP-II. This shows that it is
particularly competitive for large instances and the more complex structure.

We see that the approach of Montemanni and Smith (2010), which
has good results for MI-FAP-II, works less effectively for the few instances
of MI-FAP-I upon which it has been tested. The other approaches that
performed well on MI-FAP-II have not been applied to MI-FAP-I, therefore
we cannot make any conclusions on their potential performance on this
version.

71

Minimum Interference Frequency Assignment

Table 4.6: Computational results for MI-FAP-II with a time-limit of 2 hours.

HGA SA
Instance F best avg best avg

AC-95-17 15 33 33.0 33 33.0
GSM-93 9 32 32.0 32 33.2
GSM-93 13 7 7.0 7 7.0
GSM-246 21 78 79.2 78 78.6
GSM-246 31 24 24.8 24 24.3
Test95 36 8 8.0 8 8.0
Test282 61 52 53.8 51 53.5
Test282 71 27 27.4 26 27.5
Test282 81 8 8.3 8 9.5
P06-5 11 133 133.0 133 133.0
P06-3 31 115 115.0 115 115.0
P06b-3 31 112 112.0 112 112.0
GSM2-184 39 5250 5265.0 5258 5264.4
GSM2-227 29 55513 56789.0 56464 57474.7
GSM2-227 39 8520 8700.3 8762 8911.3
GSM2-227 49 1998 1998.0 1998 2002.0
GSM2-272 34 51493 52354.5 51877 52907.1
GSM2-272 39 25932 26685.0 26198 26766.4
GSM2-272 49 7056 7129.4 7017 7089.0
1-1-50-75-30-2-50 5 1242 1242.0 1242 1242.0
1-1-50-75-30-2-50 10 96 96.0 96 96.0
1-1-50-75-30-2-50 11 55 55.0 55 55.0
1-1-50-75-30-2-50 12 32 32.8 32 32.0
1-2-50-75-30-4-50 9 665 665.0 665 665.0
1-2-50-75-30-4-50 11 313 313.0 313 313.0
1-3-50-75-30-0-50 7 194 194.0 194 194.0
1-4-50-75-30-2-1 6 70 70.0 70 70.0
1-4-50-75-30-2-1 10 19 19.0 19 19.0
1-5-50-75-30-2-100 10 168 168.0 168 169.2
1-5-50-75-30-2-100 12 53 56.5 57 57.0
1-6-50-75-30-0-1000 10 6777 6777.0 6777 6777.0
1-6-50-75-30-0-1000 13 1190 1190.0 1190 1190.0

72

Minimum Interference Frequency Assignment

Table 4.7: Computational results for MI-FAP-II with a time-limit of 48
hours.

LB EA SA
Instance F value best avg best avg

GSM-246 21 50 77 79.2 77 77.8
GSM-246 31 16 25 26.2 ∗23 23.6
Test282 61 21 53 54.7 ∗50 50.6
Test282 71 6 27 28.7 ∗25 25.4
Test282 81 8 9.9 ∗7 7.8
GSM2-184 39 4856 5250 5251.6 5250 5251.2
GSM2-227 29 55339 56349.0 55796 56447.4
GSM2-227 39 7445 8283 8567.0 8467 8580.4
GSM2-227 49 1998 1998 1998.0 1998 1998.0
GSM2-272 34 50940 51757.0 50959 51565.0
GSM2-272 39 16144 25542 26099.6 25780 25923.4
GSM2-272 49 6310 6957 7096.6 6978 7012.6
1-5-50-75-30-2-100 10 94 168 168.0 168 168.0

In addition, the MNSA method obtains very competitive results for both
short and long executions, proving that it is flexible to different timeout. In
particular, with the long runs it improved many best known results.

4.5.1 Larger neighborhoods

It would be worth discussing whether larger neighborhoods could contribute
to improve the results. For example, we could consider the X-Swap
neighborhood (with X > 3), i.e., the generalization of 3-Swap. However, the
tuning experiments showed that the contribution of the 3-Swap neighborhood
in the overall best configuration is rather limited (σT = 0.009). They also
showed (not reported in the paper) that the configurations with even lower
values of σT (even σT = 0.0) do not have a significant loss of performance.
In addition, X-Swap would result in a more complex neighborhood structure
with a less efficient evaluation of the delta costs. For these reasons, we
decided not to investigate further in the X-Swap direction.

73

Minimum Interference Frequency Assignment

4.5.2 Instance-based tuning

Some additional insights about the results come from the analysis of the
ratio between the time to find the best solution and the total elapsed time.
In most instances this ratio is close to 1, showing that the best solution is
found toward the end of the search. This is a positive behavior that shows
that no time is wasted during the search.

There are however a few instances in which this ratio is constantly much
lower than 1. In particular, for one specific instance, namely swisscom, this
ratio turned out to be extremely low (around 0.01). This is a very peculiar
and constrained instance, in which finding a feasible solution is much more
difficult than in all the others. This behavior rises the question whether the
parameter values coming for the general tuning are suitable for this “outlier”.

Additional experiments on this instance alone proved that an ad-hoc
tuning yields to different values (in particular a much higher value for T0),
which would result in much better scores. Specifically, we obtain an average
cost of 25.99 and a best one of 23.478, compared to 29.444 and 27.027 of
Table 4.4, respectively.

This is however the result of an “overtuning”, which is methodologically
unacceptable, as the tuning procedure is expected to prepare the method
for generic unforeseen instances. Otherwise, the tuning procedure should
be considered as part of the solution of the instance and its time should be
included in the solution time.

Nonetheless, this situation might pave the way for a feature-based tuning
that relates the parameters of the search method to the features of the
instance. This however would require a much larger dataset of instances,
and thus will be subject of future work.

4.6 Conclusions

We have proposed a multi-neighborhood Simulated Annealing approach for
the MI-FAP problem. The solver has been designed to deal with two
versions of the problem (with some adaptations), that we called MI-FAP-I
and MI-FAP-II. Our solver proved to be effective and robust on both
formulations, on many diverse instances, and with different time-limits, and
compares favorably with previous results.

Most of the recent work focused on the MI-FAP-II version, probably due
to the higher structural complexity of the MI-FAP-I formulation, and maybe
also to the larger size of its instances. Another reason for the lack of recent
“success” of the MI-FAP-I formulation might be its cumbersome file format.

74

Minimum Interference Frequency Assignment

To this regard, we have translated all instances to a novel JSON format,
with the expectation that this “restyling” might bring it back on tracks for
future comparisons.

To this aim, the publication of instances and solutions, along with the
online validator, might also attract new research on this interesting problem.

75

Chapter 5

Sports Timetabling

Sports timetabling is an active research field, mainly due to the commercial
interest in the maximization of fan attendance, in person or remotely, to
sport events. Among the various possible structures for sport competitions,
the round-robin tournament, where each team plays against each other, is
the most frequently used for most team sports.

Many variants of the round-robin tournament problem have been
discussed in the literature. We consider here the version proposed for the
International Timetabling Competition ITC2021 (Van Bulck and Goossens,
2023b): a double round-robin tournament (all teams play with each team
twice), which takes into account a very rich set of constraints and objectives
collected from real-world cases.

All versions of this problem have in common the fact of being generally
difficult to solve in practice. In fact, it is often hard to find optimal (or
near-optimal) solutions already for instances of relatively small sizes, i.e.,
16-20 teams, which is indeed the typical size of national championships.

As mentioned above, the ITC2021 problem considers a large set of
constraints and objectives, also known as hard and soft constraints,
respectively. This formulation has the peculiarity that every single specific
constraint can be stated as either hard or soft. Another characteristic of
the ITC2021 formulation is that it has abandoned the classical mirrored
structure in which the second leg is identical to the first one, with home
and away positions swapped. That is, the structure of ITC2021 instances is
either completely free or phased. The latter imposes that each team meets
all other teams in each leg, but not necessarily in the same order.

In this chapter, we describe the Multi-Neighborhood Simulated
Annealing employed in our participation in the ITC2021. It is a three-stage

76

Sports Timetabling

approach, that uses a portfolio of six different neighborhood structures. Five
of them are classical ones, already proposed in the literature, whereas the
sixth one, named PartialSwapTeamsPhased, is novel neighborhood that we
specifically designed to deal with phased instances. Simulated Annealing has
been used also by other authors for sports timetabling with good results,
suggesting that it is particularly suitable for this type of problems (see
Section 5.1 on Related Work).

Our solver has many parameters, and it has been tuned using the
F-RACE procedure (Birattari et al., 2010), upon a set of experimental
configurations designed using the Hammersley point set (Hammersley and
Handscomb, 1964).

We also propose an Integer Linear Programming (ILP) model for the
problem. We implemented it in CPLEX but, unfortunately, it was able to
solve systematically only small artificially generated instances, and it did
not produce significant results on the instances of the competition even after
long running times.

5.1 Related work

Interest in Sports timetabling dates back to the 70s. Initial research by
Gelling (1973), Russell (1980), Wallis (1983), and de Werra et al. (1990)
focused on the relationship between 1-factorizations of a complete graph and
the Sports timetabling Problem. In sports timetabling, 1-factorizations take
the name of patterns and de Werra (1981) proposed an easy way to generate
a 1-factorization, that has been named canonical pattern. Nevertheless, Rosa
and Wallis (1982) and Dinitz et al. (1994) warned about the complexity in
the generation of non-isomorphic 1-factorizations. Due to its complexity,
applications of metaheuristics to the Sports timetabling Problem date back
to the 90s, with contributions from Costa (1995), Della Croce et al. (1999)
and Hamiez and Hao (2000). In the 2000s Ribeiro and Urrutia (2007),
Anagnostopoulos et al. (2006), and Di Gaspero and Schaerf (2007) proposed
a set of new neighborhoods for local-search-based metaheuristics. They have
been employed either with Tabu Search or Simulated Annealing and were
particularly effective for the solution of the Traveling Tournament Problem
(TTP), proposed by Easton et al. (2001).

In the last decade, Lewis and Thompson (2011), Costa et al. (2012),
and Januario and Urrutia (2016) worked on further heuristics and new
neighborhoods for the solution of the Sports timetabling Problem. More
recently, Van Bulck et al. (2020) introduced a unified data format for the

77

Sports Timetabling

round-robin sports timetabling, named RobinX, that synthesize 18 different
constraints belonging to five different constraint groups, and they published
a large set of instances in the proposed format. The RobinX format is
employed in the Sports timetabling Competition ITC2021 (Van Bulck and
Goossens, 2023b).

More complete bibliographic revisions for sports timetabling can be found
in Rasmussen and Trick (2008), and Kendall et al. (2010). Finally, an
up-to-date bibliography is also available online and maintained by Knust
(2010).

5.2 Problem formulation

We introduce here the ITC2021 problem through its Integer Linear
Programming (ILP) model, and we refer to Van Bulck and Goossens (2023b)
for a comprehensive presentation.

Let n be an even number and T = {1, . . . , n} be the set of teams. In a
double round-robin tournament, each team i ∈ T plays a game against each
other team j ∈ T , j ̸= i twice, once at home and once away. We identify
the home and away games of team i against team j, respectively, with the
pairs (i, j) and (j, i). Hence, the set of games that have to be scheduled in
the league is G = {(i, j) ∈ T ×T : i ̸= j}. In addition, in a time-constrained
tournament the number of rounds available to schedule the games of G has
to be minimal. Then, R = {1, . . . , 2(n−1)} is the set of the available rounds
in a double round-robin tournament and, at every round r ∈ R, each team
plays exactly once, either at home or away. A timetable is an assignment
of exactly one round of R to each game in G. We say that a timetable is
phased if the season is split in two legs, and each team plays against all
the other teams exactly once in each leg: team i and j cannot play both
their mutual games (i, j) and (j, i) in the same leg. In phased timetables,
the first leg occurs in rounds 1, . . . , |R|/2, whereas the second one in rounds
|R|/2 + 1, . . . , |R|.

Sports timetables usually consider several additional constraints.
Specifically, we consider five groups of constraints. Capacity constraints
regulate the number of home games, away games or games that a team or a
subset of teams can play in a given subset of rounds. Game constraints fix or
forbid specific assignments of games to rounds. Break constraints are used to
limit the number of breaks, that is the number of consecutive home or away
games for a team. Breaks are mostly undesired in a fair timetable. Fairness
constraints limit the difference of home games played by two teams after each

78

Sports Timetabling

round. Finally, Separation constraints ensure that the mutual games of two
teams are separated by a given number of rounds. We call C the set of these
constraints. Set C contains hard and soft constraints: the former express
fundamental properties of the timetable and must be satisfied, whereas the
latter express preferences and can be violated. We denote by Chard and Csoft
the subsets of C containing, respectively, the hard and soft constraints. For
each soft constraint c ∈ Csoft, we denote by wc the weight associated to its
violation.

For each game (i, j) ∈ G and each round r ∈ R, we introduce a binary
variable xijr defined as follows

xijr =

{
1 if game (i, j) is played in round r

0 otherwise.

For each soft constraint c ∈ Csoft, we include a non-negative continuous
variable dc representing the deviation triggered if the constraint is violated.

The model, denoted byM, reads as follows.

min
∑

c∈Csoft

wcdc (5.1)

∑
r∈R

xijr = 1 ∀(i, j) ∈ G (5.2)∑
j∈T ,j ̸=i

xijr + xjir ≤ 1 ∀i ∈ T , ∀r ∈ R (5.3)

∑
r∈R,r≤|R|/2

xijr + xjir = 1 ∀(i, j) ∈ G, i < j. (5.4)

Objective function (5.1) minimizes the weighted violation of the soft
constraints. Constraints (5.2) and (5.3) define a timetable for the games in G
in the rounds of R. Specifically, Constraints (5.2) impose that every game is
played, i.e. it is assigned to exactly one round, and Constraints (5.3) ensure
that each team plays at most one time per round. Finally, Constraints (5.4)
guarantee that the timetable is phased, if required.

In the following, we list the constraint types considered in set C. We
first discuss the hard version of these constraints. Some additional notation,
such as subsets of teams or rounds and parameters, may be required for
each constraint c ∈ C. For example, if constraints c is identified by a team
i ∈ T , we denote by T (i) and/or R(i), respectively, the subsets of teams and

79

Sports Timetabling

rounds considered by the constraint itself: the dependency on c is dropped to
lighten the notation. Furthermore, we explicit the correspondence between
the constraints in set C and those considered in Van Bulck and Goossens
(2023b) to avoid ambiguities.

• Capacity Constraints (CA).

k(i) ≤
∑

j∈T (i),j ̸=i

∑
r∈R(i)

xijr ≤ k̄(i) ∀i ∈ T

(5.5)

k(i) ≤
∑

j∈T (i),j ̸=i

r+r̄(i)∑
r′=r

xijr′ ≤ k̄(i) ∀i ∈ T ′, ∀r = 1, . . . , |R| − r̄(i) + 1

(5.6)

k ≤
∑
i∈T ′

∑
j∈T ′′,j ̸=i

∑
r∈R′

xijr ≤ k̄ ∀T ′, T ′′ ⊆ T , ∀R′ ⊆ R.

(5.7)

Constraints (5.5) (CA1 and CA2 in Van Bulck and Goossens, 2023b)
impose that team i plays at least k(i) and at most k̄(i) home games
against the teams in subset T (i) ⊆ T in the rounds of set R(i) ⊆ R.
These constraints can be used to model the so-called place constraints
that forbid a team to play at home in a given round and the so-called
top team and bottom team constraints which avoid bottom teams to
play all the initial games against top teams. Then, Constraints (5.5)
(CA3 in Van Bulck and Goossens, 2023b) force team i to play at least
k(i) and at most k̄(i) home games against the teams in subset T (i) ⊆ T
in each sequence of r̄(i) rounds. Finally, Constraints (5.7) (CA4 in Van
Bulck and Goossens, 2023b) impose that the number of home games of
teams in T ′ against teams in T ′′ in the rounds of R′ has to be between
k and k̄. These constraints are used, for example, to limit the total
number of home games per round between teams that share the same
venue. Similar constraints can be imposed in case of away games or
games.

• Game Constraints (GA).

k ≤
∑

(i,j)∈G′

∑
r∈R′

xijr ≤ k̄ ∀G′ ⊆ G, ∀R′ ⊆ R. (5.8)

Given a subset of games G′ ⊆ G and a subset of rounds R′ ⊆ R,
Constraint (5.8) (GA1 in Van Bulck and Goossens, 2023b) imposes a

80

Sports Timetabling

lower bound k and an upper bound k̄ on the number of games of G′
that can be played in the rounds of R′.

• Break Constraints (BR). A team i ∈ T has a home/away break in
round r ∈ R \ {0} if i has a home/away game in rounds r − 1 and r.
To model these constraints, we introduce two binary variables yhir and
yair for each team i ∈ T and each round r ∈ R \ {0}:

yhir =

{
1 if team i has a home break in round r

0 otherwise

and

yair =

{
1 if team i has an away break in round r

0 otherwise.

The break constraints read as follow.

yhir ≥
∑

j∈T (i),j ̸=i

xijr + xijr−1 ∀i ∈ T , ∀r ∈ R \ {0} (5.9)

yair ≥
∑

j∈T (i),j ̸=i

xjir + xjir−1 ∀i ∈ T , ∀r ∈ R \ {0} (5.10)

∑
r∈R(i)

yhir ≤ k̄(i) ∀i ∈ T (5.11)

∑
r∈R(i)

yair ≤ k̄(i) ∀i ∈ T (5.12)

∑
r∈R(i)

yhir + yair ≤ k̄(i) ∀i ∈ T (5.13)

∑
i∈T ′

∑
r∈R′

yhir + yair ≤ k̄ ∀T ′ ⊆ T ,∀R′ ⊆ R. (5.14)

Constraints (5.9) and (5.10) define binary variables yhir and yair,
respectively. For each team i ∈ T , Constraint (5.11) (BR1 in Van
Bulck and Goossens, 2023b) imposes an upper bound on the number
of home breaks of i in the rounds of R(i) ⊆ R. The same is imposed
by Constraints (5.12) for the away breaks and by Constraints (5.13)
for the total breaks. Finally, given a subset of teams T ′ and a subset of
rounds R′, Constraint (5.14) (BR2 in Van Bulck and Goossens, 2023b)
fixes the overall number of home and away breaks of teams in T ′ in
the rounds of R′ to be at most k̄.

81

Sports Timetabling

• Fairness Constraints (FA).

− k̄(i, j) ≤
∑

l∈T \{i,j}

r∑
r′=1

xilr′ − xjlr′ ≤ k̄(i, j) ∀i, j ∈ T , i ̸= j,∀r ∈ R.

(5.15)

For all pair of teams i, j ∈ T , i ̸= j and all rounds r ∈ R,
Constraint (5.15) (FA2 in Van Bulck and Goossens, 2023b) ensures
that the difference between the home games played by i and those
played by j is at most k̄(i, j) after round r. Analogous constraints can
be applied for the away games or games.

• Separation Constraints (SE).∑
r′∈R(i,j)

xijr′ + xjir′ ≤ 1− (xijr + xjir) ∀(i, j) ∈ G, i < j,∀r ∈ R,

(5.16)

where R(i, j) = {r′ ∈ R : r− k(i, j) ≤ r′ ≤ r+ k(i, j)}∪ {r′ ∈ R : r′ ≤
r− k̄(i, j)∨r′ ≥ r+ k̄(i, j)}. Constraints (5.16) (SE1 in Van Bulck and
Goossens, 2023b) ensure that if one of the two mutual games (i, j) or
(j, i) of two teams i, j ∈ T is assigned to round r then the other one
cannot be assigned to the rounds of R(i, j): games (i, j) and (j, i) are
separated by at least k(i, j) and at most k̄(i, j) rounds.

All constraints presented so far can be handled also in their soft version.
Here, we discuss in general terms how their deviation is computed (see Van
Bulck et al., 2020, for a detailed description). We remark that all constraints
c ∈ C have the same structure, i.e. they impose a lower and/or an upper
bound on a linear expression:

lbc ≤ fc(x, y
h, ya) ≤ ubc,

where fc(x, y
h, ya) is a linear expression in the variables xijr, yhir and

yair and lbc and ubc are, respectively, a lower and upper bound imposed
on fc(x, y

h, ya). Except for the fairness and separation constraints, the
deviation triggered if one of these constraints is violated is given by the
following two constraints

dc ≥ lbc − fc(x, y
h, ya) (5.17)

dc ≥ fc(x, y
h, ya)− ubc. (5.18)

82

Sports Timetabling

For example, if c is a capacity constraint which imposes a lower and an
upper bound, respectively k(i) and k̄(i), on the number of home games that
a team i ∈ T can play in the rounds of set R(i) (Constraint (5.5)), then the
deviation triggered by c is equal to the number of home games of i in the
rounds of R(i) less than k(i) or more than k̄(i).

Finally, let us discuss how the deviation of the fairness and separation
constraints is computed. A fairness constraint limits the difference of home
(away or any) games between teams i ∈ T and j ∈ T after each round r ∈ R.
However, the deviation triggered when it is violated is equal to the maximal
difference in home (away or any) games more than k̄(i, j) played by i and
j over all the rounds of R (see Van Bulck and Goossens, 2023b). Hence, to
express such deviation, we need to include a non-negative continuous variable
zij storing the maximal difference in home (away or any) games between i
and j. For the case of home games, the deviation is computed by including
the following constraints.

zij ≥
∑

l∈T \{i,j}

r∑
r′=1

xilr′ − xjlr′ (5.19)

zij ≥
∑

l∈T \{i,j}

r∑
r′=1

xjlr′ − xilr′ (5.20)

dc ≥ zij − k̄(i, j). (5.21)

Now, let c be a soft version of a separation constraint, which require that the
two mutual games of teams i, j ∈ T , i < j are separated by at least k(i, j).
The deviation triggered if c is violated has to be equal to the difference
between k(i, j)+1 and the number of rounds between games (i, j) and (j, i):

dc ≥
∑

r′∈R(i,j)

|r′ − r|(xijr + xjir + xijr′ + xjir′ − 1) (5.22)

The case where the two mutual games have to be separated by at most k̄(i, j)
rounds can be treated similarly.

5.3 Solution method

We designed a three-stage multi-neighborhood Simulated Annealing1 for
the solution of the problem. The multi-neighborhood is a hexamodal

1The source code is available at: https://github.com/robertomrosati/sa4stt

83

https://github.com/robertomrosati/sa4stt

Sports Timetabling

neighborhood made up by a portfolio of six different local search
neighborhoods, which are specifically tailored for the sports timetabling
problems. The metaheuristic method employed for the search of the solution
is the slightly modified version of the classical Simulated Annealing defined
by Kirkpatrick et al. (1983) described in Chapter 2. The search is executed is
three distinct sequential stages, characterized by different parameters values
of the metaheuristic and different restriction of the search space. In this
section, we explain first of all the general features of the search space and
the method employed for the generation of the initial solution. Next, we
discuss thoroughly the multi-neighborhood and the Simulated Annealing
metaheuristic. Finally, we illustrate the characteristics of the three stages of
execution of the algorithm.

5.3.1 Search space

Given the structure of the problem described in Section 5.2, as search space
we consider the set of all two-leg round-robin timetables. This means that
every possible round-robin timetable, though not necessarily feasible, is a
valid solution in the search space. Thus, in every solution, each team plays
with every other team twice (home and away), and all teams play exactly
one game at every round.

For the instances that require a phased timetable, we allow the algorithm
to visit states that break the phase structure. Since the formulation of the
problem doesn’t provide an explicit phase constraint, we added an artificial
tenth cost component, that measures the number of matches that violate
the phase requirement. This number is then multiplied for a suitably high
weight and the resulting value is assigned to the new cost component.
This mechanism, which is applied only to phased instances, make phased
violations possible but penalized in the cost function.

A solution is internally described as a matrix of size |T | × |R|. Each
cell (t, r) contains the index of the opponent of t at the match r. The value
is positive if t plays at home at the match r, negative otherwise. Fig. 5.1b
provides an example of this encoding, which is used also in the figures in
Section 5.3.3 for the explanation of the multi-neighborhood.

5.3.2 Initial solution generation

The initial state can be generated either randomly or through a greedy
algorithm. The random procedure that we employ consists in different
permutations of teams and rounds on the canonical pattern (see, e.g.,

84

Sports Timetabling

round0 round1 round2 round3 round4 round5 round6 round7 round8 round9

2 - 0 4 - 0 3 - 0 0 - 5 0 - 1 0 - 3 0 - 4 0 - 2 5 - 0 1 - 0
1 - 3 2 - 1 5 - 1 1 - 4 5 - 2 1 - 5 1 - 2 3 - 1 4 - 1 2 - 5
4 - 5 3 - 5 4 - 2 3 - 2 3 - 4 2 - 4 3 - 5 5 - 4 2 - 3 4 - 3

(a) An example tournament with |T | = 6

round0round1round2round3round4round5round6round7round8round9

team0 -2 -4 -3 +5 +1 +3 +4 +2 -5 -1
team1 +3 -2 -5 +4 -0 +5 +2 -3 -4 +0
team2 +0 +1 -4 -3 -5 +4 -1 -0 +3 +5
team3 -1 -5 +0 +2 +4 -0 +5 +1 -2 -4
team4 +5 +0 +2 -1 -3 -2 -0 -5 +1 +3
team5 -4 +3 +1 -0 +2 -1 -3 +4 +0 -2

(b) Internal representation of the previous tournament

Figure 5.1: Example of the internal solution representation of a timetable for
a round-robin tournament with 6 teams and 10 games: the upper part is the
listing of the actual games in the tournament while the lower part reports
its encoding.

de Werra, 1981). It produces a double round-robin tournament, but it does
not provide any feasibility guarantee regarding the hard constraints of the
problem: Those are then restored by the Simulated Annealing procedure.

Given an input instance with |T | teams and |R| rounds, the random
initial solution is generated performing the following steps:

1. A single-leg canonical pattern for the |T | teams with |R|/2 rounds is
generated. Each team meets every other team exactly once.

2. A random permutation is performed on the |T | teams.

3. The timetable is mirrored in order to obtain a two-leg tournament. At
this moment, the second leg is identical to the first one, except for the
home-away order that is inverted.

4. If the instance is not phased, a random permutation is executed
on the |R| rounds. Otherwise, if the instance is phased, two
random permutations are executed. The first one involves the
rounds {0, . . . , |R|/2− 1}, the second one is performed on the rounds
{|R|/2, . . . , |R|−1}. Hence, the initial random solution does not violate
the phase constraint.

85

Sports Timetabling

Also the greedy algorithm is based on the canonical pattern, which
is used as a reference for the constructive steps. The idea behind the
greedy algorithm is to generate and test the addition of candidate rounds
that are constructed on the basis of a reference tournament of template
rounds obtained as in the random procedure. These rounds are templates
instead of actual ones since all their possible perturbations, according to
some of the symmetries that are inherent in round-robin tournaments, are
produced in the generation process. In detail, the symmetries used are
those among rounds (i.e., permuting the order of the rounds does not violate
the round-robin tournament property), and those among the venues of each
game.

Starting from an empty initial solution, the greedy process selects, at each
step, the best candidate to be added to the current solution according to its
contribution to constraint violations. Since the solution is incomplete, the
check is restricted to only those constraints that can be (at least partially)
evaluated in the current partial solution once it has been extended with any
of the candidate rounds.

In Fig. 5.2 we exemplify a step of the greedy process in case of |T | = 6
teams in a non-phased setting. In the example, the current solution consists
of four assigned rounds and six remaining template rounds (denoted by
χi), which are still available from the initial canonical pattern. Different
situations arise, for instance, in the generation of round candidates for the
χ1 and χ2 templates.

As for the template χ1, which has not been included yet in the solution,
there is full freedom in deciding the home-away status of the games, therefore
all possible venues permutations can be generated and evaluated. Conversely,
since one copy of the χ2 template has been already included in the solution
(namely in round 1), among all the possible venues permutations only the
one that mirrors the already included copy of the template is possible.
This is however inherent in the fact that the reference tournament for the
round templates is created through a concatenation of two single round-robin
canonical patterns.

Each generated round candidate is tried for the completion of the current
solution and the partial cost of this addition is computed. For example, in the
figure, the constraint BR12 reported above the current solution requires that
no more than 2 breaks occur for team 5 during periods 1–5. This constraint
can be partially checked for its cost (which is zero, since there are no more

2Refer to (Van Bulck and Goossens, 2023b) for the comprehensive explanation of all
constraints employed in the competition.

86

Sports Timetabling

Current
solution

round0 round1 round2 round3 round4

1 - 5 0 - 5 3 - 5 5 - 4 5 - 2
0 - 2 4 - 1 2 - 4 0 - 3 1 - 3
3 - 4 3 - 2 0 - 1 1 - 2 0 - 4

<BR1 teams="5"
intp="2" mode2="HA"
slots="1 2 3 4 5"
type="SOFT"/>

A constraint on rounds 1–5

Available round
templates from
the canonical
pattern

χ1 χ2 χ3 χ4 χ5 χ6

{2, 5} {0, 5} {4, 5} {1, 5} {2, 5} {3, 5}
{1, 3} {1, 4} {0, 3} {0, 2} {1, 3} {2, 4}
{0, 4} {2, 3} {1, 2} {3, 4} {0, 4} {0, 1}

χ1000 χ1001 χ1010 χ1011 χ1100 χ1101 χ1110 χ1111

2 - 5 2 - 5 2 - 5 2 - 5 5 - 2 5 - 2 5 - 2 5 - 2
1 - 3 1 - 3 3 - 1 3 - 1 1 - 3 1 - 3 3 - 1 3 - 1
0 - 4 4 - 0 0 - 4 4 - 0 0 - 4 4 - 0 0 - 4 4 - 0

χ2000 χ2001 χ2010 χ2011 χ2100 χ2101 χ2110 χ2111

0 - 5 0 - 5 0 - 5 0 - 5 5 - 0 5 - 0 5 - 0 5 - 0
1 - 4 1 - 4 4 - 1 4 - 1 1 - 4 1 - 4 4 - 1 4 - 1
2 - 3 3 - 2 2 - 3 3 - 2 2 - 3 3 - 2 2 - 3 3 - 2

. . .
χ6000 χ6001 χ6010 χ6011 χ6100 χ6101 χ6110 χ6111

3 - 5 3 - 5 3 - 5 3 - 5 5 - 3 5 - 3 5 - 3 5 - 3
2 - 4 2 - 4 4 - 2 4 - 2 2 - 4 2 - 4 4 - 2 4 - 2
0 - 1 1 - 0 0 - 1 1 - 0 0 - 1 1 - 0 0 - 1 1 - 0

Trying
candidate
addition,
computing
partial cost

Figure 5.2: One step of the greedy constructive procedure in the case of a
non phased tournament: the procedure tries to complete the partial solution
with the best possible combination of template assignment and game venues.

than 2 breaks) for the periods 1–3 already added to the solution, whereas it
cannot be checked yet for period 4 and the possible candidate addition.

Among all the possible candidates, the one that achieves the minimum

87

Sports Timetabling

(partial) cost is selected and the corresponding template is removed from the
set of available ones. Possible ties in the cost value are randomly broken.

In the case of a phased tournament the greedy procedure is adapted
to ensure that the two legs of the tournament are separated. In order
to achieve this goal, the tournament used as a reference for the first leg
consists of a single round-robin tournament template and after the first leg
is completed the second leg is constructed with another (possibly different,
in terms of team permutations) single round-robin tournament using the full
generation of combinations but pruning those that overlap with the games
already included in the first leg.

Finally, to obtain numerous diverse initial solutions also with the greedy
procedure, the indexes of the teams are randomly permuted. That is, before
starting the process, a random permutation of the indexes is drawn and
the mapping between the teams in the candidate round (i.e., the logical
indexes) and the actual teams is computed by applying this permutation. To
enhance the randomness, in the case of the phased tournament two distinct
permutations are computed for the first leg and the second leg assignments.

As discussed further in Section 5.4.2, this choice seems to mildly
outperform the random initial solution. Nevertheless, the improvement
margin is not considerably large, so we decided to keep both possibilities
in our algorithm, leaving to the user the choice of the start method through
an input parameter.

5.3.3 Multi-neighborhood

The core component of the solution method is our multi-neighborhood
composed by the union of six different neighborhoods. Five of
them, called SwapHomes, SwapTeams, SwapRounds, PartialSwapTeams, and
PartialSwapRounds, are adaptations of classical ones from Anagnostopoulos
et al. (2006), Ribeiro and Urrutia (2007), and Di Gaspero and
Schaerf (2007). In addition, we introduce a novel neighborhood called
PartialSwapTeamsPhased, specifically designed to deal with phased instances.
Experimental results highlight that the usage of the novel neighborhood
allows us to reach better solutions in terms of objective function and
to achieve feasibility on certain large phased instances, which would be,
otherwise, very hard to tackle. All the neighborhoods ensure that the double
round-robin structure of the tournament is conserved, but they don’t provide
any guarantees on the feasibility of the solution.

The multi-neighborhood is designed to be employed by the Simulated
Annealing metaheuristic, described in Section 5.3.4, that randomly draws a

88

Sports Timetabling

move from the multi-neighborhood at every iteration. A desirable feature of
the multi-neighborhood is to give higher frequency of execution to those
moves that belong to neighborhoods that, on average, lead to the most
significant improvements of the solution. So, an essential property of
the multi-neighborhood is that each neighborhood is associated with a
probability σ. The draw of the move in the Simulated Annealing is then
executed into two steps. The first step is the random selection of one of the
six neighborhoods, according to the given probabilities. The second step is
the random selection of a move inside the neighborhood. The probability of
the move inside the neighborhoods is shaped as a uniform random variable.

The values of the probabilities are defined through a tuning procedure
discussed in Section 5.4.2, whilst the six neighborhoods and their
specifications are illustrated hereafter. We employ graphics to display
examples of moves, in which the matrix on the left shows the state before the
move, the one on the right represents the new state. Changes are marked in
bold and colored.

SwapHomes

-2 -4 -3 +5 +1 +3 +4 +2 -5 -1
+3 -2 -5 +4 -0 +5 +2 -3 -4 +0
+0 +1 -4 -3 -5 +4 -1 -0 +3 +5
-1 -5 +0 +2 -4 -0 +5 +1 -2+4

+5 +0 +2 -1+3 -2 -0 -5 +1 -3
-4 +3 +1 -0 +2 -1 -3 +4 +0 -2

→
-2 -4 -3 +5 +1 +3 +4 +2 -5 -1

+3 -2 -5 +4 -0 +5 +2 -3 -4 +0
+0 +1 -4 -3 -5 +4 -1 -0 +3 +5
-1 -5 +0 +2+4 -0 +5 +1 -2 -4

+5 +0 +2 -1 -3 -2 -0 -5 +1+3
-4 +3 +1 -0 +2 -1 -3 +4 +0 -2

Figure 5.3: Execution of the SwapHomes move SH⟨3, 4⟩.

The move SwapHomes takes as attributes two teams ti, tj ∈ T , ti ̸= tj ,
and it is denoted as SH⟨ti, tj⟩. It swaps the home/away position of the two
games between ti and tj . Fig. 5.3 shows the execution of the move.

SwapTeams

-2 -4 -3 +5 +1+3+4 +2 -5 -1
+3 -2 -5+4 -0 +5 +2 -3 -4 +0
+0 +1 -4 -3 -5+4 -1 -0+3 +5
-1 -5+0+2+4 -0+5+1 -2 -4

+5+0+2 -1 -3 -2 -0 -5+1+3
-4+3 +1 -0 +2 -1 -3+4 +0 -2

→
-2 -3 -4 +5 +1+4+3 +2 -5 -1

+4 -2 -5+3 -0 +5 +2 -4 -3 +0
+0 +1 -3 -4 -5+3 -1 -0+4 +5
+5+0+2 -1 -4 -2 -0 -5+1+4
-1 -5+0+2+3 -0+5+1 -2 -3
-3+4 +1 -0 +2 -1 -4+3 +0 -2

Figure 5.4: Execution of the SwapTeams move ST⟨3, 4⟩.

89

Sports Timetabling

The move SwapTeams takes as attributes two teams ti, tj ∈ T , ti ̸= tj ,
and it is denoted as ST⟨ti, tj⟩. It swaps the positions of ti and tj throughout
the whole timetable. Fig. 5.4 shows the execution of the move.

SwapRounds

-2 -4 -3 +5 +1 +3 +4 +2 -5 -1
+3 -2 -5 +4 -0 +5 +2 -3 -4 +0
+0 +1 -4 -3 -5 +4 -1 -0+3 +5
-1 -5+0 +2 +4 -0 +5 +1 -2 -4

+5 +0+2 -1 -3 -2 -0 -5+1 +3
-4 +3+1 -0 +2 -1 -3 +4+0 -2

→
-2 -4 -5 +5 +1 +3 +4 +2 -3 -1

+3 -2 -4 +4 -0 +5 +2 -3 -5 +0
+0 +1+3 -3 -5 +4 -1 -0 -4 +5
-1 -5 -2 +2 +4 -0 +5 +1+0 -4

+5 +0+1 -1 -3 -2 -0 -5+2 +3
-4 +3+0 -0 +2 -1 -3 +4+1 -2

Figure 5.5: Execution of the SwapRounds move SR⟨2, 8⟩.

The move SwapRounds takes as attributes two rounds ri, rj ∈ R, ri ̸= rj ,
and it is denoted as SR⟨ri, rj⟩. It swaps the two rounds in the timetable.
That is to say, all the matches assigned to ri are moved to rj , and vice versa.
Fig. 5.5 shows the execution of the move.

PartialSwapTeams

The move PartialSwapTeams takes as attributes two teams ti, tj ∈ T , ti ̸= tj ,
and a set of rounds Rs = {r1, . . . , rs}, Rs ⊂ R. The move is denoted as
PST⟨ti, tj ,Rs⟩. It swaps the positions of ti and tj on the set of rounds in
Rs. As the name suggests, it works similarly to SwapTeams, with the main
difference that the move is not executed on the whole timetable, but only on
a subset of rounds.

-2 -4 +3 -1 +5 -3 +1 +2 -5 +4
+4 -3 -5 +0+2 -2 -0 +5 -4+3
+0 +5 -4 +3 -1 +1+4 -0 -3 -5
+5 +1 -0 -2+4 +0 -5 -4 +2 -1
-1 +0 +2 -5 -3 +5 -2 +3 +1 -0
-3 -2 +1 +4 -0 -4+3 -1 +0+2

→
-2 -4 +3 -1 +5 -3 +1 +2 -5 +4

+4 -3 -5 +0+3 -2 -0 +5 -4+2
+0 +5 -4 +3+4 +1 -5 -0 -3 -1
+5 +1 -0 -2 -1 +0+4 -4 +2 -5
-1 +0 +2 -5 -2 +5 -3 +3 +1 -0
-3 -2 +1 +4 -0 -4+2 -1 +0+3

Figure 5.6: Execution of the PartialSwapTeams move PST⟨2, 3, {4, 6, 9}⟩.

A fundamental requirement for the construction of Rs is that each team
tk, playing against teams ti, tj in the rounds in Rs, must play against both
ti and tj exactly the same amount of times. If Rs satisfies the precondition,
the swap of ti and tj in the rounds in Rs leads to another correct round-robin
timetable. In practice though, large subsetsRs are not particularly desirable,
because they considerably slow down the generation of the move with a
negative impact on the overall time performance of the algorithm. For this

90

Sports Timetabling

reason, we impose a limitation on the maximal size of the set Rs during the
move generation procedure. Fig. 5.6 shows the execution of the move.

PartialSwapRounds

The move PartialSwapRounds takes as attributes two rounds ri, rj ∈ R,
ri ̸= rj , and a set of teams Ts = {t1, . . . , ts}, Ts ⊂ T . The move is
denoted as PSR⟨Ts, ri, rj⟩. It produces the swap between ri and rj of the
matches including teams in Ts. As the name suggests, it works similarly to
PartialRounds, with the main difference that the move is not executed on the
whole set of matches in the two rounds, but only on a subset of matches.

-2 -4 +3 -1 +5 -3 +1 +2 -5 +4
+4 -3 -5 +0 +2 -2 -0+5 -4 +3
+0 +5 -4 +3 -1 +1 +4 -0 -3 -5
+5 +1 -0 -2 +4 +0 -5 -4 +2 -1
-1 +0 +2 -5 -3 +5 -2+3 +1 -0
-3 -2 +1 +4 -0 -4 +3 -1 +0 +2

→
-2 -4 +3 -1 +5 -3 +1 +2 -5 +4

+5 -3 -5 +0 +2 -2 -0+4 -4 +3
+0 +5 -4 +3 -1 +1 +4 -0 -3 -5
-4 +1 -0 -2 +4 +0 -5+5 +2 -1

+3 +0 +2 -5 -3 +5 -2 -1 +1 -0
-1 -2 +1 +4 -0 -4 +3 -3 +0 +2

Figure 5.7: Execution of the PartialSwapRounds move PSR⟨{1, 5, 3, 4}, 0, 7⟩.

A fundamental requirement for the construction of Ts is that every team
tk ∈ Ts plays only with teams from Ts in the two rounds ri and rj . In
practice though, large subsets Ts are not particularly desirable, because they
considerably slow down the generation of the move with a negative impact
on the overall time performance of the algorithm. For this reason, we impose
a limitation on the maximal size of the set Ts during the generation of the
move. Fig. 5.7 shows the execution of the move.

PartialSwapTeamsPhased

The move PartialSwapTeamsPhased is a novel neighborhood that we designed
with the main motivation to deal with the phased version of the problem.
The five neighborhoods discussed so far, indeed, work well on the non-phased
instances, but turned out to be insufficient for obtaining good results on the
phased ones. The neighborhood PartialSwapTeams, in particular, has quite
disruptive side effects on the phase structure of the timetable, that are only
sporadically beneficial to the search. PartialSwapTeamsPhased, on the other
hand, allows to reach new solutions through partial swaps of teams without
variations of the current state of the phase. We discuss in this section the
fundamentals of the neighborhood, and we forward the reader to Section 5.4.4
for an analysis of the experimental data.

91

Sports Timetabling

As the name suggests, PartialSwapTeamsPhased takes inspiration from
the above-mentioned PartialSwapTeams. An example of the disruptive effect
of PartialSwapTeams on the phase structure is given in Fig. 5.6. Before the
execution of the move, the phase structure is respected. After the move is
applied, both matches between teams 2 and 4 take place during the first
phase of the tournament, and both matches between teams 3 and 4 take
place in the second phase of the tournament, which constitute two violations
of the phase constraint. To overcome this issue, the new neighborhood
PartialSwapTeamsPhased makes use of a new concept of mixed phase, that
allows the new move to be invariant with respect to the phase.

We define as mixed phase of a two-leg round-robin tournament the
partition of the timetable in two subsets, named mixed legs, where each
couple of teams play together, respectively, for the first and for the second
time. Hence, the first mixed leg is the set of all the matches where teams
meet with each other for the first time, the second mixed leg is the set of
all the matches where teams meet for the second time. This definition is
independent from the current satisfaction of the phase constraint. It might
happen that mixed phase and actual phase correspond: this is the case when
the phased constraint is respected.

-2 -4 -3 +5 +1 +3 +4 +2 -5 -1
+3 -2 -5 +4 -0 +5 +2 -3 -4 +0
+0 +1 -4 -3 -5 +4 -1 -0 +3 +5
-1 -5 +0 +2 +4 -0 +5 +1 -2 -4

+5 +0 +2 -1 -3 -2 -0 -5 +1 +3
-4 +3 +1 -0 +2 -1 -3 +4 +0 -2

↔
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1

(a) Mixed phase and actual phase correspond.
-4 -5 +3 +4 -3 +2 +1 -1 -2 +5
-2 -3 +2 +5 -5 +3 -0 +0 -4 +4

+1 -4 -1 -3 +4 -0 -5 +5 +0 +3
-5 +1 -0 +2 +0 -1 +4 -4 +5 -2

+0 +2 +5 -0 -2 -5 -3 +3 +1 -1
+3 +0 -4 -1 +1 +4 +2 -2 -3 -0

↔
0 0 0 1 1 0 0 1 1 1
0 0 1 0 1 1 0 1 0 1
0 0 1 0 1 0 0 1 1 1
0 0 0 0 1 1 0 1 1 1
0 0 0 1 1 1 0 1 0 1
0 0 0 0 1 1 0 1 1 1

(b) Mixed phase and actual phase differ, the phase constraint is not respected.

Figure 5.8: Mixed phase and mixed legs concepts.

Fig. 5.8 visually explains the concept. Both figures contain two boxes:
the box on the left is the representation of the current tournament timetable,
the box on the right is the corresponding mixed phase. The first and second
mixed legs are denoted, respectively, by means of zeros and ones. Fig. 5.8a
describes the situation of a timetable that satisfies the phase constraint,
and Fig. 5.8b represents a timetable where the phase constraint is violated.
Matches where teams meet each other for the first time belong to the first

92

Sports Timetabling

mixed leg and are denoted by zeros in the box on the right, matches where
teams meet each other for the second time belong to the second mixed leg
and are denoted by ones.

+4 +3 +5 -1 -3 -4 -5 -2 +2+1
-5 +5 -4 +0 -2 +3+2 -3 +4 -0

+3 -4 -3 +5 +1 -5 -1 +0 -0+4
-2 -0 +2 -4 +0 -1 +4 +1 +5 -5
-0 +2 +1 +3 -5+0 -3 +5 -1 -2

+1 -1 -0 -2 +4+2+0 -4 -3 +3

→
+4 +3 +5 -1 -3 -5+1 -2 +2 -4
-5 +5 -4 +0 -2 +3 -0 -3 +4+2

+3 -4 -3 +5 +1+4 -5 +0 -0 -1
-2 -0 +2 -4 +0 -1 +4 +1 +5 -5
-0 +2 +1 +3 -5 -2 -3 +5 -1+0

+1 -1 -0 -2 +4+0+2 -4 -3 +3

(a) Move execution
0 0 0 0 1 1 1 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1
0 0 1 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 1 1 1 0 1

→
0 0 0 0 1 1 1 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1
0 0 1 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 1 1 1 0 1

(b) The mixed phase is not modified.

Figure 5.9: Execution of the PartialSwapTeamsPhased move PSTP
⟨0, 2, {5, 6, 9}⟩.

The move PartialSwapTeamsPhased takes as attribute two teams ti, tj ∈
T , ti ̸= tj , and a set of rounds Rs = {r1, . . . , rs}, Rs ⊂ R. The essential
prerequisite is that the matches involved in the move must all belong to the
same mixed leg, according to the definition provided. The move is denoted
as PSTP⟨ti, tj ,Rs⟩, and, similarly to the move PartialSwapTeams, it produces
the swap of the positions of ti and tj on the set of rounds inRs. Consequently,
the maximum size of the set Rs corresponds to the size of a mixed leg,
which is |Rs| ≤ |R|/2. Differently from PartialSwapTeams, ti and tj keep
their home/away positions against same opponents. An example of move
execution is given in Fig. 5.9. To make more evident the relation with the
mixed phase, we show it for a solution that violates the phased constraint.

5.3.4 Metaheuristic

The metaheuristic employed is the Multi-Neighborhood Simulated Annealing
described in Chapter 2, that we run in three stages.

The algorithm is structured into three distinct stages, that consist in
three independent runs of the Simulated Annealing procedure. The first
stage starts its search either from a random or from a greedy solution, the
second and the third stages are warm-started with the output of the previous
stage as initial solution. The differences between the stages consist in the
restrictions applied to the search space, and in the exclusion or inclusion of
certain constraints (see Table 5.1).

93

Sports Timetabling

Table 5.1: Description of the features of the three stages.

Constraints
Hard Soft

Stage 1 As cost component Not used
Stage 2 As cost component As cost component
Stage 3 Violation not allowed As cost component

Stage 1: Hard constraints are included in the cost function, soft constraints
are not considered. The goal of Stage 1 is to rapidly find a feasible
solution. In our experiments, this stage shows its effectiveness
specifically on large phased instances, where the metaheuristic faces
most problems in finding a feasible timetable.

Stage 2: All constraints are used and both feasible and infeasible regions
are explored. The costs associated to hard constraints and phased cost
component are multiplied by suitable weights. The goal of Stage 2 is
to find a good solution in terms of objective function.

Stage 3: All constraints are used, but moves that violate hard constraints
are not allowed and only the feasible region is explored. The goal of
Stage 3 is to reach the best possible solution that can be achieved from
the best state found in Stage 2, through the exploration of the feasible
region only. If the outcome of the previous stages is not a feasible
solution, Stage 3 is not performed.

5.4 Experimental results

In this section, we discuss the experimental setting of the Simulated
Annealing algorithm and the results obtained by applying it to the instances
proposed for the ITC2021 competition. We also assess the performances
of Model M by running it on CPLEX within a time limit. For these latter
experiments, we consider the instances of the competition and some others of
smaller size obtained by performing reductions on the competition instances.

Our code was developed in C++ and compiled with GNU g++ version
9.3.0 in -O3 mode, on Ubuntu 20.04.2 LTS. All the experiments presented in
this section were run on a machine equipped with AMD Ryzen Threadripper
PRO 3975WX processor with 32 cores, hyper-threaded to 64 virtual cores,

94

Sports Timetabling

Table 5.2: List of instances from the ITC2021 competition with indication
of some general features and overall number of hard and soft constraints.

Instance
Features

Instance
Features

Phased Teams Hard Soft Phased Teams Hard Soft

Early_1 yes 16 83 113 Middle_9 no 18 94 201
Early_2 yes 16 53 114 Middle_10 yes 20 198 714
Early_3 yes 16 148 186 Middle_11 yes 20 176 1048
Early_4 yes 18 164 268 Middle_12 yes 20 63 241
Early_5 yes 18 207 587 Middle_13 no 20 219 350
Early_6 yes 18 192 797 Middle_14 no 20 63 817
Early_7 no 18 175 1159 Middle_15 no 20 95 133
Early_8 no 18 70 582 Late_1 no 16 235 542
Early_9 no 18 90 102 Late_2 no 16 246 1077
Early_10 yes 20 246 1015 Late_3 no 16 127 439
Early_11 no 20 246 1108 Late_4 yes 18 96 34
Early_12 yes 20 179 35 Late_5 yes 18 176 747
Early_13 no 20 100 432 Late_6 yes 18 163 159
Early_14 no 20 56 56 Late_7 no 18 126 738
Early_15 no 20 187 1224 Late_8 yes 18 110 195
Middle_1 yes 16 144 993 Late_9 no 18 102 402
Middle_2 yes 16 246 1231 Late_10 yes 20 233 694
Middle_3 no 16 237 1212 Late_11 yes 20 52 366
Middle_4 yes 18 97 168 Late_12 no 20 244 1009
Middle_5 yes 18 151 197 Late_13 no 20 169 134
Middle_6 yes 18 162 154 Late_14 no 20 116 993
Middle_7 no 18 141 476 Late_15 no 20 51 41
Middle_8 no 18 62 224

with base clock frequency of 3.5 GHz, and 64 GB of RAM. In both settings,
one single virtual core is used for each experiment.

5.4.1 Instances

The algorithm was run on the 45 instances of the competition, that are
available for download on the website of the competition (Van Bulck and
Goossens, 2023b). We perform a general analysis of their main features.
The size, expressed in number of teams, is always comprised between 16
and 20 teams, and 22 instances in total have a phased requirement. As
we can observe in Table 5.2, the total number of hard and soft constraints
fluctuates considerably among instances. The range for hard constraints
goes from a minimum of 51 in instance Late_11 to a maximum of 246 in
instances Early_10, Early_11, Middle_2, and Late_2. The range for soft
constraints goes from a minimum of 34 in instance Late_4 to a maximum of
1231 in instance Middle_2. Incidentally, instance Middle_2, which has the
highest overall number of constraints, 1477, is also the only instance in which

95

Sports Timetabling

Table 5.3: Details of the number of constraints in each instance.

Name
CA1 CA2 CA3 CA4 BR1 BR2 GA1 SE1 FA2
H S H S H S H S H S H S H S H S H S

E1 25 17 10 0 0 0 0 84 35 0 1 0 12 10 0 1 0 1
E2 38 30 0 0 2 82 0 0 12 0 1 0 0 1 0 0 0 1
E3 24 0 72 21 0 112 0 0 18 0 0 1 34 51 0 0 0 1
E4 0 32 0 235 0 0 85 0 44 0 1 0 34 0 0 1 0 0
E5 41 27 36 331 2 111 81 117 23 0 1 0 23 0 0 1 0 0
E6 38 31 71 591 2 54 81 115 0 0 0 1 0 3 0 1 0 1
E7 42 31 30 620 1 112 84 340 12 0 1 0 5 55 0 1 0 0
E8 19 0 8 57 0 112 0 339 39 0 0 0 4 73 0 0 0 1
E9 39 0 14 0 0 88 0 0 23 10 0 1 14 2 0 0 0 1
E10 42 32 72 620 2 23 85 339 44 0 1 0 0 0 0 1 0 0
E11 42 32 72 620 2 112 85 340 44 0 1 0 0 3 0 1 0 0
E12 37 0 72 0 2 20 31 0 20 13 0 1 17 1 0 0 0 0
E13 41 31 27 257 1 110 0 0 20 10 1 0 10 24 0 0 0 0
E14 5 30 0 0 0 0 0 0 17 24 0 1 34 0 0 0 0 1
E15 42 0 72 620 2 112 71 340 0 24 0 1 0 126 0 0 0 1
M1 0 32 14 620 0 0 85 340 44 0 1 0 0 0 0 1 0 0
M2 42 32 72 620 2 112 85 340 44 0 1 0 0 126 0 1 0 0
M3 42 0 72 617 2 107 85 338 36 21 0 1 0 126 0 1 0 1
M4 31 18 17 0 1 0 0 41 23 24 0 0 25 85 0 0 0 0
M5 41 24 40 33 0 12 0 0 44 0 0 1 26 126 0 0 0 1
M6 39 0 41 0 2 111 30 27 44 13 0 1 6 1 0 1 0 0
M7 0 30 0 355 1 0 78 51 28 21 0 1 34 17 0 1 0 0
M8 16 0 0 27 2 108 0 34 32 14 0 0 12 41 0 0 0 0
M9 42 0 0 37 1 100 19 39 28 23 0 1 4 0 0 0 0 1
M10 41 15 71 363 0 0 46 262 39 0 1 0 0 74 0 0 0 0
M11 7 0 71 612 2 88 84 340 12 0 0 0 0 7 0 0 0 1
M12 0 32 28 168 1 13 0 0 29 21 0 1 5 4 0 1 0 1
M13 42 29 72 242 1 0 85 76 12 0 0 0 7 2 0 1 0 0
M14 5 18 11 319 2 112 0 338 38 10 1 0 6 19 0 0 0 1
M15 12 0 23 0 0 77 0 0 37 10 0 1 23 44 0 1 0 0
L1 42 32 72 198 1 13 82 283 38 0 0 0 0 15 0 0 0 1
L2 42 0 72 620 2 112 85 340 44 0 1 0 0 5 0 0 0 0
L3 42 0 72 326 1 43 0 60 12 0 0 1 0 7 0 1 0 1
L4 0 32 0 0 0 0 18 0 44 0 0 0 34 1 0 1 0 0
L5 0 19 69 614 2 0 81 109 0 0 1 0 23 4 0 0 0 1
L6 0 32 0 125 0 0 85 0 44 0 0 1 34 0 0 1 0 0
L7 42 32 40 601 1 61 0 0 37 0 1 0 5 43 0 1 0 0
L8 37 15 0 14 0 111 0 0 41 24 0 1 32 29 0 1 0 0
L9 40 0 20 250 2 112 0 0 40 20 0 1 0 18 0 0 0 1
L10 0 31 67 447 2 0 85 205 44 0 1 0 34 10 0 1 0 0
L11 6 0 16 274 0 88 0 0 12 0 1 0 17 3 0 0 0 1
L12 40 32 72 620 2 16 85 340 44 0 1 0 0 0 0 1 0 0
L13 14 32 72 15 2 0 81 71 0 0 0 1 0 13 0 1 0 1
L14 42 0 72 390 2 112 0 340 0 24 0 0 0 126 0 0 0 1
L15 5 0 0 0 0 15 0 0 12 24 0 1 34 0 0 0 0 1

96

Sports Timetabling

our solver was not able to determine any feasible solution. More in general,
from our experimental results we observed that most instances where our
solver shows the most deficiencies are also among those characterized by
many hard constraints, but only when also the phase requirement is present.
For this reason, the solver redistributes the total number of iterations in
favor of Stage 1 when it recognizes a phased instance with a quantity of
hard constraints above a certain threshold. Table 5.3 provides additional
details on the cardinality of constraints of each type in their hard and soft
versions. It is possible to notice that constraint types BR2, FA2 and SE1 are
always expressed uniquely, if present, so only six constraint types out of nine
are actually declined into multiple constraints. Finally, it is noteworthy to
mention that each individual constraint involves different quantities of teams
or slots, so that also the individual contribution to the instance complexity
may differ substantially.

5.4.2 Parameters and tuning

For the three-stage multi-neighborhood Simulated Annealing to be effective
on the given instances, several parameters need to be tuned. In this work,
we tuned the probabilities σSH, σST, σSR, σPST, σPSR, σPSTP of the six
neighborhoods separately on the phased and on the non-phased instances.
These probabilities are stage-independent. The specific parameters of
the Simulated Annealing metaheuristics, on the other hand, were tuned
separately for each stage. For the Simulated Annealing we decided to tune
only the start temperature and the final temperature, which turned out to
be the most critical parameters from previous research work (see, e.g., Bellio
et al., 2016, 2021). Conversely, we fixed the sample acceptance ratio and the
cooling rate values to consolidated and robust values found in previous work.
In our algorithm, we assigned weights to the different hard cost components
and these weights also underwent a tuning procedure. They were employed
in Stage 1 and Stage 2, since moves that violate feasibility are not considered
in Stage 3. Finally, the decision whether to use a random or a greedy start
for Stage 1 was also subject to a tuning procedure.

As introduced in Section 5.3.4, we allow in Stage 1 and Stage 2 the
exploration of the infeasible region and, for phased instances, also the break
of the phase structure. Thus, the weights assigned to hard violations and
phased violations also require tuning. In this case, we didn’t only search for
possible values, but we compared two different approaches: feature-based or
fixed values. Specifically, the only feature that we take into account for this
problem is the number of hard constraints in the given instance. Let Nh

97

Sports Timetabling

be the number of hard constraints, wh and wp, respectively, the hard cost
component weight and the phased cost component weight, and k a generic
constant. Eqs. (5.23) and (5.24) describe how we can obtain the weights for
the hard cost component and the phased cost component from the number
of hard constraints, in the feature-based scenario. The value of k is also
determined through a tuning procedure. Please note that k is float-valued
and wh and wp are integer-valued, so a rounding is applied. In our tuning
procedure, the feature-dependent approach resulted to be the most effective
for Stage 2, while for Stage 1 fixed values resulted to be more suitable.

wh = Nh · k (5.23)
wp = Nh · k · wh (5.24)

The whole tuning procedure was performed with the aid of the tool
json2run, described in Chapter 4.

Table 5.4 contains the list of the parameters and related values. The
column Tuning range contains the lower and upper bounds of the ranges
taken into account by the tuning procedure, which don’t constitute a
boundary in our algorithm. The dual comparisons aimed to determine
whether to use a random or a greedy start and whether to use fixed or
feature-dependent wh and wp don’t require a Hammersley sampling. The
outcome of the tuning procedure is shown under the columns Assigned values.

Finally, Table 5.5 presents the outcome of a dual comparison between
the random start and the greedy start. We limited the execution of the
algorithm to one million iterations, which we consider a short run, of Stage
1, exclusively. The results are given in terms of feasibility ratio, because
in this stage of the algorithm we are not focused yet in optimizing the
objective function. In general, we can observe that the greedy start ensures
a higher probability of finding a feasible solution, at a price of a slightly
longer execution time.

5.4.3 Analysis of the results

We report in this section an overview of the experimental results.
First, we discuss the results obtained on Model M. We used the solver

CPLEX 20.1 and we imposed different time limits, ranging from one hour to
24 hours. We employed one single CPU per run.

Solving the model on the competition instances did not yield good results:
within a time limit of one hour, a feasible solution was found only for instance

98

Sports Timetabling

Table 5.4: Parameter tuning

Parameter Description Tuning Range Assigned Values
Not Phased Phased

σSH SwapHomes [0.0, 1.0] 0.154 0.130
σST SwapTeams [0.0, 1.0] 0.070 0.020
σSR SwapRounds [0.0, 1.0] 0.025 0.080
σPST PartialSwapTeams [0.0, 1.0] 0.319 0.120
σPSR PartialSwapRounds [0.0, 1.0] 0.350 0.520
σPSTP PartialSwapTeamsPhased [0.0, 1.0] 0.070 0.130

Stage 1 Stage 2 Stage 3

T0 Start Temperature [0, 2000] 179 600 17.9
Tmin End Temperature [0, 20] 2.1 3.52 0.21
wh,ca1

Weight of CA1 hard [1, 10] 7 7 -
wh,ca2

Weight of CA2 hard [1, 10] 8 8 -
wh,ca3

Weight of CA3 hard [1, 10] 2 2 -
wh,ca4

Weight of CA4 hard [1, 10] 8 8 -
wh,ga1

Weight of GA1 hard [1, 10] 10 10 -
wh,br1 Weight of BR1 hard [1, 10] 1 1 -
wh,br2 Weight of BR2 hard [1, 10] 6 6 -
wh,fa2

Weight of FA2 hard [1, 10] 1 1 -
wh,se1 Weight of SE1 hard [1, 10] 1 1 -

Initial solution {random, greedy} greedy - -
wh Feature-dependent wh {yes, no} no yes -
wp Feature-dependent wp {yes, no} no yes -
k Correlation factor [0.1, 1000.0] - 0.5 -
wh Hard weight (fixed) [1, 1000] 10 - -
wp Phased weight (ixed) [1, 1000] 117 - -

99

Sports Timetabling

Table 5.5: Comparison of the results obtained by the random start and the
greedy start on 30 short runs of Stage 1.

Instance
Random Greedy

Instance
Random Greedy

Feas. Time (s) Feas. Time (s) Feas. Time (s) Feas. Time(s)

Early_1 1.00 4.44 1.00 5.03 Middle_9 1.00 10.49 1.00 12.96
Early_2 0.87 26.50 0.97 24.40 Middle_10 0.00 20.41 0.00 25.90
Early_3 1.00 2.24 1.00 2.72 Middle_11 0.83 64.05 0.90 69.47
Early_4 0.00 22.90 0.00 25.03 Middle_12 1.00 14.39 1.00 18.98
Early_5 0.00 73.41 0.00 76.77 Middle_13 1.00 25.04 1.00 36.09
Early_6 0.20 68.10 0.20 70.42 Middle_14 1.00 26.85 1.00 34.05
Early_7 0.33 40.14 0.30 44.24 Middle_15 1.00 1.67 1.00 6.91
Early_8 1.00 1.23 1.00 2.87 Late_1 0.97 21.75 1.00 20.89
Early_9 1.00 1.29 1.00 3.08 Late_2 0.00 58.60 0.00 60.31
Early_10 0.00 92.14 0.00 102.42 Late_3 1.00 7.49 1.00 8.07
Early_11 0.37 83.88 0.60 90.42 Late_4 1.00 3.11 1.00 4.50
Early_12 0.47 73.86 0.43 78.61 Late_5 0.00 73.04 0.00 76.02
Early_13 1.00 16.09 1.00 22.23 Late_6 1.00 7.15 1.00 9.64
Early_14 1.00 0.94 1.00 5.73 Late_7 1.00 13.66 1.00 16.13
Early_15 1.00 46.00 1.00 56.23 Late_8 1.00 2.78 1.00 3.91
Middle_1 0.00 23.55 0.00 24.47 Late_9 1.00 24.39 1.00 26.07
Middle_2 0.00 60.07 0.00 61.46 Late_10 0.00 90.38 0.00 99.97
Middle_3 0.00 58.68 0.00 60.33 Late_11 1.00 4.16 1.00 7.99
Middle_4 1.00 12.18 1.00 14.45 Late_12 0.87 66.50 0.87 80.68
Middle_5 1.00 3.26 1.00 4.55 Late_13 1.00 46.21 1.00 56.76
Middle_6 0.27 59.18 0.40 59.57 Late_14 1.00 31.55 1.00 39.43
Middle_7 1.00 19.80 1.00 23.17 Late_15 1.00 0.80 1.00 5.71
Middle_8 1.00 20.99 1.00 23.68

100

Sports Timetabling

Late_4, the other 44 instances were left unsolved. Longer time limits
provided very limited improvements. Within 24 hours, feasible solutions
were found only for six instances (E8, M4, M8, M15, L4, L8), with values of
the objective function far from those obtained by the Simulated Annealing
within analogous running times. Hence, to assess the performances and the
limits of Model M, we run tests on two clusters of instances obtained by
reducing the size of the competition ones. In the first cluster, we removed
constraint types and pairs of constraint types from each competition instance
which contains them. The columns of Table 5.6 (left) report respectively:
the removed constraint types; the number of reduced instances; the number
of instances for which a feasible, but not optimal, solution is found; the
number of instances solved to optimality. From Table 5.6 (left), we infer
that the solver still struggles to produce feasible solutions when only one
constraint type is removed. Removing pairs of constraints seems to bring
benefits only when the capacity and break constraints are both removed: the
solver manages to provide 26 feasible solutions for the considered instances,
six of which are proven to be optimal in an average time of 30 seconds. This
is in line with the structure of the instances, indeed, several of them consider
many capacity and break constraints in their hard version (see Table 5.3).

In the second cluster of instances, we reduced the size of the competition
instances in terms of number of teams. Specifically, we restrict the cardinality
of team set T to |T | = 6, 8, 10, 12 and for each cardinality we consider 20
reduced instances. These instances are obtained from the competition ones
by randomly selecting the teams to remove and by deleting them from all the
constraints in which they appear. Table 5.6 (right) reports the same data
as in Table 5.6 (left), except for the first column which, in this case, reports
the size of set T . As expected, the larger the size of T , the less feasible (and
optimal) solutions the solver is able to provide. Moreover, we observe that
the model is solved consistently on instances up to size ten. Starting from
|T | = 12, the performances of the model drop drastically: only four feasible
solutions and an optimal one are found with |T | = 12 and only two feasible
solutions are found with |T | = 14.

In what follows, we discuss the results obtained by the Simulated
Annealing algorithm on the competition instances. Specifically, we report
both the best overall solution that we obtained for each instance and
data on the average behavior of the algorithm. In order to assess the
average performances of the Simulated Annealing in terms of cost, time and
feasibility, we report the results of a dedicated experiment batch. All the
experiments were run without a time limit, but rather with a fixed number of
maximum iterations per stage (see Section 5.3.4). Depending on the number

101

Sports Timetabling

Table 5.6: Results obtained solving Model M on the first (left) and second
cluster (right) of reduced instances.

Removed
constraints # Inst. # Feas. # Opt.

CA 45 3 3
GA 42 1 0
BR 45 3 0
FA 23 0 0
SE 24 0 1
CA, GA 42 8 3
CA, BR 45 20 6
CA, FA 23 6 4
CA, SE 24 4 3
GA, BR 42 7 0
GA, FA 22 0 0
GA, SE 24 1 0
BR, FA 23 4 3
BR, SE 24 2 2
FA, SE 3 0 0

|T | # Inst. # Feas. # Opt.

6 20 7 13
8 20 14 6
10 20 15 2
12 20 4 1
14 20 2 0

Table 5.7: Iterations per stage, feature-based.

Instance type Max iterations (I) per stage
I1 I2 I3

phased ∧Nh > 200 500000000 50000000 40000
¬phased ∨Nh ≤ 200 20000000 250000000 40000

of hard constraints in the instance, two different configurations of iterations
per stage were applied, as shown in Table 5.7.

Table 5.8 reports the results obtained by the solver. The column Best
solution found reports the best solution that our solver was able to find in
all experiments. Some of these values are those that we submitted to the
ITC2021 competition, others have been found in later experiments. When
no feasible solution has been found, the number of hard violations followed
by a letter H is reported. Next columns, labeled Average values, report
the data obtained in a set of experiments that we run independently from
the competition, in order to extract information on the average behavior of
the algorithm in its final configuration. At least 48 runs per instance were
performed to collect this data. Columns Cost and Time report, respectively,
the average values of the objective function and the average time needed
for a complete run of the three stages. Regarding the average cost, the
value is computed only on feasible solutions. Column Feasible reports the

102

Sports Timetabling

Table 5.8: Best and average results

Instance Best Average values Best CPLEX
solution known best

found Cost Time (s) Feasible cost bound

Early_1 423 540.7 5667 1.00 362 1.0
Early_2 318 384.6 14844 1.00 145 0.0
Early_3 1068 1176.5 12195 1.00 992 48.9
Early_4 556 1007.8 8760 0.56 507 0.0
Early_5 4117 - 28517 0.00 3127 247.2
Early_6 3927 4543.0 35162 1.00 3325 587.3
Early_7 5205 6721.7 37487 1.00 4763 1233.1
Early_8 1051 1152.9 21394 1.00 1051 212.1
Early_9 132 228.7 10324 1.00 108 0.0
Early_10 4986 - 35856 0.00 3400 308.2
Early_11 4526 5784.5 43692 1.00 4426 309.5
Early_12 1010 1200.2 14726 1.00 380 0.0
Early_13 173 233.8 19675 1.00 121 2.0
Early_14 63 82.3 5616 1.00 4 1.0
Early_15 3556 3945.8 46715 1.00 3362 484.5
Middle_1 5657 6075.0 26291 0.06 5177 2857.5
Middle_2 5H - 26891 0.00 7381 2909.8
Middle_3 9542 11403.1 44749 0.23 9542 3266.8
Middle_4 16 33.0 5660 1.00 7 7.0
Middle_5 510 624.4 6223 1.00 413 46.8
Middle_6 1701 2186.3 21350 1.00 1120 23.0
Middle_7 2203 2452.7 16303 1.00 1783 23.6
Middle_8 136 196.6 19718 1.00 129 2.0
Middle_9 640 772.1 17611 1.00 450 0.0
Middle_10 1357 1687.5 14433 1.00 1250 3.8
Middle_11 2696 2996.5 43877 1.00 2446 345.0
Middle_12 950 1054.2 14599 1.00 911 1.0
Middle_13 362 479.3 15687 1.00 252 0.0
Middle_14 1172 1304.6 37484 1.00 1172 0.0
Middle_15 985 1099.7 8705 1.00 485 0.7
Late_1 2021 2372.7 20242 1.00 1922 1102.4
Late_2 5715 6085.5 41433 0.49 5400 2817.7
Late_3 2457 2718.0 18328 1.00 2369 347.9
Late_4 0 0.0 2355 1.00 0 0.0
Late_5 2341 - 9191 0.00 1923 397.5
Late_6 930 1121.3 7122 1.00 923 5.4
Late_7 1765 2226.5 22959 1.00 1558 3.1
Late_8 997 1155.3 11286 1.00 934 77.9
Late_9 715 881.2 25963 1.00 563 2.9
Late_10 2571 3527.3 32511 0.05 1945 1.0
Late_11 207 289.3 15892 1.00 202 0.0
Late_12 3944 4830.6 35514 1.00 3428 156.2
Late_13 1868 2285.5 21007 1.00 1820 6.1
Late_14 1202 1326.3 39161 1.00 1202 6.5
Late_15 60 82.8 6435 1.00 20 0.0

103

Sports Timetabling

ratio between feasible solutions and total runs. Finally, column Best known
cost contains the best known results at the moment the article in Rosati
et al. (2022) was written, according to data published on the website of
the competition 3, and column CPLEX best bound contains the best lower
bound that CPLEX was able to determine on ModelM. When the current
best was determined by our solver, the corresponding value in the first
column is marked in bold. Overall, our three-stage multi-neighborhood
Simulated Annealing solver could find at least one feasible solution on 44
out of 45 instances. According to data, in its final configuration it manages
to determine very easily a feasible solution on 36 instances, which are
characterized by a feasibility ratio of 1.00, as it can be observed in column
Feasible of the above-discussed table. The other instances appear to be less
easy to solve for the algorithm. In particular, instances Early_5, Early_10,
Middle_2, and Late_5 result to be considerably challenging, as feasible
solutions are found just sporadically.

5.4.4 Analysis of PartialSwapTeamsPhased

One of the main contributions of the presented work is the new neighborhood
PartialSwapTeamsPhased, that was introduced with the main purpose to
solve the phased version of the problem. In order to test the effectiveness
of the novel neighborhood, we run an additional set of experiments on
phased instances without making use of PartialSwapTeamsPhased. To do
so, we associated a probability of 0.00 to PartialSwapTeamsPhased in the
multi-neighborhood and rescaled the probabilities associated to the other
neighborhoods proportionally, in order to keep the same mutual ratios among
them (according to the values in Table 5.4).

In Table 5.9 we report the average costs and the feasibility ratios obtained
by the standard configuration and those obtained by the configuration that
doesn’t employ PartialSwapTeamsPhased. At least 20 runs per instance
were executed. The last column reports, where possible, the percentage
gap between the average cost obtained without PartialSwapTeamsPhased
and the average cost obtained by the full configuration. It is possible
to observe that instance Middle_1 is solved to feasibility only in
the configuration that employs PartialSwapTeamsPhased. 16 instances,
solved by both configurations, have worse results when solved without
PartialSwapTeamsPhased. For just one instance, Late_4, the configurations
obtain the same average cost. Finally, the remaining four instances, Early_5,

3https://robinxval.ugent.be/ITC2021/

104

https://robinxval.ugent.be/ITC2021/

Sports Timetabling

Table 5.9: Comparison of the results obtained on phased instances with and
without the neighborhood PartialSwapTeamsPhased.

Instance With PSTP Without PSTP gap
avg feasible (%) avg feasible (%) (%)

Early_1 540.7 1.00 563.5 1.00 +4.22%
Early_2 384.6 1.00 388.3 1.00 +0.96%
Early_3 1176.5 1.00 1204.4 1.00 +2.37%
Early_4 1007.8 0.56 1125.8 0.38 +11.71%
Early_5 - 0.00 - 0.00 -
Early_6 4543.0 1.00 4553.2 1.00 +0.22%
Early_10 - 0.00 - 0.00 -
Early_12 1200.2 1.00 1326.4 1.00 +10.51%
Middle_1 6075.0 0.06 - 0.00 +∞
Middle_2 - 0.00 - 0.00 -
Middle_4 33.0 1.00 33.3 1.00 +0.91%
Middle_5 624.4 1.00 656.8 1.00 +5.19%
Middle_6 2186.3 1.00 2224.7 1.00 +1.76%
Middle_10 1687.5 1.00 1766.8 1.00 +4.70%
Middle_11 2996.5 1.00 3131.8 1.00 +4.52%
Middle_12 1054.2 1.00 1137.0 1.00 +7.85%
Late_4 0.0 1.00 0.0 1.00 +0.00%
Late_5 - 0.00 - 0.00 -
Late_6 1121.3 1.00 1141.7 1.00 +1.82%
Late_8 1155.3 1.00 1186.1 1.00 +2.67%
Late_10 3527.3 0.05 3590.0 0.05 +1.58%
Late_11 289.3 1.00 321.6 1.00 +11.16%

Early_10, Late_5 and Middle_2, are not solved to feasibility by any of
the two configurations, in the given number of runs. According to these
data, the neighborhood PartialSwapTeamsPhased appears to bring a tangible
improvement in 17 out of 22 phased instances.

5.5 Comparison with other algorithms

A study realized after the ITC2021 competition compared the performance
of eight algorithm (seven of them took part in the competition, including
the winner) on an additional set of 518 instances and on the 45 instances
of the competition, for a total of 563 instances4. The algorithms are listed
in Table 5.10. All the algorithms were given two weeks of elapsed time
to produce solutions for the whole instance set, but without specific time
restrictions on the single runs and on the number of cores used. On the
one hand, this might be regarded as a not fully fair comparison, given
that different solvers had access to different computational resources (see

4The full study is available at Van Bulck et al. (2023).

105

Sports Timetabling

Table 5.10: Overview of algorithms together with software and hardware
details. The last column compares processor clock speeds relative to the
‘fastest’ processor used (3.9 GHz).

Algorithm Search method Software details Clock
speed
ratio

Reference

MODAL IP Branch & Cut Python, Zimpl, C,
Gurobi 10, Xpress

2.8/3.9 Berthold et al.
(2021)

Goal Fix-and-optimize matheuristic Java 16, Gurobi
10.0

3.2/3.9 Fonseca and
Toffolo (2022)

DES Adaptive LNS matheuristic Python 3.10,
Gurobi 10.0

3.9/3.9 Phillips et al.
(2021)

UoS VND matheuristic Python 3.10.4,
Gurobi 9.0.2

2.0/3.9 Lamas-Fernandez
et al. (2021)

Udine Simulated annealing C++17 2.4/3.9 Rosati et al.
(2022)

DITUoIArta CP/SAT + Simulated annealing Python 3.10,
ORTools 9.4

3.2/3.9 Dimitsas et al.
(2022)

Reprobate Pseudoboolean optimization Perl, clasp 3.3.9,
Sat4J 2.3.6,
RoundingSat

3.2/3.9 Lester (2022)

FBHS IP Decomposition +
matheuristic

C++, CPLEX
12.10

2.6/3.9 Van Bulck
and Goossens
(2023a)

Fig. 5.10, that provides an overview of the CPU times used by the algorithms)
and not all solvers were written in the same language and with the same
technologies (see Table 5.10). For example, C++, that is a compiled
language, produces much faster code than Python, that runs through an
interpreter. Nonetheless, sports timetables are planned on a yearly basis
and have a relevant impact on the attendance and profitability of the
competition, making running time a secondary aspect. Moreover, these
solvers were designed and developed under a particular circumstance (the
ITC2021 competition), and comparing them under exactly equal conditions
would imply a relevant effort in terms of time and resources. For this reason,
we consider these results as the best possible comparison that can be realized
at the moment.

Defined ∆i,a as the difference between the best solution Fi,a found by
algorithm a on instance i and the best performance achieved across all
algorithms on instance i (i.e., ∆i,a = Fi,a − mina Fi,a), Fig. 5.11 plots
the distribution of ∆i,a among these problem instances and the number of
problem instances for which a found a feasible solution. The figure shows

106

Sports Timetabling

DES DITUoIArta UoS Goal FBHS Udine Reprobate MODAL

0

5000

10000

15000

20000

25000

30000

35000

Cores: 4
Mean: 600

Cores: 6
Mean: 834

Cores: 4
Mean: 29640

Cores: 1
Mean: 1182

Cores: 8
Mean: 6208

Cores: 1
Mean: 1442

Cores: 1
Mean: 109

Cores: 1
Mean: 173

Figure 5.10: Distribution of the CPU runtimes for the additional problem
instances per algorithm.

D
E
S

D
IT
U
o
IA
rt
a

U
o
S

G
o
a
l

FB
H
S

U
d
in
e

R
e
p
ro
b
a
te

M
O
D
A
L

0

2000

4000

6000

8000

10000

(a) ∆i,a

D
E
S

D
IT
U
o
IA
rt
a

U
o
S

G
o
a
l

FB
H
S

U
d
in
e

R
e
p
ro
b
a
te

M
O
D
A
L40

50

60

70

80

90

100

396

443
460

434

369

506

372

321

(b) Feasible solutions

Figure 5.11: Distribution of ∆i,a and number of instances solved to feasibility.

that our algorithm managed to find a feasible solution for a large number
of instances, 508 out of 563, more than any other solver, and that these
solutions are never far from the best found solutions.

107

Sports Timetabling

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

DES

DITUoIArta

UoS

Goal

FBHS

Udine

Reprobate

MODAL

nan

Tie

(a) Overview of best performing
algorithm on the feature space

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.2

0.4

0.6

0.8

1.0

(b) Regret Udine

Figure 5.12: Algorithm performance on the feature space

Additionally, Fig. 5.12a shows the winning algorithm in terms of the best
solution found for each of the problem instances, plotted on a bidimensional
plane obtained from a principal component analysis (PCA) of the features
of the instances (for more details, see Van Bulck and Goossens, 2023b). The
color denotes the best algorithm for a given point, problem instances for
which none of the algorithms found a solution are indicated by a gray x-mark.
From the figure we can see that most of the algorithms perform particularly
well in a specific part of the feature space and no single algorithm dominate
all the feature space.

In Fig. 5.12b, that uses a non-linear color scheme to superimpose our
relative gap ∆i,a in the 2D feature space, we highlight with a darker color the
instances where our solution method performs exceptionally well. It shows
the algorithm effectiveness in the part of the feature space where phased
problem instances are projected, witnessing the contribution of the newly
proposed PartialSwapTeamsPhased neighborhood. Only near the origin of
the feature space, there is a gap with Goal and UoS, and in the far right of
the feature space, the FBHS solver performs better.

This comparison suggests that our Multi-Neighborhood Search approach
works better than the other solvers both in terms of feasibility and solution
quality, and is a top performer on a large portion of the feature space.

5.6 Conclusions

In this study, we considered the version of the Sports timetabling Problem
proposed for the ITC2021 competition. We presented an ILP model for

108

Sports Timetabling

the problem, which did not yield significant results when solved by a
commercial solver. Then, we tackled the problem employing a three-stage
Multi-Neighborhood Simulated Annealing approach, that makes use of six
different neighborhoods. In particular, the neighborhood that we named
PartialSwapTeamsPhased is a novel contribution.

This approach managed to find a feasible solution for 44 out of the
45 instances proposed by the competition. Feasible solutions were found
rather easily for most of the instances, however the metaheuristic struggled
to produce feasible solutions for certain instances, even in long execution
times. The results obtained by the Simulated Annealing approach allowed us
to rank second out of 13 participants in the final ranking of the competition.

Furthermore, a comparative analysis of our solution method against other
methods across a dataset consisting of 563 instances, that includes the 45
competition instances, revealed that our algorithm yields the best results
with regard to both feasibility and solution quality.

109

Chapter 6

Home Healthcare Routing and
Scheduling

Over the past two decades, we have witnessed a shift in the provision
of supportive and geriatric care. Instead of being primarily based in
institutional settings like nursing or rest homes, these services have been
increasingly relocated to the patients’ own homes.

The reasons behind this shift can be attributed to two factors. Firstly,
allowing patients to remain in their familiar environments enhances their
quality of life. Secondly, this situation has a notable positive effect on
reducing healthcare costs, a sensible topic in rapidly aging societies.

Trained caregivers provide home healthcare services by visiting the
patient’s home during a designated time window. They carry out service
operations based on the patient’s specific needs, which can range from
medical care to instrumental activities of daily living. After completing their
tasks, the caregivers proceed to the next patient. This distinct characteristic
of home healthcare makes it a structured problem. Unlike classical activity
scheduling problems in hospitals or healthcare institutions, which primarily
focus on temporal aspects, home healthcare requires consideration of both
temporal and spatial dimensions, including travel times between patients.

The synchronization constraint stands out as the most distinctive type
of constraint in this problem, as it introduces temporal dependencies among
the activities. For instance, certain medical care tasks such as physiotherapy
necessitate the simultaneous presence of multiple caregivers, such as when
lifting the patient from their bed. Other activities, such as administering
medication or preparing lunch, may require subsequent actions to take place
after a specific time interval, like administering one dose in the morning

110

Home Healthcare Routing and Scheduling

and another in the evening. Due to the non-negligible travel time involved
when caregivers transition from one patient to another, these constraints
significantly increase the complexity of the routing aspect of the problem
compared to standard vehicle routing problems.

In this chapter, we present a Multi-Neighborhood Search approach to
solve the problem formulation introduced by Mankowska et al. (2014). Our
method incorporates a diverse set of original neighborhood operators. The
core of the solution process relies on the implementation of a Simulated
Annealing (SA) procedure (Kirkpatrick et al., 1983) for driving the search.

The approach outperforms previous methods in the literature
(Mankowska et al., 2014; Lasfargeas et al., 2019; Kummer et al., 2020;
Kummer, 2021; Kummer et al., 2022) and shows its capability to improve
the current state-of-the-art results on the benchmark instances.

In addition, we have designed a parametric instance generator that relies
on real geographical data and real population density. This generator allows
us to create an additional dataset that encompasses a significantly wider
range of sizes and features’ values compared to the existing benchmarks
proposed by Mankowska et al. (2014) and Kummer (2021). For our new
dataset, we have introduced a novel file format based on JSON, which offers
enhanced robustness, extensibility, and human readability when compared
to the previous formats utilized thus far. We also show our results on the
new instances, highlighting the relationship between the different objectives.

6.1 Related work

Research on scheduling of home healthcare services has been ongoing since
the late 1990s. Notably, Begur et al. (1997) were among the first to
consider this problem and applied a simple scheduling heuristic as its solution
method. Subsequently, Cheng and Rich (1998) formulated the problem using
a mixed-integer linear programming techniques.

Later attempts to address this problem approached it from a set covering
perspective. For instance, Eveborn et al. (2006) introduced a working
healthcare planning system, while Rasmussen et al. (2012) were pioneers
in considering temporal dependencies among the activities. Bredström
and Rönnqvist (2008) also worked on a similar synchronization problem
but looking at it from a vehicle routing perspective, without explicitly
considering the healthcare nature of the services involved.

The idea of providing services in a metropolitan area, where the travel
between patients can be facilitated using a public transportation network

111

Home Healthcare Routing and Scheduling

instead of a private car, has been explored in the studies conducted by
Bertels and Fahle (2006) and Rendl et al. (2012). The latter research also
considers the option of switching the mode of transportation during the
journey, resulting in multi-modal trips.

Di Gaspero and Urli (2014) tackled a similar problem, albeit with
a distinct perspective. Their study focused on a temporal horizon that
extended over multiple days, and they also incorporated the balancing of
caregivers’ workloads, aiming to minimize overtime. Additionally, in their
approach, there was room to leave certain patient activities unscheduled,
which proved helpful in handling overconstrained scenarios and allowed for
the possibility of hiring more occasional caregivers if needed. To address
this problem, they model it in the Constraint Programming framework and
employed specialized branching heuristics and a Large Neighborhood Search
approach for the solution.

Mankowska et al. (2014) presented a relatively standardized
representation of the problem and also offered a set of benchmark instances
for evaluation purposes. The problem formulation (refer to Section 6.2 for
an informal overview) incorporates synchronization constraints at patients’
homes, allowing for a maximum of two activities to be coordinated. The
quality of the solution is assessed based on traveling times and the tardiness
of service activities in relation to patients’ time windows. To solve this
problem, Mankowska et al. devised an Adaptive Variable Neighborhood
Search method that incorporates eight distinct neighborhood operators.

A similar problem was addressed by Ait Haddadene et al. (2016), but in
their formulation patients’ time windows must be strictly respected and the
objective is to minimize total traveling times and patients’ non preferences
related to caregivers. A MIP model and a hybrid Greedy Randomized
Adaptive Search Procedure and Iterated Local Search metaheuristic are
proposed and compared on the testbed designed by Bredström and
Rönnqvist (2008), conveniently extended to take into account different types
of services.

Recent advancements in the field include the research conducted
by Lasfargeas et al. (2019). They proposed a local search-based
method integrated into a Variable Neighborhood Search solution procedure
and evaluated it using the Mankowska et al. (2014) benchmarks.
Population-based approaches have also been explored by various researchers,
tailored to different problem settings. For instance, Decerle et al. (2018)
and Grenouilleau et al. (2019) developed memetic algorithms, which
involve genetic algorithms followed by a local search step, to address
the problem. On the other hand, Clapper et al. (2023) introduced a

112

Home Healthcare Routing and Scheduling

model-based evolutionary algorithm. Following a similar approach to
the work by Di Gaspero and Urli (2014), Grenouilleau et al. (2019)
considered a multi-day horizon and aimed to balance caregivers’ workload,
including minimizing overtime. However, their routing problem was more
sophisticated, accounting for hourly dependent traveling times due to traffic.
Moreover, Xiang et al. (2021) and Oladzad-Abbasabady et al. (2023)
approached the problem from a multi-objective perspective, seeking to
achieve a balance between the total operating cost and the satisfaction of
caregivers and patients. They employed NSGA-II genetic and Iterated Local
Search algorithms, respectively, to tackle the problem.

The problem formulation introduced by Mankowska et al. (2014) has
attracted interest from Kummer and co-workers (Kummer et al., 2020;
Kummer, 2021; Kummer et al., 2022), who developed and utilized Biased
Random Key Genetic Algorithms to address the problem. Their outcomes
currently stand as the state-of-the-art concerning these benchmarks.
Additionally, in their work, Kummer (2021) introduced a new dataset that
includes a more comprehensive set of features compared to the original
dataset proposed by Mankowska et al. (2014).

Recently, the home health care routing and scheduling problem with
stochastic travel and service times was examined by Bazirha et al. (2023).
They formulated the problem as a two-stage stochastic programming
model with recourse, which involves penalty costs for delayed services to
patients and remuneration for caregivers’ extra working time. To solve the
deterministic model, the researchers employed CPLEX, a genetic algorithm,
and variable neighborhood search-based heuristics. For the stochastic
programming model, they utilized Monte Carlo simulation embedded into
the genetic algorithm. The performance of these solution methods was
evaluated on test instances generated in accordance with the benchmark
instances proposed by Mankowska et al. (2014).

Notable surveys on the utilization of operational research methods in the
context of home healthcare problems are presented in the works of Fikar and
Hirsch (2017), Cissé et al. (2017) and Grieco et al. (2021).

6.2 Problem definition

The Home Health Care Routing and Scheduling Problem (HHCRSP) has
been formally defined by Mankowska et al. (2014) using a mathematical
model. For the sake of completeness, we present a summary of its definition
in this chapter.

113

Home Healthcare Routing and Scheduling

The primary entities involved in the problem are as follows:

Times and Horizon: The problem consists in planning for a single day,
with time expressed in minutes, starting from 0, which corresponds to
the beginning of daily activities (e.g., 6:00 AM) when all caregivers are
assumed to be at the central office. There is no explicit time horizon,
and the activities are limited by the patient’s time windows. Distances,
both between patients and from the central office, are directly measured
in minutes required to travel and cover those distances.

Patients: Patients are categorized into two classes: single-service patients
and double-service ones. Single-service patients require service from
one caregiver within their designated time window. In contrast,
double-service patients need to be served by two caregivers, either
simultaneously or in a sequential manner, within their time window.
For sequential double-service patients, the minimum and maximum
time gap between the two services is explicitly specified.

Services and Caregivers: Every service has its own duration, which may
differ based on the individual patient’s requirements. Each caregiver
is specialized in providing a particular service, leveraging their specific
abilities. The caregivers start their daily tasks from the central office
and complete their workday by returning to the same central location.

According to the model of Mankowska et al., service time can vary
depending on the specific service and the patient, even though in the original
dataset this length is a global constant value. In the dataset of Kummer
(2021), the values actually differ between services and patients, although
they do not depend on the specific caregiver delivering the service. In the
construction of our dataset, we also assume that the services provided to
patients depend on the type of service and the patient, rather than the
caregiver themselves.

Fig. 6.1 shows the data of a toy instance with six patients (p1, p2, . . . ,
p6), three caregivers (c1, c2, and c3), and three services (s1, s2, and s3). As
mentioned above, distances, service times, and time windows are expressed
in minutes. For example, assuming that the working day starts at 6:00AM,
the first time window 240 – 360 represents the fact that patient p1 should
be visited between 10:00AM and 12:00AM. Furthermore, p1 needs a single
service s2, whose duration is 30 minutes. Conversely, patients p4 and p5
require a double service: specifically, p4 needs the simultaneous presence of
two caregivers, whereas for p5 the two services must be separated by at least

114

Home Healthcare Routing and Scheduling

Patients

ID Time Service (duration) Separation
window first second min max

p1 240 – 360 s2 (30) — —
p2 120 – 180 s3 (20) — —
p3 0 – 60 s2 (45) — —
p4 120 – 210 s2 (30) s3 (30) 0 0
p5 270 – 420 s1 (15) s3 (30) 30 45
p6 360 – 420 s1 (45) s3 (20) 60 90

Caregivers

ID Services

c1 s1, s2
c2 s3
c3 s2, s3

Distances

co 0 38 34 56 7 13 26
p1 39 0 23 22 32 50 58
p2 35 23 0 44 28 47 43
p3 56 22 44 0 54 59 78
p4 7 32 28 51 0 19 28
p5 13 45 47 59 19 0 35
p6 27 57 42 77 28 35 0

co p1 p2 p3 p4 p5 p6

Figure 6.1: Toy instance data

30 minutes and at most 45 minutes. The central office is denoted as co in
the distance matrix. Notice that distances are not symmetric.

The possibility that a single caregiver provides both services for the same
double-service patient is obviously impossible for simultaneous services. It is
also explicitly forbidden for sequential ones by the work by Mankowska et al..
From a practical standpoint, it may not be intuitive to impose this limitation,
as using a single caregiver has the potential to save time in the overall
schedule. However, in real-life scenarios, it is assumed that the two services
(e.g., nursing and physiotherapy) require distinct skills and qualifications.
Therefore, it is highly improbable that a single caregiver possesses both sets
of skills. In the available datasets, the case that a single caregiver has the
ability for two sequential services at the same patient never occurs, so this
is not an option. We keep the same limitation and this situation does not
occur in our dataset either1.

1Notice that the toy instance, due to the limited size, does not enforce this limitation.

115

Home Healthcare Routing and Scheduling

Enforcing the caregiver’s qualification for the specific service is a hard
constraint. Likewise, it is strictly prohibited for a service to commence before
a patient’s designated time window begins. Following standard practices in
vehicle routing, if the caregiver arrives early, it is required to wait until the
patient’s time window starts. On the other hand, the occurrence of a patient
being served late is admissable, and the extent of tardiness is considered in
the objective function. Finally, the min and max time separation between
sequential services for a double-service patient is also a hard constraint.

Notice that it is also possible that some caregivers are not assigned to
any patient, thus they have an empty route. Conversely, all patients must
be covered for all the services they need.

The problem goal is to minimize an objective function that consists of
three components: the total travel time, the overall tardiness, and the highest
individual tardiness. The inclusion of the highest tardiness component
is essential to ensure fairness among patients. This prevents the best
solution from being achieved at the expenses of a single patient, solely by
significantly delaying his/her service provision. In cases where a patient
receives double service, each service tardiness is considered independently.
All three components are measured in minutes and are combined with equal
weight, each contributing 1

3 to the overall objective.
Fig. 6.2 shows a (non-optimal) solution to the instance of Fig. 6.1, in

the visual form automatically produced by our solution validator. The time
windows of patients are highlighted in dark gray and the warehouse icon
refers to the central office. The travel times of caregivers c1, c2, and c3 are
190 (56 + 22 + 50 + 35 + 27), 39 (7 + 19 + 13), and 117 (34 + 28 + 28
+ 27), respectively. Notice that all services are provided on time, except for
service s3 by caregiver c3 at patient p6 (shown with white diagonal stripes in
the figure) that is late by 10 minutes. Hence, the total and highest lateness
values are both 10. Consequently, the cost of this solution is calculated as
(190 + 39 + 117)/3 + 10/3 + 10/3, resulting in a total cost of 122. Notice
also that there are three early arrivals, with long waiting times (shown in
dotted rectangles in the figure). This phenomenon also happens in other
instances, but it is particularly evident in this toy instance.

6.3 Solution method

We present a Multi-Neighborhood Search approach to address the problem.
In the subsequent sections, we will outline the fundamental components of
the local search paradigm, which include the search space, the initial solution

116

Home Healthcare Routing and Scheduling

0 100 200 300 400

Õ

p1

p2

p3

p4

p5

p6

s2

s2

s1

s1

s3

s3

s3

s2

s3

c1

c2

c3

Figure 6.2: A solution of the toy instance

strategy, the neighborhood relations, and the metaheuristic that drives the
search process.

In the following, we denote by P = {1, . . . , P} the set of patients, C =
{1, . . . , C} the set of caregivers, and S = {1, . . . , S} the set of services.

6.3.1 Search space

Following Mankowska et al. (2014), the search space is represented by a
vector Π = [π1, π2, . . . , πP] containing a permutation of the values 1, . . . , P ,
which represents a global ordering of the patients. That is, patient π1 is the
first patient to be served, π2 is the second, and so on.

Vector Π is completed by another P -sized vector of pairs Θ = [(ϑ1,1,
ϑ1,2), (ϑ2,1, ϑ2,2), . . . , (ϑP,1, ϑP,2)] such that ϑp,1 and ϑp,2 are the caregivers
that serve patient p. In case of a single-service patient p, the second element
of the pair (ϑp,2) is not used.

For example, the solution of Fig. 6.2 to the instance of Fig. 6.1 is
represented by the vectors: Π = [3, 2, 4, 1, 5, 6] and Θ = [(1,−), (3,−), (1,−),
(3, 2), (1, 2), (1, 3)], where the dash symbol − means that the value is not
present.

The routes of caregivers and their corresponding service times are
deterministically constructed, starting from sets Π and Θ (see Section 2.2.5).
The scheduling procedure starts with empty routes and processes patients one
by one, following the order specified in Π. During each iteration i of this
procedure, patient p = πi is added to the end of caregivers’ routes c1 = ϑp,1

and c2 = ϑp,2 (or only to c1 for patients requiring a single service).

117

Home Healthcare Routing and Scheduling

0 100 200 300 400

Õ

p1

p2

p3

p4

p5

p6

s2

s1

s1

s3

s3

s3

s2

s2

s3

c1

c2

c3

Figure 6.3: The optimal solution of the toy instance

The service start times are calculated at the earliest, taking into
consideration the time window of patient p. Specifically, for caregiver c1
at patient p, the start time is determined as the maximum value between
the beginning of the time window for p and the earliest time at which c1 can
reach p based on their previous assigned duties and travel times. For the
second service (if applicable), the service start time of caregiver c2 at patient
p is determined as the maximum value between the minimum separation
between the two services for p and the earliest time at which c2 can reach
the patient.

The solution of Fig. 6.2 is obtained applying the scheduling procedure.
We can see that all services are provided always as soon as possible.

In the case in which c2 reaches patient p later than the maximum
separation between the two services of p, the service of c1 is postponed as
much as necessary in order to keep the separation within the range.

This case happens for the solution of the toy instance represented by
Π = [4, 3, 1, 5, 2, 6] and Θ = [(3,−), (2,−), (3,−), (1, 2), (1, 3), (1, 2)], which
incidentally is optimal, with no tardiness, and a total traveling time of 334
minutes, corresponding to a cost of 111.33. The schedule built for this
solution by the above procedure is shown in Fig. 6.3, where we notice that
caregiver c1 (orange) at patient p5 is postponed by 5 minutes to time 275
from the beginning of the time window at 270, because caregiver c3 can arrive
at the patient only at time 320 and the maximum separation is 45 minutes.
Notice also that there is no tardiness as long as the caregiver starts within
the time window, regardless of the fact that the service finishes after the end
of the time window (see caregiver c2 at patient p6).

118

Home Healthcare Routing and Scheduling

With this scheduling procedure, separations are always satisfied,
although tardiness is possible. By treating tardiness as a soft constraint,
this ensures that all necessary services can be accommodated within the
schedule, guaranteeing the feasibility of the solution.

The two vectors Π and Θ are sufficient to represent the solution and to
build the full schedule by using the procedure described above. Nonetheless,
in our implementation they are complemented by many redundant data
structures, used to accelerate the evaluation of the costs of neighbor
solutions. These data structures include, among others, the position of each
patient in the ordering (the inverse of Π), the route of each caregiver, and
the positions of the patients in the routes of their caregivers.

6.3.2 Initial solution

The initial solution is created randomly. Initially, a random permutation is
chosen for the Π vector. Next, one (or two distinct) caregivers are randomly
selected for each patient and added to the Θ vector. The caregivers are
chosen from those who possess the required ability to provide the service.

Given the vectors Π and Θ, the scheduling procedure is applied, so as to
produce the full initial schedule and to evaluate corresponding costs.

6.3.3 Multi-neighborhood

We consider three neighborhood relations: MovePatient, which repositions
and reassigns one patient; SwapPatients, which swaps two patients in terms
of global position and caregivers; and InRouteSwap, which swaps two patients
within a specific route.

The set of neighborhoods we employ has a significantly broader scope
compared to the one utilized by Mankowska et al. (2014). Our neighborhoods
enable simultaneous changes in both the position and caregivers, whereas
Mankowska et al. considered only the options of repositioning a patient
within the global order, changing the caregiver(s), or swapping either the
position or caregiver(s) individually.

For the sake of clarity, we illustrate the neighborhoods only for the case
of double-service patients, which is the most complex one. The case of
single-service ones is obtained simply by ignoring the second caregiver and
adjusting the various features accordingly.

Furthermore, throughout this section, in order to simplify the
presentation, given a solution and a patient p, we use the following notation.
We call cp1 and cp2 the caregivers assigned to p, i.e., cp1 = ϑp,1, c

p
2 = ϑp,2; we

119

Home Healthcare Routing and Scheduling

call ip the current position of p in Π; finally, we call sp1 and sp2 the services
requested by patient p.

Neighborhood MovePatient

The first neighborhood, called MovePatient (MP), consists in repositioning
one patient p in the global ordering and assigning new caregivers to p, in
one single move:

• Attributes: ⟨p, i, c1, c2⟩, with p ∈ P, 1 ≤ i ≤ P , c1, c2 ∈ C

• Preconditions:

– No null moves: ⟨i, c1, c2⟩ ≠ ⟨ip, cp1, c
p
2⟩

– Distinct caregivers: c1 ̸= c2

– No missing abilities: c1 and c2 have the ability for the services

• Effects: Patient p is moved to position i in the global ordering Π. All
patients in positions between i and ip are shifted accordingly (either
forward or backward). Caregivers c1 and c2 are assigned to p. The full
schedule is recomputed using the defined procedure.

• Special cases: The position i can be the same as ip, which means
the move results in a change of caregivers only. Likewise, it is possible
for one or both caregivers to stay unchanged, indicating that the move
represents only a modification in the sequence of the routes.

As an example, consider the state in Fig. 6.3, represented by Π =
[4, 3, 1, 5, 2, 6] and Θ = [(3,−), (2,−), (3,−), (1, 2), (1, 3), (1, 2)]. Now, take
the move MP⟨5, 2, 2, 3⟩, which relocates patient 5 to position 2 and assigns
caregivers 2 and 3. The application of this move to the given state would
lead to the new state Π = [4,5, 3, 1, 2, 6] and Θ = [(3,−), (2,−), (3,−), (1, 2),
(2,3), (1, 2)], where the affected values are highlighted in boldface. Notice
that the second caregiver (3) is left unchanged.

Neighborhood SwapPatients

The second neighborhood, called SwapPatients (SP), consists in swapping the
position in Π and the caregivers in Θ for two patients. A swap is possible
only between patients with the same number of services and with current
caregivers with the required abilities for the other patient.

120

Home Healthcare Routing and Scheduling

For double-service patients, the neighborhood also includes the option
that first and second caregivers are crossed between the two patients: the
first caregiver of one patient is assigned to the second service of the other
patient. This option is stored in a Boolean attribute of the move, called CS
(for cross swap), such that if CS = F the caregivers are swaped position-wise,
whereas if CS = T they are inverted. The definition of the neighborhood is
the following:

• Attributes: ⟨p1, p2, CS⟩, with p1, p2 ∈ P, CS ∈ {F,T}

• Preconditions:

– No null moves: p1 ̸= p2

– Same type: p1 and p2 are both double-service or both
single-service

– No missing ability cp11 , cp21 , cp12 , and cp22 have the ability for the
services assigned to them by the move

• Effects: patient p1 is moved in position ip2 and patient p2 is moved in
position ip1; if CS = T, then cp21 and cp22 are assigned to p1, and cp11 and
cp12 are assigned to p2, for the first and second service, respectively;
if CS = F, then cp22 and cp21 are assigned to p1 and cp12 and cp11 are
assigned to p2, for the first and second service, respectively.

Consider again the solution in Fig. 6.3, represented by Π =
[4, 3, 1, 5, 2, 6] and Θ = [(3,−), (2,−), (3,−), (1, 2), (1, 3), (1, 2)]. The
move SP⟨5, 6,F⟩ would lead to the state Π = [4, 3, 1,5, 2,6] and Θ =
[(3,−), (2,−), (3,−), (1, 2), (1,2), (1,3)], where the affected values are
highlighted in boldface.

Neighborhood InRouteSwap

The third neighborhood, called InRouteSwap (IRS), is also a swap move,
but of a different type. It swaps two patients in positions j1 and j2
within the route of a given caregiver c. If one or both patients are
double-service ones, the route of the side caregiver(s) serving the patient(s)
is modified accordingly. That is, the patient is moved to the position in the
route corresponding to their new global position. Differently from the SP
neighborhood, side caregivers are not swapped, thus creating a different type
of movement.

121

Home Healthcare Routing and Scheduling

We call lc the length of the route for caregiver c, i.e., the number of
patients served by caregiver c. We also call p1 and p2 the patients in positions
j1 and j2 of the route of c, and i1 and i2 their global positions, i.e., their
positions in Π.

• Attributes: ⟨c, j1, j2⟩, with c ∈ C, 1 ≤ j1 < j2 ≤ lc.

• Preconditions:

– Minimum route length: lc ≥ 2

• Effects: Patient p1 is moved to global position i1 and p2 is moved
to global position i2. The routes of c and of the other caregivers of
patients p1 and p2 are updated accordingly.

Consider once again the solution in Fig. 6.3, represented by Π = [4, 3, 1, 5,
2, 6] and Θ = [(3,−), (2,−), (3,−), (1, 2), (1, 3), (1, 2)]. The move IRS⟨3, 2, 3⟩
swaps the second and the third patients in the route of c3. The new ordering
obtained is Π = [4, 3,5, 1, 2, 6] (where the affected value is highlighted in
boldface as before), Θ is unchanged. Notice that p5 is a double-service
patient who is also served by c1, so the route of c1 could be affected. In
this case, however, given that the new position of p5 is remained within the
positions of p4 and p6, the route of c1 is unchanged.

Composition of neighborhoods

The multi-neighborhood used in our solution method is MP ∪ SP ∪ IRS,
i.e., the set union of the three basic ones defined above. In particular, a
random move from the union neighborhood is obtained by first selecting one
of the three basic ones and then drawing a random move within that basic
neighborhood.

The first selection is a weighted randomization that makes use of two
parameters, called σSP and σIRS, so moves of type SP and IRS are drawn
with probability σSP and σIRS, respectively. Consequently, we draw a MP
move with probability 1− σSP − σIRS. Within the single neighborhood, the
selection of the specific move is done uniformly.

It is worth mentioning that the MovePatient neighborhood is the most
important one, as confirmed later by the experimental analysis. In fact, it is
easy to verify that the search space is connected under this neighborhood, as
it is possible to go from any solution to any other one, by means of a chain of
MovePatient moves. This is not the case for the other two neighborhoods that

122

Home Healthcare Routing and Scheduling

do not change the length of the route. They can be considered as auxiliary
neighborhoods that allow to diversify the search.

We also notice that there is an overlap between SwapPatients and
InRouteSwap, as a move that swaps two single service patients in the same
route can be obtained from both of them. Given that we do not explore the
neighborhood exhaustively, but rather sample random moves this is not a
source of inefficiency, but only a (small) bias in the distribution.

6.3.4 Metaheuristic

To guide the local search, we employ the Multi-Neighborhood Simulated
Annealing described in Chapter 2.

6.4 Datasets and generators

In this section, we first describe the datasets already available for this
problem. Subsequently, we introduce our generator and we describe our new
dataset obtained using the generator. Finally, we discuss the file formats for
instances and solutions.

6.4.1 Dataset by Mankowska et al.

The instances of Mankowska et al. (2014) are artificial and created by a
generator which samples random locations in a square of size 100×100 and
assigns Euclidean (and thus symmetric) distances among them. The number
of double service patients is fixed so as to be around 30% of the total number
of patients, equally distributed between those requiring simultaneous and
sequential services. The number of services is fixed globally to the value 6,
and their duration is a random number between 10 and 20, and it is identical
for all patients/caregivers within the instance.

The dataset generated consists of seven groups, each containing ten
instances with varying patient counts: 10, 25, 50, 75, 100, 200, and 300
patients, respectively. These groups are denoted by the letters from A to G,
resulting in instance names such as A1, A2, . . . , G10.

The upper section of Table 6.1 displays the primary characteristics of this
dataset, encompassing the number of patients (P), services (S), caregivers
(C), the percentage of double-service patients, the duration of time windows,
and the minimum and maximum average compatibility between patients and
caregivers (per service). Moreover, it includes the minimum and maximum

123

Home Healthcare Routing and Scheduling

Table 6.1: Summary of features of the different instance groups.

Double Time Compatibility Distance
Group P S C service windows min–max min–max

Mankowska et al. (2014)

A 10 6 3 30% 120 0.33–0.56 39.6–50.1
B 25 6 5 32% 120 0.35–0.52 38.4–45.9
C 50 6 10 30% 120 0.34–0.49 39.5–45.0
D 75 6 15 31% 120 0.33–0.46 39.3–44.7
E 100 6 20 30% 120 0.37–0.43 39.4–44.7
F 200 6 30 30% 120 0.38–0.46 38.9–42.0
G 300 6 40 33% 120 0.37–0.42 39.2–42.1

Kummer (2021)

I–10 10 6 3 40% 120 0.33–0.67 7.8–27.6
I–25 25 6 5 32% 120 0.20–0.60 15.2–23.2
I–50 50 6 10 32% 120 0.10–0.50 11.9–24.9
I–75 75 6 15 32% 120 0.07–0.47 10.9–24.8
I–100 100 6 20 32% 120 0.10–0.50 11.4–22.6
I–200 200 6 40 30% 120 0.20–0.48 12.7–22.4
I–300 300 6 60 30% 120 0.22–0.43 12.3–22.1
I–400 400 6 80 30% 120 0.24–0.43 11.1–22.4

124

Home Healthcare Routing and Scheduling

average distances in minutes between patients and also between patients and
the central office.

It is worth noting that instances within different groups exhibit
considerable homogeneity. This uniformity stems from the fact that they
were generated using the same configuration of the generator.

6.4.2 Dataset by Kummer

Kummer (2021) made an analysis of the instances by Mankowska et al.
(2014), highlighting that they are rather unrealistic, due to the lack of
“structure” in the geographical data. For this reason, he developed a new
generator that overcomes this weakness by sampling points in real cities
and matching them with real addresses and computing real routes. As a
consequence, distances are not Euclidean and not symmetric. However, the
ratio between different patient types is fixed exactly as in the dataset by
Mankowska et al. (2014),and the number of services is fixed to 6 as well.
Nonetheless, the distribution of the abilities is more balanced in order to
provide against the possibility that some services are assigned to a very
small number of caregivers.

For the generation of the geographical data of the instances, Kummer
identified three features, namely the node generation strategy (random or
clustered), the central office placement strategy, and the cluster density. He
selected 22 different combinations of values for these features and generated
100 instances for each combination. The values of the size of the groups are
the same seven of Mankowska et al., plus an additional size of 400 patients,
for a total of eight groups.

As a result, he generated 17,600 (22×100×8) instances that are publicly
available at https://github.com/afkummer/hhcrsp-dataset-2021 and
can be used for training. The main features of this dataset are shown in the
lower part of Table 6.1.

Inside this dataset, the author identified 160 instances (20 for each
group) as the validation ones. Within each group, the set of 20 instances is
composed of the 10 hardest ones and 10 random ones. The hardness of an
instance is measured as the different between the lower bound and the best
obtained value within a given time limit. The lower bounds are computed
relaxing synchronization constraints and time windows from the MIP model
implemented using CPLEX.

125

https://github.com/afkummer/hhcrsp-dataset-2021

Home Healthcare Routing and Scheduling

6.4.3 Our generator and dataset

The generator of Kummer improves in terms of being more realistic with
respect to the original one by Mankowska et al., but it still presents some
details that we can improve. Regarding the geographical part, it does not
consider the real distribution of population in the city when sampling points,
for which, albeit using real road distances, the distribution of the distances
is still unrealistic, due to the fact that population in real contexts is not
uniformly distributed in a geographical region.

Our proposal is to create a realistic instance generator that utilizes both
the real distribution of population and actual road distances. It relies
on the assumption that the density of patients in a given area is directly
proportional to the density of the population. To make it fully realistic
we should take into account additional factors such as age distribution and
income level, which could potentially influence the demand for and the
accessibility of homecare services. However, differently from population
distribution, it is harder to retrieve such detailed data with a high level
of resolution on a large-scale dataset, for which we consider the use of
population density as a good trade-off between realism and convenience.
Nonetheless, in principle, the model can be adapted to incorporate such
factors if the relevant data is available.

The generator uses the GEOSTAT cartographic database provided by
the Joint Research Centre and DG Regional Policy of Eurostat. The
database partitions the entire area of the European Union and the adjacent
countries into square cells measuring 1km2. Each cell in the database
contains information regarding the population residing within the cell.
For our generator, we selected a variety of areas, including urban, rural,
and mountainous regions, which possess varying features with respect to
population, morphology, urban sprawl, and compactness. This diverse
selection was made to create a wide range of instances. Within each chosen
area, we sample N points, plus an additional point for the central office,
specified by their latitude and longitude coordinates. The sampling process
is weighted by the population of each cell, such that a point is more likely
to be selected in a cell with higher population. Then, the obtained N + 1
points are matched to the nearest location accessible by road or street. This
is necessary to calculate the road distances between pairs of points. We
employ the Open Source Routing Machine (OSRM) to compute the time it
takes to travel by car from one point u to another point v. The distances
(u, v) and (v, u) are computed independently. The result is an asymmetric
complete graph where the N + 1 vertices represent the N patients’ homes

126

Home Healthcare Routing and Scheduling

and the central office. The edges of the graph are weighted with actual road
travel times as computed offline by the OSRM routing engine.

We generated a dataset composed of 200 instances sampling various
Italian territories of different size and population density. The values of
the main features, such as patients, caregivers, and services, are selected
randomly for each instance (so that there are no groups).

From this dataset, we conducted a random selection of 30 instances for
validation, while retaining the remaining 170 instances for training. The
features of the validation instances are presented in Table 6.2. The time
window for each patient spans between 60 and 180 minutes. Furthermore, in
addition to the features outlined in Table 6.1, we also provide the distance
radius from the central office, which was used during the generation of the
instances.

6.4.4 File formats

Unfortunately, there is no single and well-established file format for the
instances of this problem. Indeed, the dataset of Mankowska et al. uses
two different formats, one for the instances of size up to 75 patients and one
for the larger ones (from 100 patients upward). Kummer’s dataset uses a
third one, which is similar, but not identical to the second one by Mankowska
et al.

All three formats are text-only and have a fixed-structure. They are easy
to parse, but quite fragile and not very human readable. In addition, they
contain some redundant data. For these reasons, we decided to move to a
more robust and human-readable format based on JSON. Our JSON format
is extensible to different, more complex versions of the problem, which is not
the case for the previous ones. The solutions are also written in JSON, with
their specific syntax.

In our repository located at https://github.com/iolab-uniud/hhcrsp,
we provide a brief guide on the syntax of the input and output JSON files.
This repository contains all the validation instances and our best solutions.
Additionally, we offer a Python-based validator to ensure the correctness of
instances and solutions.

127

https://github.com/iolab-uniud/hhcrsp

Home Healthcare Routing and Scheduling

Table 6.2: Features of new validation instances

Double Time window Compatibility Distances Radius
Instance P S C service avg min–max avg [km]

0 299 8 42 6.7% 124.7 0.36–0.40 42.20 26
1 165 4 24 41.8% 117.7 0.42–0.58 23.61 19
2 229 8 33 47.6% 124.6 0.30–0.52 17.55 11
3 44 8 8 43.2% 106.4 0.25–0.50 22.58 19
4 258 4 30 17.8% 117.6 0.47–0.53 33.70 26
5 212 4 28 16.0% 120.0 0.39–0.61 39.42 29
6 213 8 30 28.2% 120.6 0.33–0.47 43.32 30
7 297 4 45 9.8% 116.4 0.49–0.51 39.53 29
8 247 8 36 32.4% 127.4 0.33–0.39 33.37 32
9 55 4 7 27.3% 115.9 0.43–0.57 21.55 15
10 76 4 10 30.3% 120.2 0.40–0.60 20.82 15
11 181 8 27 16.0% 125.1 0.22–0.52 34.48 33
12 130 4 21 24.6% 123.7 0.38–0.62 38.09 37
13 131 8 18 35.1% 124.7 0.22–0.44 23.95 15
14 213 4 33 42.3% 125.4 0.42–0.58 35.61 29
15 73 4 11 34.2% 114.7 0.36–0.64 21.50 15
16 145 4 15 13.8% 116.7 0.47–0.53 21.18 11
17 101 4 13 11.9% 118.1 0.38–0.62 24.96 26
18 356 4 51 42.7% 126.3 0.37–0.63 24.09 17
19 203 8 28 42.9% 126.1 0.29–0.43 24.94 18
20 78 4 12 46.2% 127.7 0.33–0.67 20.10 15
21 323 4 49 30.3% 123.7 0.35–0.65 30.86 26
22 255 4 37 25.9% 114.5 0.38–0.62 36.66 29
23 75 4 9 30.7% 123.8 0.44–0.56 18.34 15
24 270 4 33 11.9% 123.3 0.36–0.64 30.09 25
25 45 8 8 28.9% 113.7 0.13–0.63 22.82 18
26 191 4 26 18.9% 124.5 0.38–0.62 25.83 17
27 157 8 29 47.8% 125.7 0.17–0.55 16.74 10
28 378 8 51 19.0% 123.0 0.33–0.41 37.70 32
29 100 4 11 3.0% 115.5 0.45–0.55 32.87 21

128

Home Healthcare Routing and Scheduling

Table 6.3: Parameter settings.

Name Description Value Range
T0 initial temperature 6.11 3–10
Tf final temperature 0.13 0.05–0.15
α cooling rate 0.9863 0.985-0.995
ρ accepted moves ratio 0.063 0.05–0.15
σSP probability of SP 0.04 0.0 – 0.3
σIRS probability of IRS 0.04 0.0 – 0.3

6.5 Experimental analysis

Our solution method is implemented in C++ using the framework for local
search EasyLocal++ (v. 3)2.

The experiments have been run on an Ubuntu Linux 22.4 machine with
4 cores Intel® i7-7700 (3.60 GHz), with a single core dedicated to each
experiment.

6.5.1 Parameter tuning

The parameter tuning was performed using the tool json2run, similarly to
Chapter 4.

The tuning procedure was performed in two stages. In Stage I, we tuned
the parameters of SA, namely T0, Tf , α, and ρ; in Stage II, we tuned the rates
of the neighborhoods σ∗. In Stage I we used rates obtained from preliminary
experiments, whereas in Stage II we used the SA parameters obtained in
Stage I.

Tuning has been performed using only the training dataset proposed by
Kummer (2021).

We conducted experiments with 30 Hammersley points and identified the
best result, which is presented in Table 6.3. The initial parameters ranges
were determined through preliminary experiments and are also provided in
the table. During the tuning phase, the maximum number of iterations I
for the simulated annealing (SA) algorithm was set to 5 · 107, leading to an
average running time of approximately 88 seconds on our machine.

We notice that σSP and σIRS have a rather low value in the
winning configuration, both equal to 0.04. Indeed, experiments using
only neighborhood MovePatient obtain results not much inferior to the

2Available at https://bitbucket.org/satt/easylocal-3

129

https://bitbucket.org/satt/easylocal-3

Home Healthcare Routing and Scheduling

multi-neighborhood setting. However, especially for the largest, and more
challenging instances, the contribution of the two auxiliary neighborhood
is statistically non-negligible. In fact, the configuration with σSP = 0 and
σIRS = 0 was eliminated by the RACE procedure.

6.5.2 Comparative results on the dataset of Mankowska et al.

We excluded from our analysis group A as all 10 instances are always
consistently solved to optimality, so they are not sufficiently challenging.

Regarding the parameter setting, due to the Metropolis acceptance
criterion of SA, temperatures must be related to costs, which in turn are
related to distances and tardiness. Given that in this dataset distances
represent the biggest cost and they are consistently larger than the distances
in the training instances by Kummer (2021), we rescaled the parameters T0

and Tf . To this aim, we observed that the average distance in this dataset is
2.3 times bigger that in the training one, therefore we multiplied T0 and Tf

for 2.3 with respect to the values in Table 6.3, keeping all the others fixed
as in the table.

The comparison of our results with the best-known results in the
literature is presented in Tables 6.4 and 6.5 for different instance groups,
namely B-D and E-G, respectively. Specifically, we compare our findings
(3SA) with those obtained by Mankowska et al. (2014) and Lasfargeas et al.
(2019) using Variable Neighborhood Search, as well as by Kummer et al.
(2020, 2022) using Biased Random-Key Genetic Algorithms. Following
usual conventions, the best (average) results are indicated in bold, while
the optimal values (only found in group B) are underlined.

For each instance, we ran ten replicates of our solving procedure, with
the number of iterations set at I = 108. This corresponds to approximately
6 minutes of running time for the largest instances in group G. Although
this allocated time is less than what others granted for the same instances,
it led to significantly longer running times (up to 2 orders of magnitude) for
us in the case of smaller instances. Nevertheless, our solver exhibits more
linear time scalability in comparison to our competitors.

While a completely fair comparison is not feasible due to different
running times and processors, it is evident that our best and average results
outperform the others in nearly all cases. This observation is reinforced by
the results averaged on each group, as indicated in the Avg rows in the tables.
Furthermore, we consistently achieved optimal solutions for seven out of ten
instances in group B. For the remaining three, we also find always the same

130

Home Healthcare Routing and Scheduling
T
ab

le
6.

4:
C

om
pa

ra
ti

ve
re

su
lt

s
on

in
st

an
ce

s
of

gr
ou

ps
B
−
D

.

K
um

m
-2

2
M

an
k-

14
La

sf
-1

9
K

um
m

-2
0

K
um

m
-2

2
3S

A
In

st
.

LB
co

st
t[

s]
be

st
av

g
t[

s]
be

st
av

g
t[

s]
be

st
av

g
t[

s]
be

st
av

g
t[

s]

B
1

42
8.

10
45

8.
9
<

1
43

4.
1

55
2.

8
53

.1
42

8.
10

42
8.

26
8.

6
42

8.
10

42
8.

53
0.

8
42

8.
10

42
8.

10
73

.9
B

2
47

6.
05

47
6.

2
<

1
47

6.
0

56
1.

3
27

.7
48

3.
63

48
5.

66
8.

4
47

6.
05

47
6.

92
0.

9
47

6.
05

47
6.

05
74

.2
B

3
39

9.
09

39
9.

2
<

1
39

9.
1

52
7.

6
63

.5
40

2.
80

40
2.

80
9.

0
40

2.
80

40
9.

29
1.

0
39

9.
09

39
9.

09
75

.6
B

4
41

1.
30

57
6.

0
<

1
41

4.
0

50
9.

7
66

.8
42

0.
29

43
1.

87
8.

2
42

2.
06

43
0.

46
1.

1
41

1.
30

41
1.

30
74

.7
B

5
36

6.
34

39
1.

1
<

1
38

5.
6

49
6.

9
13

.7
37

2.
16

37
4.

24
8.

2
36

9.
44

37
5.

15
1.

0
36

6.
34

36
6.

34
74

.2
B

6
40

5.
58

53
4.

7
<

1
44

7.
8

61
1.

8
44

3.
7

47
1.

00
47

1.
87

8.
9

47
0.

59
47

0.
70

1.
2

46
4.

62
46

4.
62

73
.9

B
7

32
8.

67
35

5.
5
<

1
32

8.
7

39
8.

8
61

.5
32

8.
67

32
8.

67
9.

5
32

8.
67

32
8.

67
0.

9
32

8.
67

32
8.

67
72

.7
B

8
35

7.
68

35
7.

8
<

1
35

9.
7

48
8.

7
79

.3
35

9.
70

35
9.

70
9.

2
35

7.
68

35
9.

40
0.

7
35

7.
68

35
7.

68
73

.9
B

9
33

0.
30

40
3.

8
<

1
40

4.
1

48
3.

4
62

.1
40

2.
67

40
4.

27
10

.0
40

4.
11

40
4.

29
0.

9
40

2.
67

40
2.

67
75

.6
B

1
0

42
0.

99
50

0.
4
<

1
46

2.
7

61
6.

8
8.

7
46

9.
58

46
9.

58
9.

2
46

9.
58

46
9.

58
0.

9
46

2.
75

46
2.

75
73

.6
A
vg

44
5.

4
41

1.
2

52
4.

8
88

.0
41

3.
86

41
5.

69
8.

9
41

2.
91

41
5.

30
0.

9
40

9.
73

40
9.

73
74

.2
4

C
1

45
9.

25
11

23
.6

<
1

97
4.

2
13

50
.4

96
.2

96
5.

15
97

5.
59

36
.9

96
9.

11
97

3.
87

3.
1

94
3.

73
10

10
.7

9
10

5.
7

C
2

37
3.

94
67

3.
8
<

1
60

5.
1

68
5.

5
10

6.
4

58
3.

39
59

0.
48

39
.0

58
4.

18
58

7.
00

2.
9

56
9.

12
57

5.
51

10
3.

6
C
3

39
0.

48
64

2.
4
<

1
56

2.
9

69
8.

2
10

9.
8

54
8.

79
55

9.
05

37
.4

54
9.

63
55

2.
52

2.
9

53
7.

79
56

3.
10

10
5.

9
C
4

37
1.

99
58

0.
4
<

1
52

1.
9

63
0.

4
11

2.
4

51
9.

91
53

0.
59

36
.2

52
0.

13
52

4.
15

3.
0

49
5.

17
49

9.
23

10
4.

1
C
5

46
4.

97
75

4.
6
<

1
68

3.
1

82
2.

6
11

4.
9

67
8.

61
70

2.
92

31
.4

66
8.

65
68

5.
92

3.
4

65
5.

72
66

6.
50

10
2.

8
C
6

36
0.

73
95

1.
6
<

1
85

4.
6

10
10

.6
11

5.
9

84
0.

69
84

5.
49

37
.2

84
1.

48
84

6.
83

2.
9

81
3.

25
83

1.
62

10
6.

9
C
7

35
4.

15
57

7.
4
<

1
52

9.
2

57
2.

5
10

9.
4

53
4.

85
54

0.
39

42
.2

53
3.

92
54

1.
88

3.
4

51
1.

89
51

5.
29

10
3.

0
C
8

37
5.

52
54

0.
6
<

1
47

1.
0

52
2.

8
11

0.
8

47
4.

55
48

0.
06

36
.5

47
5.

96
47

8.
39

3.
5

46
8.

88
47

0.
26

10
3.

1
C
9

35
5.

29
60

8.
7
<

1
55

1.
1

64
2.

7
11

5.
4

53
4.

30
55

1.
14

42
.8

54
5.

18
55

8.
54

3.
4

52
7.

69
53

5.
63

10
5.

1
C
1
0

43
1.

18
67

9.
3
<

1
60

8.
9

65
3.

0
99

.0
61

1.
25

61
8.

27
35

.3
61

1.
03

61
4.

59
2.

7
59

0.
26

59
0.

27
10

3.
4

A
vg

71
3.

2
63

6.
2

75
8.

9
10

9.
0

62
9.

15
63

9.
40

37
.5

62
9.

93
63

6.
37

3.
1

61
1.

35
62

5.
82

10
4.

36

D
1

49
2.

09
13

21
.8

5
12

78
.2

14
98

.8
14

3.
0

11
86

.2
0

12
09

.6
2

93
.7

11
93

.2
1

12
15

.7
9

8.
0

11
10

.8
1

11
82

.2
1

13
6.

4
D

2
38

4.
68

89
2.

7
4

74
6.

9
91

4.
3

16
8.

7
69

3.
28

71
8.

03
82

.9
67

9.
58

69
5.

99
7.

2
65

3.
73

67
3.

26
13

4.
7

D
3

38
0.

05
81

9.
4

4
67

8.
6

81
7.

8
15

5.
4

63
5.

67
65

1.
35

10
2.

2
64

4.
16

65
0.

22
8.

5
61

3.
12

63
4.

94
13

5.
4

D
4

41
8.

94
87

7.
4

4
80

9.
7

10
73

.1
14

8.
5

81
4.

35
84

1.
64

82
.3

79
5.

15
82

7.
28

7.
2

77
0.

60
78

4.
07

13
4.

9
D

5
41

5.
81

87
2.

1
5

77
7.

0
92

4.
9

15
0.

3
69

1.
50

70
3.

12
92

.4
69

3.
83

70
2.

68
7.

7
65

1.
65

66
1.

18
13

5.
4

D
6

39
2.

08
83

5.
2

5
76

8.
6

88
6.

6
15

4.
6

73
3.

67
74

4.
70

10
5.

8
73

1.
71

74
3.

64
7.

9
68

8.
15

69
2.

65
13

4.
9

D
7

37
2.

49
70

6.
3

6
60

0.
1

68
0.

4
16

8.
1

59
0.

64
60

4.
75

11
2.

8
58

6.
10

59
7.

25
7.

8
56

5.
78

58
0.

54
13

3.
0

D
8

40
9.

35
81

1.
4

4
71

5.
5

77
5.

8
14

9.
8

66
1.

78
68

0.
31

10
2.

7
65

8.
49

66
9.

83
8.

1
64

7.
95

66
2.

06
13

3.
3

D
9

38
5.

89
84

2.
7

6
74

1.
0

81
8.

2
15

6.
0

70
6.

08
72

3.
45

92
.6

68
9.

83
71

0.
32

9.
2

65
1.

10
66

0.
49

13
4.

8
D

1
0

48
5.

63
13

06
.6

3
14

24
.6

18
67

.7
17

3.
1

12
08

.7
1

12
90

.5
6

77
.7

11
89

.3
2

12
80

.9
2

6.
9

11
55

.8
9

11
65

.7
3

13
6.

3
A
vg

92
8.

6
4.

6
85

4.
0

10
25

.8
15

6.
8

79
2.

19
81

6.
75

94
.5

78
6.

14
80

9.
39

7.
9

75
0.

88
76

9.
71

13
4.

91

131

Home Healthcare Routing and Scheduling

T
ab

le
6.

5:
C

om
pa

ra
ti

ve
re

su
lt

s
on

in
st

an
ce

s
of

gr
ou

ps
E
−
G

.

K
um

m
-2

2
M

an
k-

14
K

um
m

-2
0

K
um

m
-2

2
3S

A
In

st
.

LB
co

st
t[

s]
be

st
av

g
t[

s]
be

st
av

g
t[

s]
be

st
av

g
t[

s]

E
1

43
0.

36
16

04
.9

17
13

31
.4

9
13

52
.3

2
19

3.
6

13
27

.7
2

13
40

.3
6

17
.2

12
57

.7
1

13
57

.7
1

16
6.

1
E

2
44

4.
88

11
01

.9
10

84
8.

08
87

1.
25

19
2.

0
82

9.
79

86
5.

05
17

.1
78

0.
57

79
1.

59
16

3.
4

E
3

45
4.

27
98

6.
4

14
78

8.
03

81
4.

23
18

2.
9

78
9.

56
80

6.
53

16
.7

75
8.

24
77

5.
46

16
5.

9
E

4
41

2.
08

87
1.

0
19

71
1.

19
72

9.
93

19
6.

5
72

3.
87

72
8.

96
14

.8
67

9.
57

69
6.

71
16

6.
8

E
5

41
6.

62
10

18
.0

19
78

1.
50

80
3.

86
18

2.
3

78
0.

04
81

7.
13

17
.0

71
4.

00
73

9.
40

16
4.

9
E

6
41

6.
60

10
03

.0
19

79
0.

47
80

4.
16

17
7.

6
77

9.
82

79
3.

68
18

.3
75

1.
26

76
2.

77
16

7.
0

E
7

38
9.

57
92

1.
1

20
71

1.
11

73
3.

91
19

1.
8

70
5.

79
71

5.
46

18
.0

68
0.

55
69

2.
67

16
5.

4
E

8
43

3.
89

88
4.

6
19

75
2.

35
76

1.
97

16
8.

8
73

3.
90

75
0.

59
17

.2
70

8.
08

71
7.

51
16

7.
3

E
9

44
6.

49
11

31
.7

18
92

1.
78

95
1.

91
16

3.
1

89
3.

35
91

6.
56

16
.4

84
0.

14
86

9.
21

16
6.

2
E

1
0

45
5.

07
10

53
.6

11
82

5.
24

84
5.

10
17

4.
5

82
2.

85
84

1.
57

16
.0

78
2.

76
80

2.
24

16
3.

9
A
vg

10
57

.6
16

.6
84

6.
12

86
6.

86
18

2.
3

83
8.

67
85

7.
59

16
.9

79
5.

29
82

0.
53

16
5.

69

F
1

54
8.

88
17

21
.4

88
9

14
01

.9
6

14
25

.9
7

74
5.

5
13

11
.1

0
13

51
.2

0
12

4.
4

12
29

.6
8

12
74

.2
3

29
8.

8
F
2

54
3.

32
17

63
.8

90
9

13
36

.3
3

13
83

.5
8

81
2.

1
12

98
.3

1
13

37
.4

1
12

1.
7

12
14

.3
9

12
48

.1
0

29
6.

8
F
3

54
7.

64
15

49
.6

86
8

12
63

.3
9

12
85

.8
1

78
0.

3
12

15
.9

6
12

72
.2

3
11

6.
5

11
36

.9
5

11
70

.2
0

29
8.

0
F
4

53
1.

84
14

20
.4

13
21

11
24

.2
4

11
46

.2
2

90
1.

9
11

00
.6

6
11

34
.6

6
13

6.
0

10
27

.6
8

10
70

.6
9

29
7.

4
F
5

53
8.

14
17

01
.9

11
45

13
29

.2
9

13
65

.1
7

82
6.

1
12

98
.5

5
13

31
.0

9
11

9.
8

12
14

.6
1

12
40

.6
9

29
8.

7
F
6

51
8.

47
16

39
.7

83
6

13
32

.1
4

13
73

.3
2

64
9.

8
12

92
.5

2
13

68
.4

1
10

9.
6

12
31

.4
7

12
64

.2
4

30
0.

6
F
7

51
2.

98
13

84
.3

12
94

11
31

.2
7

11
57

.3
5

81
7.

0
10

84
.5

7
11

25
.3

7
12

0.
5

10
63

.3
3

10
93

.8
3

29
6.

4
F
8

53
6.

15
15

44
.6

92
4

11
32

.7
7

11
65

.1
5

71
6.

4
11

23
.2

2
11

40
.4

2
10

7.
7

10
77

.1
2

11
09

.3
7

29
8.

5
F
9

54
3.

16
15

72
.9

16
42

13
11

.4
3

13
45

.0
1

77
0.

4
12

63
.1

9
13

44
.6

2
12

5.
4

11
83

.6
9

12
15

.8
9

29
9.

3
F
1
0

54
6.

84
15

81
.0

13
26

14
18

.5
3

14
46

.3
5

74
0.

3
13

83
.0

8
14

19
.7

6
11

9.
6

12
74

.7
1

13
06

.2
7

30
1.

0
A
vg

15
88

.0
11

15
.4

12
78

.1
4

13
09

.3
9

77
6.

0
12

37
.1

2
12

82
.5

2
12

0.
1

11
65

.3
6

11
99

.3
5

29
8.

55

G
1

61
2.

37
22

48
.0

72
00

17
78

.5
4

18
55

.1
7

19
49

.8
17

44
.1

4
18

24
.3

4
43

9.
4

16
68

.1
4

17
07

.7
0

45
6.

7
G

2
60

5.
84

23
16

.1
72

00
18

24
.7

4
18

97
.9

9
21

15
.1

17
09

.7
0

17
99

.7
8

51
9.

5
16

33
.7

0
16

68
.6

4
45

4.
0

G
3

61
4.

20
18

85
.3

71
47

15
14

.2
3

15
46

.5
3

19
35

.1
14

64
.6

9
15

11
.8

6
46

1.
6

13
87

.4
4

14
38

.6
9

45
3.

8
G

4
60

4.
30

20
23

.2
72

00
15

64
.4

2
15

99
.3

9
21

37
.6

15
08

.9
4

15
69

.0
1

52
9.

0
14

48
.6

5
14

91
.8

4
45

5.
3

G
5

63
3.

66
22

47
.6

72
00

16
98

.2
8

17
49

.1
0

18
40

.9
16

52
.8

8
16

81
.0

1
46

6.
6

15
47

.8
8

15
85

.3
8

45
8.

3
G

6
62

1.
46

21
44

.4
72

00
17

14
.3

8
17

77
.3

9
20

14
.4

16
81

.6
4

17
19

.1
8

57
0.

5
16

30
.9

8
16

80
.2

6
45

7.
6

G
7

60
2.

42
19

71
.5

69
34

16
40

.0
7

16
77

.9
2

18
44

.3
15

36
.0

0
16

04
.9

6
52

2.
4

14
94

.0
0

15
34

.8
6

45
3.

2
G

8
61

8.
74

19
87

.4
72

00
15

47
.6

3
15

83
.8

6
17

99
.1

14
98

.3
8

15
35

.9
0

53
1.

7
14

44
.8

8
14

78
.8

4
45

3.
3

G
9

66
2.

70
24

15
.5

70
23

19
42

.2
1

19
72

.4
8

18
10

.7
18

50
.0

7
19

76
.2

7
44

6.
6

17
62

.5
1

17
99

.2
0

45
7.

9
G

1
0

63
3.

76
23

73
.4

70
03

18
72

.0
8

19
32

.2
7

16
49

.6
17

85
.3

7
18

68
.5

6
48

2.
8

16
64

.7
0

17
14

.0
7

45
6.

9
A
vg

21
61

.2
71

30
.7

17
09

.6
6

17
59

.2
1

19
09

.7
16

43
.1

8
17

09
.0

9
49

7.
0

15
68

.2
9

16
09

.9
5

45
5.

7

132

Home Healthcare Routing and Scheduling

value, but it is not known whether it is optimal.3

6.5.3 Comparative results on Kummer’s dataset

Tables 6.6 to 6.8 present the comparative results for the second dataset, with
group I-10 removed. As explained above, the validation dataset is composed
by the 10 hardest instances, and 10 random ones out of 2200 generated for
each group. In our tables, the hardest instances are on the left, the random
ones on the right. The comparison here is only against the results of Kummer
(2021) as these instances have been proposed recently and are not considered
by other studies.

We can see that our results outperform the previous ones on most
instances, in particular on the largest ones. The only group in which the
previous results are cumulatively superior is the smallest one (25 patients)
of hard instances.

As for the previous dataset, our running times, corresponding to 108

iterations, are longer than Kummer (2021) for small instances and shorter
for the large ones.

6.5.4 Results on our new dataset

We now show the results obtained for the validation instances of our new
dataset. In this case, we have no comparative results available, so we only
show our values for future comparisons. We report in Table 6.9 the average
for 10 runs of the cost (obtained using the three weights equal to 1/3) and
the individual cost components (distance, total tardiness, highest tardiness).
In order to give a more qualitative view of the costs, we also show the average
distance per caregiver and the average tardiness per provided service. The
last row shows the averages upon all instances for these measures.

We see that the average distance (in minutes) for caregiver is 122.8,
meaning that an operator spends about two hours of their working day
traveling between patients and to the central office. Average tardiness is
0.3 minutes, which is perfectly acceptable, although this value also considers
all the services with no tardiness. The average highest tardiness is 11.8
minutes, which is quite low and tolerable in general. We also see that there
are no instances with zero tardiness, showing that this objective is indeed
binding and significant.

3All our results have been validated using the MIP model by Mankowska et al. (2014),
implemented in CPLEX and kindly supplied to us by Alberto Kummer.

133

Home Healthcare Routing and Scheduling

T
ab

le
6.

6:
C

om
pa

ra
ti

ve
re

su
lt

s
on

in
st

an
ce

s
of

gr
ou

ps
25
−
50

.

K
um

m
-2

1
3S

A
K

um
m

-2
1

3S
A

In
st

.
be

st
av

g
t[

s]
be

st
av

g
t[

s]
In

st
.

be
st

av
g

t[
s]

be
st

av
g

t[
s]

25
_

5_
22

_
1.

0_
C

_
C

82
0.

33
83

1.
47

49
.0

7
82

0.
33

86
2.

68
69

.3
3

25
_

5_
80

_
0.

8_
C

_
R

C
43

6.
67

43
6.

67
49

.0
7

43
6.

33
44

3.
13

71
.1

3
25

_
5_

69
_

1.
6_

R
_

R
C

11
49

.0
0

11
49

.0
0

49
.0

1
11

46
.0

0
11

62
.9

2
68

.0
5

25
_

5_
48

_
1.

0_
C

_
C

27
5.

00
27

7.
18

49
.5

3
27

2.
0

27
2.

19
71

.6
6

25
_

5_
47

_
0.

8_
R

_
C

84
8.

00
84

8.
00

49
.1

5
84

2.
33

85
0.

07
71

.6
1

25
_

5_
42

_
0.

8_
C

_
R

C
28

7.
67

28
7.

67
49

.4
1

28
7.

33
28

8.
70

72
.8

8
25

_
5_

37
_

0.
8_

R
_

R
C

14
34

.6
7

14
34

.6
7

49
.2

3
14

34
.6

7
14

42
.2

4
71

.0
4

25
_

5_
56

_
0.

8_
R

_
R

C
17

8.
33

17
8.

80
50

.0
9

17
7.

33
17

9.
29

72
.3

3
25

_
5_

37
_

1.
0_

R
_

R
C

14
34

.6
7

14
34

.6
7

49
.1

5
14

34
.6

7
14

42
.4

7
70

.9
8

25
_

5_
76

_
1.

2_
C

_
C

18
3.

67
18

3.
67

49
.6

5
18

3.
67

18
5.

27
71

.4
4

25
_

5_
26

_
0.

8_
C

_
C

95
6.

33
95

6.
33

49
.2

0
95

2.
33

99
6.

70
71

.7
2

25
_

5_
70

_
1.

0_
R

_
C

14
6.

00
14

6.
00

50
.0

2
14

1.
67

14
2.

23
70

.6
7

25
_

5_
6_

0.
8_

R
_

C
68

1.
00

68
7.

60
49

.5
5

67
8.

67
68

2.
94

72
.0

3
25

_
5_

21
_

1.
6_

R
_

R
C

20
4.

67
20

4.
67

50
.0

4
19

7.
67

20
0.

20
68

.8
1

25
_

5_
69

_
1.

6_
R

_
C

69
5.

00
69

6.
06

49
.0

6
69

5.
00

72
4.

22
69

.5
7

25
_

5_
73

_
0.

4_
R

_
R

C
15

1.
00

15
2.

85
49

.5
9

15
0.

00
15

0.
00

70
.9

2
25

_
5_

42
_

0.
8_

R
_

R
C

11
61

.6
7

11
68

.4
5

48
.9

8
11

58
.3

3
11

65
.9

1
69

.9
8

25
_

5_
97

_
1.

0_
R

_
R

25
8.

67
25

8.
67

49
.4

1
25

8.
67

25
8.

67
71

.3
6

25
_

5_
96

_
0.

8_
R

_
C

70
7.

67
70

7.
67

49
.4

9
69

7.
67

71
8.

98
72

.6
8

25
_

5_
49

_
0.

4_
C

_
C

13
8.

67
13

8.
69

49
.8

6
13

7.
67

13
7.

67
71

.7
9

A
vg

.
98

8.
83

99
1.

39
49

.1
9

98
6.

00
10

04
.9

1
70

.7
0

A
vg

.
22

6.
04

22
6.

49
49

.6
6

22
4.

23
22

5.
74

71
.3

0

50
_

10
_

80
_

1.
0_

C
_

C
82

6.
67

82
9.

05
58

.2
7

81
5.

67
81

8.
54

10
2.

56
50

_
10

_
3_

1.
6_

C
_

C
26

2.
00

26
6.

25
61

.5
8

25
1.

0
25

2.
83

99
.3

0
50

_
10

_
81

_
1.

0_
R

_
R

C
99

9.
67

10
10

.0
4

58
.1

2
98

6.
33

99
4.

50
10

0.
58

50
_

10
_

53
_

1.
2_

R
_

C
25

0.
67

25
4.

92
60

.5
9

24
7.

0
25

1.
96

10
1.

15
50

_
10

_
80

_
1.

0_
C

_
R

C
10

57
.3

3
10

63
.2

5
58

.2
8

10
45

.0
10

48
.7

4
10

3.
16

50
_

10
_

62
_

1.
2_

R
_

C
21

1.
33

21
8.

25
62

.8
1

20
4.

0
20

5.
80

10
0.

40
50

_
10

_
97

_
0.

8_
C

_
R

C
75

9.
67

77
0.

72
59

.2
1

74
9.

67
77

9.
74

10
2.

47
50

_
10

_
74

_
1.

0_
R

_
R

C
29

0.
33

29
1.

93
60

.3
1

28
9.

67
29

7.
64

10
1.

22
50

_
10

_
32

_
1.

2_
R

_
C

44
2.

33
46

3.
30

60
.7

6
43

1.
33

45
4.

56
10

1.
79

50
_

10
_

61
_

1.
0_

R
_

R
C

27
6.

33
27

9.
62

62
.7

1
27

0.
0

27
1.

57
10

0.
68

50
_

10
_

3_
0.

8_
R

_
C

58
9.

00
59

6.
18

60
.9

0
58

5.
67

58
9.

31
10

1.
19

50
_

10
_

88
_

1.
6_

C
_

R
C

31
7.

67
32

0.
93

61
.9

2
30

8.
0

31
2.

92
10

0.
25

50
_

10
_

80
_

0.
4_

C
_

C
76

2.
67

76
2.

84
58

.7
7

75
2.

33
75

7.
70

10
1.

40
50

_
10

_
60

_
0.

4_
C

_
R

C
26

6.
33

26
7.

38
62

.3
0

26
1.

0
26

5.
28

99
.9

9
50

_
10

_
26

_
1.

0_
C

_
R

C
61

0.
33

61
1.

10
59

.8
3

60
7.

0
61

2.
78

10
2.

94
50

_
10

_
2_

1.
0_

C
_

R
34

5.
00

34
8.

70
60

.7
7

34
2.

33
34

6.
11

10
0.

90
50

_
10

_
26

_
1.

2_
R

_
C

31
2.

00
31

7.
02

60
.9

1
30

3.
0

31
0.

86
10

0.
46

50
_

10
_

10
0_

1.
6_

C
_

C
15

9.
00

15
9.

00
61

.9
2

15
4.

67
15

6.
13

99
.7

3
50

_
10

_
44

_
1.

6_
R

_
C

27
9.

33
28

4.
55

62
.5

6
27

0.
0

27
9.

44
99

.9
7

50
_

10
_

33
_

0.
4_

R
_

R
C

27
9.

67
28

0.
64

62
.1

2
27

4.
33

28
0.

54
10

0.
56

A
vg

.
66

3.
90

67
0.

80
59

.7
6

65
4.

60
66

4.
62

10
1.

65
A
vg

.
26

5.
83

26
8.

76
61

.7
0

26
0.

20
26

4.
08

10
0.

42

134

Home Healthcare Routing and Scheduling

T
ab

le
6.

7:
C

om
pa

ra
ti

ve
re

su
lt

s
on

in
st

an
ce

s
of

gr
ou

ps
75
−
10

0
.

K
um

m
-2

1
3S

A
K

um
m

-2
1

3S
A

In
st

.
be

st
av

g
t[

s]
be

st
av

g
t[

s]
In

st
.

be
st

av
g

t[
s]

be
st

av
g

t[
s]

75
_

15
_

97
_

1.
0_

R
_

R
C

79
8.

00
81

4.
52

72
.5

0
77

9.
67

80
6.

37
13

1.
48

75
_

15
_

97
_

0.
4_

C
_

C
48

0.
00

48
3.

37
74

.8
3

46
2.

0
47

0.
77

13
1.

27
75

_
15

_
35

_
0.

8_
R

_
C

71
9.

00
73

0.
60

72
.9

0
70

4.
0

71
7.

74
13

0.
02

75
_

15
_

63
_

1.
0_

R
_

R
C

40
8.

00
41

3.
10

78
.2

2
39

5.
0

40
0.

63
12

8.
86

75
_

15
_

35
_

1.
0_

C
_

R
C

10
51

.3
3

10
58

.8
3

73
.2

7
10

36
.0

10
46

.3
13

1.
12

75
_

15
_

5_
0.

8_
C

_
R

C
43

9.
67

44
6.

17
78

.0
9

42
6.

67
43

9.
03

12
9.

83
75

_
15

_
97

_
1.

0_
C

_
C

61
2.

33
63

5.
02

74
.8

6
59

3.
0

60
4.

67
13

3.
54

75
_

15
_

19
_

0.
8_

R
_

C
36

8.
67

37
7.

88
77

.8
6

36
1.

67
37

3.
88

12
9.

25
75

_
15

_
79

_
1.

2_
R

_
C

40
4.

33
42

1.
37

79
.0

9
39

4.
33

40
0.

69
12

6.
11

75
_

15
_

84
_

0.
8_

R
_

R
C

39
2.

33
40

1.
47

76
.9

6
38

1.
67

38
9.

83
12

8.
59

75
_

15
_

10
_

1.
6_

R
_

C
37

6.
00

39
0.

67
74

.6
0

34
3.

0
35

7.
67

12
8.

95
75

_
15

_
30

_
1.

0_
R

_
C

30
3.

67
30

9.
13

80
.9

7
29

2.
0

29
7.

77
12

8.
82

75
_

15
_

88
_

1.
6_

R
_

C
46

1.
33

48
0.

05
79

.3
4

44
9.

67
45

6.
69

12
9.

86
75

_
15

_
32

_
1.

2_
R

_
R

C
35

3.
67

35
7.

68
76

.3
1

33
8.

67
34

4.
21

13
0.

36
75

_
15

_
98

_
1.

6_
R

_
C

37
5.

67
39

3.
70

76
.7

1
35

9.
33

37
3.

92
12

9.
69

75
_

15
_

40
_

0.
8_

R
_

R
C

42
3.

67
42

9.
10

82
.8

8
40

9.
33

41
8.

30
12

9.
89

75
_

15
_

21
_

1.
6_

R
_

C
38

4.
67

38
9.

02
81

.1
2

36
3.

67
37

9.
66

12
6.

79
75

_
15

_
63

_
0.

4_
R

_
C

31
7.

33
32

2.
50

78
.6

9
30

3.
67

31
1.

06
13

0.
30

75
_

15
_

87
_

1.
6_

C
_

C
38

6.
33

38
8.

57
76

.8
0

35
8.

67
37

2.
51

12
9.

78
75

_
15

_
65

_
1.

0_
C

_
C

25
7.

00
25

9.
53

78
.8

1
25

2.
0

25
6.

60
12

8.
89

A
vg

.
55

6.
90

57
0.

23
76

.1
2

53
8.

13
55

1.
62

12
9.

73
A
vg

.
37

4.
40

37
9.

99
78

.3
6

36
2.

27
37

0.
21

12
9.

61

10
0_

20
_

8_
1.

2_
R

_
C

60
7.

33
63

5.
73

10
5.

73
60

6.
67

63
6.

84
15

5.
84

10
0_

20
_

68
_

1.
6_

R
_

C
30

4.
67

31
3.

48
11

5.
38

30
6.

00
31

0.
07

15
5.

21
10

0_
20

_
63

_
1.

2_
R

_
C

54
8.

33
57

0.
03

10
7.

07
55

2.
00

57
7.

51
15

2.
74

10
0_

20
_

49
_

0.
4_

C
_

C
52

5.
67

53
6.

42
10

3.
04

51
2.

33
52

6.
34

15
7.

46
10

0_
20

_
39

_
1.

6_
R

_
C

55
4.

33
56

7.
50

99
.2

8
54

0.
67

55
4.

50
15

4.
97

10
0_

20
_

61
_

0.
4_

R
_

R
C

47
1.

33
47

7.
83

11
0.

32
45

0.
00

46
0.

97
15

7.
76

10
0_

20
_

76
_

1.
6_

R
_

C
50

0.
00

51
0.

58
98

.3
6

47
6.

00
49

0.
37

15
3.

07
10

0_
20

_
88

_
1.

2_
C

_
C

26
9.

67
27

3.
62

99
.4

1
26

3.
33

26
8.

83
15

8.
00

10
0_

20
_

57
_

1.
6_

R
_

C
50

5.
67

52
3.

40
10

5.
03

48
8.

00
50

0.
22

15
6.

40
10

0_
20

_
9_

1.
0_

R
_

R
55

4.
67

56
4.

48
11

0.
90

54
5.

00
55

7.
51

15
8.

10
10

0_
20

_
25

_
0.

8_
R

_
C

65
4.

67
67

0.
80

97
.7

5
62

1.
33

64
1.

31
15

5.
36

10
0_

20
_

35
_

1.
6_

C
_

R
C

44
2.

67
45

3.
77

10
3.

82
42

2.
00

43
4.

11
15

7.
97

10
0_

20
_

77
_

1.
0_

R
_

C
61

3.
67

64
0.

15
10

5.
58

60
6.

67
62

3.
92

15
2.

95
10

0_
20

_
10

_
1.

2_
R

_
C

30
0.

00
30

8.
20

10
3.

62
29

7.
67

30
2.

99
15

8.
87

10
0_

20
_

11
_

1.
2_

R
_

C
53

5.
33

55
1.

07
95

.2
1

50
4.

67
52

2.
10

15
6.

48
10

0_
20

_
65

_
0.

4_
R

_
R

C
49

5.
00

50
3.

87
10

4.
77

48
1.

33
49

1.
31

15
9.

08
10

0_
20

_
30

_
1.

0_
R

_
C

62
1.

67
63

5.
85

10
1.

69
60

4.
33

62
9.

99
15

3.
57

10
0_

20
_

99
_

0.
4_

C
_

R
C

48
7.

00
49

2.
63

10
7.

93
46

9.
33

47
6.

18
15

5.
73

10
0_

20
_

23
_

1.
2_

R
_

C
45

4.
00

46
7.

57
10

7.
64

43
8.

33
44

6.
83

15
3.

67
10

0_
20

_
54

_
1.

2_
R

_
R

C
39

8.
67

41
0.

53
10

1.
42

39
9.

67
40

8.
83

15
7.

94
A
vg

.
55

9.
50

57
7.

27
10

2.
33

54
3.

87
56

2.
36

15
4.

51
A
vg

.
42

4.
94

43
3.

48
10

6.
06

41
4.

67
42

3.
71

15
7.

61

135

Home Healthcare Routing and Scheduling
T
ab

le
6.

8:
C

om
pa

ra
ti

ve
re

su
lt

s
on

in
st

an
ce

s
of

gr
ou

ps
20

0
−
40

0.

K
um

m
-2

1
3S

A
K

um
m

-2
1

3S
A

In
st

.
be

st
av

g
t[

s]
be

st
av

g
t[

s]
In

st
.

be
st

av
g

t[
s]

be
st

av
g

t[
s]

20
0_

40
_

52
_

1.
6_

R
_

C
93

2.
00

97
2.

72
27

6.
99

87
9.

67
90

8.
91

28
9.

15
20

0_
40

_
17

_
1.

6_
C

_
C

56
9.

67
57

7.
58

34
3.

10
54

5.
0

55
9.

03
28

9.
65

20
0_

40
_

7_
1.

2_
R

_
C

10
81

.3
3

11
13

.2
2

26
3.

19
95

7.
0

10
05

.3
9

28
9.

61
20

0_
40

_
75

_
1.

6_
R

_
C

67
9.

00
69

3.
62

29
6.

38
64

8.
33

66
2.

33
29

3.
56

20
0_

40
_

30
_

1.
6_

R
_

C
92

3.
67

95
3.

12
28

0.
84

87
8.

67
91

7.
73

28
7.

55
20

0_
40

_
80

_
1.

0_
C

_
C

63
5.

33
64

6.
52

37
2.

74
62

3.
67

63
9.

77
29

3.
87

20
0_

40
_

76
_

1.
2_

R
_

C
11

33
.3

3
11

94
.7

3
30

1.
42

10
81

.0
11

11
.1

28
8.

66
20

0_
40

_
82

_
1.

0_
C

_
R

94
4.

00
97

7.
73

29
6.

24
90

1.
33

92
5.

96
29

2.
77

20
0_

40
_

7_
1.

6_
R

_
C

84
7.

67
87

6.
15

26
3.

28
79

6.
0

81
4.

70
29

3.
98

20
0_

40
_

69
_

1.
0_

C
_

R
99

1.
67

10
15

.4
0

34
1.

85
94

9.
0

96
1.

77
29

5.
80

20
0_

40
_

51
_

1.
0_

R
_

C
11

36
.6

7
12

06
.2

0
29

2.
73

10
72

.6
7

10
97

.7
2

28
7.

91
20

0_
40

_
60

_
0.

4_
C

_
R

C
87

0.
67

90
0.

08
26

8.
88

83
5.

0
85

3.
31

29
2.

97
20

0_
40

_
17

_
1.

6_
R

_
C

83
5.

00
85

8.
85

34
0.

20
79

1.
67

81
0.

12
28

6.
58

20
0_

40
_

10
_

1.
6_

C
_

R
C

84
3.

33
85

9.
15

32
3.

51
80

9.
0

82
7.

16
29

1.
85

20
0_

40
_

40
_

1.
0_

R
_

C
91

3.
00

94
2.

42
29

7.
18

86
3.

0
88

6.
16

28
8.

03
20

0_
40

_
98

_
1.

6_
C

_
R

C
83

0.
33

84
4.

53
31

1.
00

79
7.

33
81

2.
43

29
4.

15
20

0_
40

_
71

_
1.

6_
R

_
C

85
7.

67
88

3.
70

27
4.

77
81

1.
33

82
8.

67
29

0.
08

20
0_

40
_

10
0_

0.
4_

C
_

C
71

1.
67

72
6.

58
34

2.
13

68
8.

67
70

0.
76

29
3.

94
20

0_
40

_
98

_
1.

2_
R

_
C

93
6.

00
97

3.
03

31
4.

45
92

6.
0

94
4.

30
28

7.
59

20
0_

40
_

71
_

1.
6_

C
_

C
45

8.
67

46
8.

78
29

8.
01

43
7.

0
45

0.
84

29
7.

45
95

9.
63

99
7.

41
29

0.
50

90
5.

70
93

2.
48

28
8.

91
75

3.
43

77
1.

00
31

9.
38

72
3.

43
73

9.
34

29
3.

60

30
0_

60
_

4_
1.

6_
R

_
C

15
68

.6
7

16
29

.2
8

88
1.

04
14

79
.3

3
15

15
.5

2
44

0.
05

30
0_

60
_

7_
1.

2_
R

_
R

C
14

34
.3

3
14

86
.1

0
62

7.
71

13
53

.6
7

13
86

.6
3

45
1.

88
30

0_
60

_
89

_
1.

6_
R

_
C

14
31

.3
3

15
07

.8
5

67
2.

63
13

82
.6

7
14

14
.8

6
44

2.
91

30
0_

60
_

75
_

1.
2_

C
_

R
C

10
88

.3
3

11
34

.5
7

76
2.

75
10

57
.3

3
10

80
.8

9
45

9.
97

30
0_

60
_

82
_

1.
2_

R
_

C
14

99
.6

7
15

86
.3

8
72

9.
01

14
28

.6
7

14
57

.9
6

44
3.

74
30

0_
60

_
26

_
0.

4_
C

_
R

C
12

84
.6

7
13

43
.5

3
68

9.
58

12
48

.6
7

12
68

.2
2

45
5.

09
30

0_
60

_
95

_
1.

2_
R

_
C

15
96

.6
7

16
96

.1
0

84
5.

22
15

06
.3

3
15

55
.9

3
44

3.
89

30
0_

60
_

68
_

0.
8_

C
_

R
C

11
82

.6
7

12
30

.2
2

84
7.

66
11

74
.3

3
11

93
.3

0
45

7.
47

30
0_

60
_

22
_

1.
2_

R
_

C
14

58
.6

7
15

22
.5

8
82

3.
69

14
30

.0
14

61
.6

6
44

3.
82

30
0_

60
_

4_
1.

0_
R

_
C

10
16

.0
0

10
78

.3
2

89
0.

83
96

6.
67

99
0.

40
45

4.
24

30
0_

60
_

85
_

1.
2_

R
_

C
14

12
.3

3
14

79
.6

0
71

5.
23

13
07

.6
7

13
45

.3
8

44
7.

29
30

0_
60

_
73

_
0.

8_
R

_
R

C
11

75
.6

7
12

34
.6

0
74

0.
73

10
82

.6
7

11
17

.8
1

45
6.

54
30

0_
60

_
81

_
1.

6_
R

_
C

12
30

.6
7

13
13

.8
5

78
5.

84
11

85
.0

12
04

.5
6

44
7.

06
30

0_
60

_
45

_
1.

6_
C

_
C

72
6.

00
74

7.
50

83
4.

72
68

8.
67

69
8.

48
45

7.
39

30
0_

60
_

23
_

1.
2_

R
_

C
12

71
.3

3
13

22
.2

2
82

3.
18

12
18

.0
12

51
.6

1
45

1.
73

30
0_

60
_

46
_

0.
4_

R
_

C
10

68
.0

0
11

13
.2

7
80

1.
14

10
41

.6
7

10
60

.1
1

46
0.

30
30

0_
60

_
34

_
1.

2_
R

_
C

16
35

.0
0

17
09

.0
0

80
1.

04
14

51
.0

14
81

.3
1

44
5.

53
30

0_
60

_
81

_
0.

8_
C

_
C

81
4.

00
83

5.
68

80
6.

91
77

8.
33

79
6.

78
46

1.
93

30
0_

60
_

69
_

1.
0_

R
_

C
15

30
.0

0
15

79
.3

2
78

9.
10

14
10

.0
14

39
.1

0
44

4.
43

30
0_

60
_

48
_

0.
8_

C
_

C
82

6.
00

85
0.

58
81

1.
38

81
2.

33
82

5.
24

46
4.

62
14

63
.4

3
15

34
.6

2
78

6.
60

13
79

.8
7

14
12

.7
9

44
5.

05
10

61
.5

7
11

05
.4

4
78

1.
34

10
20

.4
3

10
41

.7
9

45
7.

94

40
0_

80
_

59
_

1.
0_

R
_

C
24

00
.6

7
24

64
.3

5
16

02
.1

0
21

35
.6

7
21

74
.4

1
62

3.
95

40
0_

80
_

54
_

1.
2_

C
_

R
C

15
62

.3
3

16
75

.9
0

17
57

.8
8

15
22

.6
7

15
42

.9
7

62
9.

73
40

0_
80

_
16

_
1.

2_
R

_
C

22
01

.3
3

23
11

.3
7

16
31

.9
5

19
62

.3
3

19
95

.4
4

61
4.

56
40

0_
80

_
20

_
0.

4_
C

_
R

C
16

36
.3

3
17

31
.7

0
14

30
.2

0
15

81
.6

7
16

12
.3

8
64

1.
43

40
0_

80
_

51
_

1.
0_

R
_

C
22

37
.3

3
24

25
.5

0
15

22
.1

7
20

74
.6

7
21

26
.6

4
61

2.
96

40
0_

80
_

61
_

0.
4_

C
_

R
C

16
25

.0
0

16
66

.0
7

16
27

.1
9

15
56

.3
3

15
84

.7
0

63
3.

24
40

0_
80

_
97

_
1.

6_
R

_
C

17
59

.6
7

18
20

.2
7

17
33

.8
4

15
61

.0
16

07
.4

3
61

8.
26

40
0_

80
_

33
_

1.
0_

C
_

R
C

15
27

.3
3

16
20

.1
3

17
18

.0
9

14
78

.3
3

15
01

.3
2

64
1.

89
40

0_
80

_
30

_
1.

6_
R

_
C

18
34

.0
0

19
08

.1
3

14
74

.2
7

16
78

.0
17

00
.8

0
61

2.
68

40
0_

80
_

95
_

1.
0_

C
_

R
15

47
.3

3
16

00
.5

3
16

60
.3

4
14

70
.0

15
04

.3
6

63
8.

15
40

0_
80

_
34

_
1.

0_
R

_
C

20
64

.6
7

21
45

.3
8

16
05

.1
2

18
35

.3
3

18
80

.7
1

61
2.

48
40

0_
80

_
65

_
1.

0_
C

_
R

16
18

.0
0

16
89

.1
0

16
50

.5
8

15
04

.0
15

31
.8

9
63

7.
37

40
0_

80
_

92
_

1.
6_

R
_

C
17

91
.3

3
18

51
.0

2
14

95
.9

9
15

99
.3

3
16

28
.0

6
62

5.
25

40
0_

80
_

45
_

0.
4_

C
_

C
12

65
.6

7
13

24
.6

7
15

26
.5

4
11

86
.0

12
16

.5
9

63
8.

65
40

0_
80

_
91

_
1.

2_
R

_
C

19
09

.3
3

20
25

.5
2

16
08

.2
2

18
26

.3
3

18
64

.7
7

61
6.

77
40

0_
80

_
22

_
1.

6_
C

_
C

94
8.

00
10

01
.8

0
17

25
.2

2
86

9.
0

88
7.

37
64

3.
22

40
0_

80
_

28
_

1.
2_

R
_

C
20

79
.0

0
21

72
.2

7
15

53
.6

6
19

13
.6

7
19

43
.4

0
62

1.
14

40
0_

80
_

77
_

1.
2_

R
_

R
C

14
47

.3
3

15
04

.3
2

19
04

.0
6

12
98

.3
3

13
30

.0
6

63
8.

64
40

0_
80

_
81

_
1.

6_
R

_
C

17
43

.0
0

18
15

.3
2

17
10

.4
0

16
00

.0
16

24
.6

3
61

2.
49

40
0_

80
_

60
_

0.
8_

C
_

C
10

65
.6

7
11

28
.5

3
14

13
.3

4
10

30
.3

3
10

51
.9

6
64

5.
96

20
02

.0
3

20
93

.9
1

15
93

.7
7

18
18

.6
3

18
54

.6
3

61
7.

05
14

24
.3

0
14

94
.2

8
16

41
.3

4
13

49
.6

7
13

76
.3

6
63

8.
83

136

Home Healthcare Routing and Scheduling

Table 6.9: Results on the new instances

Distance per Total Tardiness Highest
Instance Cost Distance caregiver tardiness per service tardiness

0 2058.0 6139.7 146.2 24.2 0.1 10.0
1 864.9 2583.5 107.6 7.6 0.0 3.6
2 915.6 2741.5 83.1 3.8 0.0 1.6
3 367.9 1101.8 137.7 1.1 0.0 0.8
4 1317.1 3934.5 131.2 13.4 0.0 3.3
5 1251.4 3746.1 133.8 5.6 0.0 2.4
6 1987.1 5892.9 196.4 55.4 0.2 13.0
7 1598.8 4695.8 104.4 52.5 0.2 48.0
8 1654.5 4946.2 137.4 12.4 0.0 4.8
9 301.7 902.3 128.9 1.8 0.0 1.1
10 428.4 1253.8 125.4 22.2 0.2 9.2
11 1219.7 3626.0 134.3 24.5 0.1 8.5
12 925.6 2765.3 131.7 7.6 0.0 4.0
13 693.5 2065.1 114.7 11.1 0.1 4.4
14 1327.6 3965.5 120.2 11.8 0.0 5.5
15 471.4 1274.8 115.9 106.7 1.1 32.7
16 514.4 1540.4 102.7 1.9 0.0 1.0
17 532.9 1589.3 122.3 5.6 0.0 3.7
18 1511.6 4525.5 88.7 6.4 0.0 2.8
19 1275.0 3815.9 136.3 6.6 0.0 2.5
20 447.6 1330.9 110.9 7.7 0.1 4.2
21 1897.4 5670.4 115.7 17.4 0.0 4.3
22 1644.4 4886.6 132.1 35.7 0.1 10.9
23 338.1 1009.6 112.2 3.2 0.0 1.4
24 1309.6 3910.4 118.5 13.2 0.0 5.3
25 489.5 917.9 114.7 403.7 7.0 147.0
26 1024.5 3059.0 117.7 10.7 0.0 3.8
27 620.0 1843.7 63.6 11.6 0.0 4.8
28 2249.5 6722.0 131.8 21.6 0.0 5.0
29 624.1 1847.9 168.0 18.7 0.2 5.7

avg 1062.1 3143.5 122.8 30.9 0.3 11.8

137

Home Healthcare Routing and Scheduling

Table 6.10: Comparison on new instances with different combinations of the
weights

(1,1,1) (1,10,1) (1,1,10) (1,10,10)
value value gap value gap value gap

Distance 3143.5 3263.9 3.8% 3189.2 1.5% 3263.6 3.8%
Distance per caregiver 122.8 127.3 3.7% 124.6 1.5% 127.6 3.9%
Total tardiness 30.9 25.7 -16.8% 29.3 -5.0% 21.5 -30.3%
Tardiness per service 0.33 0.32 -3.3% 0.40 20.9% 0.30 -8.8%
Highest tardiness 11.8 11.2 -5.2% 6.7 -43.1% 8.5 -28.4%

As an example, a solution for instance 3 is shown in Fig. 6.4. We see that
there are only two late patients (p1 and p36), highlighted in white diagonal
stripes. On the contrary, there are many early arrivals (e.g., p8 and p14)
that cause idleness of the caregiver, which however are not penalized in the
objective function.

Finally, we discuss the trade-off between travel time and tardiness. To
this aim, we run some experiments using alternative weights. In particular,
we keep the distance weight fixed and we multiply the other two by 1 and
10 alternatively.

In Table 6.10 we show the average results in comparison with the ones
with the original weights. In particular, the column (1,1,1) represents the
original weights, the column (1,10,1) the ones where the total tardiness is
weighted ten times and the highest tardiness has the original weight, and so
on. Looking at columns (1,10,1) and (1,1,10), we see that, unsurprisingly,
the objective component with the weight increased improves its score at the
expenses of the distance traveled. The other tardiness-related component is
also improved, as the two of them are connected. Notice that the tardiness
per service for weights (1,1,10) actually increases by 20.9%, but this is the
average of small quantities that is sensitive to a few large values. For weights
(1,10,10) all tardiness indicators decrease as expected.

However, the differences are quite small in absolute terms, showing that
there is no strong trade-off between the components. This means that, due
to patients’ time windows, we cannot completely eliminate the tardiness by
just increasing the traveling time of the caregivers, but we should rather
increase their number.

138

Home Healthcare Routing and Scheduling

0
10

0
20

0
30

0
40

0
50

0
60

0

Õp
1p 2p 3p 4p 5p 6p 7p 8p 9p 1
0

p 1
1

p 1
2

p 1
3

p 1
4

p 1
5

p 1
6

p 1
7

p 1
8

p 1
9

p 2
0

p 2
1

p 2
2

p 2
3

p 2
4

p 2
5

p 2
6

p 2
7

p 2
8

p 2
9

p 3
0

p 3
1

p 3
2

p 3
3

p 3
4

p 3
5

p 3
6

p 3
7

p 3
8

p 3
9

p 4
0

p 4
1

p 4
2

p 4
3

p 4
4

s 4

s 4

s 3

s 3

s 4

s 3

s 3

s 3

s 3

s 4

s 3

s 3

s 1

s 1

s 1

s 2

s 2

s 2

s 2

s 2

s 2

s 2

s 4

s 4
s 4

s 4

s 4

s 4

s 4

s 4

s 4

s 3

s 3

s 3

s 3

s 3

s 3

s 4

s 4

s 1

s 1

s 1

s 1

s 1

s 1

s 2

s 2

s 2

s 1

s 2

s 2

s 2

s 2

s 2

s 1

s 2

s 1

s 2

s 2

s 2

s 1

s 1

s 1

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8

F
ig

ur
e

6.
4:

So
lu

ti
on

of
in

st
an

ce
3

139

Home Healthcare Routing and Scheduling

6.6 Conclusions

In this chapter, we have introduced a Multi-Neighborhood approach that
utilizes a larger neighborhood set compared to previous methods proposed
in the literature. Despite the larger size of the compound neighborhood,
the efficiency of our method is maintained through the random selection
criterion inherent in the SA algorithm, which avoids exhaustive exploration
of the entire neighborhood.

Remarkably, our MNSA approach has yielded favorable comparisons
against all state-of-the-art methods in the literature, achieving the
best-known results for the majority of instances. While small instances
may experience slightly longer running times, these remain within acceptable
limits.

An additional contribution of this work is the introduction of a novel
benchmark set that extends the existing literature in terms of instance
challenges and feature diversity. This new benchmark set not only serves
to evaluate the performance of our proposed approach but also provides a
more comprehensive and extensive platform for future studies in the field.

140

Chapter 7

Capacitated Dispersion
Problem

In this chapter, we consider the Capacitated Dispersion Problem (CDP),
which is a classic formulation within the family of diversity problems on
graphs that underlies many real-world problems, such as facility location
and network analysis.

The problem consists in finding a set of nodes in an undirected complete
weighted graph that maximizes the minimum distance among selected nodes,
subject to a capacity constraint on the selection.

This problem has been tackled in several recent works (Peiró et al., 2021;
Martí et al., 2021; Mladenović et al., 2022; Lu et al., 2023), mainly using
metaheuristic approaches. The problem comes along with a public testbed,
collected by Peiró et al. (2021), that has been used as benchmark in all
mentioned papers.

We propose a local search approach that uses a portfolio of neighborhoods
and a Simulated Annealing metaheuristic to guide the search.

The neighborhoods that we use are gathered from the literature, though
suitably modified and adapted for our context. Our approach is enriched
by a lexicographic objective function that facilitates the navigation on the
plateaus.

The experimental analysis shows that our multi-neighborhood method,
properly engineered and tuned, is able to outperform the aforementioned
previous techniques on the available benchmark.

In addition, we highlight severe limitations on the benchmark itself and
we propose a novel, more diverse and challenging dataset that aims to
overcome these limitations, and could become an additional benchmark for

141

Capacitated Dispersion Problem

this problem for the future.
For this new dataset, properly split into test and validation instances, we

provide the results of both our method and of the method by Lu et al. (2023)
obtained by compiling and running their code, which is publicly available.
The results confirm that our method is able to obtain better results on this
dataset as well.

Finally, we propose a new MILP model and its implementation using
CPLEX. This model, inspired by the work by Erkut and Neuman (1991) on
similar problems, uses less variables and less constraints than the previous
ones proposed by Peiró et al. (2021) and Martí et al. (2021), and it has been
able to provide good bounds and optimal results for small and medium size
instances. In addition, using very long runs (12 hours), it also obtains good
results on large instances.

The new dataset and all our best solutions are available at https://gi
thub.com/iolab-uniud/cdp for inspection and future comparisons.

7.1 Related work

Diversity and dispersion problems have been studied intensively starting
from the 70s (see, e.g., Shier, 1977). We refer to the recent survey by Martí
et al. (2022) for an overview of the various formulations and the search
methods used to solve them.

The specific version considered in this chapter, called CDP, has been
introduced by Rosenkrantz et al. (2000), who proposed a greedy algorithm
and an approximation scheme for both CDP and other versions of the
problem. In particular, they prove an approximation factor of 2 for the
case in which the distances satisfy the triangular inequality. This result is
of theoretical interest, but with limited practical use.

The CDP has been recently addressed by using metaheuristic approaches.
Peiró et al. (2021) propose a technique based on GRASP, Variable
Neighborhood Search, and Strategic Oscillation, and also a mathematical
model. They adapted the datasets from other problems, and then
they compared their method with the CPLEX implementation of the
mathematical model, and with the greedy algorithm of Rosenkrantz et al.
(2000).

Subsequently, Martí et al. (2021) proposed a metaheuristic method based
on scatter search and also developed a new mathematical model. They
compared their search method and their model with the ones by Peiró et al.
(2021).

142

https://github.com/iolab-uniud/cdp
https://github.com/iolab-uniud/cdp

Capacitated Dispersion Problem

Lu et al. (2023) apply a solution-based Tabu Search using three distinct
neighborhoods: insert, remove and swap. In order to speed up the check of
equality of the current solution with tabu ones, they employ hash functions
that identify eligible candidate solutions.

The current state-of-the-art results for the CDP are provided
by Mladenović et al. (2022), that developed various versions of Variable
Neighborhood Search, namely Basic VNS, General VNS and General Skewed
VNS. In addition to the neighborhoods used by Lu et al. (2023), they also
use the neighborhoods 2-out-1-in and 1-out-2-in, that insert or remove two
nodes at a time.

7.2 Problem definition

We are given an undirected graph G = (V,E), where V is a set of nodes, and
E is a set of edges between nodes in V . Each node i is assigned a capacity
ci and each edge is assigned a value dij representing the distance between
nodes i and j. We are also given a single value B representing the total
minimum capacity requested for the solution. All values are reals.

The graph is assumed complete and all distances are non-negative,
but they are not assumed Euclidean, and they do not need to satisfy the
triangular inequality.

The problem consists in selecting a set of nodes S ⊆ V such that the sum
of the capacities of the nodes in S is at least equal to B and the minimum
distance between nodes in S is maximized.

Our mathematical model is based on binary variables xi ∈ {0, 1} with
i ∈ V that take value 1 if the node i is selected in the solution, 0 otherwise.
In order to express the objective to maximize the minimum distance between
the selected nodes in the linear model, we introduce a new, real-valued
variable d̄ ∈ R that represents the minimum distance between the selected
nodes. The objective function is then max d̄ and the model is the following
one.

max d̄ (7.1)∑
i∈V

cixi ≥ B (7.2)

d̄ ≤ dij +M(1− xi) +M(1− xj) ∀i, j, i < j ∈ V, i ̸= j (7.3)
xi ∈ {0, 1} ∀i ∈ V (7.4)
d̄ ≥ 0 (7.5)

143

Capacitated Dispersion Problem

The first constraint in Eq. (7.2) simply imposes that the sum of the
capacities ci of the selected nodes is at least the minimum capacity B. The
second set of constraints in Eq. (7.3) imposes that, for every pair of nodes
(i, j), the minimum distance d̄ is at most equal to the distance dij , but only
if both nodes are selected.

To express this condition, we use the BigM technique, with the constant
M that takes a suitably high value, which is multiplied by (1 − xi) and
(1 − xj). In this expression, if one of the two nodes is not selected, that is,
either (1− xi) or (1− xj) is 1, then the constraint says that d̄ is free to take
any value below M + dij , or below 2M + dij if both nodes are unselected.
If, on the other hand, xi and xj are selected, both terms that multiply M
take value 0 and d̄ is constrained by the distance between the two nodes dij .
Given that the constraint is repeated for all pairs of nodes (i, j), the distance
d̄ is constrained by the minimum distance between the selected nodes.

This MILP model is inspired by the ones proposed by Erkut and Neuman
(1991), suitably adapted to CDP. It is significantly more compact than the
one by Peiró et al. (2021) that uses an additional variable yij for each pair
(i, j), that takes value one if both xi and xj have value one. It also uses
less variables and less constraints than the one by Martí et al. (2021), which
however is based on a completely different paradigm.

7.3 Solution method

We propose a Multi-Neighborhood local search approach for CDP. In the
subsequent sections, we will outline the fundamental components of the
local search paradigm, which include the search space, the initial solution
strategy, the neighborhood relations, the cost function and the metaheuristic
that drives the search process.

7.3.1 Search space

Our search space is characterized by two disjoint sets. The first is S,
that coincides with the solution, that we also name selection list, and that
comprehends the nodes that are currently selected. We also store the
complementary set C = V \ S, named candidate list because it is the set
of nodes that are candidates for insertion in the current solution.

We assume that |S| ≥ 2, that is, a solution always contains at least two
nodes and one edge. While in theory it might exist a solution with only one
node that alone satisfies the capacity requirement, in the current datasets
this never happens, therefore we can safely prevent the case of having a

144

Capacitated Dispersion Problem

solution with one single node, which would have an undefined value of the
objective function.

With regard to the capacity constraint, we do not impose its satisfaction
and thus we let the search explore both the feasible and infeasible region.

To speed up the computation and evaluation of moves, we define several
redundant data structures that complement the two sets S and C. For every
node, regardless whether it is or not in the selection list, we store the value of
the minimum distance edge that connects the node to the selection list into
a variable dS(v) and we compute it as dS(v) = minu∈S duv. We also keep the
counter |dS(v)|, telling how many edges, for every node, with such distance
there are. Finally, recalling that the objective function of the problem is
defined as f(S) := minu,v∈S duv, we define a set ER ∈ E of the edges that
are determining the value of the objective function, that is, the set of edges
between nodes in S with distance exactly equal to f(S). We call these edges
as the bottleneck edges. Rather than keeping track of the full set ER, we
only store and update the value |ER|.

7.3.2 Initial solution strategy

The initial solution is generated starting from S equal to the empty set.
Then, until the capacity requirement B is satisfied, and in any case while
|S| < 2, we iteratively add random nodes v ∈ C and we insert them in
S. Therefore, the initial solution is generated completely at random, just
ensuring that the capacity requirement is satisfied.

7.3.3 Multi-neighborhood

We propose a Multi-Neighborhood approach that makes use of three
neighborhoods:

• Insert: the move Insert⟨v⟩ inserts a node v from the candidate list into
the selection list S.
Preconditions: v ∈ C.

• Remove: the move Remove⟨v⟩ removes from the selection list S a node
v, which is returned to the candidate list.
Preconditions: v ∈ S, |S| > 2.

• Swap: the move Swap⟨v, u⟩ inserts a node v from the candidate list
into the selection list S, and removes from the selection list a node u,
which is returned to the candidate list.
Preconditions: v ∈ C, u ∈ S.

145

Capacitated Dispersion Problem

We consider also three restricted versions of the Swap neighborhood, that
we call SwapR+, SwapR− and SwapR±. To describe them, we introduce two
additional sets, the restricted selection list SR and the restricted candidate
list CR. The restricted selection list is defined as SR := {v ∈ S|dS(v) =
f(S)}. Set SR contains all the nodes in the solution with an edge to another
node in the solution with distance equal to the current minimum distance
among selected nodes, that is the value of the objective function. We denote
the nodes in SR also as the bottleneck nodes, because they are bounding the
value of the objective function f(S). The restricted candidate list is defined
as CR := {v ∈ C|dS(v) > f(S)}, that is, all the nodes in the candidate sets
with minimum distance to the nodes in the selection list greater than the
current objective function value.

SwapR+ restricts the Swap neighborhood with regards to the nodes
inserted in the solution, which are chosen within the restricted candidate list
CR, but allows removal from the whole selection list S. The neighborhood
SwapR− restricts the Swap neighborhood with regards to the nodes that are
removed from the solution list, that are chosen only among the nodes in SR,
but allows any insertion from the whole candidate list C. Finally, SwapR±
restricts both the insertion and the removal to the restricted lists.

We point out that also Lu et al. (2023) use a restricted version of the
Swap neighborhood, but with relevant differences from us. First of all, we
employ all the neighborhood variants Swap, SwapR+, SwapR− and SwapR±,
while they only employ SwapR±. Additionally, our definition of the restricted
candidate set CR is different, as we employ a larger set, that embraces all
nodes v ∈ C with minu∈S duv > minu∈S dS(u) = f(S). The restricted
selection list instead is identical. Therefore, all our neighborhood variants
are larger than the Swap proposed by Lu et al. (2023).

The main reason why we can afford to use larger neighborhoods is
that the metaheuristic that guides the search in our method is Simulated
Annealing, which employs stochastic move selection. Lu et al., on the
other hand, employ Tabu Search, which performs a complete exploration
of the neighborhood at every move selection and therefore might foresee its
performances reduced by the use of larger neighborhoods.

7.3.4 Move selection

We now describe how we select a random move from our Multi-Neighborhood
Insert ∪ Remove ∪ Swap. We define three real-valued parameters σI , σR, and
σS , with σI + σR + σS = 1. They represent the probability of selecting the
Insert, Remove, and Swap neighborhoods, respectively.

146

Capacitated Dispersion Problem

Given that, however, we have four versions of the Swap neighborhood,
we define two internal biases: b+ ∈ [0, 1] and b− ∈ [0, 1]. If the Swap
neighborhood is selected, then with probability b+ we use the restricted
candidate list CR to select the candidate node for insertion, and with
probability b− we use the restricted selection list SR to choose the node
that is removed. Therefore, we can derive that the probability of performing
a regular Swap is σS(1 − b+)(1 − b−), the probability of selecting SwapR+

is σSb+(1 − b−), the probability of selecting SwapR− is σS(1 − b+)b− and,
finally, SwapR± is selected with probability σSb+b−.

Now that every neighborhood is assigned a probability, we can perform
a random selection of a move in two steps (three steps for Swap). First, we
select the neighborhood, with a biased random selection that depends on the
fixed probabilities σI , σR, and σS . If Swap is chosen, with another biased
random selection we choose whether to use the restricted or the full candidate
and solution lists, with probabilities b+ and b−, respectively. Finally, we draw
the specific move, with a uniform selection inside the chosen neighborhood.

7.3.5 Cost function

One issue with the max-min objective function is that very large plateaus
might be encountered. In fact, its value is determined by the edges in ER.
If |ER| = 1, then the value is given by a single pair of nodes and to improve
it suffices to remove one of the two nodes (provided that the move does not
violate the capacity constraint).

When |ER| > 1, unless there is a node v ∈ RS with |dS(v)| = |ER|, all
three neighborhoods are on a plateau with regard to f(S), given that all
possible moves are sideways or worsening.

This situation makes the search blind about what are the best moves to
perform, and it might be stuck roaming a long time on the plateau. However,
we know that to improve the objective function we have first to reduce the
number of edges in ER, until we have one single edge that is binding f(S),
that we can finally remove and jump to a new objective function value.

Therefore, in order to deal with this situation we introduce an auxiliary
cost component that guides the search on the plateaus towards solutions with
smaller |ER|. Given that this is less important than the actual objective, we
define a lexicographic objective function as follows: given two solutions S1

and S2, we say that S1 is lexicographically better than S2 if

f(S1) > f(S2) ∨
(
f(S1) = f(S2) ∧ |ER1 | < |ER2 |

)
(7.6)

In order to use this lexicographic function inside our metaheuristic, we

147

Capacitated Dispersion Problem

linearize it as follows:

f lex(S) = woff(S)− |ER| (7.7)

with wof a constant weight, assigned with a suitably high value to ensure
that the second component is only relevant if two solutions have the same
objective function value. The new term is subtracted and not added because
the objective of the problem is to maximize the objective function, while we
want to minimize |ER|.

Our lexicographic objective function provides a trajectory for executing a
successful sequence of moves on plateaus, so that the need for more complex
neighborhoods, such as the 2-out-1-in and 1-out-2-in neighborhoods proposed
by Mladenović et al. (2022), is counterbalanced.

Finally, as we mentioned in Section 7.3.1, we also allow the exploration
of the infeasible region of the search space. Therefore, we also add a penalty
term for capacity violations, and we weight it with a constant wc. Again,
given that the problem is a maximization one, we subtract the penalty term.
We obtain the following expression to determine the cost function F used in
the metaheuristic:

F (S) = wcmin
{
0,
∑
v∈S

cv −B
}
+woff(S)− |E(S)| (7.8)

The redundant data structures that we introduced in Section 7.3.1 are
used to speed up the evaluation of the differential cost ∆F between two
solutions S1 and S2, without computing F (S1) and F (S2) from scratch.

7.3.6 Metaheuristic

The metaheuristic that guides the search is the Multi-Neighborhood
Simulated Annealing (MNSA) presented in Chapter 2.

7.4 Datasets and generators

Recent papers in the literature on CDP have used four datasets, called
GKD-b, GKD-c, SOM-a, and MDG-b, and composed by 20, 10, 10, and
10 instances, respectively. The number of nodes is fixed, equal to 50/150 (10
each), 500, 50, 500, for all instances of the four datasets.

These datasets1 were initially proposed in various works and then
collected by Martí et al. (2010). They were originally defined for problems

1Available at https://www.uv.es/rmarti/paper/mdp.html

148

https://www.uv.es/rmarti/paper/mdp.html

Capacitated Dispersion Problem

without the capacity constraints, therefore they have been completed
by Peiró et al. (2021) by adding both the node capacities and the capacity
threshold. In this process, each dataset has been duplicated into two groups
by considering a threshold equal to either 0.2 or 0.3 of the sum of the
capacities of the nodes. Therefore, we eventually have eight groups of
instances named by adding to suffix 2 or 3 to the original name: GKD-b2,
GKD-b3, GKD-c2, . . .

All datasets are artificial. In detail, the datasets GKD-b and GKD-c are
created by sampling points on a square and getting the Euclidean distance
among all pairs of nodes. Conversely, for SOM-a and MDG-b distances are
integers uniformly sampled in the range [0,9] and [0,1000], respectively.

For all instances of datasets GKD-b, GKD-c, and SOM-a, the MILP
model by Martí et al. (2021) finds the optimal solutions in a few seconds. In
addition, all metaheuristic methods (including ours) find quite consistently
the optimal value. The comparison on these datasets therefore could be
based only on the number of times that the optimal value is obtained and
the time to reach it.

For the above reasons, these instances are easy and we believe that they
do not represent a good benchmark anymore. We decided to discard them
and to focus on the 20 instances of dataset MDG-b (10 of group MDG-b2
and 10 of group MDG-b3). We use the others only for validating the
implementation of the MILP model.

The dataset MDG-b is instead quite challenging, and therefore it is a good
benchmark for the comparison of optimization techniques. Nonetheless, in
our opinion, it has some severe limitations:

• It is too small. Indeed, 20 instances are not enough for an extensive
comparison.

• It is too homogeneous, as all instances have the same size and they are
duplicated with only the capacity changed.

• Distance values are too random. In fact, they do not even satisfy the
triangular inequality.

• The presence of various zeros in the distance matrix is also rather
strange, given that they should represent physical distances.

For these reasons, we believe that it is necessary to introduce a new
dataset so as to enrich and diversify the current benchmark. Therefore, we
design a generator, based on real geographical data, that aims at creating

149

Capacitated Dispersion Problem

instances that are challenging, realistic, and diverse. Our generator, written
in R language, employs the JRC-GEOSTAT 2018 population grid, that
covers 38 European countries, including all the European Union Member
States plus a few neighboring countries. We use the shapefile under the
coordinate system EPSG:3035 with a resolution of 1km2, which means that
it is divided in squared cells with side 1km. Every cell contains the coordinate
references and the data of the population living in the cell, updated to the
year 2018, which is the most recent validated version of the grid.

The first step consists in cutting a portion of the grid based on a center
(x, y) and a radius r, which implies an area of πr2, minus the potential
portion that lies on the sea. To generate a instance with size |V |, on this
area, we select |V | cells at random, through a biased random selection, with
the probability proportional to the population of the cell.

Said A the set of the cells in the area, and pn the population of the n-th
cell, the probability of selecting cell n is

P (n) =
pn∑

m∈A pm
(7.9)

After every cell selection, we sample, with a uniform random distribution,
the exact coordinates of a point (xi, yi) within the 1km2 cell boundaries.
Therefore, every node in the instance corresponds to a precise point in the
map.

After we have sampled the |V | points in the space, the procedure
computes the distance matrix |V | × |V |. As distances, we set the time
needed to cover the routes between points by car, expressed in minutes.
For this, we employ the Open Source Routing Machine, which returns
the most time-effective route between two nodes. We point out that a
real road distance matrix is not symmetric because of factors such as
one-way directions or steepness. However, given that the problem requires
a symmetric matrix, we only compute dij for i < j, and then we assign
dji = dij .

In our generation procedure, the cell population is used not only to bias
the sampling of the points, but it is also assigned as capacity of the node: if
the node i was extracted from cell n, then ci = pn. The minimum capacity
requirement is computed as a random value B ∈ (Bmin, Bmax]. Hereby, we
set Bmin = maxi∈V (ci) and Bmax = min{0.3

∑
i∈V ci, 0.9

∑
m∈A pm}. These

values ensure that the capacity requirement B is always less than 30% of
the total capacity, or the 90% of the population if this is less than the total
capacity. The radius r is chosen at random in the interval [rmin, rmax], with

150

Capacitated Dispersion Problem

rmin = 5km and rmax = 90km. Finally, the possible centers (x, y) are taken
from a pool of various cities and rural areas.

As a possible real-world meaning of this construction, consider that we
want to decide where to place drugstores. The capacity of the node, which is
the population living in the 1km2 where it is situated, is an approximation
of the number of people placed at walking distance within the facility, which
we want to satisfy by at least B. On the other hand, we want to avoid
that two drugstores are placed too near, therefore we desire to maximize
the minimum distance between stores. The same reasoning can be applied
to other contexts, such as the placement of schools or public offices, that is
convenient to build in dense areas to reduce commuting times and the use
of private vehicles, while avoiding to place them too near to each other to
ensure that their zones of influence don’t overlap.

Using our generator, we have created a dataset composed of 200 instances
with size |V | between 300 and 1500, that we call GIS (give that it comes from
geographical data). We use 30 instances (chosen at random, with no specific
choice criterion) as validation instances and the rest as training ones. We
also tested all of them with our MILP model presented in Section 7.2. We
verified that no GIS instance could be solved to optimality within the one
hour time limit, for which they appear to be rather challenging. All the
GIS instances are available at https://github.com/iolab-uniud/cdp,
distinguished into training and validation ones.

Table 7.1 shows the features of the validation instances. The name of the
city just indicates the city or town chosen as center of the area. Sometimes,
if the radius large, other cities might be included. The population is reported
in thousands.

7.5 Experimental analysis

In this section we present our experimental methodology and our results,
and we provide graphics and insights on the behavior of our algorithm as
well as on the characteristics of the new GIS instances in relation to the
algorithm performances. Our code is implemented in C++ and compiled
using g++ (v. 11.4.0) in -O3 mode. The experiments were run on a
AMD Ryzen Threadripper PRO 3975WX 32-Cores (3.50 GHz) with Ubuntu
Linux 22.04.3. Also the MILP model is implemented in C++, through the
CONCERT interface for CPLEX (v. 22.1). The time limit for the model is
set to 2880s, corresponding approximatively to one hour on the CPU used
by Martí et al. (2021). The Simulated Annealing does not run on a fixed

151

https://github.com/iolab-uniud/cdp

Capacitated Dispersion Problem

Table 7.1: Features of the validation instances.

GeoData Size Distances
city r A pop(k) |V | B(%) B avg min 1st med 3rd max

1 Bilbao 28 2197 1131 627 0.11 918402 22.2 1 13 20 30 74
2 Bremen 51 8161 1735 1335 0.20 693367 41.7 1 27 41 54 136
3 Cagliari 50 6318 678 565 0.19 421770 39.7 1 19 38 57 159
4 Catania 51 5468 1390 714 0.24 870107 40.4 1 20 39 58 149
5 Cuneo 34 3613 549 479 0.29 196562 42.7 1 30 43 56 104
6 Exeter 77 12464 1912 1259 0.18 552502 73.4 1 46 69 96 229
7 Foggia 36 4021 409 701 0.04 177467 36.4 1 24 37 49 118
8 Fontenay 86 21804 1822 974 0.16 180151 85.2 1 59 87 111 215
9 Gottingen 29 2617 415 1206 0.08 164395 29.9 1 20 30 39 81

10 Gottingen 88 24309 3803 1358 0.05 129498 90.0 1 60 90 118 211
11 Jena 8 193 114 757 0.01 40680 11.6 1 8 11 15 45
12 Lublin 44 6073 869 1042 0.03 97965 38.9 1 22 39 53 125
13 Milano 32 3205 4992 568 0.24 909420 31.1 1 21 30 40 84
14 Milano 53 8797 7612 692 0.27 906640 44.6 1 30 43 57 131
15 Munich 7 145 988 1343 0.05 697453 12.6 1 9 12 16 33
16 Munich 90 25433 6024 798 0.16 463017 60.8 1 40 59 79 179
17 Napoli 57 7158 5222 1346 0.23 2124227 45.8 1 25 40 58 292
18 Nowemiasto 89 24833 2104 1487 0.03 122757 104.8 1 68 104 141 247
19 Palermo 88 12199 2159 1186 0.06 369869 81.7 1 40 83 117 222
20 Pamplona 23 1649 379 512 0.05 251664 11.1 1 7 10 13 76
21 Rome 15 697 2607 700 0.19 1344222 19.9 1 14 20 26 49
22 Sofia 47 6917 1608 1034 0.18 1237857 28.7 1 13 21 39 200
23 Split 41 4412 390 614 0.04 134182 40.0 1 11 28 48 264
24 Suzzara 68 14493 3822 1447 0.27 947949 71.9 1 49 73 95 170
25 Tampere 19 1125 344 664 0.16 278974 18.7 1 13 18 24 68
26 Ulm 54 9141 1903 1241 0.19 411900 53.7 1 37 54 70 133
27 Ulm 8 193 191 845 0.04 124649 10.9 1 8 11 14 31
28 Vienna 53 8797 3083 1469 0.10 1207533 32.1 1 17 29 45 121
29 Wroclav 48 7209 1302 1256 0.02 107873 39.5 1 22 39 55 129
30 Zagreb 53 8797 1528 980 0.15 600667 39.1 1 20 38 55 141

152

Capacitated Dispersion Problem

Table 7.2: Parameter tuning for the Multi-Neighborhood Simulated
Annealing.

Name Description Initial value
Range MDG-b GIS

T0 Start temperature [300, 2000] 194.49 168.78
Tf Final temperature [0.01,10.00] 0.3758 0.0593
ws Weight of f(S) in cost function F [1,100] 11 90
σI Rate of Insert neighborhood [0.00,0.25] 0.131 0.081
σR Rate of Remove neighborhood [0.00,0.25] 0.129 0.009
b+ Bias toward CR [0.00,1.00] 0.449 0.320
b− Bias toward SR [0.00,1.00] 0.359 0.593

runtime but on a fixed number of iterations, that was 50 millions for the
tuning phase and 100 millions for the validation. Except when explicitly
stated, one single core was dedicated to each experiment.

7.5.1 Tuning

We tuned our solver using irace, which is a tool for automatic algorithm
configuration based on iterated racing (López-Ibáñez et al., 2016). Given
that the datasets MDG-b and GIS have different features, we performed two
separated tuning procedures.

Specifically, the tuning was done only in the training instances for the
GIS dataset, whereas it has been done on all instances for MDG-b, because
there are no dedicated instances available for training purposes.

The tuning was carried out in two stages. In the first stage, we tuned
the temperatures of Simulated Annealing and the weight wof . In the
second stage, we tuned the neighborhood rates and biases. The value wc

is preventively fixed to 10000. Also the values of the cooling rate α and the
cut-off ρ are fixed to 0.988 and 0.16, respectively. These values where given
by preliminary experiments, that showed that the results are quite insensible
to these parameters. The advantage of not including them in the final tuning
procedure is to reduce the parameter space and to get higher precision on
more significant parameters, like initial or final temperature. Regarding the
neighborhood rates, we only tune σI and σR, because σS is computed as
1− σI − σR. Table 7.2 shows the results of the tuning procedure, separately
for MDG-b and GIS dataset.

153

Capacitated Dispersion Problem

7.5.2 Results

Table 7.3: Results of the MILP models aggregated by dataset.

Martí et al. Peiró et al. Our
Instance 2021 2021 Model

B Fam. |V | LB UB time LB UB time LB UB time

GKD-b2 50 112.3 112.3 0.1 112.3 112.3 2.0 112.33 112.33 5.4
GKD-b2 150 118.7 118.7 0.6 118.7 118.7 669.9 118.73 118.73 160.9

0.2 GKD-c2 500 9.4 9.4 5.7 6.8 20.5 3600.2 7.82 22.92 3596.3
SOM-a2 50 4.1 4.1 0.0 4.1 4.1 1.3 4.10 4.10 7.2
MDG-b2 500 0.0 125.0 3643.5 11.5 973.8 3600.2 34.50 1000.00 3596.2
GKD-b3 50 97.8 97.8 0.0 97.8 97.8 2.5 97.79 97.79 11.8
GKD-b3 150 108.1 108.1 0.3 108.1 108.2 1519.5 108.11 108.11 243.6

0.3 GKD-c3 500 8.4 8.4 1.4 4.9 22.8 3600.1 6.30 22.92 3596.2
SOM-a3 50 2.1 2.1 0.0 2.1 2.1 1.0 2.10 2.10 11.3
MDG-b3 500 3.1 60.2 3650.9 0.9 992.0 3600.1 15.48 1000.00 3596.6

Table 7.3 shows the results obtained by our model. We report the average
solution found, the upper bound, and the running time (rescaled to 1h),
that might be less than the time limit in case the optimal solution is found.
What we observe is that all models find the optimal solutions on all instances
with up to 150 nodes. The model from Martí et al. solves to optimality in
few seconds also the instances from the class GKD-c. Therefore, the only
challenging instances are the MDG-b. On those instances, our model shows a
better performance than the other models, but, differently from Martí et al.,
it is not capable of finding good bounds. In Table 7.4 we report the detailed
results obtained by our model on MDG-b instances. Furthermore, we report
the results obtained by the model running on 16 cores, in parallel, for 12
hours. The reason of this test was to understand if MDG-b instances are
out of reach or if the model could find optimal solutions within a longer
time limit. The results are good, but not proven optimal. Except for
two instances, that are highlighted in bold, they are below the best results
obtained by the metaheuristics in much short time. Therefore, we confirm
that MDG-b is the only challenging dataset.

Table 7.5 shows the results obtained by 40 repetitions per instance of
our solver on the MDG instances. We compare our results with those from
Lu et al. (2023) and Mladenović et al. (2022), obtained respectively on 40
and 20 repetitions per instance. We do not report other results from the
literature, because they lag quite behind. Following the line set by both Lu

154

Capacitated Dispersion Problem

Table 7.4: Model results on MDG-b dataset.

instance 1h 12h × 16vCPU
distance upper bound distance upper bound

MDG-b_01_n500_b02_m50 33.6 1000.0 64.6 861.2
MDG-b_02_n500_b02_m50 28.9 1000.0 58.5 919.1
MDG-b_03_n500_b02_m50 20.5 1000.0 58.8 918.1
MDG-b_04_n500_b02_m50 32.8 1000.0 54.7 914.8
MDG-b_05_n500_b02_m50 50.3 1000.0 54.2 912.8
MDG-b_06_n500_b02_m50 34.6 1000.0 57.5 917.2
MDG-b_07_n500_b02_m50 34.9 1000.0 52.5 922.5
MDG-b_08_n500_b02_m50 35.0 1000.0 57.2 882.2
MDG-b_09_n500_b02_m50 41.9 1000.0 59.2 919.6
MDG-b_10_n500_b02_m50 32.5 1000.0 63.0 906.9

MDG-b_01_n500_b03_m50 13.9 1000.0 27.5 829.7
MDG-b_02_n500_b03_m50 14.5 1000.0 27.4 844.2
MDG-b_03_n500_b03_m50 13.7 1000.0 28.7 843.9
MDG-b_04_n500_b03_m50 17.8 1000.0 29.9 843.2
MDG-b_05_n500_b03_m50 14.5 1000.0 29.2 847.5
MDG-b_06_n500_b03_m50 15.1 1000.0 28.9 856.8
MDG-b_07_n500_b03_m50 15.6 1000.0 29.6 831.5
MDG-b_08_n500_b03_m50 19.9 1000.0 31.6 844.2
MDG-b_09_n500_b03_m50 16.2 1000.0 28.7 835.1
MDG-b_10_n500_b03_m50 13.6 1000.0 30.4 824.1

et al. and Mladenović et al., beside the average we also report the best and
worst solution found for each instance in the batch of 40 runs. Furthermore,
we report the average running time, because our solution method works on
a fixed number of iterations, which cause the running time to change from
run to run.

Lu et al. and Mladenović et al. used a fixed time limit of 300s and 60s,
respectively, so we do not report it in the table. Lu et al. also solve the
instances on a shorter time limit of 10s, but they get worse results, that
we don’t report. Finally, we also report in the last three columns the delta
between our results and the best between the other two solvers, separately
for the best, average and worst solution.

The outcome is that our solver finds the best average solution on 19
out of 20 instances, and only on the instance MDG-b_01_n500_b03_m50
it performs worse than Mladenović et al., by just 0.05. For all the other
instances we improve the previous results, with an average delta that goes
from as little as 0.02 on the instance MDG-b_10_n500_b02_m50 to as

155

Capacitated Dispersion Problem

Table 7.5: Results comparison between us and benchmark.

Inst. Lu et al. Mladenović et al. MNSA Difference
2023 2022

B # best avg worst best avg worst time best avg worst best avg worst

0.2 1 64.6 61.5 50.8 64.60 63.04 62.10 43.35 64.60 62.99 61.90 0.00 -0.05 -0.20
0.2 2 60.8 56.3 51.6 60.40 59.42 58.70 43.47 60.80 60.22 58.70 0.00 0.80 0.00
0.2 3 60.9 59.8 54.8 60.90 60.59 59.90 42.26 60.90 60.80 57.80 0.00 0.21 -2.10
0.2 4 56.6 54.4 48.8 56.90 55.75 54.80 44.27 57.40 56.52 54.90 0.50 0.77 0.10
0.2 5 58.2 54.0 51.0 58.20 57.23 57.10 42.48 58.90 58.63 57.10 0.70 1.40 0.00
0.2 6 60.6 55.7 49.4 60.60 58.38 56.60 42.06 60.70 59.77 57.20 0.10 1.39 0.60
0.2 7 59.3 54.0 47.9 58.00 55.40 53.40 44.78 59.30 58.17 54.80 0.00 2.77 1.40
0.2 8 60.4 56.2 48.5 60.10 59.46 58.60 42.22 61.10 60.09 59.70 0.70 0.63 1.10
0.2 9 60.2 57.5 52.6 59.70 58.10 57.00 42.55 60.90 60.10 58.60 0.70 2.00 1.60
0.2 10 63.0 61.3 52.7 63.00 62.48 62.00 44.03 63.00 62.50 62.00 0.00 0.02 0.00

0.3 1 27.2 24.2 19.6 28.70 27.73 27.30 54.94 29.00 28.53 27.90 0.30 0.80 0.60
0.3 2 27.6 25.5 21.5 28.20 27.73 27.30 51.57 29.10 28.78 27.70 0.90 1.05 0.40
0.3 3 30.0 28.0 24.9 29.40 28.61 28.10 52.30 30.10 29.96 29.60 0.10 1.35 1.50
0.3 4 28.0 25.3 23.2 29.70 29.07 28.90 53.10 30.20 29.86 29.50 0.50 0.79 0.60
0.3 5 27.9 25.3 23.0 29.70 28.69 28.30 52.54 30.00 29.64 29.20 0.30 0.95 0.90
0.3 6 28.2 26.0 22.8 28.90 28.28 28.00 51.34 29.00 28.89 28.60 0.10 0.61 0.60
0.3 7 28.4 26.0 20.3 29.40 28.54 28.00 54.58 30.50 30.20 29.50 1.10 1.66 1.50
0.3 8 31.1 28.3 24.2 31.90 31.73 31.10 49.17 31.90 31.84 31.70 0.00 0.11 0.60
0.3 9 29.7 25.9 20.8 29.70 28.88 28.20 50.19 29.80 29.75 28.70 0.10 0.87 0.50
0.3 10 29.1 26.7 21.7 30.40 29.55 29.40 50.46 30.50 29.96 29.40 0.10 0.41 0.00

much as 2.77 on the instance MDG-b_07_n500_b02_m50. Regarding the
best solution, we always improve or match the one found by the others, and
regarding the worst solution found on the batch of forty runs, we get better
results on 14 instances, and we are below Mladenović et al. on two instances.
Overall, we can say that our solver performs better than the previous ones
from the literature, and that Mladenović et al. is the closest competitor.

Finally, we report the results obtained on the GIS dataset by our MILP
model in 1h and by our solver on 40 runs. We also compiled and run on our
machine the solver from Lu et al., within a time limit of 300s. According to
the results, a few instances seem to be easy, as all the methods consistently
get the same objective function value. Those instance are GIS-1 and GIS-11.
On all instances our solution method performs better than or as equal as Lu
et al. and the MILP model.

156

Capacitated Dispersion Problem

(a) Evolution of f(S) on instance MDG-b_01_n500_b02_m50.

(b) Evolution of F (S) on instance GIS-24, with wof rescaled from 90 to 15, to let
better appreciate the contribution of the |ER| cost component.

Figure 7.1: Search patterns on MDG-b and generated instances.

157

Capacitated Dispersion Problem

7.5.3 Algorithmic insights

Fig. 7.1 illustrates the evolution in the objective function value over the
course of a short execution (10 millions iterations) of our solver on a MDG-b
instance and on a GIS instance. The y-axis represents the distance value of
the incumbent solution, and the x-axis shows the iteration count.

In Fig. 7.1a, we see that the objective function exhibits significant
oscillations, and it is only towards the end that stabilizes around the final
value. This is different to what we observe in Fig. 7.1b, relative to one of the
GIS instances. For better understanding this case, we show the evolution of
the cost function that we use in our solution method in Eq. (7.8), that include
the lexicographic objective function. From the graphic, we can appreciate the
fact that the metaheuristic explores the plateau only thanks to the gradient
offered by the auxiliary cost component. There are also fewer jumps among
different minimum distance values because of the large numbers of bottleneck
edges. We can also appreciate that the smaller scale of the bottleneck edge
component prevents it from interfering the with the actual objective.

Figure 7.2: Example of solutions on different urban areas. Left: Sofia,
Bulgaria, |V | = 1034, r = 47 km, B = 18%; Right: Perugia, Italy, |V |
= 597, r = 43 km, B = 4%; Maps are courtesy of ESRI.

Fig. 7.2 is aimed to illustrate the geographical dimension of the new
instances. It shows two plots of the solutions obtained by our method on two
different generated instances. We can observe than on the city on the right
(Sofia, Bulgaria, GIS-22) the population concentration in the city together
with a rather high capacity requirement (18%) makes it hard to sparsify the

158

Capacitated Dispersion Problem

points. On the other hand, the instance on the right (Perugia, Italy, from
the training set) has a lower capacity requirement and the more sprawled
population distribution makes it easier to sparsify the points over the map,
even though a certain degree of concentration in denser portions of the map
remains unavoidable.

500

750

1000

1250

1500

0.0 0.1 0.2 0.3

B (ratio)

|V
|

0.0

0.1

0.2

0.3

sol

25

50

75

0.6 0.9 1.2 1.5

μ(d)
r

r

0.0

0.1

0.2

0.3

sol

20

40

60

80

0.0 0.1 0.2 0.3

B (ratio)

IQ
R
(d
)

0.0

0.1

0.2

0.3

sol

0

2000

4000

6000

0.0 0.2 0.4 0.6 0.8

B

pop

p
o
p
 (

th
o
u
sa

n
d
s)

0.0

0.1

0.2

0.3

sol

Figure 7.3: Instance features and the corresponding average difference
solution between solvers (color).

Finally, Fig. 7.3 shows the pairwise distribution of different instance
features for the 30 validation instances of dataset GIS. Besides the size of the
graph |V |, we consider the relative capacity requirement B, the radius r, the
ratio between the average distance and the radius µ(d)/r, the interquartile
range of the distances IQR(d), the population in the area pop, and the ratio
between the required capacity and the population B/pop.

We can appreciate how all the selected features distribute evenly along
their domains, that was one of the goals of our generator. The color of the
points indicates the average relative difference between the performance of

159

Capacitated Dispersion Problem

the three solvers. There are some instances that present higher variability
in the performance of the solvers, but no clear correlation on the features
emerges.

7.6 Conclusions

We proposed a multi-neighborhood approach guided by Simulated Annealing
for the capacitated dispersion problem. The outcome has been that our
approach, properly engineered and tuned, is able to outperform the current
best results in the literature on almost all instances.

We also proposed a new dataset that in our opinion has all the features
it takes to become a new benchmark for this problem. At the same time,
we propose to dismiss four out of five of the current datasets, as they are
not challenging anymore, and their perpetuation brings a waste of work and
computational time.

Finally, we developed and implemented a new mathematical model that
is able to provide competitive results, especially on long runs.

160

Capacitated Dispersion Problem

Table 7.6: Results on GIS dataset.

MILP (1h) MNSA Lu et al.
LB UB time (s) max avg min max avg min

1 6 74 81.0 6 6.00 6 6 6.00 6
2 2 136 145.1 5 5.00 5 5 5.00 5
3 4 159 73.9 4 4.00 4 4 3.05 3
4 3 149 86.8 4 4.00 4 3 3.00 3
5 5 104 65.3 5 5.00 5 4 3.92 3
6 5 229 132.7 7 7.00 7 6 5.10 5
7 7 118 81.5 8 8.00 8 7 6.97 6
8 9 215 127.6 11 10.10 10 9 7.85 7
9 6 81 134.6 7 7.00 7 7 6.10 6

10 28 211 126.2 34 33.42 32 31 28.57 26
11 11 45 79.1 11 11.00 11 11 11.00 11
12 14 125 131.6 16 15.18 15 15 13.35 12
13 6 84 70.3 7 7.00 7 6 6.00 6
14 7 131 76.2 8 8.00 8 7 6.67 6
15 5 33 123.2 6 5.83 5 5 4.94 4
16 10 179 89.0 12 11.88 11 10 9.40 9
17 2 292 141.8 5 5.00 5 5 4.02 4
18 40 247 110.3 43 42.98 42 40 32.02 11
19 13 222 126.3 16 16.00 16 14 12.47 10
20 6 76 68.3 7 7.00 7 6 6.00 6
21 5 49 85.1 5 5.00 5 5 4.85 4
22 4 200 113.8 4 4.00 4 4 3.90 3
23 6 264 84.1 8 7.03 7 7 6.52 6
24 3 170 144.4 6 6.00 6 5 5.00 5
25 4 68 86.4 5 4.40 4 4 4.00 4
26 7 133 124.2 8 8.00 8 6 6.00 6
27 6 31 84.5 7 7.00 7 7 6.60 6
28 4 121 168.8 6 6.00 6 5 5.00 5
29 15 129 144.7 22 20.98 20 20 16.65 14
30 4 141 113.7 5 5.00 5 4 4.00 4

161

Part III

Applications of CMSA

162

Chapter 8

Bus Driver Scheduling

Driver scheduling problems are complex combinatorial problems that
integrate the scheduling part with routing issues, due to the fact that drivers
and vehicles get moved to different locations by their duties. Different driver
scheduling problems have been proposed in the literature, differing among
themselves mainly depending on the type of vehicles that are involved and
constraints.

We consider here a Bus Driver Scheduling (BDS) problem, which is
characterized by the fact that the atomic driving duties (called legs) are
short compared to other vehicles (e.g., planes or trains). Therefore, the daily
shift of a driver is composed of a relatively large number of independent legs,
which must be assembled in a working shift respecting various regulations
mainly connected to safety issues.

We focus on the specific BDS formulation proposed by Kletzander and
Musliu (2020), which arises from a public transportation setting in Austria
and is subject to many constraints related to rest time (breaks) regulated by
legal requirements and collective agreements. This formulation comes with a
challenging dataset composed of many realistic instances, which has already
been used in the experimental analysis of a few exact and metaheuristic
techniques (Kletzander et al., 2021; Kletzander and Musliu, 2020; Kletzander
et al., 2022).

We solve the problem by means of Construct, Merge, Solve and Adapt
(CMSA), seen in Chapter 3. As constructor, we use a greedy algorithm
developed in a previous work (Kletzander and Musliu, 2020), that we suitably
randomized in order to employ it for the generation of solutions within the
CMSA algorithm.

For our CMSA solver, we performed a principled tuning procedure in

163

Bus Driver Scheduling

Table 8.1: A Bus Tour Example

ℓ tour ℓ startℓ end ℓ startPosℓ endPosℓ

1 1 360 395 0 1
2 1 410 455 1 2
3 1 460 502 2 1
4 1 508 540 1 0

order to obtain the best configuration of the parameters and we compared
our tuned solver with the best results from the literature. The outcome is
that our solver is able to improve the state-of-the-art results for a range of
problem instances, in particular for the large ones.

8.1 Problem description

The investigated Bus Driver Scheduling problem deals with the assignment
of bus drivers to vehicles that already have a predetermined route for one
day of operation, according to the rules specified by an Austrian collective
agreement. We use the same specification as presented in Kletzander and
Musliu (2020), where the reader can find a more detailed description of the
problem.

8.1.1 Problem input

The bus routes are given as a set L of individual bus legs, each leg ℓ ∈ L
is associated with a tour, denoted as tour ℓ (corresponding to a particular
vehicle), a start time startℓ, an end time end ℓ, a starting position startPosℓ,
and an end position endPosℓ. The actual driving time for the leg is denoted
by driveℓ. We assume that driveℓ = lengthℓ = end ℓ − startℓ.

Table 8.1 shows a short example of one particular bus tour. The vehicle
starts at time 360 (6:00 am) at position 0, does multiple legs with stops
including waiting time at positions 1 and 2 and finally returns to position
0. A valid tour never has overlapping bus legs and consecutive bus legs
satisfy endPos i = startPos i+1. A tour change occurs when a driver has an
assignment of two consecutive bus legs i and j with tour i ̸= tour j .

A distance matrix specifies, for each pair of positions p and q, the time
dp,q a driver takes to get from p to q when not actively driving a bus. If no
transfer is possible, then dp,q =∞. dp,q with p ̸= q is called the passive ride

164

Bus Driver Scheduling

start work

ℓ1

rest

ℓ2

rest

passive ride

ℓ3

end work

Working time Ws

? ?

Driving time Ds

Total time Ts

Figure 8.1: Example shift

time. dp,p represents the time it takes to switch tour at the same position,
but is not considered passive ride time.

Finally, each position p is associated with an amount of working time for
starting a shift (startWorkp) and ending a shift (endWorkp) at that position.
The instances in this chapter use startWorkp = 15 and endWorkp = 10 at
the depot (p = 0), to take into account the time needed to enter and exit the
depot. These values are 0 for other positions, given that the bus is already
on the street.

8.1.2 Solution

A solution to the problem is an assignment of exactly one driver to each bus
leg. Criteria for feasibility are:

• No overlapping bus legs are assigned to any driver.

• Changing tour or position between consecutive assignments i and j
requires start j ≥ end i + dendPosi,startPosj .

• Each shift respects all hard constraints regarding work regulations as
specified in the next section.

8.1.3 Work and break regulations

Valid shifts for drivers are constrained by work regulations and require
frequent breaks. First, different measures of time related to a shift s
containing the set of bus legs Ls need to be distinguished, as visualized
in Fig. 8.1:

• The total amount of driving time: Ds =
∑

i∈Ls
drivei

165

Bus Driver Scheduling

• The span from the start of work until the end of work Ts with a
maximum of Tmax = 14 hours.

• The working time Ws = Ts − unpaids, not including certain unpaid
breaks.

Driving time regulations

The maximum driving time is restricted to Dmax = 9 hours. The whole
distance startj − endi between consecutive bus legs i and j qualifies as a
driving break, including passive ride time. Breaks from driving need to be
taken repeatedly after at most 4 hours of driving time. In case a driving break
is split in several parts, all parts must occur before a driving block exceeds
the 4-hour limit. Once the required amount of break time is reached, a new
driving block starts. The following options are possible:

• One break of at least 30 minutes

• Two breaks of at least 20 minutes each

• Three breaks of at least 15 minutes each

Working time regulations

The working time Ws has a hard maximum of Wmax = 10 hours and a
soft minimum of Wmin = 6.5 hours. If the employee is working for a shorter
period of time, the difference has to be paid anyway. The actual paid working
time is W ′

s = max{Ws; 390}.
A minimum rest break is required according to the following options:

• Ws < 6 hours: no rest break

• 6 hours ≤Ws ≤ 9 hours: at least 30 minutes

• Ws > 9 hours: at least 45 minutes

The rest break may be split into one part of at least 30 minutes and one or
more parts of at least 15 minutes. The first part has to occur after at most
6 hours of work. Note that a break can be a rest break and driving break
simultaneously or just qualify as one of the two types.

Whether rest breaks are paid or unpaid depends on break positions
according to Fig. 8.2. Every period of at least 15 minutes of consecutive
rest break is unpaid as long as it does not intersect the first 2 or the last 2
hours of the shift (a longer rest break might be partially paid and partially
unpaid). The maximum amount of unpaid rest is limited:

166

Bus Driver Scheduling

unpaid rest
2 · 60 2 · 60

3 · 60 3 · 60
paid rest paid rest

centered
30 min break

Figure 8.2: Rest break positioning

• If 30 consecutive minutes of rest break are located such that they do
not intersect the first 3 hours of the shift or the last 3 hours of the
shift, at most 1.5 hours of unpaid rest are allowed.

• Otherwise, at most one hour of unpaid rest is allowed.

Rest breaks beyond this limit are paid.

Split shifts

If a rest break is at least 3 hours long, it is instead considered a shift split,
which is unpaid and does not count towards Ws. However, such splits are
typically regarded badly by the drivers. A shift split counts as a driving
break, but does not contribute to rest breaks.

8.1.4 Objectives

As argued by Kletzander and Musliu (2020), practical schedules must not
consider only operation costs. The objective

costs = 2 ·W ′
s + Ts + rides + 30 · chs + 180 · splits (8.1)

represents a linear combination of several criteria for shift s. The paid
working time W ′

s is the main objective and it is combined with the total
time Ts to reduce long unpaid periods for employees. The next sub-objectives
reduce the passive ride time rides and the number of tour changes chs, which
is beneficial for both employees and efficient schedules. The last objective
aims to reduce the number of shift splits splits as they are very unpopular.
Finally, Fig. 8.3 shows two examples of solutions of the BDS on a small and
large instance.

8.2 Related work

Different variants of BDS have been studied from the early 60’s (Wren,
2004). The BDS is often modelled as a Set Partitioning Problem and

167

Bus Driver Scheduling

Figure 8.3: Solutions of the BDS on a small (above) and large (below)
instance.

exact methods have been used in many publications to solve various
variants of this problem (Smith and Wren, 1988; Desrochers and Soumis,
1989; Lin and Hsu, 2016; Portugal et al., 2008; Kletzander et al., 2021).
To solve very large real-world problems in a reasonable time, several
metaheuristic methods have been studied for BDS. Such methods include
Greedy approaches (Martello and Toth, 1986), Tabu Search (Shen and Kwan,
2001; Kletzander et al., 2022), Simulated Annealing (Kletzander and Musliu,
2020), GRASP (De Leone et al., 2011), and Genetic Algorithms (Li and
Kwan, 2003; Lourenço et al., 2001).

Bus Driver Scheduling is one of six steps in the overall process
of operating bus transport systems (Ibarra-Rojas et al., 2015), located
between vehicle scheduling and driver rostering. It is a variant of crew
scheduling problems (Ernst et al., 2004) and it is related to problems like
airline (Gopalakrishnan and Johnson, 2005) or train crew scheduling.

The problem definition of BDS is highly dependent on the country’s
labour regulations, therefore, algorithms for other BDS variants cannot be
used directly for the Austrian rules, which are more complex than most found

168

Bus Driver Scheduling

in the literature. Previous work mostly focuses on cost only, sometimes
including minimizing idle times and vehicle changes (Ibarra-Rojas et al.,
2015; Constantino et al., 2017), but without considering the additional
objectives for shift ergonomics that are considered for the BDS problem
in this chapter. Our problem variant has been introduced recently in
the literature, and, to the best of our knowledge, the recently introduced
exact approach based on Branch and Price (Kletzander et al., 2021), the
metaheuristic approaches Simulated Annealing (Kletzander and Musliu,
2020) and Tabu Search (Kletzander et al., 2022), as well as the application
of problem-independent hyper-heuristics in combination with a set of
problem-dependent low-level heuristics (Kletzander and Musliu, 2022),
represent the current state of the art for this problem. Although these
approaches give very good results, the optimal solutions are still not known
for most instances. Therefore, the investigation of new approaches is
important for this problem.

8.3 The CMSA approach to the BDS problem

Our CMSA algorithm for the BDS Problem is based on the following main
idea. Given the set of legs L = {ℓ1...ℓn}, let C be the collection of all possible
feasible bus shifts, where each shift s ∈ C is a sequence of legs that does not
violate any of the constraints of the problem. A feasible solution is any
collection of shifts ϕ ⊂ C such that every leg ℓ ∈ L belongs to one and only
one shift s ∈ ϕ. Solution ϕ is a valid solution for the set partitioning problem
on C. Let then tℓs ∈ {0, 1} be 1 if leg ℓ forms part of shift s, and 0 otherwise.
Moreover, let cs be the cost of shift s, calculated according to the objectives
explained in Section 8.1. If we were able to enumerate all shifts in C, the
optimal solution of the BDS problem could be found by solving the following
ILP model of the set partitioning problem to optimality.

min
∑
s∈C

csxs (8.2)

s.t.
∑
s∈C

xstℓs = 1 ∀ ℓ ∈ L (8.3)

xs ∈ {0, 1} ∀ s ∈ C (8.4)

This ILP model is based on a binary variable xs for each bus shift s ∈ C,
whereby a value of xs = 1 means that shift s is chosen to be part of the
solution. Moreover, Eq. (8.3) ensure that each leg ℓ in L is present exactly
once among the chosen bus shifts. In this way, all bus legs will be assigned

169

Bus Driver Scheduling

to exactly one bus driver and no legs will be left uncovered. The objective
at Eq. (8.2) is to minimize the total cost, which is the sum of the costs cs of
the shifts that belong to the solution.

Nonetheless, in real-world instances, and in most instances proposed
for this formulation, the cardinality of set C is too big for making the
enumeration of the shifts a practical solution, and even the application of
some efficient generation procedures, such as backtracking, would lead to ILP
models that are too large to be solved in reasonable time with the current
availability of memory and computational resources. While we cannot solve
the set partitioning problem on C, we can use the above ILP model for solving
the reduced sub-instances C′ ⊂ C, as required by the solve phase of CMSA.

The CMSA employed is the classical CMSA presented in Section 3.1.
The construction procedure is a randomized version of the greedy originally
proposed by Kletzander and Musliu (2020). It is described in Section 8.3.1.

Our CMSA takes as input the values for the following three parameters:

• nsols, which fixes the number of solutions to be probabilistically
generated by the construction procedure at each CMSA iteration.

• drate, which guides the determinism rate in the solution construction
procedure.

• agelimit, which limits the number of iterations a solution component
(shift) s can remain in the sub-instance C′ without being chosen by the
exact solver. Note that the age of a solution component s is maintained
in a variable age[s].

8.3.1 Greedy heuristic

The greedy heuristic employed in the construction step of our CMSA, which
is called in the Construct phase of CMSA, is described in Fig. 8.4. It
is a revisited version of the greedy algorithm proposed in Kletzander and
Musliu (2020), suitably randomized for the purpose of working as constructor
within CMSA. The procedure takes as input a value for parameter drate. The
algorithm starts by sorting the legs, which is done at line 3 of Fig. 8.4 in
function ApplySorting. This sub-procedure adds the legs–one by one–into a
sorted sequence Lsorted, initially empty, choosing among those legs that have
not been added to Lsorted yet. Every new entry is chosen according to the
following criterion: with probability drate, the leg with the earliest start time
is added to Lsorted. Otherwise–that is, with probability 1− drate–a random
leg is chosen. If drate is set to 1.0, legs in Lsorted are sorted according to

170

Bus Driver Scheduling

their start time, as done in the original algorithm (Kletzander and Musliu,
2020). Then, beginning at line 4, the main loop of the algorithm takes
place. The legs are explored in the order defined by Lsorted and each leg ℓ
is inserted either in the shift that produces the least cost increase or a new
shift is created, if the cost of the new shift containing solely ℓ is less than
the least cost increase plus a certain threshold τ . Function SetThreshold
chooses the value of τ as follows: with probability drate, τ is set to a fixed
value of 500, while with probability 1 − drate, a random number between
500 and 1000 is chosen uniformly. These bounds (500, respectively 1000)
were selected according to problem-specific knowledge. After inserting a leg
ℓ in an existing or in a new shift, the algorithm tries to perform all feasible
additions of other legs ℓ′ that belong to the same tour of ℓ to that shift. This
sub-procedure explores the legs by increasing start time, and it terminates
at the first infeasible insertion or where no other legs with the same tours
are left. The procedure ends when all legs from Lsorted have been added to
the shifts in the solution Φcur.

procedure Probabilistic greedy procedure(Set of legs L, value for drate)
1: Φcur ← ∅
2: Lsorted = ApplySorting(L, drate)
3: for all ℓ in Lsorted
4: sbest = argmins∈Φcur

(cs∪{ℓ} − cs)

5: τ = SetThreshold(drate)
6: if c{ℓ} < csbest∪{ℓ} − csbest + τ

7: Add new shift {ℓ} to Φcur

8: else
9: add leg ℓ to shift sbest in Φcur

10: for all ℓ′ ̸= ℓ in Lsorted such that tour(ℓ′) = tour(ℓ)
11: add leg ℓ′ to shift sbest in Φcur if sbest ∪ {ℓ′} is feasible
12: remove from Lsorted all legs added to shifts in Φcur.
13: return Φcur

Figure 8.4: Probabilistic greedy procedure

8.3.2 Sub-instance and exact solver

The sub-instance is the collection C′ ⊂ C of shifts generated by the
construction procedure. The model solved in the Solve phase is the weighted
set partitioning described in Eq. (8.2), on the sub-instance C′.

171

Bus Driver Scheduling

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

cs 9 8 1 3 4 9 5 3 2 1 5 8 2 4 6
ℓ1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0
ℓ2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
ℓ3 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0
ℓ4 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0
ℓ5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
ℓ6 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

Figure 8.5: Example of a solution for a set partitioning problem, the rows
are associated with legs, the columns with shifts. Shown is a solution of cost
10.

Fig. 8.5 shows an example of sub-instance with 6 legs ℓ1, . . . , ℓ6 and 15
shifts s1, . . . s15. Values 1/0 in the matrix indicate whether the leg at the row
is covered by the shift at the column. Shifts have costs cs1 , . . . cs15 , displayed
in the first row. A solution S = {s4, s8, s14} to the set partitioning with cost
10 is shown.

Differently from other versions of CMSA, we do not set a time limit
for CPLEX, which we always allow running until the optimal solution for
the sub-instance is found. In general, it might be a bad idea not to set
any time limit for the MIP solver, but the reason behind this choice in this
context is that CPLEX is very efficient in solving the set partitioning problem
when the size of the sub-instance is kept reasonable. So, there are no real
advantages in accepting sub-optimal or bad solutions from CPLEX, which
may lead to the discard of good solution components in the adapt phase.
Thus, besides the size of the specific tackled problem instance, the time and
memory resources that CPLEX needs, on average, in the solve phase, depend
solely on the values chosen for the three parameters nsols, drate, and agelimit,
which influence it as follows. When the parameter nsols is set to high values,
the sub-instance grows faster after each iteration, because more solution
components are added to C′. Lower values of drate imply that more diverse
solution components are discovered by the greedy heuristic and added to the
sub-instance, while high values generate more homogeneous shifts, many of
which will be discarded due to being already present in the sub-instance.
Finally, agelimit affects the memory of the algorithm: lower values imply
that non-profitable solution components are discarded earlier and the size

172

Bus Driver Scheduling

of the sub-instance is kept smaller, while high values retain those solutions
components longer in the sub-instance. For the above-mentioned reasons,
finding a good balance of the parameters values through a proper tuning
procedure is a crucial task, that is discussed in Section 8.4.1.

8.4 Experimental results

We tested the CMSA algorithm on the wide set of realistic instances available
in the literature. Instances sizes range from 10 tours (about 70 legs) to 250
tours (at most 2500 legs). The instances with sizes 10–100 were released in
Kletzander and Musliu (2020), while the larger instances with sizes 150–250
were introduced later in Kletzander et al. (2022).

We compare our CMSA with the state-of-the-art algorithms previously
presented in the literature: Simulated Annealing (SA) and Hill Climbing
(HC) (Kletzander and Musliu, 2020), Tabu Search (TS) (Kletzander et al.,
2022), and three hyper-heuristics using low-level heuristics proposed in
Kletzander and Musliu (2022): Chuang-Pruning (CH-PR) (Chuang, 2020),
a combination of adaptive mechanisms to manage a set of active low-level
heuristics (GIHH) (Misir et al., 2011), and a streamlined (lean) version of
GIHH (L-GIHH) (Adriaensen and Nowé, 2016). We compare the results also
with the Branch and Price (B&P) developed by Kletzander et al. (2021).

We implemented the CMSA in C++ and compiled with GNU g++,
version 9.4.0 in -O3 mode, on Ubuntu 20.04.4 LTS. The experiments were run
on a machine equipped with an AMD Ryzen Threadripper PRO 3975WX
processor with 32 cores, with a base clock frequency of 3.5 GHz, 64 GB
of RAM. We allowed one core per experiment. The experiments for other
algorithms were run on a different and slower machine, with a base clock
frequency of 2.20 GHz and max frequency of 2.90GHz.

Although a completely fair comparison is not possible, for the
above-mentioned reasons and because the algorithms were not all
implemented in the same programming language, experimental data
presented in Section 8.4.2 clearly shows that CMSA is able to outperform
other metaheuristics on most instance classes, even if the time limit for
CMSA is kept much shorter than for other methods.

8.4.1 Parameter tuning

We tuned the values for parameters nsols, drate and clist through the
automatic algorithm configuration tool json2run, described in Chapter 4.
We independently tuned the parameters for the instances with sizes from

173

Bus Driver Scheduling

Table 8.2: CMSA parameters, the considered domains for parameter tuning,
and the finally determined parameter values.

10-100 tours 150-250 tours
Parameter Domain Value Domain Value

nsols {2, 3, ..., 500} 300 {2, 3, ..., 200} 66
drate [0.50, 1.00] 0.77 [0.80, 1.00] 0.96
agelimit {2, 3, ..., 50} 4 {2, 3, ..., 30} 4

Table 8.3: Average results (costs) for classes of instances (sizes expressed by
number of tours) and methods.

Size CMSA SA HC TS CH-PR GIHH L-GIHH B&P

10 14879,7 14739,6 14988,4 15036,4 14956,2 14847,4 14810,6 14709,2
20 30745,9 30971,0 31275,6 31248,4 30896,7 30892,2 30810,8 30294,8
30 50817,2 51258,0 51917,4 51483,0 51331,4 51059,4 51037,6 49846,4
40 68499,9 69379,8 71337,6 69941,2 69182,9 68988,4 69022,2 67000,4
50 86389,2 87557,4 87262,4 87850,6 87394,3 87184,4 87145,2 84341,0
60 102822,9 104333,0 104296,4 104926,2 103921,5 103491,6 103467,3 99727,0
70 121141,9 123225,6 123304,0 123632,2 122502,9 122198,6 122321,8 118524,2
80 138760,3 140914,0 140508,0 140482,4 139931,8 139648,2 139551,9 134513,8
90 155078,3 157426,0 156862,4 156296,4 155520,8 155560,8 155649,6 150370,8

100 171786,7 174501,8 172909,0 172916,0 171901,0 171879,8 172763,7 172582,2
150 263387,7 266705,5 265492,3 265654,8 - - - -
200 349017,0 354408,4 353494,9 350747,2 - - - -
250 439234,5 446525,0 446000,9 443845,8 - - - -

10 to 100 tours and for the new larger instances, with sizes spread from
150 to 250 tours. Indeed, we had to allow smaller domains for the larger
instances because combinations of high values of agelimit and nsols together
with small drate are very likely to give birth to ILP models that are too large
and that may saturate the memory during the solve phase. Parameters
nsols and agelimit have domains of natural numbers, while drate takes real
numbers with a precision of two decimal places. Table 8.2 shows the domains
that we applied to the parameters and the different outcomes of the tuning
procedures.

174

Bus Driver Scheduling

Table 8.4: CMSA results (costs) measured after 15, 30, and 60 minutes (900,
1800 and 3600 s), and comparison with state-of-the-art metaheuristics and
B&P. Best values among metaheuristic methods are in bold.

Instance CMSA - average Benchmark B&P
size 900s 1800s 3600s method 3600s time best

10 14899,0 14886,4 14879,7 SA 14739,6 7,2 14709,2
20 30805,1 30770,3 30745,9 L-GIHH 30810,8 1201,4 30294,8
30 50911,6 50863,0 50817,2 L-GIHH 51037,6 3610,6 49846,4
40 68711,3 68600,2 68499,9 GIHH 68988,4 3605,8 67000,4
50 86674,3 86517,0 86389,2 L-GIHH 87145,2 3674,4 84341,0
60 103206,0 102998,3 102822,9 L-GIHH 103467,3 4373,2 99727,0
70 121734,6 121410,7 121141,9 GIHH 122198,6 6460,4 118524,2
80 139397,4 139073,7 138760,3 L-GIHH 139551,9 5912,4 134513,8
90 155674,5 155387,4 155078,3 CH-PR 155520,8 7390,4 150370,8

100 172447,3 172086,9 171786,7 L-GIHH 171833,5 7395,8 172582,2
150 264261,6 263803,9 263387,7 HC 265492,3 - -
200 350638,9 349707,2 349017,0 TS 350747,2 - -
250 441917,3 440364,5 439234,5 TS 443845,8 - -

8.4.2 Analysis of the results

Table 8.3 shows the average results grouped by instance sizes for different
methods. Each instance size class contains five distinct instances and
we executed 10 independent runs on each instance, so that each value is
calculated over 50 runs. The values for SA and HC are also taken over 10 runs
per instance, while for the hyper-heuristics 5 runs per instance were executed.
TS and B&P are deterministic, so runs are not repeated. All algorithms
worked with time limits of 1 hour, except for B&P, which was allowed up
to 2 hours. Values in bold report best results within metaheuristics, while
underlined values are the best values including also the exact approach. We
can observe that CMSA outperforms other metaheuristics on all instance
groups but the smallest one, sized 10. In general, the best results for
instances up to size 90 remain the one set by the B&P, whilst, for larger
instances, CMSA gets the new best results. For larger instances sized 150,
200 and 250 tours, only data for SA, HC and TS are available for comparison.

Table 8.4 shows mean values of the objective function collected from the
same CMSA experiments as those presented in Table 8.3 after 15 minutes
(900 s) and 30 minutes (1800 s). We compare them with the state-of-the-art
metaheuristic, which is specified in the column benchmark. We report also
the results of the B&P, which has a time limit of 2 hours, but it may stop

175

Bus Driver Scheduling

before, if an optimal solution is found, so actual B&P execution time is
specified as well. Results that improve or equal the current state-of-the-art
within metaheuristics are marked in bold.
Data show that CMSA converges very quickly toward good solutions. After
15 minutes it already shows better results than other metaheuristics for
10 out of 13 instance classes, and for 11 out of 13 after 30 minutes. For
instances sized 100, CMSA after 15 or 30 minutes is already capable to
perform better also than the exact method in 2 hours, but not better than
the hyper-heuristic L-GIHH. Data suggest also that CMSA is not likely to
get stuck on early local minima, as we can see always a consistent decrease
of the cost function value over time.
Finally, the fact that CMSA is able to provide good solutions quickly may
be interesting for real-world applications, where human decision makers
are likely to prefer to wait short times to have in hand the results of the
automated scheduling.

8.5 Conclusions

We applied the CMSA metaheuristic to BDS, a complex and challenging
real-world problem that integrates scheduling and routing issues. CMSA
turned out to compare favorably with the state-of-the-art metaheuristics
for this problem. In particular, it showed good performances on the large
instances, which are in general the most critical ones.

176

Chapter 9

Maximum Disjoint Dominating
Sets Problem

Let G = (V,E) be an undirected graph where V is a set of vertices and
E ⊆ V × V is a set of edges. A dominating set in G is a set of vertices
D ⊆ V such that every vertex v ∈ V \ D is adjacent to at least one vertex
v′ ∈ D. The decision problem of determining whether a dominating set of
size |D| ≤ K exists is NP-complete (Garey and Johnson, 1979), whereas
the related Minimum Dominating Set problem, which requires finding the
smallest dominating set in a given graph, is NP-hard (Irving, 1991). In this
work, we are interested in the Maximum Disjoint Dominating Sets Problem,
in which a valid solution S = {D1, . . . ,Dk} consists of a collection of disjoint
dominating sets Di (i = 1, . . . , k) of G, where disjoint means that Di∩Dj = ∅
for all i ̸= j ∈ {1, . . . , k}. The objective function value f(S) of a valid
solution S is the number of disjoint dominating sets in S, that is, f(S) := |S|.
The goal is to find a valid solution S∗ that maximises f . This description
applies to the DPP as well, with the supplementary condition that

⋃
D∈S D =

V .
In addition to its research significance from a theoretical and

computational point of view, solving the MDDSP is relevant from a
real-world application perspective. Its utility is found, for example, in
heterogeneous multi-agent systems (Mesbahi and Egerstedt, 2010) and in
wireless sensor networks (WSN). In particular, in WSNs disjoint dominating
sets find applications in mechanisms for sleep-wake cycling (Cardei et al.,
2002; Cardei and Du, 2005). The aim of such a mechanism is to prolong the
lifetime of a battery-powered sensor network. In fact, the expected lifetime
of a sensor network equipped with a disjoint-sets-based sleep-wake cycling

177

Maximum Disjoint Dominating Sets Problem

mechanism is directly proportional to the number of disjoint dominating sets
that can be found in the graph.

Note that finding at least one dominating set in a graph is always possible
and trivial, given that the node set V of the graph is a dominating set of
G = (V,E). However, note that a solution S = {V }, which has an objective
function value of f(S) = |S| = 1, is the worst solution that can be found,
even though it exists in each input graph. Furthermore, every graph without
isolated vertices contains at least two disjoint dominating sets (Ore, 1962).
In general, the number of dominating sets on graphs is a number between
1 and δ(G) + 1, where δ(G) is the minimum degree of all vertices in graph
G. Indeed, δ(G) + 1 is a proven upper bound for the number of disjoint
dominating sets in G (Cockayne and Hedetniemi, 1977). It is actually rather
easy to verify this upper bound. Given a solution S = {D1, . . . ,Dk} for the
input graph G, any vertex v ∈ V must be dominated by a different vertex
in all Di ∈ S. However, a vertex v ∈ V with degree deg(v) can only be
dominated by itself or by any of its neighbors, that is, by at most deg(v)+1
different vertices. Therefore, there will be no more than δ(G) + 1 disjoint
dominating sets in G. Nevertheless, this value, which is very easy to calculate
and definitely useful when solving the problem in practice, does not imply
that an actual solution with δ(G) + 1 disjoint dominating sets exists. That
is to say, a solution with δ(G) + 1 dominating sets is surely optimal, but
there is no guarantee that the given input graph contains a solution of value
δ(G) + 1.

Finally, we introduce some general concepts on undirected graphs that
are required later in this chapter. The open neighborhood of vertex v is
N(v) := {u ∈ V | (u, v) ∈ E}, which represents the set of vertices adjacent
to v in G. The closed neighborhood of vertex v is N [v] := N(v)∪{v}, that is,
N [v] includes all vertices adjacent to v and v itself. The number of neighbors
of v corresponds to its degree, which is denoted by deg(v). In other words,
deg(v) = |N(v)|.

Note that a highly related optimization problem is the Domatic Partition
Problem. Given a simple, undirected graph G = (V,E) the DPP problem
requires to partition the set of vertices V into the maximal number of disjoint
dominating sets. In other words, a valid solution S = {D1, . . . , Dk} to the
DPP problem not only requires that all pairs of dominating sets Di ̸= Dj ∈ S
are disjoint (i, j = 1, . . . , k), but also that

⋃k
i=1Di = V . Nevertheless,

observe that any solution S to the MDDSP can easily be transformed
into a solution S ′ to the DPP by adding all vertices from V \

⋃|S|
i=1Di to

any of the disjoint dominating sets of S. Note that, by adding further

178

Maximum Disjoint Dominating Sets Problem

vertices to a dominating set D, set D does not lose its property of being
a dominating set. This implies that an optimal solution to the MDDSP
can easily be transformed into an optimal solution to the DPP. The value
of an optimal solution to the DPP in graph G, denoted by γ(G), is also
called the domatic number of G. In this context, the term “domatic” was
created as a composition of “dominating” and “chromatic” (Chang, 1994). In
the related literature, one can also find numerous references to the so-called
Domatic Number Problem (DNP) (Chang, 1994). However, this problem
only refers to finding the domatic number γ(G) of a graph G. In other words,
algorithmic approaches for solving the DNP try to identify γ(G) without
necessarily generating a corresponding solution. Therefore, by solving the
DPP we simultaneously solve the DNP, but not vice versa. Finally, a special
case of the DPP is the k-domatic partition problem that seeks to find a
partition of a given graph into k disjoint dominating sets. Correspondingly,
the k-domatic number problem asks whether a given graph can be partitioned
into k dominating sets.

9.1 Graphical problem illustration

Consider the undirected graph G = (V,E), with 11 vertices (|V | = 11) and
17 edges (|E| = 17), displayed in Fig. 9.1. Vertices are labelled v1, . . . , v11,
while edges are unlabelled. An optimal solution is S = {D1,D2,D3}, where
D1 = {v1, v4, v6, v8}, D2 = {v2, v5, v10}, and D3 = {v3, v7, v9}. The three
sets are represented in the figure with three different background colors. It
is easy to verify that all these sets are dominating sets. We show it for D1:

1. v1 dominates the adjacent vertices v2 and v3

2. v4 dominates v2, v3 and v5

3. v6 dominates v5, v10 and v9

4. v8 dominates v7, v10 and v11

The same holds for D2 and D3. Furthermore the three sets are disjoint
because D1∩D2 = ∅, D1∩D3 = ∅, and D2∩D3 = ∅. Hence, S = {D1,D2,D3}
is a solution to the MDDSP in graph G, with objective function value f(S) =
3. If we add v11 to any of the dominating sets, S becomes a partition of V
and, so, a valid and optimal solution also for the DPP.

Finally, we show through an example that an optimal solution with
objective value δ(G) + 1, which we discussed above, does not exist in all

179

Maximum Disjoint Dominating Sets Problem

v1

v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

Figure 9.1: A graph with 11 vertices and 17 edges. The upper bound for
the domatic number is δ(G) + 1 = 3. Moreover, there exists an optimal
solution with 3 disjoint dominating sets (as indicated by the vertices with a
background color different to white).

v1

v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

Figure 9.2: A graph with 11 vertices and 16 edges. The upper bound for the
domatic number is δ(G)+ 1 = 3, but an optimal solution has only 2 disjoint
dominating sets. One of the possible optimal solutions is indicated by blue
and purple vertices. Uncolored vertices do not belong to any dominating set
of the displayed solution.

graphs. Fig. 9.2 represents the same graph of Fig. 9.1, without the edge that
connects vertices v2 and v3. In both examples, δ(G) + 1 = 2 + 1 = 3. We
have seen above that a solution with value f(S) = 3 exists for the graph in
Fig. 9.1. However, a solution S ′ = {D4,D5}, where D4 = {v1, v5, v8, v9}, and
D5 = {v3, v4, v10}, with a value of f(S ′) = 2, is already an optimal solution
for the graph in Fig. 9.2, and there are no solutions with three dominating
sets. Solution S ′ is represented in Fig. 9.2 by means of different background
colors for the vertices.

180

Maximum Disjoint Dominating Sets Problem

9.2 Related work

The identification of small dominating sets in graphs and networks
is one of the classical combinatorial optimization problems in graph
theory, with numerous applications ranging from biology to communication
networks (Haynes et al., 2013). Interest in the MDDSP and related problems
dates back to the 70s. The first mention of the Domatic Number Problem,
which deals with deriving the domatic number of a given graph without the
need for deriving the corresponding disjoint dominating sets, is found in the
work of Cockayne and Hedetniemi (1975). Many other studies are found in
the literature on the DNP. Most of them are primarily interested in specific
families of graphs. Although not many exact approaches can be found in
the literature for MDDSP-like problems, mainly due to their complexity,
some exact approaches have been designed for finding optimal solutions
to the DNP. In particular, the first exact deterministic exponential-time
algorithm for the 3-DNP was designed by Riege and Rothe (2005). The
algorithm has a running time of O(2.9416n) and uses polynomial space,
which is in contrast to a naive approach that runs in O(3n) of time. This
time complexity was later improved to O(2.695n) by Riege et al. (2007).
Combining the two main techniques typically used for the design of exact
exponential-time algorithms–inclusion & exclusion, respectively measure &
conquer– Van-Rooij (2010) provided a fast polynomial-space algorithm that
computes the domatic number in O(2.7139n) time.

The Domatic Partition Problem was first introduced by Cockayne and
Hedetniemi (1977), two years after the DNP. In the same paper, the authors
showed that the problem has an upper bound of δ(G)+ 1, where δ(G) is the
minimum degree of all vertices in G. In other words, an optimal solution
to the DPP can never have more disjoint dominating sets than δ(G) + 1.
Furthermore, the problem was shown to belong to the class of NP-hard
problems on general graphs (Garey and Johnson, 1979). In fact, it remains
NP-hard for co-bipartite graphs (Poon et al., 2012). Moreover, unless P=NP,
the MDDSP has no polynomial-time α-approximation algorithm for any
constant α smaller than 1.5 (Cardei et al., 2002). Existing polynomial-time
approximation schemes can be found in Feige et al. (2002). In addition
to the above, the NP-completeness of the 3-domatic partition problem was
proofed for general graphs by Cardei et al. (2002) and still holds when
restricted to planar bipartite graphs (Poon et al., 2012) and planar unit
disk graphs (Nguyen and Huynh, 2007).

Practical applications of this problem can be found especially in the
context of heterogeneous multi-agent systems (Mesbahi and Egerstedt,

181

Maximum Disjoint Dominating Sets Problem

2010) and in wireless sensor networks (WSN), which are studied for their
applications in the fields of healthcare, environmental monitoring, emergency
operations and security surveillance (Akyildiz et al., 2002). Note that WSNs
are networks composed of a rather large number of small devices called sensor
nodes. These sensor nodes capture information from the environment and
they are also responsible for transmitting the captured data to a base station.
The power supply of sensor nodes is generally provided through batteries,
which implies that their lifetime is limited. For the purpose of energy
conservation, sensor nodes may change from their normal, active mode to
another mode called low-energy, respectively sleep, mode. Hereby, the active
mode allows capturing information and transmitting data, for example. The
difference of energy consumption between the sleep and the active mode is
considerable and may reach about two orders of magnitude (Cardei et al.,
2002; Cardei and Du, 2005). When grouped into disjoint dominating sets,
at any moment in time only the sensor nodes belonging to exactly one of
these dominating sets are in active mode. All the others remain in sleep
mode. Moreover, when the currently active sensor nodes reach a critical
battery level they are put into sleep mode and the sensor nodes of the next
dominating set are activated. This is repeated until all disjoint dominating
sets have been used. Thus, the expected lifetime of the network is determined
by the number of disjoint dominating sets times the average lifetime of a
sensor in the active state. Therefore, the higher the number of dominating
sets, the longer is the lifetime of the WSN.

A natural way to produce a feasible solution to the MDDSP is to
greedily construct dominating sets of preferably small cardinality with the
ultimate goal to maximize the number of disjoint dominating sets that can
be generated.1 In this context, many greedy heuristic strategies have been
proposed in the literature and experimentally tested, such as the ones given
in Cardei et al. (2002) (Color-Dds), Nguyen and Huynh (2007) (P-Max,
P-Min, R-Lid), Islam et al. (2009) (Iam) ,Balbal et al. (2021) (Mdds-Gh).
They are discussed in detail in Section 9.4.1. Additionally, Landete and
Sainz-Pardo (2022) presented an exact decomposition algorithm for finding a
domatic partition on separable graphs, that is, graphs with at least one node
(cut-vertex) whose removal produces two or more connected components.

1Remember that any solution to the MDDSP can be trivially transformed to a solution
to the DPP by adding those vertices that do not belong to any of the disjoint dominating
sets to one of the dominating sets of the MDDSP-solution.

182

Maximum Disjoint Dominating Sets Problem

9.3 Integer linear programming formulations

A natural ILP model for the MDDSP on graph G = (V,E) is based on binary
variables xvs ∈ {0, 1} for every vertex v ∈ V and every theoretically possible
dominating set s = 1, . . . , δ(G) + 1. If v is in the s-th dominating set, then
xvs = 1, zero otherwise. A second binary variable ys ∈ {0, 1} tells whether
the s-th dominating set is chosen to be part of the solution. Given these two
sets of variables, the ILP model for MDDSP reads as follows.

max

δ(G)+1∑
s=1

ys (9.1a)

δ(G)+1∑
s=1

xvs ≤ 1 ∀v ∈ V (9.1b)∑
u∈N(v)

xus ≥ ys − xvs ∀v ∈ V,∀s ∈ {1, . . . , δ(G) + 1} (9.1c)

ys ≥ xvs ∀v ∈ V,∀s ∈ {1, . . . , δ(G) + 1} (9.1d)
xvs ∈ {0, 1}, ys ∈ {0, 1} ∀v ∈ V,∀s ∈ {1, . . . , δ(G) + 1} (9.1e)

The objective at Eq. (9.1a) maximises the number of dominating sets in
the solution. Constraints at Eq. (9.1b) ensure that the dominating sets are
disjoint, requiring each vertex v to be assigned to at most one dominating
set. Constraints at Eq. (9.1c) ensure that the sets that are chosen in the
solution are dominating sets. To evaluate this constraint, we make use of
the concept of open neighborhood. Constraints at Eq. (9.1d) ensure that
nodes are only assigned to active dominating sets. Finally, Constraints at
Eq. (9.1e) define the binary nature of the variables.

This model, however, does not include any symmetry breaking
constraints. Note that symmetric–and, therefore, redundant–solutions are
obtained simply by permuting the sets of a solution. In that way, a solution
is obtained with exactly the same sets, just that the set indices/names are
different. In particular, given a solution S with |S| sets, symmetric solutions
are obtained by all possible |S|-permutations of the δ(G)+1 indices, that is,
every solution S can be expressed in (δ(G)+1)!

(δ(G)+1−|S|)! ways. Adding symmetry
breaking constraints to the ILP model reduces significantly the size of the
search space, at the expense of a higher number of constraints that lead to
an increased complexity.

183

Maximum Disjoint Dominating Sets Problem

In the following, we present two additional ILP models that implement
two different symmetry breaking strategies. Both are obtained by
adaptations of the constraints proposed by Méndez-Díaz and Zabala (2008)
for graph coloring. For sake of clarity, we name the model described above
as Ilp, and the two models with symmetry breaking constraints as Ilp-sm1
and Ilp-sm2.

9.3.1 Model 1 with symmetry breaking constraints

Model Ilp-sm1 imposes that the number of vertices assigned to the s-th set
must be greater or equal than the number of vertices in the s+1-th set. This
is done by adding to Model Ilp the following inequalities:∑

v∈V
xv,s ≥

∑
v∈V

xv,s+1 ∀s = 1, ..., δ(G) (9.2)

Constraints in Eq. (9.2) lead to an ordering of the sets by decreasing size,
that is, set s must represent a set with a higher or equal cardinality than the
s-th set.

9.3.2 Model 2 with symmetry breaking constraints

Méndez-Díaz and Zabala point out in their work that Model Ilp-sm1 does
not prevent symmetries that originate from permutations of the indices
within sets of the same size, a scenario that is likely to arise in the MDDSP.
This is solved in Model Ilp-sm2 by adding to Model Ilp the following
constraints:

xvi,s = 0 ∀s ≥ i+ 1 (9.3a)

xvi,s ≤
i−1∑

k=s−1

xvk,s−1 ∀i ∈ V \ {1}, ∀2 ≤ s ≤ i− 1 (9.3b)

Model Ilp-sm2 assigns to sets of vertices a set index that corresponds
to the smallest index of all vertices in the set. This model, therefore, also
breaks the symmetries that originate from permutations of the indices within
sets of the same size.

9.4 Multi-Constructor CMSA for the MDDSP

In this work, we propose the Multi-Constructor CMSA, described also in
Chapter 3. In the construction step of the Multi-Constructor CMSA, every

184

Maximum Disjoint Dominating Sets Problem

solution is generated by a constructor chosen at random from a pre-defined
portfolio. Hereby, each constructor has a weight value assigned, and the
probability to be chosen depends on these weight values. In particular, we
consider all six greedy heuristics from Section 9.4.1 as constructors for our
CMSA approach. In order to produce (possibly) different solutions at each
call to a constructor, they are used in a probabilistic way, which work as
follows: at every greedy step, the classical deterministic greedy function is
applied with a probability equal to the value of the parameter 0 ≤ drate < 1.2.
Otherwise, a candidate list containing the first clist candidates, sorted by
value of their greedy function from best to worst, is built, and a solution
component is drawn uniformly at random from the list.

Our choice of CMSA for tackling the MDDSP is motivated by the
fact that this metaheuristic has already shown a high potential for
related optimization problems in graphs. Examples include the minimum
capacitated dominating set problem (Pinacho-Davidson et al., 2019) and
the maximum happy vertices problem (Lewis et al., 2019). Furthermore,
CMSA has been shown to perform well for real-world problems such as the
prioritized pairwise test data generation problem (Ferrer et al., 2021) or the
bus driver scheduling problem with complex break constraints (Chapter 8).

Hereafter, we discuss the main components of our Multi-Constructor
CMSA, namely, the constructors, the sub-instance, the model solved in the
Solve phase and the lexicographic objective function used internally by the
metaheuristic.

9.4.1 Constructors

Given the existence of effective greedy heuristics from the literature for
the MDDSP, mentioned in Section 9.2, we adapt them as constructor in
CMSA. In particular, we take as constructors for our CMSA approach the
following six greedy heuristics: Color-Dds, P-Max, P-Min, R-Lid, Iam,
Mdds-Gh. We suitably randomize them to produce different solutions at
each call, based on two parameters: drate ∈ [0, 1] and clist ∈ N. We
denote the randomized version of a greedy with a letter r. The resulting
multi-constructor is:

H = Mdds-Ghr∪Iamr∪P-Maxr∪P-Minr∪R-Lidr∪Color-Ddsr (9.4)

We provide in this section a rather detailed description of these heuristics
and the way we randomized them.

2drate stands for “determinism rate”

185

Maximum Disjoint Dominating Sets Problem

Color-Ddsr

The first greedy heuristic for the MDDSP was provided by Cardei et al.
(2002). It is a vertex-coloring heuristic (henceforth called Color-Dds)
working in two phases and with a time complexity of O(|V |3). In the first
phase, all vertices are colored using the sequential Welsh-Powell coloring
algorithm (Welsh and Powell, 1967) to generate all possible independent
dominating sets. Each independent set is formed by vertices with the
same color, where colors are indicated by numbers. Remember that an
independent set in a graph is a subset of vertices such that no two vertices in
it are adjacent. In the second phase, for each independent set in ascending
order of the color identifiers, the algorithm checks whether it represents a
dominating set or not. More specifically, if (1) the current independent set
is not a dominating set and (2) there is no possibility to achieve that by
adding some vertices from other independent sets with color greater than
the current one, then the termination condition of the algorithm is met. A
pseudo-code for the Color-Dds heuristic is shown in Fig. 9.3.

procedure Color-Dds(an undirected graph G = (V,E))
1: Let {v1, v2, · · · , vn} be a sorting of v ∈ V in descending order of degree
2: color[v1]← 1
3: for i in 2, . . . , n
4: color vi with the smallest possible color (greater or equal to 1) not

appearing in any neighbor vj of vi with j < i.
5: ncolors ← max{color[v] | v ∈ V }
6: D1 ← {v ∈ V | color[v] = 1}
7: k ← 1
8: for k in 1, . . . ,min{δ(G) + 1, ncolors}
9: Dk+1 ← {v ∈ V | color[v] = k + 1}
10: for all v ∈ V s.t. color[v] < k + 1
11: if v is not dominated by a vertex with color k + 1
12: if v has a neighbor u with largest color greater than k + 1
13: color[u]← k + 1
14: Dk+1 ← Dk+1 ∪ {u}
15 else
16: return (go to line 17)
17: return S = {D1,D2, · · · ,Dk}

Figure 9.3: Color-Dds greedy heuristic for the MDDSP

In order to provide a randomized version Color-Ddsr of the algorithm,
we modify line 1 of the algorithm as follows: when sorting, with probability

186

Maximum Disjoint Dominating Sets Problem

drate, we insert the next remaining vertex with higher degree, while with
probability 1 − drate we select among the next clist vertices with highest
degree, or among all the remaining vertices, if less than clist.

P-Maxr, P-Minr and R-Lidr

Nguyen and Huynh (2007) proposed three other deterministic greedy
heuristics, namely Progressive Maximum Degree Disjoint Dominating Sets
(P-Max), Progressive Minimum Degree Disjoint Dominating Sets (P-Min)
and Random Lowest ID Disjoint Dominating Sets (R-Lid). These heuristics
are two-step processes and adopt a similar mechanism in which a collection
of disjoint dominating sets S = {D1,D2, · · · ,D|S|} is formed by successively
constructing Dk, starting from an empty set for all k = 1, . . . , |S|. The
construction of a dominating set Dk at step k for each of these greedy
heuristics is done as follows. First, Dk is initialized to the empty set. Then,
at each construction step, vertices of the input graph G(V,E) are classified
into three distinct sets with respect to

⋃k
i=1Di:

(i) BLACK vertices: vertices contained in
⋃k

i=1Di, that is, vertices inserted
in one of the already generated dominating sets (including the current
partial dominating set).

(ii) GREY vertices: vertices that are not BLACK but adjacent to some BLACK
vertex.

(iii) WHITE vertices: all vertices from V that are neither BLACK nor GREY.

Given this classification, only WHITE vertices can be added to the current
partial dominating set. In order to be able to make a choice, each WHITE
vertex v is first evaluated by the following greedy function:

scoreP (v) :=

∣∣∣∣∣
{
u ∈ N(v) | u is a WHITE vertex with respect to

k⋃
i=1

Di

}∣∣∣∣∣
(9.5)

The three greedy heuristics from Nguyen and Huynh differ then in how
a WHITE vertex is chosen at each construction step. In the case of P-Min
and P-Max the next white vertex to be placed in Dk is the one with the
maximum, respectively minimum, value of the greedy function scoreP ().
R-Lid, on the other side, does not make use of this greedy function. It
simply prefers the WHITE vertex with the lowest index. When no further
WHITE vertex can be added to Dk, Dk may still not be a valid dominating

187

Maximum Disjoint Dominating Sets Problem

set. Therefore, uncovered vertices are processed one after the other. In
particular, such a vertex becomes covered if it has at least one GREY neighbor
that can be added to Dk. If it is not possible to cover all vertices, then
the algorithm termination criterion is reached prior to the construction of
the next dominating set Dk+1. The pseudo-code of P-Max is presented in
Fig. 9.4. Note that P-Min is obtained from Fig. 9.4 by replacing line 11
with the following instruction:

v∗ ← argmin{scoreP (v) | v ∈ V } (9.6)

procedure P-Max(an undirected graph G = (V,E))
1: color[v]← WHITE for all v ∈ V
2: dominating_set_flag ← true; k ← 1
3: while dominating_set_flag = true
4: for all v ∈ V
5: covered[v]← false
6: if (color[v] = GREY) then color[v]← WHITE
7: Dk ← ∅; vertex_cover_flag ← true
8: while vertex_cover_flag = true
9: if ∄v ∈ V s.t. color[v] = WHITE then vertex_cover_flag ← false
10: else
11: v∗ ← argmax{scoreP (v) | v ∈ V }
12: Dk ← Dk ∪ {v∗}
13: for all neighbors u of v∗
14: if (color[u] = WHITE) then color[u]← GREY
15: covered[u]← true
16: color[v∗]← BLACK; covered[v∗]← true
17: for all vertex v ∈

⋃k−1
i=1 Di s.t. covered[v] = false

18: if v has a grey neighbor u s.t. u ̸∈
⋃k

i=1Di

19: Dk ← Dk ∪ {u}; color[u]← BLACK
20: for all neighbors w of u do covered[w]← true
21: else dominating_set_flag ← false
22: if dominating_set_flag then k ← k + 1
23: return S = {D1,D2, · · · ,Dk−1}

Figure 9.4: Greedy heuristic P-Max for the MDDSP

In the case of P-Maxr, P-Minr and R-Lidr, our randomized version
modify line 11. With probability drate, we choose the next vertex according
to the respective greedy rule of the algorithm (argmax, argmin, and lowest
index, respectively). Otherwise, with probability 1 − drate we select among

188

Maximum Disjoint Dominating Sets Problem

the next clist vertices with the highest score in the greedy function or among
all the remaining vertices, if less than clist.

Iamr

Two years later, an improved version of P-Max was introduced by Islam
et al. (2009). This algorithm will henceforth be denoted as Iam, which is an
acronym composed of the initials of the authors’ surnames. In contrast to
P-Max, Iam is a one-step construction process of time complexity O(n3) in
which the set of feasible solution components includes all vertices of V that
are not part of the set of BLACK vertices as defined previously for the case of
P-Max. The employed greedy function is now defined as in Eq. (9.7) where
ties are broken by choosing the vertex with the minimum number of BLACK
neighbors. If the tie is still unresolved, the vertex with the lowest index is
selected, similarly to what is done in R-Lid

scoreP (v) := |{u ∈ N [v] | u is a WHITE vertex with respect to Dk}| (9.7)

where N [v] is the closed neighborhood of v, that is, the set of neighbors of
v including itself.

Analogously to what we have done with the other greedy heuristics, we
employ as constructor a suitably randomized version Iamr. Again, with
probability drate, we choose the next vertex according to Eq. (9.7), and with
probability 1 − drate we select among the clist vertices that score best in
Eq. (9.7), or among the remaining vertices if less than clist.

Mdds-Ghr

The last heuristic algorithm, and the currently best greedy algorithm, is
called Mdds-Gh. It was recently presented in Balbal et al. (2021). It was
developed for a weighted variant of the MDDSP, and it was used as one of
the principal components of a metaheuristic proposed for the same problem
variant in Bouamama et al. (2022).

Mdds-Gh can be easily adapted to tackle the MDDSP by incorporating
Iam’s greedy score function depicted in Eq. (9.7). This adaptation also
improves the handling of algorithm termination criteria and enhances overall
performance. It is worth noting that Iam faces an issue with one of
its stopping conditions that can be met even when there is a possibility
of forming additional remaining dominating sets. This aspect has been
addressed and solved in Mdds-Gh by using just one stopping condition.
Unlike Iam, the algorithm checks, before beginning the current construction

189

Maximum Disjoint Dominating Sets Problem

process, if there is at least one vertex such that all its neighbors from the
closed neighborhood are BLACK (part of previously constructed dominating
sets). If this condition is met, no further dominating set can be found, and
the algorithm terminates.

The algorithm Mdds-Gh is comprehensively described in Balbal et al.
(2021), therefore we refer to the pseudo-code shown in that article. In
particular, despite the two greedy procedures being different, we designed
its randomized version Mdds-Ghr analogously to what we have done for
Iam, given that both algorithms use the same greedy function. In reference
to the pseudo-code shown in Algorithm 1 in the paper from Balbal et al.,
this affect line 12, in which the next candidate component is chosen.

Constructor selection

In our Multi-Constructor CMSA, the selection of the constructors is
stochastic. Therefore, our constructors are assigned with a vector
of probabilities (σMdds-Ghr , σIamr , σP-Maxr , σP-Minr , σR-Lidr , σColor-Ddsr),
with

∑K
i=1 σi = 1, where σi is the probability of the i-th constructor. During

the Construct phase of CMSA, before the generation of a new solution,
one of the constructors is selected by means of a biased random selection,
according to the given probabilities. Then, the next solution is built using
the selected constructor. A trivial choice would be to assign the same
probability 1/K to all constructors. However, it is reasonable to believe
that not all constructors are equally useful and that higher probabilities
should be assigned to the most promising ones. Instead of using fixed rates
for the constructor probabilities, we propose an online strategy for learning
these probabilities, based on a reinforcement learning approach. Given that
we dedicated the whole Chapter 10 to the use of reinforcement learning to
adapt operator weights in metaheuristics, we forward the reader to that
specific chapter for explanations on the methodology.

9.4.2 Sub-instance

The ILP model for the MDDSP from Section 9.3 uses certain constraints
to ensure that the generated sets are both disjoint and dominating.
These constraints are rather challenging, even for high-performance ILP
solvers. Therefore, for our CMSA, we employ another paradigm based
on the separation between (1) the generation of a large number of feasible
dominating sets and (2) the subsequent selection of a collection of those sets
such that the sets in the collection are vertex-disjoint. Theoretically, if we

190

Maximum Disjoint Dominating Sets Problem

had the means to enumerate the full collection C of all possible dominating
sets of input graph G = (V,E), an optimal solution to the MDDSP could be
obtained by solving the following set packing ILP formulation:

max
∑
D∈C

xD (9.8a)

s.t.
∑

{D∈C|v∈D}

xD ≤ 1 ∀ v ∈ V (9.8b)

xD ∈ {0, 1} ∀ D ∈ C (9.8c)

This ILP model is based on a binary variable xD for each dominating set
D ∈ C, whereby a value of xD = 1 means that D is chosen to be part
of the solution. Constraints at Eq. (9.8b) ensure that each vertex of G is
present in at most one of the chosen dominating sets. In this way, the chosen
dominating sets are pairwise disjoint.

However, in practice, there is no efficient way to enumerate all dominating
sets of a reasonably large graph. And even if there was one, the size of C
would be too large for the above ILP model to be solvable by nowadays’
ILP solvers. On the contrary, we can efficiently generate a subset (or
sub-instance) C′ ⊂ C, containing a subset of all the possible dominating
sets of G. The resulting ILP model where C′ replaces C is tractable for a
Mixed Integer Programming (MIP) solver, provided that the size of C′ is
kept reasonably small.

9.4.3 Lexicographic objective function

The MDDSP is characterized by the fact that many distinct solutions with
identical objective function value coexist. This is because, generally, there
are many different solutions with the same number of dominating sets.
Indeed, given a solution S = {D1, . . . , Dk} to the MDDPS, the objective
function value is simply f(S) := |S|, that is, it counts the number of disjoint
dominating sets in S. As a consequence, the search landscape is characterized
by the presence of wide plateaus (Watson, 2010). The problem that arises in
the presence of plateaus is that a metaheuristic, which is implicitly guided by
gradients in the search landscape, may get lost. An effective way to deal with
such a situation is to use a lexicographic objective function f lex(), using more
criteria than just the problem objective function in order to differentiate
between different solutions. This is done, for example, in Bruglieri and
Cordone (2021), where the original objective function is used as a first
criterion for comparing two solutions, and, only when the two solutions have

191

Maximum Disjoint Dominating Sets Problem

the same original objective function value, a second criterion is evaluated to
differentiate between them.

For the MDDSP, the idea to design the lexicographic objective function
is that the most promising solutions on a plateau are those that are nearest
to building an additional dominating set with the unused vertices. More
precisely, given two solutions S1 and S2, S1 is said to be lexicographically
better than S2–that is, f lex(S1) > f lex(S2)–if and only if

1. f(S1) > f(S2) or

2. f(S1) = f(S2) and r(S1) > r(S2)

Hereby, the second criterion, r(S), is a residual coverage function that
calculates the fraction of the input graph G that can be covered with the
vertices V ′ ⊂ V that, in a given a solution S, are not assigned to any of the
disjoint dominating sets. More specifically, r(S) is defined as follows:

r(S) :=

∣∣⋃
v∈V ′ N [v]

∣∣
|V |

(9.9)

In addition, the residual coverage function is used in CMSA (see lines
14–15 of Fig. 9.5) to discover if there are hidden dominating sets contained
in the set of unused vertices regarding CPLEX solution Sexc. Indeed,
occasionally it may happen that r(Sexc) = 1, which means that from the
vertices not included in any dominating set of Sexc at least one additional
dominating set can be generated. This may happen for two possible reasons:
C′ does not include such a dominating set because it was not generated by
a constructor, or the time limit of texc CPU seconds did not allow the MIP
solver to find an optimal solution to C′. When this case is detected, the
repair procedure is iteratively applied until r(Sexc) < 1. The sets generated
by the repair procedure are added to the sub-instance C′ and their age is set
to zero.

9.4.4 Parameters

Apart from graph G, our algorithm takes as input the values for seven
parameters. Note that parameter values are determined through a
statistically-principled tuning procedure, as discussed in Section 9.5.2. Five
of these parameters, namely nsols, drate, clist, agelimit, and texc, are traditional
CMSA parameters, while parameters λ and τ , which are needed for the
reinforcement learning mechanism applied to the constructor probabilities,

192

Maximum Disjoint Dominating Sets Problem

Table 9.1: Parameters for CMSA

Param. Explanation

nsols parameter that serves for the calculation of the number of solutions
to be generated at each algorithm iteration, as explained below.

drate determinism rate for solution construction.
clist length of the candidate list for those solution construction steps in

which a non-deterministic choice is performed.
agelimit limits the number of iterations a dominating set can remain in the

sub-instance C′ without being chosen by the exact solver for the best
solution to the sub-instance.

texc time limit (in seconds) for the application of the MIP solver at each
iteration of CMSA.

λ learning rate employed for the learning of constructor probabilities,
only for the Multi-Constructor variant.

τ minimum probability that can be reached by a constructor,
only for the Multi-Constructor variant.

are specific to our Multi-Constructor CMSA. The full list of parameters is
contained in Table 9.1.

We aim to find one single parameter value setting that works reasonably
well for the whole range of problem instances. However, in preliminary
experiments, we observed that the number of solution constructions allowed
per iteration was very sensitive to the size of the input graph. In case
of too many solution constructions, the resulting sub-instances have too
many dominating sets, that is, the corresponding ILP models have too many
variables, which makes it nearly impossible for CPLEX to find a good–or
even optimal–solution within the fixed CPU time limit of texc seconds.
This is because the number of vertices of the input graph (|V |) determines
the number of rows of the corresponding ILP model, while the number of
dominating sets in the sub-instance determines the number of columns. For
this reason, we also observed that for smaller graphs many more solution
constructions could be afforded when compared to larger graphs. Therefore,
we finally decided to make the number of solution constructions allowed per
algorithm iteration inversely proportional to |V | by setting it to nsols

|V | .

193

Maximum Disjoint Dominating Sets Problem

procedure Multi-Constructor CMSA
(a graph G(V,E), values for
parameters nsols, drate, clist, agelimit, texc)

1: t← 1
2: (σ1,t, . . . , σK,t)←

(
1
K , . . . , 1

K

)
3: Sbsf ← ∅; C′ ← ∅
4: while f(Sbsf) < δ(G) + 1 and CPU time limit not reached
5: Ĉ ← ∅
6: for i← 1, . . . , nsols

|V |
7: h← ChooseConstructor(H,(σ1,t, . . . , σK,t))
8: Scur ← Construct(G,h); Ĉ ← Ĉ ∪ Scur
9: if f lex(Scur) > f lex(Sbsf) then Sbsf ← Scur
10: for all D ∈ Ĉ,D /∈ C′
11: age[D]← 0
12: C′ ← C′ ∪ {D}
13: Sexc ← ApplyExactSolver(C′, texc)
14: while r(Sexc) = 1
15: Sexc ← ApplyRepairProcedure(Sexc)
16: if f lex(Sexc) > f lex(Sbsf) then Sbsf ← Sexc
17: (σ1,t+1, . . . , σK,t+1)← UpdateRates((σ1,t, . . . , σK,t),C′,Sexc,λ,τ)
18: C′ ← Adapt(C′, Sexc, agelimit)
19: t← t+ 1
20: return Sbsf = {D1,D2, · · · ,Dk}

Figure 9.5: Multi-Constructor CMSA for the MDDSP

9.4.5 Algorithmic details

Fig. 9.5 provides the full pseudo-code of our Multi-Constructor CMSA
algorithm for the MDDSP. First of all, the weights (σ1,t, . . . , σK,t) of the K
constructors are initialized to the same value 1/K, to give them all the same
probability of being chosen at the first iteration. Moreover, the sub-instance
C′ and the best solution found so far Sbsf are initialized to empty sets.

The main loop of CMSA starts at line 4, and it is terminated when
either a total time limit is reached, or in case a best solution Sbsf such that
f(Sbsf) = δ(G) + 1 is found. At each CMSA iteration, the Construct and
Merge steps are repeated until nsols/|V | solutions are generated; see lines
5–12. In the construction procedure, the multi-constructor plays a crucial
role. First, at line 7 one of the available constructors is chosen by means
of a biased random selection. Hereby, constructors are weighted according
to their corresponding probabilities. Then, a new solution is generated with

194

Maximum Disjoint Dominating Sets Problem

the chosen constructor (line 8). Naturally, every solution Scur is compared
with the incumbent Sbsf , using the lexicographic objective function presented
in Section 9.4.3, as it sometimes may happen that a constructor is able
to provide a new best solution. Then, the corresponding Merge step is
performed in lines 10–12. All the new dominating sets found in the nsols/|V |
constructed solutions are added to C′, and their age[D] is initialized to zero.

Lines 13–17 contain the Solve phase. First of all, at line 13, CPLEX
solves the set packing based ILP model corresponding to sub-instance C′.
The time limit is set to texc CPU seconds, or to the remaining time budget if
this is less than texc CPU seconds. The output Sexc is the best solution
returned by CPLEX within the given CPU time. In our experiments,
we observed that the exact solver is often able to prove the optimality of
Sexc for C′. In other words, often CPLEX does not spend all the allotted
computation time. A residual function r(Sexc) is checked at lines 14–15 to
verify whether at least one additional dominating can be generated using
the vertices not included in any dominating set of Sexc; see Section 9.4.3 for
the definition of the function r(). If this is the case, a heuristic procedure,
labeled ApplyRepairProcedure in Fig. 9.5, is activated iteratively to build the
additional dominating set(s), using the vertices in V \Sexc. Then, at line 17,
the probabilities of the constructors are reinforced according to the rules
presented in Chapter 10.

Finally, the Adapt phase takes place at line 18. First, the dominating
sets D ∈ Sexc generated by the repair procedure that are not already
included in the sub-instance C′, are added to C′. Second, the age values
of all dominating sets from Sexc are reset to zero. Third, the age values of
all remaining dominating sets from C′ are incremented by one. Finally, all
dominating sets D ∈ C′ with age[D] > agelimit are removed from C′.

9.5 Experimental results

We denote the three versions of CMSA studied in this work as Cmsa,
Cmsa-Lall, and Cmsa-L1,2. The first one is the standard CMSA, which only
uses one constructor (Mdds-Ghr) and no reinforcement learning mechanism.
The second one employs the six constructors described before in this chapter,
while the third one uses only the most promising constructors, namely,
Mdds-Ghr and Iamr. We perform a thorough comparison on a large
instance space, that involves the two Multi-Constructor CMSA variants
against the standard CMSA and the heuristics from the literature. We
present and compare also the results obtained by CPLEX.

195

Maximum Disjoint Dominating Sets Problem

Our software was implemented in C++17 and compiled on Ubuntu
20.04.5 with g++ 9.4.0 in -O3 mode. We run all experiments on a machine
equipped with an Intel Xeon Processor (Cascadelake), with 16 cores and a
clock frequency of 2.4 GHz. We employed a maximum of one single core
per experiment, including the call to exact solver within CMSA. For the
comparison, we implemented also the six heuristics in C++17 and compiled
and ran them under the same experimental setting. Finally, we implemented
the ILP model for the MDDSP for CPLEX 20.1, through its C++ interface.

9.5.1 Instances

We consider four kind of graphs:

• Random graphs (RGs)

• Watts-Strogaz networks

• Barabási–Albert networks

• Random geometric graphs (RGGs)

All instance sets include instances with up to 1000 vertices, except for
random geometric graph that have up to 5000 vertices. Random graphs
(RGs) are general graphs, characterized by two features: the number of
vertices, |V |, and a density |D|. In these graphs, any pair of vertices
may be potentially connected. Watts-Strogatz networks, having small-world
properties (Watts and Strogatz, 1998), and Barabási–Albert networks, which
are scale-free networks (Barabási and Albert, 1999), use custom statistical
distributions. Random gGeometric graphs (RGGs), on the other hand, are
characterized by |V | and a radius rmax < 1. |V | vertices are placed at random
coordinates (x, y) on the [0, 1]2 square. Then, every pair of vertices vi ̸= vj
with an Euclidean distance d(vi, vj) < rmax are connected by an edge. These
graphs are also known as planar unit disk graphs. RGGs, furthermore, are
typically used as a graph model for wireless sensor networks mentioned in
Section 9.2. Fig. 9.6 gives a visual representation of the difference between
RGs and RGGs. The sets of random graphs, Watts-Strogatz networks and
Barabási–Albert networks comprise 60 combinations of |V | and D, with 20
graphs for combination and network type. The set of RGGs comprises 21
combinations of |V | and rmax (see Table 9.5). For each of these 21 graph
parameter combinations 20 graphs are available.

To generate the combinations of |V | and D to generate random graphs,
Watts-Strogatz and Barabási–Albert networks with up to 1000 vertices

196

Maximum Disjoint Dominating Sets Problem

Figure 9.6: Random Graph (left) and Random Geometric Graph (right)

we designed a generation procedure based on the Hammersley point
set (Hammersley and Handscomb, 1964), that ensures that all areas of the
instance space are equally represented. The instance space is characterized
by two dimensions: the number of vertices |V | and the density D. Given an
undirected graph G = (V,E), the definition of D is as follows:

D =
|E|(|V |
2

) =
2|E|

|V |(|V | − 1)
(9.10)

For the three categories of graphs, the problem instances were then generated
according to the following procedure:

1. Selection of 60 pseudo-random points (|V |, D) with the Hammersley
sampling procedure, with 10 ≤ |V | ≤ 1000, and 0.05 ≤ D ≤ 0.95.
This domain covers practically the whole instance space, avoiding at
the same time the generation of graphs that are too small and with
density values too extreme. The outcome of the generation procedure
is shown graphically in Fig. 9.7. Additionally, information on the 60
points is provided in Tables 9.6 to 9.8, in columns |V | and D.

2. For every point, 20 graphs were randomly generated, resulting in a
total of 1200 graphs, for each model. The graphs have |V | vertices,
and D is used as the probability for every possible edge to be present.
Nonetheless, the distribution of the edges will vary in different kinds of
graphs. For random graphs, the graph generator iterates over all pairs
of nodes (u, v), and establishes stochastically if an edge between them

197

Maximum Disjoint Dominating Sets Problem

exists, with probability D. Watts-Strogatz networks are similar, but
in addition, vertices are clustered. In Barabási–Albert networks the
degree follows a scale-free (or power law) distribution, that will result
in few vertices being much more connected than most other vertices.
Given that D is used as input parameter for probabilistic generation,
the actual density of the generated graphs can be slightly different from
the required one. However, the deviation is minimal: as a double-check,
we verified that the actual average density for each group of instances
is identical to the required one, if rounded to two decimal digits.

We employed the same procedure also for the generation of an additional
set of instances for parameter tuning. This additional set utilizes a higher
number of Hammersley points on the same instance space, with of a single
instance per point, and is composed exclusively of random graphs. Table 9.2
introduces a classification of the instances depending on their size and
density. The borders between regions are visible also in the background
grid in Fig. 9.7.

Figure 9.7: The 60 instance groups generated with the Hammersley point
set, on the instance space.

The reason for the inclusion of different types of graphs is twofold. On
the one hand, random graphs are not realistic in many contexts. In contrast,
RGGs, Watts-Strogatz networks and Barabási-Albert networks are often

198

Maximum Disjoint Dominating Sets Problem

used in network science, for modelling both natural and social phenomena.
On the other hand, we aim to study the adaptability of our CMSA to unseen
graphs with different characteristics, where “unseen” refers to the fact that
these special types of graphs are not included in the training set for parameter
tuning. In this work, RGGs are treated differently from the other graph
types, because CMSA rather easily solves problem instances with up to 5000
vertices, even to optimality.

All the instances, used for tuning and for the final experimental
evaluation, are available online for download, together with an instance and
solution validator, at https://bitbucket.org/maximum-disjoint-domin
ating-sets-problem/maximumdisjointdominatingsets-instances.

Table 9.2: Classification of graphs by size and density

Size Density
Name Feature Name Feature

Small |V | < 334 Sparse D < 1
3

Medium 334 ≤ |V | < 667 Medium 1
3 ≤ D < 2

3
Large 667 ≤ |V | Dense 2

3 ≤ D

9.5.2 Parameter tuning

We performed the parameter tuning with irace, which is a tool for
automatic algorithm configuration based on iterated racing (López-Ibáñez
et al., 2016). The time limit given to the three CMSA variants for each
application was |V |

2 CPU seconds, identical to the one used for the final
experimental evaluation, with the exception of RGG instances, that were
allowed |V | CPU seconds. The dependency of running time on instance
size allows more time for larger graphs, in which the constructors take
longer for the generation of solutions. Tables 9.3 and 9.4 summarize the
parameters involved in the tuning, the considered domains, and the outcome
of the tuning procedure, respectively for RGGs and other graphs, for the
three versions of CMSA. In particular, the tuning procedure considered four
CMSA parameters (nsols, drate, clist, agelimit) and the hyperparameters λ
and τ , needed for the reinforcement learning procedure. The parameter
texc was also included in the tuning for RGGs, while was fixed to 15 CPU
seconds according to the outcome of preliminary exploratory tuning tests for
the other graphs. The choice of fixing one parameter in advance aimed
at a simplification of the tuning process. Note also that the choice of

199

https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances

Maximum Disjoint Dominating Sets Problem

setting the number of solution constructions per iteration to nsols/|V | was
determined as being superior to a static setting of the number of solution
constructions by the results of a dedicated tuning session with irace (this
was not done for RGG, though). Parameters drate, λ and τ are real-valued,
with an allowed precision of two digits behind the comma, while nsols, clist,
and agelimit are natural numbers. We tuned separately the parameters
of the three algorithms Cmsa, Cmsa-Lall, Cmsa-L1,2. The parameter
tuning was carried out only on the dedicated training set of RGGs and
random graphs, and the tuning budget was set to 5000 experiments for
Cmsa-Lall and Cmsa-L1,2, and to 3000 experiments for Cmsa, which has
fewer parameters. This resulted in a total computation time of 367 hours
for Cmsa-Lall and Cmsa-L1,2, and 220 hours for Cmsa. Thanks to the
availability of a cluster with multiple nodes, having 16 cores each, we
could parallelize the experiments, so that the elapsed time needed for the
tuning was approximately one day. By contrast, the total computational
time needed for the validation was 2590 hours. Less formal preliminary
experiments, which are naturally conducted during the design and the
implementation of the algorithm, are not accounted in the calculation.

Table 9.3: CMSA parameters, the considered domains for parameter tuning,
and the finally determined parameter values for Random geometric graphs.

Parameter Domain Value

nsols {2, 3, ..., 30} 20
drate [0.60, 1.00] 0.69
clist {2, 3, ..., 30} 22
agelimit {2, 3, ..., 30} 16
texc {3, 4, ..., 100} 81

9.5.3 Results

Experimental results obtained by Cmsa, Cmsa-Lall, Cmsa-L1,2 and by
the six deterministic greedy heuristics from the literature are displayed in
Table 9.5 for Random geometric graphs, Table 9.6 for random graphs, in
Table 9.7 for Watts-Strogatz networks and in Table 9.8 for Barabási-Albert
networks. Each table row shows averages over 10 independent runs
(concerning the CMSA variants) for each of the 20 problem instances
produced for the corresponding combination of |V | and rmax for RGGs and
of |V | and D for the other graph types, in which each row also matches a

200

Maximum Disjoint Dominating Sets Problem

Table 9.4: CMSA parameters, the considered domains for parameter
tuning, and the finally determined parameter values for random graphs,
Watts-Strogatz and Barabási-Albert networks

Parameter Domain Cmsa Cmsa-Lall Cmsa-L1,2

nsols {2500, 100000} 84798 79560 86865
drate [0.60, 1.00] 0.99 0.98 0.97
clist {2, 3, ...,50} 9 3 2
agelimit {2, 3, ...,30} 4 4 11
λ [0.00, 1.00] — 0.98 0.30
τ [0.00, 0.10] — 0.04 0.08

Hammersley point in the generation procedure. Henceforth, we will call the
20 problem instances belonging to a specific point an instance group. Best
values within instance groups are marked in bold. No results in bold in a
given row indicates that the best values are found by one of the ILP models.

Results on random geometric graphs

We report the results obtained by CMSA under the parameter setting
presented in Table 9.3. CMSA improves on all graphs and finds 4.2 disjoint
dominating sets more than the best greedy heuristic (P-Max) for RGGs with
|V | = 5000 and rmax = 0.3. The interest in reporting CMSA computational
time is to show that it is able to find quite often solutions whose objective
function values coincide with the upper bound δ(G) + 1, that is, they are
provenly optimal. A group of instances with one or more provenly optimal
solutions found by CMSA reports a lower computational time than V CPU
seconds, because one or more run terminates before.

Fig. 9.8 presents two graphics relative to the results obtained on RGGs.
The first one shows–for each radius–the evolution of the optimality rate
depending on the instance size. The second one displays the evolution of
the average execution times. Clearly, optimal solutions to these instances
coincide much more often with the upper bound. In cases (|V | =
1500, rmax = 0.1) and (|V | = 3000, rmax = 0.1), for example, all 20 graphs
were solved to proven optimality by CMSA. The algorithm was able to
achieve this on average in 77, respectively 3, CPU seconds. The graphics
also show that with a growing graph density–a growing value of rmax–the
values of optimal solutions seem to coincide every time less with the upper
bound.

201

Maximum Disjoint Dominating Sets Problem

Given that RGGs are solved to optimality rather easily, we don’t explore
them further and we don’t apply the Multi-Constructor variant on them.

Table 9.5: Numerical results obtained for RGGs.

Instances Cmsa Mdds-Gh IAM P-Max P-Min R-Lid Color-Dds
|V | rmax obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s) obj t(s)

0.1 7.90 80 7.30 0.04 6.30 0.33 7.30 0.02 6.75 0.12 7.15 0.01 7.35 0.01
1000 0.2 30.55 50 29.30 0.12 28.30 0.47 29.95 0.05 27.25 0.12 29.40 0.02 29.35 0.04

0.3 71.45 605 67.00 0.25 66.00 0.84 68.55 0.13 64.20 0.28 68.95 0.03 69.20 0.10

0.1 12.60 77 11.65 0.21 10.65 0.94 11.75 0.17 10.60 0.28 11.40 0.18 11.40 0.12
1500 0.2 48.00 298 45.95 0.57 44.95 1.67 45.75 0.27 43.05 0.54 45.85 0.17 46.00 0.20

0.3 105.50 520 101.25 1.62 100.25 2.34 102.55 0.81 95.40 1.08 102.20 0.19 102.70 0.38

0.1 16.90 302 15.90 0.27 14.90 1.69 15.95 0.16 14.20 0.27 15.80 0.05 16.00 0.04
2000 0.2 62.55 566 60.25 4.78 59.25 10.09 60.85 1.66 56.55 4.44 60.25 0.08 60.85 0.19

0.3 141.75 1047 135.45 15.21 134.45 23.40 137.35 4.53 128.65 11.19 137.80 0.15 137.90 0.69

0.1 21.00 178 20.20 0.79 19.20 3.07 19.85 0.55 18.35 0.77 19.55 0.36 19.85 0.38
2500 0.2 79.85 930 76.70 3.26 75.70 5.63 76.75 1.50 71.40 2.48 76.40 0.42 77.00 0.60

0.3 177.30 1376 169.70 6.51 168.70 9.81 173.45 2.38 160.15 4.57 171.45 0.50 172.80 1.25

0.1 23.15 3 22.45 3.38 21.45 9.55 22.35 1.02 20.90 1.92 22.55 0.11 22.55 0.08
3000 0.2 93.70 1383 90.85 31.96 89.85 29.99 89.75 5.09 84.05 15.49 90.70 0.20 91.15 0.51

0.3 215.30 1540 208.05 48.93 207.05 44.92 211.80 14.75 194.85 29.34 208.00 0.27 210.05 2.41

0.1 33.50 731 31.35 20.63 30.35 24.59 31.55 4.83 28.90 9.30 31.35 0.22 31.55 0.17
4000 0.2 129.45 1781 125.15 45.65 124.15 48.52 125.70 16.56 117.10 31.75 125.25 0.30 126.30 1.46

0.3 283.65 3282 273.45 63.11 272.45 74.15 279.90 33.42 257.75 45.87 276.65 0.59 278.75 4.80

0.1 41.30 730 39.50 31.25 38.50 38.73 39.15 7.40 35.90 19.43 38.80 0.28 39.30 0.31
5000 0.2 158.25 2825 153.65 59.61 152.65 67.34 154.25 23.09 143.50 37.35 153.95 0.56 154.85 2.51

0.3 354.55 4379 342.75 78.34 341.75 98.84 350.35 47.84 321.55 59.36 345.05 0.80 348.20 7.02

0.00

0.25

0.50

0.75

1.00

1000 2000 3000 4000 5000

graph size (vertices)

o
p
tim

a
lit

y
ra

te

radius

0.1

0.2

0.3

0

1000

2000

3000

4000

1000 2000 3000 4000 5000

graph size (vertices)

e
xe

c
u
tio

n
 t
im

e
 (

s)

radius

0.1

0.2

0.3

Figure 9.8: Evolution of the optimality rate (left) and execution time (right)
depending on the size of the RGG instance, for the three considered radii.

202

Maximum Disjoint Dominating Sets Problem

Results on random graphs, Watts-Strogatz and Barabási-Albert
networks

Experimental results allow the observation that all three CMSA variants
outperform the heuristics on all instance groups. There are, however, some
instance groups that appear to be easier to solve, given that all considered
CMSA variants obtain exactly the same results. Interestingly, these ties are
more frequent in instances with very low or very high density, regardless of
their size. A summary of the comparative performances of the algorithms is
provided in Table 9.10. CMSA performs very well on all graphs, including
those types that were not included in the tuning. Among CMSA variants,
the best performer is Cmsa-L1,2. Interestingly, the advantage of Cmsa-L1,2

appears to be greater on Watts-Strogatz and Barabási-Albert networks.
We do not report on computational times, because the stopping criterion

is the same for all CMSA variants, and the times employed by the six
greedy heuristics are negligible, as it is consistently below one second. The
total computation times of the CMSA variants range from 13.5 seconds
to 500 seconds. Sometimes, however, a CMSA run is stopped before the
computation time limit is reached, due to finding a provenly optimal solution.
It can be said that the execution times of CMSA are about two orders of
magnitude higher than the ones of the greedy heuristics. While this–at first
sight–might result in an unfair comparison, we need to consider that greedy
algorithms are simple procedures and that their speed advantage comes at
the cost of much worse solutions. On the other hand, more sophisticated
algorithms such as metaheuristics perform a much larger exploration of
the solution space to find better solutions. Inevitably, they require a
higher computational time. In our context, longer running times are fully
justified by the obtained improvements over the greedy heuristics, which is
indisputable on all instance groups and all graph categories. Indeed, the table
column with the heading “Improvement (%)” in Tables 9.6 to 9.8, shows the
percentage gap between the best-performing CMSA and the best heuristic.
The improvement is consistent for all instance groups. In particular, CMSA
can find up to 30% more dominating sets in the smallest graphs. The relative
improvement decreases as the graph size increases. The difference in terms
of the absolute values, however, as shown in column “Improvement (n)”,
is remarkable, especially on dense graphs, with CMSA able to produce up
to 14.42 more dominating sets on random graphs, and up to 13.55 more
dominating sets on Watt-Strogatz networks. This is quite a notable result
if we consider, for instance, the application to WSNs. Manufacturers of
commercial sensor nodes declare operational lifetimes that range from days to

203

Maximum Disjoint Dominating Sets Problem

months, or even years (Mak and Seah, 2009). Depending on the application
area of a WSN, the potential lifetime of the network is obtained in relation to
the number of disjoint dominating sets found on the graph. So, an extension
of even a few percentage points in the lifetime of the WSN is translated into
a gain of, at least, some days of autonomous functioning.

Given that the running time granted to CMSA is much larger than the
time needed by the greedy algorithms, the reader might wonder whether a
heuristic algorithm for solving the MDDSP which is granted a comparable
execution time would be able to compete with CMSA. However, all
existing heuristics for the MDDSP are deterministic greedy algorithms, and
non-deterministic metaheuristics have never been applied to the MDDSP.
What can be done, however, is to run the best one of our randomized
greedy heuristics (Mdds-Ghr) in a repeated way with the same computation
time limit as used for CMSA, that is, with a time limit of |V |/2 seconds.
This was done with the same values for parameters drate and clist found
in Table 9.4 in column Cmsa. The output of this repeated, randomized
greedy heuristic is the best solution found within |V |/2 seconds. Finally, we
compare the obtained results with the ones of our best-performing CMSA
variant (Cmsa-L1,2).

An analysis of the results shows that, in random graphs, Cmsa-L1,2

obtains on average 0.97 more dominating sets, which corresponds to an
average percentage increment of 0.74%. In the context of Watt-Strogatz
networks, Cmsa-L1,2 obtains on average 0.92 more dominating sets,
corresponding to an average percentage increment of 0.72%. However,
in the case of Barabási-Albert networks, the gap is significantly reduced,
as Cmsa-L1,2 obtains on average just 0.05 more dominating sets, or,
equivalently, an average percentage increment of 0.15%. This is not a
surprising fact, considering the analogies between Barabási-Albert networks
and random geometric graphs, that were studied in our previous work (Rosati
et al., 2023a). Both are, indeed, characterized by locality and/or clustering
of nodes. Moreover, we performed three paired Wilcoxon signed rank
tests with continuity correction. The tests return that the difference
in performance between Cmsa-L1,2 and the randomized, repeated greedy
heuristic is statistically significant for random graphs and Watts-Strogatz
networks, given the very low p-values (< 2.2 · 10−16). On the other hand,
in the case of Barabási-Albert network, even though Cmsa-L1,2 generally
produces better results, the gap is not statistically significant (the p-value
is 0.079, above the significance threshold of 0.05), which means that we
cannot reject the null hypothesis of equality of the true means of the two
populations. These results suggest that the advantage of CMSA in the case

204

Maximum Disjoint Dominating Sets Problem

of Barabási-Albert networks is limited to dense graphs (see Fig. 9.13), while
its superiority is indisputable in the context of the other graph types.

We point out that Mdds-Ghr, that we used for comparison, exists only
because we developed it for its usage within CMSA, and that it can be
seen as a particular use case of CMSA, with extreme parameter values such
as a computation time of zero for solving the ILP model at each iteration.
In the context of real-world applications, greedy algorithms are interesting
because of their speed and usefulness in time-critical applications in which
a user needs a response from the computer in fractions of seconds. In
less time-critical applications, in which the decision maker has more time
available for finding a good solution in advance, repeating in a loop the
same randomized greedy algorithm for some time is generally not the best
practice, especially if a metaheuristic (such as CMSA) that offers better
exploration of the search space in the same running time exists.

In order to get more information on the behavior of CMSA in different
regions of the instance space, Fig. 9.9 shows six plots. All plots show the
instance space, with the two axes that correspond to |V | and D. The three
plots from the top row indicate those instance groups (out of 60 Hammersley
points) for which, from left to right, Cmsa, Cmsa-Lall, and Cmsa-L1,2

obtain the best results. The plots consider only random graphs, although
similar considerations could be drawn also for the other kinds of instances. In
the three plots of the bottom row, the easy instances where all methods are
able to obtain the same average results have been eliminated. Such instances
are mostly concentrated in the low end or in the high end of the density
range. From the plots, we can observe that Cmsa performs well for small
and medium instances. On the other side, it seems to lose its effectiveness
in the context of larger instances, for which Cmsa-L1,2 obtains the best
solutions. Beyond the graphical impression, this is confirmed with statistical
significance by a non-parametric test, which is discussed in Section 9.5.4.
On the other hand, Algorithm Cmsa-Lall appears to be particularly weak
on very dense graphs. To provide the reader with the complete picture,
Fig. 9.10 represent the best performers in a single plot, by using the same
three symbols for the three algorithms as those already used in Fig. 9.9.

ILP model results

Table 9.9 displays the results obtained from the solution of the three models
Ilp, Ilp-sm1, and Ilp-sm2 presented in Section 9.3, applied to all problem
instances with |V | < 300, within a computation time limit of one hour. The
reason why we only consider instances with |V | < 300 is twofold: on the

205

Maximum Disjoint Dominating Sets Problem

Figure 9.9: Instance groups (Hammersley points) for which algorithms are
the best-performing ones. The plots in the top row include all instances,
while in the plots of the bottom row, the six points in which all CMSA
variants perform equally well are removed.

one hand, the exact solver struggles in finding even any feasible solution for
graphs of sizes slightly above 200 vertices. On the other hand, the application
of CPLEX is quite memory intensive in the context of larger instances.
Running such experiments would be, in any case, impractical. The table
is organized as follows: for the three network types (RG: Random graphs,
WS: Watts-Strogatz Network and BA: Barabási-Albert networks), and for
the three ILP models (Ilp: no symmetry breaking constraints, Ilp-sm1 and
Ilp-sm2: the two models that implement symmetry breaking constraints),
for every instance group the average objective function value, the execution
time and the ratio of proven optimal solutions are provided. Bold values
are used to mark those results which are of at least the same quality as the
ones of CMSA. Indeed, there are some instances for which the ILP results
are better than the ones of CMSA and the heuristics. This happens mainly
on the smallest graphs (|V | < 100) and on very sparse graphs (D < 0.1).
Usually, ILP solving requires much longer running time than CMSA, which

206

Maximum Disjoint Dominating Sets Problem

Figure 9.10: Summary of the results shown in Fig. 9.9 in a single plot.

is limited to |V |/2 CPU seconds, or the greedy heuristics which take less
than a few seconds. There are a few cases, however, in which the ILP solver
quickly finds a provenly optimal solution. This happens in the case of random
graphs and for Barabási-Albert networks, but never for Watts-Strogatz ones.
Interestingly, we do not observe any improvements due to the application of
symmetry breaking constraints. The reasons for this might be twofold. First,
modern commercial solvers like CPLEX already contain the implementation
of techniques for detecting and handling symmetries, even when this is
not explicitly specified in the model. Second, the reduction of the search
space caused by symmetry breaking is not enough to outweigh the increased
complexity of the model within the given computation time limit of one hour.
The application of CPLEX to our Ilp model results in provenly optimal
solutions for a total of 79 random graphs, 47 Watts-Strogatz networks, and 60
Barabási-Albert networks. We compare these solutions with the respective
790, 470 and 600 solutions found by Cmsa-L1,2 in the 10 runs executed

207

Maximum Disjoint Dominating Sets Problem

on each graph. On random graphs, Cmsa-L1,2 is able to find the optimal
solution, with identical cost as the one found by the ILP Model, in 648 out
of 790 runs, with an average gap of 2.37%, computed on the total runs.
On Watts-Strogatz networks, Cmsa-L1,2 finds the optimal solution in 284
out of 470 runs with an average gap of 4.88%. Finally, on Barabási-Albert
networks, Cmsa-L1,2 finds the optimal solution in 302 out of 600 runs, with
an average gap of 8.34%.

9.5.4 Statistical analysis

Additionally, R package scmamp (Calvo and Santafé Rodrigo, 2016) was used
to facilitate and support the interpretation of the results from a statistical
point of view. For this purpose, first, the results of the considered algorithms
are compared simultaneously using the Friedman test for obtaining the
rejection of the hypothesis that they all perform equally. Next, corresponding
pairwise comparisons are performed using the Nemenyi post-hoc test (Garcia
and Herrera, 2008) and, eventually, the output of this statistical analysis is
presented by means of critical difference (CD) plots. The CD plot that
compares all heuristic algorithms (CMSA variants and greedy heuristics)
on all 3600 random, Watts-Strogatz and Barabási-Albert graphs together is
shown in Fig. 9.11. The horizontal axis of a CD plot represents the range of
algorithm ranks, while each of the vertical lines represents the average rank
of the corresponding algorithm. Bold horizontal lines connecting algorithm
markers indicate that the corresponding algorithms perform statistically
equivalent–i.e. the critical difference is not greater than the significance
level of 0.05–concerning the considered set of problem instances.

1 2 3 4 5 6 7 8 9

Figure 9.11: Critical difference plot comparing all heuristic algorithms on all
3600 problem instances.

The CD plot from Fig. 9.11 shows the following. First, the three CMSA
variants outperform, with statistical significance, all six greedy heuristics,

208

Maximum Disjoint Dominating Sets Problem

on the whole set of graphs. Second, the performance differences between
all pairs of greedy heuristics are statistically significant. Third, Cmsa-L1,2
performs better–with statistical significance–than Cmsa-Lall. Fourth, even
though the average ranking of Cmsa-L1,2 is better than the one of Cmsa
and the average ranking of Cmsa is better than the one of Cmsa-Lall,
no statistically significant difference can be found between Cmsa-L1,2 and
Cmsa.

Finally, we repeated the CD plot analysis limiting the set of considered
instances to small, medium and large-sized graphs. The resulting CD plots
(only concerning the CMSA variants) can be found in Fig. 9.12. They show
that, while no statistical difference can be found between Cmsa-L1,2 and
Cmsa in the context of small graphs, Cmsa-L1,2 is found to outperform
Cmsa with statistical significance in the context of and medium-sized and
large graphs. This confirms our observations from the numerical results
(Tables 9.6 to 9.8), and in part, from the analysis provided in Figs. 9.9
and 9.10.

1 2 3 1 2 3

1 2 3

Figure 9.12: Comparison depending on graph size. Top left: small graphs,
top right: medium-sized graphs, bottom: large graphs.

In addition to the statistical comparison, in Fig. 9.13 we show the
absolute improvements obtained by Cmsa-L1,2, which is the best performing
CMSA, over the best greedy result. This is done for the three considered
types of graphs. As we commented previously, the improvement is more
noticeable on graphs with higher densities. For this reason, the graph density
is shown on the x-axis, while the y-axis shows the improvement, measured
as the difference between the dominating sets found by Cmsa-L1,2 and the
dominating sets in the best greedy result. For each density point, a boxplot

209

Maximum Disjoint Dominating Sets Problem

shows the distribution of the obtained improvements.

9.6 Conclusions

In this chapter, we proposed the Multi-Constructor CMSA for solving
the Maximum Disjoint Dominating Sets Problem. This algorithm uses a
stochastically biased selection criterion to choose the constructors and a
reinforcement learning technique for learning the best probabilities for the
constructors during the search process.

The standard CMSA and two variants of the Multi-Constructor CMSA
were tested: the first one, Cmsa-Lall, makes use of all available constructors,
while the second one, Cmsa-L1,2, only utilizes the two most promising
constructors.

We were able to show that all our CMSA variants outperform the greedy
heuristics from the related literature on four distinct models of graphs:
random, random geometric, Watts-Strogatz and Barabási-Albert. Moreover,
Cmsa-L1,2 generally performs best, with a statistically significant advantage
over the other two CMSA variants in the context of medium-sized and large
graphs, which are the most challenging ones.

We also made an attempt to solve the MDDSP directly by means
of applying a MIP solver to three ILP models, two of which implement
symmetry breaking constraints. However, this did not yield satisfactory
results, with the exception of very sparse graphs.

Overall, Cmsa-L1,2 performs best on 116 out of 180 instance groups,
which corresponds to 64.4% of the instances. When considering all CMSA
variants together, they perform best on 94.4% of the instances, that is, 170
out of 180 instance groups. The remaining 10 instance groups are small and
sparse graphs for which the ILP models obtains better results in a reasonable
time limit.

We executed all the experiments on a set of graphs that we have generated
from an instance space spanned by graph size (number of vertices) and graph
density. This was done with a statistically sound procedure that guarantees
that all regions of the instance space are represented in the sample.

210

Maximum Disjoint Dominating Sets Problem

0.06 0.09 0.12 0.15 0.18 0.2 0.23 0.26 0.29 0.32 0.35 0.37 0.4 0.43 0.46 0.5 0.53 0.56 0.58 0.61 0.64 0.67 0.7 0.74 0.77 0.8 0.82 0.85 0.88 0.91

0
5

1
0

1
5

0.06 0.09 0.12 0.15 0.18 0.2 0.23 0.26 0.29 0.32 0.35 0.37 0.4 0.43 0.46 0.51 0.53 0.57 0.6 0.64 0.67 0.7 0.74 0.77 0.8 0.82 0.85 0.88 0.91

0
5

1
0

1
5

0.06 0.09 0.12 0.15 0.18 0.2 0.23 0.26 0.29 0.32 0.35 0.37 0.4 0.43 0.46 0.51 0.53 0.57 0.6 0.64 0.67 0.7 0.74 0.77 0.8 0.82 0.85 0.88 0.91

0
1

2
3

4
5

6

Figure 9.13: Improvement obtained by Cmsa-L1,2 over the best greedy
result, for instance groups, ordered by increasing density. From top
to bottom: random graphs, Watts-Strogatz networks, Barabási-Albert
networks.

211

Maximum Disjoint Dominating Sets Problem

Table 9.6: Numerical results obtained for random graphs

Instances CMSA Heuristics Improvement
|V | D Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-Gh Iam P-Max P-Min R-Lid Color-Dds (%) (n)

27 0.50 8.00 7.96 7.96 6.20 6.10 5.75 4.90 5.30 5.55 29.03 1.80
43 0.27 6.32 6.26 6.26 5.20 4.40 4.65 3.95 4.25 4.40 21.54 1.12
60 0.73 23.00 23.00 23.00 21.50 20.95 18.10 15.30 16.40 16.50 6.98 1.50
76 0.16 5.70 5.70 5.70 4.80 4.00 4.15 3.75 3.95 3.95 18.75 0.90
93 0.61 28.89 28.72 28.80 25.20 24.20 19.90 16.65 18.05 18.45 14.64 3.69

109 0.39 19.25 19.13 19.22 17.40 16.95 13.70 11.30 12.60 12.90 10.63 1.85
126 0.84 60.12 60.02 60.04 54.35 53.75 43.20 36.40 38.75 39.80 10.62 5.77
142 0.11 6.78 6.80 6.82 6.10 5.15 5.05 4.15 4.55 4.60 11.80 0.72
159 0.56 39.03 38.83 39.03 36.05 35.60 28.00 23.10 25.50 25.75 8.27 2.98
175 0.33 23.76 23.77 23.78 22.30 21.55 17.00 13.95 15.65 15.75 6.64 1.48
192 0.78 64.10 64.10 64.10 62.65 61.95 52.30 43.65 48.15 48.65 2.31 1.45
208 0.22 18.79 18.82 18.81 17.65 16.95 13.60 10.90 12.10 12.35 6.63 1.17
225 0.67 65.98 65.54 65.77 59.85 59.30 46.90 38.65 42.60 43.65 10.24 6.13
241 0.44 41.16 41.20 41.18 39.35 38.90 29.60 24.65 27.25 27.50 4.70 1.85
258 0.89 128.28 128.30 128.26 118.65 118.85 92.00 75.45 81.95 82.80 7.95 9.45
274 0.08 9.06 9.11 9.11 8.25 7.35 6.65 5.20 6.00 6.05 10.42 0.86
291 0.53 57.78 57.76 57.82 55.95 55.55 42.80 35.15 39.20 39.35 3.34 1.87
307 0.30 34.53 34.54 34.61 33.25 32.35 24.60 20.05 22.35 22.85 4.09 1.36
324 0.75 107.99 107.86 108.00 101.30 100.90 76.70 62.90 69.60 70.05 6.61 6.70
340 0.19 24.94 24.94 24.98 23.75 22.75 17.60 14.10 15.70 16.15 5.18 1.23
357 0.64 87.93 87.84 87.82 85.30 84.65 64.90 53.05 58.70 59.50 3.08 2.63
373 0.42 56.77 56.76 56.75 54.90 54.20 40.85 33.20 37.00 37.40 3.41 1.87
390 0.87 148.51 147.96 148.27 142.90 142.65 120.05 100.00 110.75 111.85 3.93 5.61
406 0.13 20.67 20.63 20.66 19.45 18.60 14.40 11.45 12.95 13.15 6.27 1.22
423 0.58 87.44 87.42 87.42 85.30 85.10 65.15 53.45 59.40 60.00 2.51 2.14
439 0.36 55.41 55.44 55.44 53.55 52.95 39.65 31.85 35.80 36.35 3.53 1.89
456 0.81 152.00 152.00 152.00 149.35 149.05 118.25 97.05 107.20 107.85 1.77 2.65
472 0.25 41.93 41.94 41.94 40.35 39.65 29.55 23.75 26.75 26.90 3.94 1.59
489 0.70 122.64 122.59 122.59 121.15 120.35 96.10 79.35 88.35 88.65 1.23 1.49
505 0.47 81.16 81.11 81.16 79.40 78.80 58.80 47.90 53.50 54.25 2.22 1.76
522 0.92 260.79 260.74 260.72 246.45 248.60 188.15 152.70 167.25 168.80 4.90 12.19
538 0.06 12.93 12.97 12.96 11.80 10.75 9.05 7.30 8.05 8.30 9.92 1.17
555 0.51 95.84 95.84 95.90 93.65 93.50 70.40 57.10 63.65 64.50 2.40 2.25
571 0.29 56.06 56.10 56.11 54.55 54.10 39.80 31.90 36.00 36.40 2.86 1.56
588 0.74 160.84 157.96 160.07 154.55 154.25 122.45 101.35 112.80 113.50 4.07 6.29
604 0.18 38.03 38.03 38.04 36.95 36.00 26.75 21.40 23.95 24.40 2.95 1.09
621 0.63 137.00 137.06 137.16 133.95 133.85 100.95 82.75 92.10 93.05 2.40 3.21
637 0.40 84.15 84.16 84.18 82.40 82.05 60.05 48.50 54.95 55.10 2.16 1.78
654 0.85 218.00 217.99 218.00 216.50 216.00 178.40 147.00 163.30 164.60 0.69 1.50
670 0.12 29.00 29.00 29.00 27.90 27.15 20.25 15.95 18.15 18.65 3.94 1.10
687 0.57 132.83 132.84 132.82 130.35 130.30 96.50 78.50 87.80 89.05 1.91 2.49
703 0.35 79.97 79.94 79.99 78.30 77.60 57.25 45.80 51.60 51.95 2.16 1.69
720 0.80 239.26 236.78 239.36 228.25 229.70 171.20 139.10 154.95 156.35 4.21 9.66
736 0.23 55.96 55.98 56.00 54.65 53.65 39.50 31.30 35.60 35.80 2.47 1.35
753 0.68 182.77 182.72 182.74 179.35 179.90 132.80 109.30 121.55 122.40 1.60 2.87
769 0.46 113.27 113.32 113.28 110.95 110.80 81.95 66.20 74.75 75.20 2.14 2.37
786 0.91 324.62 322.62 324.92 308.60 310.50 250.95 208.75 233.25 234.40 4.64 14.42
802 0.09 26.02 26.03 26.02 25.30 24.45 18.20 14.70 16.55 16.85 2.89 0.73
819 0.54 141.38 141.43 141.43 138.80 138.65 103.85 84.85 95.05 96.05 1.89 2.63
835 0.32 84.58 84.63 84.62 83.00 82.20 59.95 48.15 54.50 54.85 1.96 1.63
852 0.77 233.58 232.53 234.84 228.65 229.00 181.30 149.05 166.55 167.60 2.55 5.84
868 0.20 56.54 56.56 56.60 55.30 54.55 39.85 31.80 35.55 36.20 2.35 1.30
885 0.65 189.34 189.38 189.47 186.55 185.80 142.35 116.80 130.80 131.45 1.57 2.92
901 0.43 121.50 121.50 121.55 119.45 119.00 87.10 70.65 79.20 79.80 1.76 2.40
918 0.88 306.00 306.00 306.00 305.05 304.20 259.40 215.60 238.60 241.05 0.31 0.95
934 0.15 46.72 46.72 46.70 45.35 44.80 32.50 25.90 29.30 29.85 3.02 1.37
951 0.60 185.90 185.92 185.94 183.35 183.30 135.95 110.65 123.70 125.20 1.41 2.59
967 0.37 110.25 110.22 110.32 108.60 108.00 78.50 63.45 71.80 72.00 1.58 1.72
984 0.82 327.00 323.32 326.99 315.35 317.60 235.55 192.65 213.80 216.10 2.96 9.40

1000 0.26 80.76 80.78 80.80 79.35 78.65 56.90 45.70 51.45 52.00 1.83 1.45

212

Maximum Disjoint Dominating Sets Problem

Table 9.7: Results obtained for Watts-Strogatz graphs.

Instances CMSA Heuristics Improvement
|V | D Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-Gh Iam P-Max P-Min R-Lid Color-Dds (%) (n)

27 0.52 9.00 9.00 8.96 7.95 7.20 6.70 5.80 6.15 6.15 13.21 1.05
43 0.28 7.51 7.40 7.46 6.05 5.15 5.25 4.80 4.60 5.10 24.13 1.46
60 0.73 24.20 24.20 24.20 22.85 22.05 18.45 15.85 16.60 17.55 5.91 1.35
76 0.16 7.00 7.00 7.00 5.90 5.25 5.15 4.05 4.50 4.80 18.64 1.10
93 0.60 29.67 29.34 29.36 25.60 24.70 20.10 16.60 17.55 19.10 15.90 4.07

109 0.39 20.60 20.38 20.59 18.60 17.65 14.10 11.55 12.05 13.80 10.75 2.00
126 0.84 61.26 61.19 61.12 56.55 55.65 43.80 36.55 39.00 40.15 8.33 4.71
142 0.11 8.26 8.17 8.26 7.60 6.70 5.80 5.00 5.05 5.90 8.68 0.66
159 0.57 39.98 39.75 39.85 37.45 36.45 28.45 23.85 24.50 27.10 6.76 2.53
175 0.33 25.80 25.75 25.84 24.30 23.30 17.20 14.85 14.80 17.65 6.34 1.54
192 0.78 64.45 64.45 64.45 63.50 62.55 51.80 44.45 47.50 49.45 1.50 0.95
208 0.22 20.75 20.78 20.84 19.45 18.60 13.35 11.70 11.75 13.90 7.15 1.39
225 0.67 66.88 66.48 66.67 61.10 59.95 46.85 38.65 40.85 43.95 9.46 5.78
241 0.44 43.58 43.62 43.65 42.00 41.10 29.55 24.70 25.35 29.30 3.93 1.65
258 0.89 127.61 127.60 127.60 121.70 120.85 89.40 77.65 81.15 84.05 4.86 5.91
274 0.08 11.00 10.99 10.99 9.85 8.85 7.20 6.15 6.35 7.45 11.68 1.15
291 0.53 59.94 59.76 60.08 58.10 57.15 43.10 35.50 36.70 41.55 3.41 1.98
307 0.30 37.09 37.08 37.11 36.10 34.95 24.60 20.65 20.85 25.25 2.80 1.01
324 0.75 108.00 108.00 108.00 103.00 102.10 76.50 63.75 68.00 70.75 4.85 5.00
340 0.19 27.00 27.00 27.00 25.65 24.70 17.15 14.90 14.80 18.05 5.26 1.35
357 0.64 88.17 88.14 88.24 86.15 85.25 64.65 53.15 55.50 60.60 2.43 2.09
373 0.42 59.08 59.08 59.08 57.65 56.65 40.80 33.50 33.80 39.95 2.48 1.43
390 0.87 157.70 157.66 157.66 152.10 151.25 119.20 102.80 109.55 112.45 3.68 5.60
406 0.13 22.38 22.30 22.35 21.50 20.50 14.10 12.70 12.30 15.00 4.09 0.88
423 0.58 91.30 91.14 91.36 89.15 88.10 66.25 54.00 55.75 62.15 2.48 2.21
439 0.36 59.02 59.02 59.02 57.75 56.75 39.85 32.75 33.00 39.70 2.20 1.27
456 0.81 152.00 152.00 152.00 150.05 149.05 117.40 98.65 106.00 108.30 1.30 1.95
472 0.25 45.15 45.15 45.19 44.25 43.20 29.35 24.80 24.65 30.25 2.12 0.94
489 0.70 123.08 122.84 122.89 121.85 120.85 95.20 78.80 83.25 88.80 1.01 1.23
505 0.47 84.75 84.80 84.84 83.15 82.05 58.85 48.60 48.95 57.60 2.03 1.69
522 0.92 258.32 258.14 258.08 249.00 248.10 173.70 153.80 159.35 165.75 3.74 9.32
538 0.06 14.90 14.87 14.89 13.75 12.80 9.30 8.05 8.10 9.95 8.36 1.15
555 0.51 102.17 102.14 102.17 100.15 99.10 70.70 57.40 58.45 68.25 2.02 2.02
571 0.29 60.88 60.85 60.87 59.35 58.40 39.35 32.70 33.10 40.65 2.58 1.53
588 0.74 162.66 160.50 162.88 158.05 157.15 122.35 101.65 108.65 113.55 3.06 4.83
604 0.18 41.73 41.60 41.78 40.45 39.35 26.35 22.50 22.20 27.70 3.29 1.33
621 0.63 141.70 141.74 141.82 139.25 138.25 101.25 82.55 86.65 94.90 1.85 2.57
637 0.40 88.08 88.10 88.13 86.75 85.70 59.95 49.40 49.55 59.25 1.59 1.38
654 0.85 218.05 218.02 218.05 216.95 216.20 175.80 149.05 159.95 164.40 0.51 1.10
670 0.12 32.00 32.00 32.00 31.10 29.95 19.50 17.10 16.85 21.15 2.89 0.90
687 0.57 134.88 134.85 134.92 133.20 132.15 96.55 78.55 80.65 91.80 1.29 1.72
703 0.35 85.08 85.06 85.08 83.75 82.70 56.65 46.70 46.65 56.90 1.59 1.33
720 0.80 239.35 235.42 239.61 230.40 229.60 169.25 141.45 151.80 155.55 4.00 9.21
736 0.23 61.26 61.20 61.17 60.25 59.25 38.45 33.05 32.75 40.45 1.68 1.01
753 0.68 183.98 183.97 184.00 182.00 181.00 132.50 108.35 114.20 122.50 1.10 2.00
769 0.46 120.84 120.78 120.88 119.00 118.00 82.10 66.70 67.45 79.70 1.58 1.88
786 0.91 338.67 338.70 338.38 325.15 324.20 240.10 212.50 220.75 228.90 4.17 13.55
802 0.09 29.00 29.00 29.00 28.20 27.15 17.50 15.25 15.35 19.40 2.84 0.80
819 0.54 149.58 149.60 149.60 147.45 146.45 104.55 84.85 86.55 100.00 1.46 2.15
835 0.32 91.03 91.03 91.04 89.55 88.60 59.50 49.05 49.10 60.70 1.66 1.49
852 0.77 235.08 235.07 235.25 232.70 231.75 180.80 149.65 160.90 166.35 1.10 2.55
868 0.20 62.03 62.04 62.02 61.25 60.20 38.20 33.05 33.05 41.05 1.29 0.79
885 0.65 196.08 196.07 196.18 193.30 192.30 142.70 116.30 121.05 132.75 1.49 2.88
901 0.43 126.81 126.78 126.78 125.25 124.25 86.35 70.65 71.30 85.80 1.25 1.56
918 0.88 307.71 307.64 307.74 306.50 305.65 251.65 218.95 232.20 238.50 0.40 1.24
934 0.15 51.18 51.16 51.24 50.40 49.30 30.95 27.30 27.00 33.80 1.67 0.84
951 0.60 187.07 187.06 187.10 185.60 184.55 135.70 110.15 114.00 127.75 0.81 1.50
967 0.37 117.39 117.31 117.39 115.90 114.95 77.70 64.05 64.20 78.45 1.29 1.49
984 0.82 326.90 319.93 327.14 316.30 315.50 232.70 194.45 209.80 213.65 3.43 10.84

1000 0.26 88.00 88.00 88.00 86.80 85.75 55.05 46.95 46.45 58.30 1.38 1.20

213

Maximum Disjoint Dominating Sets Problem

Table 9.8: Results obtained for Barabási-Albert graphs.

Instances CMSA Heuristics Improvement
|V | D Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-Gh Iam P-Max P-Min R-Lid Color-Dds (%) (n)

27 0.52 7.00 7.00 6.91 5.80 5.00 5.00 4.40 4.80 4.75 20.69 1.20
43 0.28 5.54 5.48 5.60 4.55 3.75 3.85 3.40 3.80 3.85 23.08 1.05
60 0.73 17.58 17.41 17.32 15.25 14.20 11.85 10.55 11.10 11.70 15.28 2.33
76 0.16 4.97 4.96 4.97 4.15 3.65 3.40 3.05 3.55 3.45 19.76 0.82
93 0.60 19.77 19.52 19.68 17.65 16.85 13.35 11.85 12.55 13.00 12.01 2.12

109 0.39 14.04 13.98 14.01 12.80 11.85 9.85 8.60 8.90 9.60 9.69 1.24
126 0.84 36.21 35.88 36.08 32.65 31.70 23.50 21.05 22.30 23.05 10.90 3.56
142 0.11 5.85 5.87 5.89 4.85 4.35 4.25 3.80 3.90 3.95 21.44 1.04
159 0.57 27.12 27.08 27.15 25.80 24.85 18.65 16.40 17.40 17.90 5.23 1.35
175 0.33 17.67 17.72 17.74 16.45 15.65 12.05 10.65 11.40 11.55 7.84 1.29
192 0.78 45.19 44.80 45.12 42.30 41.40 29.90 26.35 28.40 28.50 6.83 2.89
208 0.22 14.00 13.99 14.00 13.00 12.05 9.55 8.20 9.05 9.40 7.69 1.00
225 0.67 42.35 42.39 42.46 40.85 39.85 28.50 25.40 27.10 27.50 3.94 1.61
241 0.44 29.47 29.38 29.50 28.10 27.20 19.75 17.40 18.90 18.80 4.98 1.40
258 0.89 66.42 65.96 66.31 62.90 61.95 43.30 39.35 41.70 42.25 5.60 3.52
274 0.08 7.00 7.00 7.00 6.15 5.60 4.85 4.20 4.55 4.90 13.82 0.85
291 0.53 41.05 41.06 41.06 39.70 38.85 27.45 24.30 25.90 26.25 3.43 1.36
307 0.30 25.00 25.00 25.00 23.70 22.70 16.75 14.50 15.65 16.05 5.49 1.30
324 0.75 64.67 64.67 64.78 63.05 62.05 42.85 38.65 40.75 41.45 2.74 1.73
340 0.19 17.88 17.88 17.89 16.60 15.75 11.95 10.25 11.20 11.75 7.77 1.29
357 0.64 58.57 58.56 58.70 57.30 56.35 39.00 34.50 37.15 37.25 2.44 1.40
373 0.42 39.98 39.97 39.95 38.65 37.80 26.75 23.25 25.20 25.45 3.44 1.33
390 0.87 88.18 88.18 88.25 86.20 85.20 58.55 53.40 56.50 56.85 2.38 2.05
406 0.13 14.40 14.39 14.40 13.40 12.75 9.85 8.25 9.15 9.60 7.46 1.00
423 0.58 61.06 61.05 61.09 59.85 58.75 40.40 36.10 38.10 38.75 2.07 1.24
439 0.36 39.20 39.15 39.24 38.20 37.20 26.15 22.80 24.60 25.10 2.72 1.04
456 0.81 92.93 92.89 92.94 91.10 90.10 61.40 55.15 58.20 58.90 2.02 1.84
472 0.25 30.00 29.99 30.00 28.65 27.85 20.00 17.00 18.65 18.95 4.71 1.35
489 0.70 83.08 83.03 83.08 81.65 80.60 54.75 49.25 52.55 52.80 1.75 1.43
505 0.47 57.01 57.02 57.01 55.60 54.60 37.80 33.40 35.70 35.80 2.55 1.42
522 0.92 119.46 119.40 119.52 117.70 116.75 78.95 71.80 75.30 76.25 1.55 1.82
538 0.06 9.01 9.00 9.01 8.45 7.55 6.35 5.35 5.90 6.40 6.63 0.56
555 0.51 66.93 66.93 66.94 65.55 64.60 44.40 39.00 41.75 41.70 2.12 1.39
571 0.29 39.98 39.99 40.01 38.60 37.80 26.65 22.50 24.85 25.20 3.65 1.41
588 0.74 102.81 102.74 102.88 101.35 100.35 67.95 61.50 64.95 65.00 1.51 1.53
604 0.18 27.00 27.00 27.00 25.45 24.70 17.95 15.20 16.75 17.25 6.09 1.55
621 0.63 90.76 90.78 90.78 89.15 88.05 59.50 53.70 56.80 56.90 1.83 1.63
637 0.40 58.55 58.63 58.68 57.20 56.25 38.70 33.90 36.75 36.75 2.59 1.48
654 0.85 131.40 131.40 131.46 129.65 128.65 86.15 78.45 82.80 82.80 1.40 1.81
670 0.12 20.32 20.30 20.29 19.30 18.50 13.75 11.65 12.90 13.40 5.28 1.02
687 0.57 88.62 88.58 88.72 87.15 86.15 58.15 52.05 55.45 55.65 1.80 1.57
703 0.35 56.00 56.00 56.00 54.90 53.95 36.90 32.10 35.00 35.10 2.00 1.10
720 0.80 131.72 131.81 131.79 130.10 129.10 87.10 79.45 83.30 83.15 1.31 1.71
736 0.23 39.84 39.84 39.91 38.30 37.40 26.25 22.60 24.70 25.00 4.20 1.61
753 0.68 115.03 115.00 115.03 113.70 112.70 75.30 68.15 71.90 71.60 1.17 1.33
769 0.46 78.20 78.19 78.21 77.10 76.10 51.70 45.60 48.70 49.15 1.44 1.11
786 0.91 166.69 166.62 166.70 164.65 163.70 108.20 99.35 103.95 104.70 1.25 2.05
802 0.09 18.18 18.18 18.18 17.10 16.30 12.50 10.40 11.75 11.90 6.32 1.08
819 0.54 96.76 96.79 96.80 95.30 94.25 63.45 56.70 60.05 60.55 1.57 1.50
835 0.32 59.24 59.24 59.29 58.20 57.30 39.25 34.10 36.85 37.25 1.87 1.09
852 0.77 145.72 145.76 145.78 144.15 143.10 95.55 86.55 91.70 91.80 1.13 1.63
868 0.20 40.00 39.98 40.00 38.80 37.80 26.55 22.70 25.00 25.30 3.09 1.20
885 0.65 124.74 124.76 124.81 123.20 122.20 81.50 73.60 78.60 78.65 1.31 1.61
901 0.43 83.45 83.46 83.53 82.10 81.10 55.00 48.40 52.05 51.80 1.74 1.43
918 0.88 179.98 180.01 180.01 178.25 177.20 118.05 108.70 113.60 113.60 0.99 1.76
934 0.15 32.87 32.84 32.90 31.40 30.50 21.60 18.50 20.50 21.00 4.78 1.50
951 0.60 121.89 121.89 121.92 120.30 119.30 79.20 71.65 75.85 76.10 1.35 1.62
967 0.37 76.61 76.55 76.53 75.15 74.30 50.25 44.30 47.45 47.50 1.94 1.46
984 0.82 175.10 175.10 175.10 173.50 172.45 115.10 105.20 110.50 110.15 0.92 1.60

1000 0.26 56.58 56.70 56.61 55.60 54.60 37.35 32.30 35.20 35.80 1.98 1.10

214

Maximum Disjoint Dominating Sets Problem

Table 9.9: Results obtained by the solution of three ILP models.

Ilp Ilp-sm1 Ilp-sm2
|V | D obj time(s) opt obj time(s) opt obj time(s) opt

27 0.50 8.00 38 1.00 8.00 2205 0.40 8.00 347 0.95
43 0.27 6.45 519 0.90 6.45 731 0.80 6.50 856 0.80
60 0.73 23.00 3600 0.00 22.75 3600 0.00 22.85 3600 0.00
76 0.16 5.85 1 1.00 5.85 1 1.00 5.85 1 1.00
93 0.61 26.20 3600 0.00 24.15 3600 0.00 23.90 3600 0.00

109 0.39 18.40 3600 0.00 16.75 3600 0.00 16.55 3600 0.00
126 0.84 41.40 3600 0.00 13.95 3600 0.00 0.45 3600 0.00
142 0.11 7.20 723 0.80 7.10 724 0.80 7.20 727 0.80

RG 159 0.56 1.00 3600 0.00 3.65 3600 0.00 0.00 3600 0.00
175 0.33 16.80 3600 0.00 19.30 3600 0.00 8.40 3600 0.00
192 0.78 31.80 3600 0.00 3.25 3600 0.00 0.00 3600 0.00
208 0.22 11.40 3600 0.00 14.85 3600 0.00 10.80 3600 0.00
225 0.67 1.00 3600 0.00 0.05 3600 0.00 0.00 3600 0.00
241 0.44 1.00 3600 0.00 2.45 3600 0.00 0.00 3600 0.00
258 0.89 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00
274 0.08 9.10 2724 0.25 8.80 2733 0.25 8.75 2980 0.20
291 0.53 0.10 3600 0.00 0.00 3600 0.00 0.00 3600 0.00

27 0.52 9.00 168 1.00 9.00 2956 0.25 9.00 369 1.00
43 0.28 7.85 1478 0.70 7.85 1951 0.50 7.85 1881 0.50
60 0.73 24.20 3600 0.00 23.75 3600 0.00 24.00 3600 0.00
76 0.16 7.95 1642 0.55 7.80 1823 0.50 7.95 1637 0.55
93 0.60 27.00 3600 0.00 24.30 3600 0.00 24.35 3600 0.00

109 0.39 19.90 3600 0.00 17.60 3600 0.00 17.75 3600 0.00
126 0.84 58.80 3600 0.00 38.85 3600 0.00 0.75 3600 0.00
142 0.11 9.00 3241 0.10 8.75 3241 0.10 8.85 3242 0.10

WS 159 0.57 1.00 3600 0.00 4.05 3600 0.00 0.00 3600 0.00
175 0.33 15.20 3600 0.00 20.25 3600 0.00 1.00 3600 0.00
192 0.78 31.35 3600 0.00 6.65 3600 0.00 0.00 3600 0.00
208 0.22 12.95 3600 0.00 17.30 3600 0.00 8.50 3600 0.00
225 0.67 1.00 3600 0.00 0.05 3600 0.00 0.00 3600 0.00
241 0.44 1.00 3600 0.00 1.35 3600 0.00 0.00 3600 0.00
258 0.89 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00
274 0.08 9.25 3600 0.00 9.40 3600 0.00 9.40 3600 0.00
291 0.53 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00

27 0.52 7.00 1 1 7.00 37 1.00 7.00 1 1.00
43 0.28 6.00 1 1 6.00 459 0.90 6.00 14 1.00
60 0.73 17.00 3600 0 16.80 3600 0.00 17.00 3600 0.00
76 0.16 6.00 20 1 6.00 1219 0.85 6.00 249 1.00
93 0.60 19.00 3600 0 17.95 3600 0.00 18.80 3600 0.00

109 0.39 14.10 3600 0 13.05 3600 0.00 13.85 3600 0.00
126 0.84 32.55 3600 0 29.65 3600 0.00 29.35 3600 0.00
142 0.11 6.95 3600 0 6.75 3600 0.00 6.90 3600 0.00

BA 159 0.57 22.40 3600 0 22.35 3600 0.00 8.10 3600 0.00
175 0.33 17.20 3600 0 14.10 3600 0.00 15.65 3600 0.00
192 0.78 1.00 3600 0 13.90 3600 0.00 0.00 3600 0.00
208 0.22 13.90 3600 0 12.30 3600 0.00 12.65 3600 0.00
225 0.67 1.00 3600 0 2.00 3600 0.00 0.00 3600 0.00
241 0.44 1.25 3600 0 3.00 3600 0.00 0.00 3600 0.00
258 0.89 1.00 3600 0 0.70 3600 0.00 0.00 3600 0.00
274 0.08 8.05 3600 0 7.05 3600 0.00 7.05 3600 0.00
291 0.53 1.00 3600 0 1.80 3600 0.00 0.00 3600 0.00

215

Maximum Disjoint Dominating Sets Problem

Table 9.10: Performance of the algorithms and the ILP models for different
types of networks, in terms of the number of instance groups for which the
respective algorithms obtain the best average solution.

RG WS BA Sum % best

Cmsa 23 30 21 74 41.1 %
Cmsa-Lall 18 14 12 44 24.4 %
Cmsa-L1,2 34 39 43 116 64.4 %

CMSA (any) 58 57 55 170 94.4 %

Ilp 5 5 6 16 8.8 %
Ilp-sm1 4 4 5 13 7.2 %
Ilp-sm2 4 4 5 13 7.2 %

Mdds-Gh 0 0 0 0 0.0 %
Iam 0 0 0 0 0.0 %

P-Max 0 0 0 0 0.0 %
P-Min 0 0 0 0 0.0 %
R-Lid 0 0 0 0 0.0 %

Color-Dds 0 0 0 0 0.0 %

216

Part IV

Reinforcement Learning

217

Chapter 10

Reinforcement Learning for
Multi-Neighborhood Search
and Multi-Constructor CMSA

Machine learning applied to adaptive tuning of parameters in metaheuristics
is a growing research field (Adriaensen et al., 2022; Talbi, 2021). This
is motivated by the fact that offline tuning remains a time-consuming
and somewhat ineffective activity, despite the availability of many
statistically-principled black-box automatic configuration tools (see Huang
et al., 2020).

Indeed, tuning procedures struggle to find a single best configuration
when instances differ considerably, either in size or in problem-specific
features (Schneider and Hoos, 2012). Some alternative approaches to face
scenarios with heterogeneous instances are instance clustering (Kadioglu
et al., 2010), instance space analysis (Smith-Miles and Muñoz, 2023) and
feature-based tuning (Bellio et al., 2016). However, they are, in general,
time-consuming and may require in-depth problem-specific knowledge, and
so the need for best practices is still felt as a priority by the optimization
community (Bartz-Beielstein and et al., 2020).

On the contrary, online parameter control reduces the time spent for the
tuning phase and is suitable for scenarios in which there is no parameter
configuration that fits all instances or some validation instances end up
differing substantially from the training ones. In addition, it also helps in
cases in which the best parameter configuration changes, within a single run,
in different stages of the search procedure and in different areas of the search
space.

218

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Agent

Environment

Action atNew state st+1 Reward rt

Figure 10.1: Reinforcement learning

For these reasons, we investigate the application of reinforcement learning
(RL) methods to adjust the operator weights in metaheuristic search.
Reinforcement learning is a learning paradigm where an intelligent agent
learns the best policy for its actions by interacting with the environment.
The agent takes actions in order to maximise its notion of cumulative reward.
Fig. 10.1 shows a simple representation of the mechanism.

In particular, we are interested in using this method for the neighborhood
probabilities in Multi-Neighborhood Search and for the constructor
probabilities in Multi-Constructor CMSA. In Multi-Neighborhood Search, it
is used for updating the rates of the neighborhoods after every temperature,
with a reward function that considers both the relative improvement in
objective function and the computational cost of neighborhoods. In CMSA,
after the completion of every iteration, the algorithm assigns rewards to the
constructors according to their relative contributions to the solution found
by the exact solver at the given iteration.

Regarding Multi-Neighborhood Simulated Annealing, we test our
approach on two real-world optimization problems, namely Examination
Timetabling (Carter et al., 1996) and Sports Timetabling Chapter 5. We
selected these problems because multi-neighborhood Simulated Annealing
has already obtained state-of-the-art results upon the corresponding
benchmarking datasets. Therefore, our aim is not only to improve on
the version without learning, but also to obtain truly competitive results.
Concerning Multi-Constructor CMSA, the only application so far is on the
Maximum Disjoint Dominating Sets Problem, described in Chapter 9.

219

Reinforcement Learning for Multi-Neighborhood Search and CMSA

10.1 Related work

The literature in the field of parameter control is extremely vast. We refer
to the comprehensive and up-to-date work of Adriaensen et al. (2022) for
a review of the area, and to Doerr and Doerr (2020) for theoretical results
about its effectiveness.

The interaction between machine learning techniques and optimization
methods for solving hard combinatorial optimization problems has been a hot
topic for both the operations research and artificial intelligence communities
in recent years (Bengio et al., 2021; Karimi-Mamaghan et al., 2022; Song
et al., 2019; Talbi, 2021). In particular, Karimi-Mamaghan et al. (2022)
reviewed the recent contributions in the integration of machine learning into
metaheuristics and proposed a taxonomy to classify the different types of
integration.

To the best of our knowledge, the only previous works that employ RL
techniques for the neighborhood selection within SA have been presented by
Mosadegh et al. (2020) and Shahmardan and Sajadieh (2020).

Mosadegh et al. integrated a Q-learning algorithm into a hyper SA
framework to learn the most suitable action through the search. They
identified 16 admissible actions, each one composed by a triple of move
operators to be executed in sequence. The reward is computed as the
difference between the value of the objective function before and after
applying the three operators.

Shahmardan and Sajadieh experimented several RL-based selection
mechanisms, including Q-learning, all updating the credits at each iteration
of the search process. A unit reward is assigned to a move if the value
of the objective function is equal to or better than the current one. In
order to guarantee a good balance between exploitation and exploration,
they adopted a ε-greedy selection policy, such that any operator is randomly
selected with probability ε, while the operator with the maximum credit
is selected with probability (1 − ε). The methods have been evaluated on
benchmarks of an assembly line sequencing problem (Mosadegh et al., 2020)
and a truck scheduling problem (Shahmardan and Sajadieh, 2020).

Other examples of integration of RL methods into other metaheuristics
for the purpose of operator selection can be found in Alicastro et al. (2021);
Fialho et al. (2010); Gunawan et al. (2018); dos Santos et al. (2014);
Toffolo et al. (2018), with applications to Evolutionary Algorithms, Variable
Neighborhood Search, Late Acceptance Hill-Climbing, and Iterated Local
Search.

The use of feedback about the performance of neighborhood operators

220

Reinforcement Learning for Multi-Neighborhood Search and CMSA

for dynamically adjusting the probabilities in the different stages of the
search process is also referred to as Adaptive Neighborhood Search (Li et al.,
2015; Lü and Hao, 2012). It has found wide application in particular in
combination with the Large Neighborhood Search paradigm, resulting in the
Adaptive Large Neighborhood Search metaheuristic (ALNS) (Mara et al.,
2022; Pisinger and Ropke, 2019), where the rates of destroying and repairing
operators are dynamically adjusted using the recorded performance of the
neighborhoods.

Lastly, the selection of the appropriate operator during the search process
was also studied in the context of hyper-heuristics (Burke et al., 2019;
Kheiri et al., 2021; Mischek and Musliu, 2022) In this context, the operator
represents a low-level heuristic , instead of a single move. Recently, Kallestad
et al. (2023) proposed a selection hyper-heuristic framework that integrates
Deep RL into ALNS.

10.2 Reinforcement learning strategy

Among the possible applications of RL, we consider the exponential
recency-weighted average bandit algorithm (see Sutton and Barto, 2018),
which follow the rule at Eq. (10.1), where σit and rit are the rate and the
reward of the i-th operator at the learning iteration t, respectively, and
λ ∈ [0, 1] is the learning rate.

σi,t+1 = (1− λ)σit + λrit (10.1)

According to the classification of Karimi-Mamaghan et al. (2022), our
method implements a low-level integration of RL into metaheuristics, with
the purpose of operator selection during the search evolution based on a
credit assigned to each operator from its historical performance.

The parameter λ sets the pace of the learning process. As shown in
Eq. (10.2), the first component is the memory of past rewards, or, in other
terms, the accumulated experience from the search, and it is weighted 1−λ.
The second component is the reward obtained in the last iteration, which
is weighted λ. If λ = 1, there is no memory in the process, and the next
probabilities are influenced exclusively by the last rewards. On the opposite,
if λ = 0, no learning is involved, and the probabilities of the operators
are never changed. Therefore, a proper tuning of λ is quite critical for the
effectiveness of the learning mechanism.

221

Reinforcement Learning for Multi-Neighborhood Search and CMSA

σi,t+1 = (1− λ) · σi,t︸ ︷︷ ︸
memory of past rewards

+ λ · ri,t︸ ︷︷ ︸
learning from last rewards

(10.2)

If the learning iteration and the algorithm iteration do not coincide, but
instead the operator weights are updated only with a given frequency, we say
that the learning approach is operated in batch mode. The learning batch is
the length of the learning iteration. There are several good reasons to learn
in batches. For example, the information needed to compute the rewards
might not be available at every iteration. Second, the learning mechanism is
sensitive to the noise of the reward function, and learning in batches provides
against the effect of outliers. Third, the computational overhead of learning
at every iteration might be not negligible.

A desirable property of our learning process is that it ensures
∑K

i σi,t =
1, at every learning iteration t, where K is the total number of operators. If
the learning process starts with

∑K
i σi,1 = 1, that is, the sum of the operator

rates at the beginning is 1, in order to guarantee the conservation of the sum
of the probabilities it is enough to ensure that

∑K
i ri,t = 1. Then, at any

generic iteration t we have that:

K∑
i

σi,t+1 =

K∑
i

(1− λ) · σi,t + λ · ri,t = (10.3a)

(1− λ) ·
K∑
i

σi,t + λ ·
K∑
i

ri,t = (10.3b)

(1− λ) · 1 + λ · 1 = 1 (10.3c)

For the initial iteration, a reasonable choice is to give all the neighborhood
the same probability 1

K , so that
∑K

i σi,1 =
∑K

i
1
K = 1.

A downside of the proposed learning scheme is that an operator that,
even after an increasing number of consecutive iterations, has not received
any reward may have its probability decreased to a very low value. This
would make it nearly impossible that this operator is selected, thus making
it extremely improbable that it ever gets any future reward. Especially when
λ is set to high values, an operator faces the risk to be kicked out extremely
fast, even though it might be useful to have it later in the search. Therefore,
in order to guarantee that an operator can always be selected, we set a
minimum probability σmin, so that it does not disappear from the search
(Probability Matching Selection - PMS). We do this by correcting Eq. (10.1)

222

Reinforcement Learning for Multi-Neighborhood Search and CMSA

into Eq. (10.4) so that σi,t+1 is equal to the maximum between the computed
value and σmin:

σi,t+1 = max{σmin, (1− λ) · σi,t + λ · ri,t} (10.4)

In case of a correction, all other σ∗ are rescaled accordingly, so that their
sum remains equal to one. Please note also that the minimum threshold σmin

implies that the probabilities are upper-bounded by a maximum value of 1−
(K − 1)σmin.

10.3 RL for Multi-Neighborhood Search

The key element of the whole local search paradigm is indisputably the
neighborhood relation, that defines the atomic movements that allow for
navigating the search space, looking for better solutions. Indeed, the crucial
issue of local search is how to escape from local minima of the search space
created by the structure defined by the neighborhood relation, by balancing
exploration and exploitation. In fact, all the above-mentioned techniques
include some “smart” mechanisms to move away from the basin of attraction
of a local minimum.

The use of a neighborhood composed by multiple atomic ones is an
additional/alternative way to overcome the possibility of getting stuck,
given that a local minimum of a neighborhood is not necessarily a local
minimum of another one. In a multi-neighborhood approach, the decision of
which neighborhood to probe at each iteration is relevant for efficiency and
effectiveness of the search.

In practice, we study Multi-Neighborhood Simulated Annealing
described in Chapter 2, which relies on the iterated drawing of random moves
with the two-step move selection: first a biased random selection to establish
which atomic neighborhood should be sampled, and then a uniform selection
within the chosen neighborhood. The probabilities for the first selection,
called rates, are parameters that are subject to offline tuning, along with the
parameters of SA.

To select the parameters, the typical option is to use an automatic tuning
tool, such as Iterated F-Race (I/F-Race) (López-Ibáñez et al., 2016) or
SMAC (Hutter et al., 2011), which selects the parameters based on runs
on a training dataset. I/F-Race samples a set of parameter configurations
according to particular distributions, and iteratively tests them against an
increasingly large set of instances, drawn uniformly from the training dataset.
At each step, the Friedman’s non-parametric two-way analysis of variance by

223

Reinforcement Learning for Multi-Neighborhood Search and CMSA

ranks is applied to select the non-inferior configurations by means of racing
(Maron and Moore, 1997). Then the sampling distributions are updated to
increase the probability of sampling, in the future, parameter values from
the best configurations. The procedure is repeated until the computational
budget, expressed in terms of total number of experiments or overall running
time, is exhausted. The current version of the irace package (López-Ibáñez
et al., 2016) implements also a “soft-restart” mechanism to avoid premature
convergence and an elitist variant for preserving the best configurations found
so far.

The alternative option to offline tuning is the online control of the
parameters during the search discussed in this chapter. Obviously, not
all parameters can be modified online, as for some of them the value is
used immediately at the beginning of the search. For example, the initial
temperature of SA must necessarily be fixed offline.

In our proposal, the rates σ∗ are adapted online based on the RL approach
presented in Section 10.2, whereas the parameters of SA are tuned offline.
The learning mechanism is applied after a given batch of iterations, and not
upon every single move execution. In this context, the natural option is
to synchronize the learning action with the annealing step, so that the new
rates are computed in the very same iteration in which the temperature is
decreased. This choice limits the overhead of the learning procedure upon
the search method. On the contrary, given that normally the number of
executed moves in SA is extremely large, learning at any move execution
would result in an unacceptable overhead.

Given that we operate in batch mode, we aggregate the performance of all
the operators over an entire temperature level (Average Credit Assignment
- ACA). To define the reward rit in Eq. (10.1), we first compute the score φ
of neighborhood Ni at temperature level t as

φit =

∑nit
j |min{∆Fj , 0}|

nit
(10.5)

where nit is the total number of drawn moves of neighborhood Ni at
temperature level t and the summation term is the contribution to cost
minimization. In other words, we consider as score the total improvement
generated by the neighborhood upon the previous temperature divided by the
number of drawn moves, so as not to bias the reward toward neighborhoods
with high rates.

Given that the computational cost for the construction and the evaluation
of a move might be different from neighborhood to neighborhood, the
computational effort has to be taken into account in the learning phase,

224

Reinforcement Learning for Multi-Neighborhood Search and CMSA

by applying a reward formula that penalizes the neighborhoods that take
more time (see Mischek and Musliu, 2022).To this aim, we insert the average
running time of moves of Ni at temperature level t, called τit, as denominator
of the formula that computes the reward, as seen in Eq. (10.6). However, the
penalization should be smoothed in order to give credit to the moves that
find improvements, even if in a computationally expensive way. We perform
such smoothing by using of the following exponential function

Rit =
φit

(τit)m
(10.6)

where m (with 0 < m ≤ 1) is a novel real-valued hyperparameter. To ensure
that the rates add up to one, the rewards are normalized by dividing each
reward by the sum of all rewards as follows:

rit =
Rit∑K
j=1Rjt

(10.7)

This normalization guarantees that all the terms used in Eq. (10.1) add up
to one and, consequently, also the updated selection rates will always sum
up to one.

In conclusions, the hyperparameters of the learning procedure are the
learning rate (λ), the rate threshold (σmin), and the exponent m of Eq. (10.6).
To these three, we add the SA cooling rate α, given that it governs not only
the duration of the annealing step, but also the learning batch. The best
values for these four hyperparameters are computed by the tuning procedure
discussed in Section 10.3.2.

10.3.1 Case studies

We propose as case studies two real-world problems coming from the field of
timetabling: examination timetabling and sports timetabling. Both come
along with a challenging dataset that has been used extensively in the
literature.

Examination Timetabling

Examination timetabling (ETT) is one of the problems that every university
has to deal with on a regular basis. Many formulations of ETT have been
proposed in the literature. We consider here the classical and essential
version proposed by Carter et al. (1996), which is the most studied one
(see the recent survey Ceschia et al., 2023).

225

Reinforcement Learning for Multi-Neighborhood Search and CMSA

The input data in this formulation is just the Boolean-valued enrollment
matrix, that stores for each pair ⟨student, exam⟩ the information about
whether the student has to take the exam or not. Two exams with one
or more students in common are in conflict, and so they cannot be scheduled
in the same period. The objective function is based on the distance between
exams with students in common. Distances are penalized in the following
way: the cost of scheduling two exams with k students in common at distance
equal to 1, 2, 3, 4, and 5 periods is 16k, 8k, 4k, 2k, and k, respectively.

Many authors have tackled this problem by using local search in general
and multi-neighborhood search in particular. We refer here to the approach
by Bellio et al. (2021) that propose a two-stage SA procedure based on a
comprehensive set of neighborhoods. They obtained state-of-the-art results
on the Toronto dataset, which is the standard ground for comparison for
ETT and has been used in many previous studies. In detail, Bellio et al.
collected and implemented five different neighborhood relations from the
literature. The first three neighborhoods reschedule one, two, or three
exams, respectively; the fourth swaps all the exams of two periods, and
the last one performs a Kempe chain. They are called MoveExam (ME),
KickExam (KE), DoubleKickExam (DKE), SwapPeriods (SP), and KempeChain
(KC), respectively. These neighborhoods exhibit different computational
costs for constructing and evaluating the move. In particular, Bellio et al.
showed experimentally that the computation cost of the construction and
evaluation of a DKE or KC move is more than 30 times the cost of a ME
move. For this reason, their tuning procedure which uses F-Race, takes
into account the average computational cost of each neighborhood. They
compare the alternative configurations by fixing the total running time of
SA. Coherently, the temperature is decreased after a given allotted time, and
not based on the given number of samples.

The first stage of Bellio et al. aims at obtaining the first feasible solution
and it is rather fast. For this reason, we focused on the second stage. For the
second stage, we use the same neighborhoods and also the same configuration
for the SA parameters; by contrast, all rates σ∗ are uniformly initialized to
1/K (i.e., 0.2 in the specific case, since K = 5) and are adjusted dynamically
by the learning procedure.

Sports Timetabling

The problem that we consider is described in Chapter 5. We just recall
that our solution method is a Multi-Neighborhood Simulated Annealing that
uses a collection of six neighborhoods. Five of them are classical ones for

226

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Sports Timetabling, namely SwapHomes (SH), SwapTeams (ST), SwapRounds
(SR), PartialSwapTeams (PST) and PartialSwapRounds (PSR), plus an original
contribution, named PartialSwapTeamsPhased (PSTP).

In the original work, we tuned offline the probabilities of the
neighborhoods, assigning a unique value for the three stages, but
differentiated between phased and not phased instances. In this context,
we employ the same configuration for the SA parameters, but instead of
fixed neighborhood rates we implement the learning algorithm described in
Section 10.3, starting every stage with equal probabilities of 1/6 for every
neighborhood (given that K = 6).

10.3.2 Experimental results

Our search methods are implemented in C++, as both the code of Bellio
et al. and our ITC2021 solver are in C++ as well1. The code was compiled
on Ubuntu Linux 20.4 using g++ (v. 11.3) in -O3 mode, and the experiments
were run on AMD Ryzen Threadripper PRO 3975WX 32-Cores (3.50 GHz),
with one single core dedicated to each experiment.

Contrarily to the works presented in Part II, we do not set the total
number of iterations I in advance, but we run the algorithm on a fixed
runtime, that is distributed uniformly among the temperatures of the SA.
This choice is motivated by the fact that the evolution of the neighborhood
rates during the search may yield very different runtimes from those of Bellio
et al. and Chapter 5, depending on the share of rewards taken by slower and
faster neighborhoods. Therefore, we fix for every instance the same runtime
used by the algorithms from Bellio et al. and Chapter 5, respectively for
ETT and STT, scaled based on the ratio of performance on the different
machines, so that the comparison is done on the same computational budget.
This choice sacrifices the reproducibility of the individual experiments, but
it is necessary to understand the contribution of the learning mechanism.

The tuning procedure was performed using I/F-race separately for the
two problems on the learning hyperparameters λ, σmin, m, and α. The total
budget assigned for each problem was 5000 experiments, with an average
running time for each experiment of 300s and 2000s for ETT and STT,
respectively. Table 10.1 shows the initial ranges of the hyperparameters and
the two best configurations.

For both problems, it turned out that there is statistical significance
between the “winning" configuration and all the configurations with λ = 0.0,

1The code of Bellio et al. is available online at https://opthub.uniud.it and the
code from Chapter 5 at https://github.com/robertomrosati/sa4stt.

227

https://opthub.uniud.it
https://github.com/robertomrosati/sa4stt

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Table 10.1: Learning hyperparameter configurations

Best configuration
Hyperparameter Initial range ETT STT

λ [0.0, 0.5] 0.038 0.093
σmin [0.0, 0.01] 0.000 0.001
m [0.16, 1.0] 0.197 0.259
α [0.98, 0.995] 0.987 0.983

which are consistently eliminated by the race procedure, confirming that the
learning mechanism is necessary. On the contrary, there are many other
configurations with λ > 0.0 that are statistically equivalent, showing that
the results are robust with respect of the hyperparameter configuration.

It is worth noting that the selected value for σmin is 0.0 for ETT. This
means that it is actually possible that a given neighborhood becomes useless
from some point onward in the search.

Results for Examination Timetabling

The results for 30 repetitions on the Toronto dataset using the configuration
of Table 10.1 are shown in Table 10.2. They are granted the same running
time2 of Bellio et al. (2021), which are the best known ones among those with
relatively short running time. The gaps reported in Table 10.2 are computed
as the percentage difference with respect to Bellio et al..

We consider for our learning procedure two alternative settings: with
uniform initial rates discussed so far (0.2 for all) and with the initial rates
reported by Bellio et al. (namely 0.757, 0.144, 0.001, 0.058, and 0.04).

The outcome is that both configurations perform better than the offline
tuning with no learning. Even though the improvement is quite small in
absolute terms, it is actually statistically significant. This is confirmed by
the Wilcoxon signed-rank test that returns a p-value close to 0 (equal to
7.192 · 10−6) upon 15 repetitions on each instance, thus strongly rejecting
the null hypothesis.

Between the two learning configurations, there is a minimal advantage to
the uniform one, which finds the best average results (in boldface) in 9 out of
13 instances. However, using the same test there is no statistical significant
between these two. Nonetheless, we believe that the reason for the slightly

2The running time has been scaled based on the ratio of performance on the different
machines.

228

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Table 10.2: Comparison results for ETT

Bellio reinforcement learning
et al. uniform tuned

time (2021) initial rates initial rates

Inst. secs avg avg % gap avg % gap

car91 688.1 4.44 4.44 0 4.44 0
car92 544.6 3.80 3.80 0 3.79 -0.263
ear83 249.6 32.89 32.85 -0.122 32.91 0.061
hec92 228.5 10.16 10.17 0.098 10.15 -0.098
kfu93 217.5 13.06 13.03 -0.23 13.06 0
lse91 209.3 10.09 10.03 -0.595 10.02 -0.694
pur93 1382 4.32 4.29 -0.694 4.30 -0.463
rye93 281.7 8.10 8.07 -0.37 8.07 -0.37
sta83 136.6 157.05 157.04 -0.006 157.05 0
tre92 296.6 7.85 7.82 -0.382 7.83 -0.255
uta92 575.8 3.13 3.11 -0.639 3.12 -0.319
ute92 130.8 24.82 24.83 0.04 24.83 0.04
yor83 429.6 34.93 34.91 -0.057 34.96 0.086

avg 413.1 24.20 24.18 -0.227 24.19 -0.175

better performance of the uniform initial rates come from the fact that in the
beginning of the search all types of moves are useful to “shake” the initial
solution. Going on, the most effective moves become prominent. This is
confirmed by Fig. 10.2 that shows the evolution of the rates for one specific
run of each configuration (uniform left and tuned right, for instance ear83).
We see that indeed the rates tend to stay uniform or become uniform in the
initial part of the search, and then diversify in the final part.

Results for Sports Timetabling

The results for 15 repetitions on the ITC2021 dataset using the configuration
of Table 10.1 are shown in Table 10.3, with the same (normalized) running
time of Chapter 5. The column “feas” reports the rate of feasible solutions
found.

Our approach yields better results (in boldface) for 27 out of 45 instance,
and equal value for 5. The average percentage improvement is 0.54 with
a high variance, having differences that go from -16.53 to 45.32. The

229

Reinforcement Learning for Multi-Neighborhood Search and CMSA

0 50 100 150 200

Running time

0.0

0.2

0.4

0.6

0.8

1.0

R
at

es

σME

σKE

σDKE

σSP

σKC

0 50 100 150 200

Running time

0.0

0.2

0.4

0.6

0.8

1.0

R
at

es

σME

σKE

σDKE

σSP

σKC

Figure 10.2: Evolution of σ∗ for ETT (instance ear83) for uniform and tuned
initial rates

improvement is statistically supported by the Wilcoxon signed-rank test
with a p-value equal to 0.03, even if less significantly than for ETT. It is
worth mentioning that our results are outperformed only by the matheuristic
approach by Lamas-Fernandez et al. (2021), which however grant much
longer running times.

The evolution of the rates for two instances of STT is shown in
Fig. 10.3. We notice that the behavior is rather different in the two cases,
demonstrating that there is no single configuration that fits all cases.

0 2000 4000 6000 8000 10000 12000 14000

Running time

0.0

0.2

0.4

0.6

0.8

1.0

R
at

es

σSH

σST

σSR

σPST

σPSTP

σPSR

0 2000 4000 6000 8000 10000 12000 14000

Running time

0.0

0.2

0.4

0.6

0.8

1.0

R
at

es

σSH

σST

σSR

σPST

σPSTP

σPSR

Figure 10.3: Evolution of σ∗ for STT (instances Middle_10 and Middle_12,
stage II)

230

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Table 10.3: Comparison results for STT

tuned learning
Inst. avg feas avg feas % gap

E_1 540.7 1.00 530.8 1.00 -1.83
E_2 384.6 1.00 375.6 1.00 -2.34
E_3 1176.5 1.00 1175.1 1.00 -0.12
E_4 1007.8 0.56 943.8 0.56 -6.35
E_5 - 0.00 - 0.00
E_6 4543 1.00 4411 1.00 -2.91
E_7 6721.7 1.00 6263.3 1.00 -6.82
E_8 1151.9 1.00 1147.5 1.00 -0.38
E_9 228.7 1.00 190.9 1.00 -16.53
E_10 - 0.00 - 0.00
E_11 5784.5 1.00 5521.8 1.00 -4.54
E_12 1200.2 1.00 1194.4 1.00 -0.48
E_13 233.8 1.00 232.2 1.00 -0.68
E_14 82.3 1.00 119.6 1.00 45.32
E_15 3945.8 1.00 3933.9 1.00 -0.30
M_1 6075.0 0.06 5936 0.06 -2.29
M_2 - 0.00 - 0.00
M_3 11403.1 0.23 11379.7 0.20 -0.21
M_4 33.0 1.00 32.1 1.00 -2.73
M_5 624.4 1.00 631.5 1.00 1.14
M_6 2186.3 1.00 2316.9 1.00 5.97
M_7 2452.7 1.00 2474.2 1.00 0.88
M_8 196.6 1.00 191.1 1.00 -2.80

tuned learning
Inst. avg feas avg feas % gap

M_9 772.1 1.00 722.8 1.00 -6.39
M_10 1687.5 1.00 1648.9 1.00 -2.29
M_11 2996.5 1.00 2987.3 1.00 -0.31
M_12 1054.2 1.00 1061.5 1.00 0.69
M_13 479.3 1.00 486.9 1.00 1.59
M_14 1304.6 1.00 1267.6 1.00 -2.84
M_15 1099.7 1.00 1095.3 1.00 -0.40
L_1 2372.7 1.00 2327.9 1.00 -1.89
L_2 6085.5 0.49 6040 0.38 -0.75
L_3 2718.0 1.00 2731.3 1.00 0.49
L_4 0.0 1.00 0.0 1.00 0.00
L_5 - 0.00 - 0.00
L_6 1121.3 1.00 1138.6 1.00 1.54
L_7 2226.5 1.00 2252.1 1.00 1.15
L_8 1155.3 1.00 1158.5 1.00 0.28
L_9 881.2 1.00 851.8 1.00 -3.34
L_10 3527.3 0.05 3407.0 0.12 -3.41
L_11 289.3 1.00 291.4 1.00 0.73
L_12 4830.6 1.00 4384.7 1.00 -9.23
L_13 2285.5 1.00 2299.6 1.00 0.62
L_14 1326.3 1.00 1329.2 1.00 0.22
L_15 82.8 1.00 82.4 1.00 -0.48
avg 2152.9 0.83 2111.4 0.83 -0.54

10.3.3 Discussion

As mentioned earlier, a wide range of hyperparameter configurations can
yield statistically similar outcomes. This suggests that the computational
effort associated with fine-tuning the learning hyperparameters can be
significantly reduced, which is typically not the case when optimizing search
parameters offline.

Further validation experiments were conducted using different
configurations, which confirmed the findings. For instance, we obtained the
same average gap by using the optimal hyperparameter settings of STT for
ETT. This indicates that the process of fine-tuning hyperparameters can be
performed in a cross-domain manner, leading to significant computational
savings.

Figs. 10.4a and 10.4b give some insights on the behavior of the different
neighborhoods over time for one instance of ETT and STT, respectively.
Specifically, they show the proportion of executed moves that are improving,

231

Reinforcement Learning for Multi-Neighborhood Search and CMSA

(a) Neighborhood behavior for ETT (instance kfu93)

(b) Neighborhood behavior for STT (instance Late_10)

Figure 10.4: Examples of neighborhood behavior for the two case studies

sideways, and worsening for each neighborhood, relative to the total number
of evaluated moves.

The analysis reveals significant disparities in the move quality among
the various neighborhoods. For example, the number of sideways moves
is very different among them. Additionally, for both problems we observe
a consistent trend in the number of improving and worsening moves
(represented by the green and lines, respectively). This can be intuitively
explained by the fact that whenever SA accepts a worsening move, there is
frequently a compensating move of the same type that recovers the “damage”
done.

232

Reinforcement Learning for Multi-Neighborhood Search and CMSA

10.4 RL for Multi-Constructor CMSA

In Chapter 9 we introduced the Multi-Constructor CMSA that selects
stochastically the constructor to use at every solution generation. With K
constructors, we use a vector of probabilities (σ1, . . . , σK), with

∑K
i=1 σi = 1,

where σi is the probability of the i-th constructor. During the construct
phase of CMSA, before the generation of a new solution, one of the
constructors is selected by means of a biased random selection, according
to the given probabilities. Then, the next solution is built using the selected
constructor.

As we have discussed previously in this chapter, the choice for the
constructor rates lies between using fixed values determined by an offline
tuning procedure and an online tuning strategy, based on reinforcement
learning. Hereby, we compare both approaches on the Maximum Disjoint
Dominating Sets Problem, described in Chapter 9, the only application, to
date, of the Multi-Constructor CMSA.

While the functioning of the offline tuning approach is straightforward,
hereafter we explain the characterizing aspects of the online tuning approach.
First, the probabilities are initialized to 1/K at the first CMSA iteration.
Then, at every iteration, the constructors receive a reward and their
probabilities are updated depending on the relative rewards. The learning
scheme is the one shown in Eq. (10.4), based on the update of the rates
depending on a reward function ri,t and a learning rate λ. It also ensures
that in any case the rates do not go below the minimum probability threshold
σmin.

A critical design choice is that of the reward function. The quality of the
solutions generated by the constructors alone might not be a good predictor
of their usefulness inside CMSA and a better metric is needed. Therefore, we
propose to reward the constructors proportionally to the number of generated
solution components that are found in the solution Sexc obtained by the exact
solver. The following Eq. (10.8) shows the formula for assigning the rewards
in the MDDSP:

ri,t =
|Sexc

⋂
C′i|

|Sexc
⋂
C′ \ C′r|

(10.8)

where C′i is the set of the dominating sets in solution Sexc that have been
found by the i-th constructor. To guarantee that all components give the
same contribution to the reward function and also that

∑K
i ri,t = 1, the

reward related to components found by multiple constructors is divided by
the number of constructors that generated the component. The formula
accounts also for the dominating sets generated heuristically by the repair

233

Reinforcement Learning for Multi-Neighborhood Search and CMSA

procedure that are possibly found in Sexc, that are removed from the count.
They are grouped in the set C′r.

The learning process is synchronized with the CMSA iteration. This
choice is quite natural because our reward function, for evaluating the quality
of different constructors, can only be calculated after the Solve phase of each
iteration. Therefore, the learning batch coincides with the CMSA iteration,
and the probabilities are updated every nsols solution constructions.

Results

Table 10.4: Tuning values for the learning hyperparameters of Cmsa-Lall

and Cmsa-L1,2, and constructor rates in Cmsa-Lall.

Parameter Domain Cmsa-L1,2 Cmsa-Lall
learning tuning

λ [0.00, 1.00] 0.30 0.98 –
σmin [0.00, 0.10] 0.08 0.04 –
σMdds-Ghr [0.00, 1.00] – – 0.543
σIamr [0.00, 1.00] – – 0.102
σP-Maxr [0.00, 1.00] – – 0.056
σP-Minr [0.00, 1.00] – – 0.102
σR-Lidr [0.00, 1.00] – – 0.095
σColor-Ddsr [0.00, 1.00] – – 0.102

Table 10.4 shows the results of the hyperparameter tuning in Cmsa-L1,2

and Cmsa-Lall. For Cmsa-Lall, it also shows the results of the tuning
of the fixed probabilities of the neighborhoods. Regarding the learning
hyperparameters, in the case of Cmsa-Lall a very high value is obtained
for λ. This indicates that it can already be deduced from the first learning
batch which constructors deserve higher weights. By the way, the final value
of 0.04 for σmin indicates that a certain grade of exploration is required
anyway. On the other hand, Cmsa-L1,2 requires a setting of λ = 0.30
and σmin = 0.08, which implies a more moderate learning pace and a
higher minimum threshold: both constructors are producing useful solution
components. Regarding the tuning of fixed probabilities, Mdds-Ghr gets the
highest weight, indicating that it is the most useful among the constructors,
while the others get smaller rates, spanning from 0.056 to 0.102. We only
test the case of fixed probabilities on Cmsa-Lall, which uses all constructors.

234

Reinforcement Learning for Multi-Neighborhood Search and CMSA

Table 10.5: Results on random graphs: learning vs tuning in Cmsa-Lall

Instance Cmsa-Lall Instance Cmsa-Lall

|V | D learning tuned |V | D learning tuned

27 0.50 7.96 7.96 522 0.92 260.74 260.74
43 0.27 6.26 6.21 538 0.06 12.97 12.94
60 0.73 23.00 23.00 555 0.51 95.84 95.81
76 0.16 5.70 5.70 571 0.29 56.10 56.05
93 0.61 28.72 28.65 588 0.74 157.96 157.95

109 0.39 19.13 19.14 604 0.18 38.03 38.01
126 0.84 60.02 60.07 621 0.63 137.06 137.06
142 0.11 6.80 6.79 637 0.40 84.16 84.15
159 0.56 38.83 38.90 654 0.85 217.99 217.99
175 0.33 23.77 23.74 670 0.12 29.00 29.00
192 0.78 64.10 64.10 687 0.57 132.84 132.80
208 0.22 18.82 18.80 703 0.35 79.94 79.94
225 0.67 65.54 65.42 720 0.80 236.78 237.93
241 0.44 41.20 41.16 736 0.23 55.98 55.98
258 0.89 128.30 128.31 753 0.68 182.72 182.66
274 0.08 9.11 9.05 769 0.46 113.32 113.25
291 0.53 57.76 57.73 786 0.91 322.62 323.93
307 0.30 34.54 34.45 802 0.09 26.03 26.01
324 0.75 107.86 107.90 819 0.54 141.43 141.40
340 0.19 24.94 24.93 835 0.32 84.63 84.54
357 0.64 87.84 87.96 852 0.77 232.53 232.44
373 0.42 56.76 56.74 868 0.20 56.56 56.49
390 0.87 147.96 148.16 885 0.65 189.38 189.31
406 0.13 20.63 20.54 901 0.43 121.50 121.44
423 0.58 87.42 87.39 918 0.88 306.00 306.00
439 0.36 55.44 55.38 934 0.15 46.72 46.66
456 0.81 152.00 152.00 951 0.60 185.92 185.92
472 0.25 41.94 41.89 967 0.37 110.22 110.25
489 0.70 122.59 122.54 984 0.82 323.32 324.64
505 0.47 81.11 81.12 1000 0.26 80.78 80.75

The results of the comparison between Cmsa-Lall that employs the
learning approach and the corresponding algorithm with tuned constructor
rates on random graphs is shown in Table 10.5. The results reported in the
case of adaptive tuning are taken from Chapter 9, while the results with
fixed rates are obtained under the same experimental setting and the same
repetitions per instance. Analogously to what we observe in the case of
Multi-Neighborhood Search, there is no absolute “winner”. However, the
learning approach gets better results than the fixed probabilities on most
instances groups, 35 out of 60. The remaining groups resulted in 13 ties and
only 12 wins for the tuned probabilities. Clear winners are shown in boldface

235

Reinforcement Learning for Multi-Neighborhood Search and CMSA

0.00

0.25

0.50

0.75

1.00

0 20 40

CMSA iteration

C
o
n
st

ru
c
to

r
W

e
ig

h
t

Legend

Color

Iam

Mdds-gh

P-max

P-min

R-Lid

Figure 10.5: Evolution of the probabilities of the six constructors during a
run of Cmsa-Lall, for a random graph from the group (|V | = 126, D = 0.84).

in Table 10.5.
Figs. 10.5 and 10.6 display examples of the evolution of the constructor

probabilities, obtained from a run of Cmsa-Lall, and from two distinct
runs of Cmsa-L1,2. In Fig. 10.5 we can observe the effect of having a
high learning rate, set to 0.98. The probabilities converge very sharply
toward their final values, starting already in the first iteration. The two
constructors Mdds-Ghr and Iamr receive almost all the reward and the
weights of the other constructors are decreased to the minimum threshold
σmin = 0.04. The fact that Iamr, that was assigned a quite low rate from
the offline tuning procedure, converges practically to the same probability of
Mdds-Ghr, shows the capability of the online tuning approach to adapt to
the characteristic of specific instance. Having said that, it can be observed
that also the constructor P-Maxr receives some reward in the final phases
of the search, which increases its relative weight. Fig. 10.6 contains two
patterns of the evolution of the probabilities concerning Cmsa-L1,2, from
different runs on the same graph. Given that there are only two constructors
and the probabilities keep summing to 1, the graphic is symmetric. In the
two examples in Fig. 10.6, the probabilities of the two constructors converge
toward similar values, although through a different evolution, especially at
the beginning of the search process.

236

Reinforcement Learning for Multi-Neighborhood Search and CMSA

0.00

0.25

0.50

0.75

1.00

4 8 12 16

CMSA iteration

C
o
n
st

ru
c
to

r
W

e
ig

h
t

Legend

Iam

Mdds-gh
0.00

0.25

0.50

0.75

1.00

4 8 12 16

CMSA iteration

C
o
n
st

ru
c
to

r
W

e
ig

h
t

Legend

Iam

Mdds-gh

Figure 10.6: Two examples of the evolution of the probabilities of the two
constructors during runs of Cmsa-L12, for an instance from the group (|V | =
934, D = 0.15).

10.4.1 Conclusions

We proposed a RL approach for Multi-Neighborhood Simulated Annealing
and for the Multi-Constructor CMSA.

In Simulated Annealing, the learning procedure is not activated at each
iteration, but along with the cooling step, so that its overhead is absolutely
minimal and negligible with respect to the computational cost of drawing
the moves and computing their costs.

The experimental results of both case studies demonstrate an
improvement over already competitive baselines. In addition, our
approach shows high robustness towards the configuration of the learning
hyperparameters. Therefore, the application of reinforcement learning for
adaptive tuning of parameters in multi-neighborhood search appears to be a
promising direction for future research. Notably, the results on ETT improve
over a very large body of research that has already been conducted on the
challenging Toronto benchmark dataset.

In the Multi-Constructor CMSA we employ an analogous learning
scheme, that rewards the constructors that provide the most useful solution
components to the exact solver. The only application is on the MDDSP, in
the variants that use two and six constructors. In the case of six constructors,
we performed a comparison between the learning approach and the tuning
of fixed probabilities, with the outcome that the learning approach obtains
better results than the fixed probabilities on most instance groups.

237

Chapter 11

Conclusions

This thesis focused primarily on Multi-Neighborhood Search, which is a
local search paradigm based on the composition of multiple neighborhoods.
Compared with the single neighborhood, it provides a better connectivity
in the search space and gives access to different search patterns, while also
reducing the risk of getting stuck in a particular region of the search space.

The others research directions that we discussed are the
Multi-Constructor CMSA, that is based on the composition of multiple
constructors, and the application of reinforcement learning to both
Multi-Neighborhood Search and Multi-Constructor CMSA for the online
tuning of operator weights.

11.1 Research contributions

We presented, in Chapter 2, a methodological approach to design
Multi-Neighborhood Search methods under a stochastic framework.
Neighborhoods are associated with probabilities and moves are selected with
a two-step procedure: first, a neighborhood is selected according to the
probabilities; then, a move is selected uniformly within the neighborhood.

We considered all aspects involved in the local search procedure, such
as the search space, the cost function, the acceptance criterion, and the
metaheuristic that guides the search. We considered also peculiar aspects
of MNS, including the exploration criterion, the use of internal biases, the
differential cost evaluations, and possible compositions of neighborhoods.
We considered our approach in integration with Simulated Annealing, which
is suitable for the stochastic exploration of the neighborhoods.

Our work on MNS does not concern solely the combination of

238

Conclusions

neighborhoods together, but we actually conceived and engineered novel
local search neighborhoods for specific problems. In certain case, the novel
neighborhood are confirmed by statistical tests to be key components of the
success of the algorithm.

Extending the idea of composing multiple operators studied in the
context of MNS, we propose the Multi-Constructor CMSA, that is described
in Chapter 3. It uses a probabilistic approach to select the constructor to be
applied at each iteration.

Finally, in Chapter 10 we discussed the application of reinforcement
learning to both Multi-Neighborhood Search and Multi-Constructor CMSA
for the online tuning of operator weights.

Other contributions include the release of new instance datasets, together
with instance and solution validators, and, in specific cases, of our code.

11.2 Results

To assess the validity of our MNS approach, we experimented it on
four distinct combinatorial problems arising from various domains. The
first one is the Minimum Interference Frequency Assignment Problem
described in Chapter 4, where we employed a Multi-Neighborhood Simulated
Annealing that makes use of a portfolio of six neighborhoods, two of
them managed through internal biases. Chapter 5 is dedicated to the
Sports Timetabling Problem, in the formulation that emerged from the
5th International Timetabling Competition ITC2021. We make use of a
combination of six neighborhoods, exploited by a three-stage SA. One of
them, PartialSwapTeamsPhased, was specifically designed to deal with the
phased formulation. The third application is the Home Healthcare Routing
and Scheduling Problem discussed in Chapter 6, that we solve with a
Multi-Neighborhood Search approach that makes use of three neighborhoods.
Finally, in Chapter 7 we propose a Multi-Neighborhood Simulated Annealing
for the Capacitated Dispersion Problem, that uses three neighborhoods
adapted from analogous proposals in the literature, with internal biases.

Regarding CMSA, we solved a Bus Driver Scheduling Problem with
complex break constraints, in Chapter 8, while we applied the novel
Multi-Constructor CMSA to the Maximum Disjoint Dominating Sets
Problem in Chapter 9. It adapts six greedy algorithms from the literature
as constructors.

We show that both our MNS and our CMSA are robust and competitive
solution methods for the problems that we have considered. Properly tuned,

239

Conclusions

they quite consistently outperform the state-of-the-art from the literature.
For what concerns, in particular, MSN, we compare favorably also with
many other local search approaches and with more complex metaheuristics,
demonstrating that our proposed method is both simple and effective. We
also showed for both MNS and CMSA that the search methods that use
reinforcement learning for the adaptive rates are superior in terms of solution
quality with respect to the analogous versions that use fixed operator rates.

11.3 Future research directions

There are many interesting research directions that emerge as a possible
continuation of this thesis.

First of all, regarding MNS, we plan to evaluate the Multi-Neighborhood
Search approach within other metaheuristic frameworks, such as Tabu
Search, in order to understand the impact of the search strategy on the
effectiveness and the performance of the method. We also plan to investigate
other ways to compose neighborhoods, such as the Cartesian neighborhood
presented at the end of Chapter 2.

For the problems discussed in Chapters 4 to 7, future work will
be devoted to the design of novel neighborhoods that can further
increase the connectivity in the search space and the performance of the
multi-neighborhood. In the case of MIFAP (Chapter 4), we consider the
design of large neighborhoods based on the concept of cell-reoptimization,
reassigning simultaneously all transmitters of a single cell. In the case of
STT (Chapter 5), a promising direction is the design of new neighborhoods
specifically aimed at reducing the number of breaks in the timetable, which
might even be decisive toward the feasibility issue. For example, we consider
the integration of the neighborhood proposed by Januario and Urrutia (2016)
in our multi-neighborhood. In the case of HHCRSP (Chapter 6), we plan to
design neighborhoods that can be efficient also in tackling other formulations
of the problem, such as the multi-modal formulation (Rendl et al., 2012), that
involves the additional choice of the transportation mode. Finally, in the
case of CDP (Chapter 7), we plan to extend and refine our neighborhoods
including also the ones proposed by Mladenović et al. (2022), in order to
understand if this improves our results.

For all problems, we also consider studying how well our solution methods
adapt to related formulations. In the case of MIFAP, we think of new
formulations that will emerge from recent technologies, such as 5G wireless
networks. Regarding STT, our solution method can be easily extended to

240

Conclusions

many existing variants of the problem. The task is eased by the fact that
many instances for various formulation have been collected and converted
into the RobinX instance format by Van Bulck et al. (2020). For HHCRSP,
in addition to multi-modality, we will consider the synchronization based
on mobile equipment, the presence of multiple depots, and penalties for
caregiver idleness and overtime. Furthermore, we plan to address the case
of the multi-day planning horizon, which brings in many new issues related
to the stability of caregivers and service time for patients over the days.
Regarding the CDP, our solution method can be extended to the generalized
dispersion problem, or to other diversity problems.

In the case of the Multi-Constructor CMSA, we plan to employ it also
for the solution of the BDS (Chapter 8). Moreover, we will devote future
work to study how to integrate atomic constructors that don’t necessarily
generate complete solutions. In the case of BDS, this can be done by
having constructors that generate individual bus shifts, while in the case
of the MDDSP (Chapter 9), through constructors that generate individual
dominating sets.

Besides distinct formulations of the aforementioned problems, a natural
extension of this thesis is the solution of other hard combinatorial
optimization problems by Multi-Neighborhood Search and CMSA. The
former might yield good results on problems where local search is known
to be effective, such as those arising in scheduling and timetabling. The
latter can be employed to solve problems other problems in the domain of
personnel rostering, like railway or airline crew scheduling. A comparison
between the performances of the two methods in order to gain insights on
their relative footprint is also an interesting research direction.

Moreover, the encouraging results from Chapter 10 suggest that we
should investigate the systematic integration of reinforcement learning for
adaptive operator weight tuning in both MNS and Multi-Constructor CMSA.
The main challenge in this regard is to define a reward function that
is neighborhood- and problem-independent. It would be interesting to
investigate about the possible definitions of state, based on the trend of the
search (e.g., plateaux, steep slope, basin of attraction of a local minimum).

Finally, an ambitious research direction is the design a
Multi-Neighborhood Search approach that does not rely on a metaheuristic.
Similarly to hyper-heuristics, this could be done on the basis of
reinforcement learning (Drake et al., 2020; Mischek and Musliu, 2022). The
multi-neighborhood would behave as an intelligent agent on the search
space, guided, for example, by a Q-learning scheme.

241

List of publications

We present hereafter the list of the publications related to this thesis. We
only list publications in journals or conference proceedings indexed in the
Scopus and in the Web Of Science databases. Please refer to Chapter 1 for
a correspondence between chapters and publication.

Journal Publications

1. Ceschia, S., Di Gaspero, L., Rosati, R.M., Schaerf, A., 2022.
Multi-neighborhood simulated annealing for the minimum interference
frequency assignment problem. EURO Journal on Computational
Optimization , 100024.

2. Rosati, R.M., Petris, M., Di Gaspero, L., Schaerf, A., 2022.
Multi-neighborhood simulated annealing for the sports timetabling
competition ITC2021. Journal of Scheduling 25, 301–319.

3. Rosati RM., Bouamama S., Blum C., 2024, Multi-constructor CMSA
for the maximum disjoint dominating sets problem. Computers &
Operations Research 161:106450

Conference proceedings

5. Rosati, R.M., Bouamama, S., Blum, C., 2023. Construct, merge,
solve and adapt applied to the maximum disjoint dominating sets
problem, in: Metaheuristics: 14th International Conference, MIC 2022,
Syracuse, Italy, July 11–14, 2022, Proceedings, Springer. pp. 306–321.

6. Rosati, R.M., Kletzander, L., Blum, C., Musliu, N., Schaerf, A., 2023.
Construct, merge, solve and adapt applied to a bus driver scheduling
problem with complex break constraints. AIxIA 2022 – Advances
in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer
Science, vol 13796, pp 254–267

242

List of publications

7. Ceschia, S., Di Gaspero, L., Rosati, R.M., Schaerf, A. (2024).
Reinforcement Learning for Multi-Neighborhood Local Search in
Combinatorial Optimization. Machine Learning, Optimization, and
Data Science. LOD 2023. Lecture Notes in Computer Science, vol
14506, pp 206–221.

Submitted for publication

8. Van Bulck, D., Goossens, D., Clarner, J., Dimitsas, A., Fonseca
G.H.G., Lamas-Fernandez, C., Lester, M.M., Pedersen, J., Phillips,
A.E., Rosati, R.M., Which algorithm to select in sports timetabling?
[submitted].

9. Ceschia, S., Di Gaspero, L., Rosati, R.M., Schaerf, A.,
Multi-neighborhood simulated annealing for the home healthcare
routing and scheduling problem. [submitted].

10. Rosati, R.M., Schaerf, A., Multi-neighborhood simulated annealing for
the capacitated dispersion problem. [submitted].

243

Bibliography

Aardal K, Hurkens C, Lenstra J, Tiourine S (1996) Algorithms for frequency
assignment problems. CWI Quarterly 9(1-2):1–8

Aardal K, Hurkens C, Lenstra JK, Tiourine S (2002) Algorithms for radio
link frequency assignment: The calma project. Operations Research
50(6):968–980

Aardal KI, Van Hoesel SP, Koster AM, Mannino C, Sassano A (2007) Models
and solution techniques for frequency assignment problems. Annals of
Operations Research 153(1):79–129

Adriaensen S, Nowé A (2016) Case study: An analysis of accidental
complexity in a state-of-the-art hyper-heuristic for hyflex. In: 2016 IEEE
Congress on Evolutionary Computation (CEC), IEEE, pp 1485–1492

Adriaensen S, Biedenkapp A, Shala G, Awad N, Eimer T, Lindauer M, Hutter
F (2022) Automated dynamic algorithm configuration. Journal of Artificial
Intelligence Research 75:1633–1699

Ait Haddadene SR, Labadie N, Prodhon C (2016) A GRASP× ILS for
the vehicle routing problem with time windows, synchronization and
precedence constraints. Expert Systems with Applications 66:274–294

Akbay MA, López Serrano A, Blum C (2022) A self-adaptive variant of cmsa:
application to the minimum positive influence dominating set problem.
International Journal of Computational Intelligence Systems 15(1):44

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor
networks: a survey. Computer networks 38(4):393–422

Alicastro M, Ferone D, Festa P, Fugaro S, Pastore T (2021) A reinforcement
learning iterated local search for makespan minimization in additive

244

Bibliography

manufacturing machine scheduling problems. Computers & Operations
Research 131:105272

Allen JD, Helgason RV, Kennington JL (1987) The frequency assignment
problem: A solution via nonlinear programming. Naval Research Logistics
34:133–139

Anagnostopoulos A, Michel L, Van Hentenryck P, Vergados Y (2006)
A simulated annealing approach to the traveling tournament problem.
Journal of Scheduling 9(2):177–193

Anderson LG (1973) A simulation study of some dynamic channel assignment
algorithms in a high capacity mobile telecommunications system. IEEE
Transactions on Communications 21:1294–1301

Angelelli E, Mansini R, Speranza MG (2010) Kernel search: A general
heuristic for the multi-dimensional knapsack problem. Computers &
Operations Research 37(11):2017–2026

Applegate DL, Bixby RE, Chvátal V, Cook W, Espinoza DG, Goycoolea
M, Helsgaun K (2009) Certification of an optimal tsp tour through 85,900
cities. Operations Research Letters 37(1):11–15

Aranha C, Camacho Villalón CL, Campelo F, Dorigo M, Ruiz R, Sevaux M,
Sörensen K, Stützle T (2022) Metaphor-based metaheuristics, a call for
action: the elephant in the room. Swarm Intelligence 16(1):1–6

Balbal S, Bouamama S, Blum C (2021) A greedy heuristic for maximizing the
lifetime of wireless sensor networks based on disjoint weighted dominating
sets. Algorithms 14(6):170

Barabási AL, Albert R (1999) Emergence of scaling in random networks.
science 286(5439):509–512

Bartz-Beielstein T, et al (2020) Benchmarking in optimization: Best practice
and open issues. arXiv abs/2007.03488

Bazirha M, Kadrani A, Benmansour R (2023) Stochastic home health
care routing and scheduling problem with multiple synchronized services.
Annals of Operations Research 320(2):573–601

Beckmann D, Killat U (1999) Frequency planning with respect to interference
minimization in cellular radio networks. Tech. Rep. TD(99) 032,
COST 259, Vienna, Austria

245

Bibliography

Begur SV, Miller DM, Weaver JR (1997) An integrated spatial DSS for
scheduling and routing home-health-care nurses. Interfaces 27

Bellio R, Ceschia S, Di Gaspero L, Schaerf A, Urli T (2016) Feature-based
tuning of simulated annealing applied to the curriculum-based course
timetabling problem. Computers & Operations Research 65:83–92

Bellio R, Ceschia S, Di Gaspero L, Schaerf A (2021) Two-stage
multi-neighborhood simulated annealing for uncapacitated examination
timetabling. Computers & Operations Research 132:105300

Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of
Operational Research 290(2):405–421

Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths
and weaknesses of quantum computing. SIAM journal on Computing
26(5):1510–1523

Bertels S, Fahle T (2006) A hybrid setup for a hybrid scenario: Combining
heuristics for the home health care problem. Computers & Operations
Research 33

Berthold T, Koch T, Shinano Y (2021) MILP. Try. Repeat. In: Proceedings
of the 13th International Conference on the Practice and Theory of
Automated Timetabling, PATAT, vol 2, pp 403–411

Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and iterated
F-race: An overview. In: Experimental methods for the analysis of
optimization algorithms, Springer, Berlin, pp 311–336

Björklund P, Värbrand P, Yuan D (2005) Optimized planning of
frequency hopping in cellular networks. Computers & Operations Research
32(1):169–186

Blum C, Ochoa G (2021) A comparative analysis of two matheuristics by
means of merged local optima networks. European Journal of Operational
Research 290(1):36–56

Blum C, Pinacho P, López-Ibáñez M, Lozano JA (2016) Construct, merge,
solve & adapt a new general algorithm for combinatorial optimization.
Computers & Operations Research 68:75–88

246

Bibliography

Borndörfer R, Eisenblätter A, Grötschel M, Martin A (1998) Frequency
assignment in cellular phone networks. Annals of Operations Research
76:73–93

Bouamama S, Blum C, Pinacho-Davidson P (2022) A population-based
iterated greedy algorithm for maximizing sensor network lifetime. Sensors
22(5):1804

Bredström D, Rönnqvist M (2008) Combined vehicle routing and scheduling
with temporal precedence and synchronization constraints. European
journal of operational research 191(1):19–31

Bruglieri M, Cordone R (2021) Metaheuristics for the minimum gap graph
partitioning problem. Computers & Operations Research 132:105301

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003)
Hyper-heuristics: An emerging direction in modern search technology.
Handbook of metaheuristics pp 457–474

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R
(2013) Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society 64(12):1695–1724

Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2019)
A classification of hyper-heuristic approaches: revisited. In: Handbook of
metaheuristics, Springer, pp 453–477

Calvo B, Santafé Rodrigo G (2016) scmamp: Statistical comparison of
multiple algorithms in multiple problems. The R Journal, Vol 8/1, Aug
2016

Camacho-Villalón CL, Dorigo M, Stützle T (2023) Exposing the grey wolf,
moth-flame, whale, firefly, bat, and antlion algorithms: six misleading
optimization techniques inspired by bestial metaphors. International
Transactions in Operational Research 30(6):2945–2971

Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through
power aware organization. Wireless networks 11(3):333–340

Cardei M, MacCallum D, Cheng MX, Min M, Jia X, Li D, Du DZ (2002)
Wireless sensor networks with energy efficient organization. Journal of
Interconnection Networks 3(03n04):213–229

247

Bibliography

Carter MW, Laporte G, Lee SY (1996) Examination timetabling:
Algorithmic strategies and applications. Journal of the Operational
Research Society 74:373–383

Ceschia S, Schaerf A (2011) Local search and lower bounds for the
patient admission scheduling problem. Computers & Operations Research
38(10):1452–1463, DOI 10.1016/j.cor.2011.01.007, URL http://www.dp
ia.uniud.it/schaerf/biblio/Papers/CeSc12a.pdf

Ceschia S, Di Gaspero L, Schaerf A (2011) Tabu search techniques for
the heterogeneous vehicle routing problem with time windows and
carrier-dependent costs. Journal of Scheduling 14:601–615

Ceschia S, Di Gaspero L, Rosati RM, Schaerf A (2022) Multi-neighborhood
simulated annealing for the minimum interference frequency assignment
problem. EURO Journal on Computational Optimization 10:100024

Ceschia S, Di Gaspero L, Schaerf A (2023) Educational timetabling:
Problems, benchmarks, and state-of-the-art results. European Journal of
Operational Research 308(1):1–18

Ceschia S, Di Gaspero L, Rosati RM, Schaerf A (2024a) Multi-neighborhood
simulated annealing for the home healthcare routing and scheduling
problem

Ceschia S, Di Gaspero L, Rosati RM, Schaerf A (2024b) Reinforcement
learning for multi-neighborhood local search in combinatorial
optimization. In: Machine Learning, Optimization, and Data Science,
Springer Nature Switzerland, Cham, pp 206–221

Chang GJ (1994) The domatic number problem. Discrete Mathematics
125(1-3):115–122

Cheng E, Rich J (1998) A home health care routing and scheduling problem.
Tech. Rep. CAAM TR98–04, Rice University

Chiarandini M, Stützle T (2007) Stochastic local search algorithms for graph
set T-colouring and frequency assignment. Constraints 12(3):371–403

Chuang CY (2020) Combining multiple heuristics: Studies on
neighborhood-base heuristics and sampling-based heuristics. PhD
thesis, Carnegie Mellon University

248

http://www.dpia.uniud.it/schaerf/biblio/Papers/CeSc12a.pdf
http://www.dpia.uniud.it/schaerf/biblio/Papers/CeSc12a.pdf

Bibliography

Cissé M, Yalçındağ S, Kergosien Y, Şahin E, Lenté C, Matta A (2017) OR
problems related to home health care: A review of relevant routing and
scheduling problems. Operations research for health care 13:1–22

Clapper Y, Berkhout J, Bekker R, Moeke D (2023) A model-based
evolutionary algorithm for home health care scheduling. Computers &
Operations Research 150:106081

Cockayne EJ, Hedetniemi ST (1975) Optimal domination in graphs. IEEE
Transactions on circuits and systems 22(11):855–857

Cockayne EJ, Hedetniemi ST (1977) Towards a theory of domination in
graphs. Networks 7(3):247–261

Constantino AA, de Mendonça Neto CFX, de Araujo SA, Landa-Silva D,
Calvi R, dos Santos AF (2017) Solving a large real-world bus driver
scheduling problem with a multi-assignment based heuristic algorithm.
Journal of Universal Computer Science 23(5):479–504

Correia LM (ed) (2001) Wireless Flexible Personalized Communications -
COST 259: European Co-operation in Mobile Radio Research. John Wiley
& Sons, COST Action 259—Final Report

Costa D (1995) An evolutionary tabu search algorithm and the NHL
scheduling problem. INFOR 33(3):161–178

Costa FN, Urrutia S, Ribeiro CC (2012) An ILS heuristic for the traveling
tournament problem with predefined venues. Annals of Operations
Research 194(1):137–150

Crisan C, Mühlenbein H (1998) The frequency assignment problem: A look
at the performance of evolutionary search. Lecture Notes in Computer
Science 1363:263–274

Croes GA (1958) A method for solving traveling-salesman problems.
Operations research 6(6):791–812

De Leone R, Festa P, Marchitto E (2011) Solving a bus driver scheduling
problem with randomized multistart heuristics. International Transactions
in Operational Research 18(6):707–727

Decerle J, Grunder O, El Hassani AH, Barakat O (2018) A memetic
algorithm for a home health care routing and scheduling problem.
Operations research for health care 16:59–71

249

Bibliography

Della Croce F, Tadei R, Asioli P (1999) Scheduling a round robin tennis
tournamentunder courts and players availability constraints. Annals of
Operations Research 92:349–361

Demeester P, Souffriau W, De Causmaecker P, Vanden Berghe G (2010) A
hybrid tabu search algorithm for automatically assigning patients to beds.
Artificial Intelligence in Medicine 48(1):61–70, DOI https://doi.org/10.1
016/j.artmed.2009.09.001, URL https://www.sciencedirect.com/scie
nce/article/pii/S0933365709001341

Desrochers M, Soumis F (1989) A Column Generation Approach to
the Urban Transit Crew Scheduling Problem. Transportation Science
23(1):1–13

Di Gaspero L, Schaerf A (2003) Multi-neighbourhood local search with
application to course timetabling. In: Practice and Theory of Automated
Timetabling IV, Lecture Notes in Computer Science, vol 2740, pp 262–275

Di Gaspero L, Schaerf A (2006) Neighborhood portfolio approach for local
search applied to timetabling problems. Journal of Mathematical Modeling
and Algorithms 5(1):65–89

Di Gaspero L, Schaerf A (2007) A composite-neighborhood tabu search
approach to the traveling tournament problem. Journal of Heuristics
13(2):189–207

Di Gaspero L, Urli T (2014) A CP/LNS approach for multi-day homecare
scheduling problems. In: Blesa MJ, Blum C, Voß S (eds) Hybrid
Metaheuristics, Springer International Publishing, Cham, pp 1–15

Dimitsas A, Gogos C, Valouxis C, Tzallas A, Alefragis P (2022) A pragmatic
approach for solving the sports scheduling problem. In: Proceedings of the
13th International Conference on the Practice and Theory of Automated
Timetabling, PATAT, vol 3, pp 195–207

Dinitz JH, Garnick DK, McKay BD (1994) There are 526,915,620
nonisomorphic one-factorizations of k12. Journal of Combinatorial Design
2:273–285

Doerr B, Doerr C (2020) Theory of parameter control for discrete black-box
optimization: Provable performance gains through dynamic parameter
choices. Theory of Evolutionary Computation: Recent Developments in
Discrete Optimization pp 271–321

250

https://www.sciencedirect.com/science/article/pii/S0933365709001341
https://www.sciencedirect.com/science/article/pii/S0933365709001341

Bibliography

Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. IEEE
computational intelligence magazine 1(4):28–39

Drake JH, Kheiri A, Özcan E, Burke EK (2020) Recent advances in
selection hyper-heuristics. European Journal of Operational Research
285(2):405–428

Dupin N, Talbi EG (2021) Matheuristics to optimize refueling and
maintenance planning of nuclear power plants. Journal of Heuristics
27(1-2):63–105

Duque-Antón M, Kunz D, Rüber B (1993) Channel assignment for
cellular radio using simulated annealing. IEEE Transactions on Vehicular
Technology 42:14–21

Easton K, Nemhauser G, Trick M (2001) The traveling tournament problem
description and benchmarks. In: Seventh International Conference
on the Principles and Practice of Constraint Programming (CP 99),
Springer-Verlag, LNCS, vol 2239, pp 580–589

Eisenblätter A, Koster A (2000) Fap web - a website about frequency
assignment problems. fap.zib.de, last modified Jan 2010

Erkut E, Neuman S (1991) Comparison of four models for dispersing
facilities. INFOR: Information Systems and Operational Research
29(2):68–86

Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and
rostering: A review of applications, methods and models. European
Journal of Operational Research 153(1):3–27

Eveborn P, Flisberg P, Rönnqvist M (2006) Laps care—an operational
system for staff planning of home care. European Journal of Operational
Research 171

Feige U, Halldórsson MM, Kortsarz G, Srinivasan A (2002) Approximating
the domatic number. SIAM Journal on computing 32(1):172–195

Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures.
Journal of global optimization 6:109–133

Ferrer J, Chicano F, Ortega-Toro JA (2021) CMSA algorithm for solving
the prioritized pairwise test data generation problem in software product
lines. Journal of Heuristics 27:229–249

251

fap.zib.de

Bibliography

Fialho A, Da Costa L, Schoenauer M, Sebag M (2010) Analyzing
bandit-based adaptive operator selection mechanisms. Annals of
Mathematics and Artificial Intelligence 60(1-2):25–64

Fikar C, Hirsch P (2017) Home health care routing and scheduling: A review.
Computers & Operations Research 77:86–95

Fischetti M, Lodi A (2003) Local branching. Mathematical programming
98:23–47

Flood MM (1956) The traveling-salesman problem. Operations research
4(1):61–75

Fonseca GHG, Toffolo TAM (2022) A fix-and-optimize heuristic for the
ITC2021 sports timetabling problem. J Sched 25:273–286

Franzin A, Stützle T (2019) Revisiting simulated annealing: A
component-based analysis. Computers & Operations Research
104:191–206

Galinier P, Hertz A (2006) A survey of local search methods for graph
coloring. Computers & Operations Research 33(9):2547–2562

Garcia S, Herrera F (2008) An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. Journal
of machine learning research 9(Dec):2677–2694

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA

Gelling EN (1973) On 1-factorizations of the complete graph and the
relationship to round robin schedules. PhD thesis

Glover F (1986) Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research 13(5):533–549

Glover F (1989) Tabu search. Part I. ORSA Journal of Computing 1:190–206

Glover F (1990) Tabu search. Part II. ORSA Journal of Computing 2:4–32

Glover F, Kochenberger G (2006) Handbook of metaheuristics, vol 57.
Springer Science & Business Media

252

Bibliography

González-Velarde JL, Laguna M (2002) Tabu search with simple
ejection chains for coloring graphs. Annals of Operations Research
117(1-4):165–174

Gopalakrishnan B, Johnson EL (2005) Airline Crew Scheduling:
State-of-the-Art. Annals of Operations Research 140(1):305–337

Grenouilleau F, Legrain A, Lahrichi N, Rousseau LM (2019) A set
partitioning heuristic for the home health care routing and scheduling
problem. European Journal of Operational Research 275(1):295–303

Grieco L, Utley M, Crowe S (2021) Operational research applied to decisions
in home health care: A systematic literature review. Journal of the
Operational Research Society 72(9):1960–1991

Grover LK (1996) A fast quantum mechanical algorithm for database search.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pp 212–219

Gunawan A, Lau HC, Lu K (2018) Adopt: Combining parameter tuning and
adaptive operator ordering for solving a class of orienteering problems.
Computers & Industrial Engineering 121:82–96

Hamiez JP, Hao JK (2000) Solving the sports league scheduling problem with
tabu search. In: Workshop on Local Search for Planning and Scheduling,
Springer, pp 24–36

Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Chapman
and Hall, London

Hansen P, Mladenović N, Todosijević R, Hanafi S (2017) Variable
neighborhood search: basics and variants. EURO Journal on
Computational Optimization 5(3):423–454

Haynes TW, Hedetniemi S, Slater P (2013) Fundamentals of domination in
graphs. CRC press

Hellebrandt M, Heller H (2000) A new heuristic method for frequency
assignment. Tech. Rep. TD(00) 003, COST 259, Valencia, Spain

Helsgaun K (2000) An effective implementation of the lin–kernighan
traveling salesman heuristic. European journal of operational research
126(1):106–130

253

Bibliography

Holland JH (1992) Genetic algorithms. Scientific american 267(1):66–73

Huang C, Li Y, Yao X (2020) A survey of automatic parameter tuning
methods for metaheuristics. IEEE Trans on Evolutionary Computation
24(2):201–216

Hutter F, Hoos H, Leyton-Brown K (2011) Sequential model-based
optimization for general algorithm configuration. In: International
conference on learning and intelligent optimization, Springer, pp 507–523

Ibarra-Rojas O, Delgado F, Giesen R, Muñoz J (2015) Planning, operation,
and control of bus transport systems: A literature review. Transportation
Research Part B: Methodological 77:38–75

Irving RW (1991) On approximating the minimum independent dominating
set. Information Processing Letters 37(4):197–200

Islam K, Akl SG, Meijer H (2009) Maximizing the lifetime of wireless sensor
networks through domatic partition. In: 2009 IEEE 34th Conference on
Local Computer Networks, IEEE, pp 436–442

Januario T, Urrutia S (2016) A new neighborhood structure for round robin
scheduling problems. Computers & Operations Research 70:127–139

Jin J, Crainic TG, Løkketangen A (2012) A parallel multi-neighborhood
cooperative tabu search for capacitated vehicle routing problems.
European Journal of Operational Research 222(3):441–451

Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization
by simulated annealing: an experimental evaluation; part I, graph
partitioning. Operations Research 37(6):865–892

Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010)
ISAC–instance-specific algorithm configuration. In: ECAI 2010, IOS
Press, pp 751–756

Kallestad J, Hasibi R, Hemmati A, Sörensen K (2023) A general deep
reinforcement learning hyperheuristic framework for solving combinatorial
optimization problems. European Journal of Operational Research
309(1):446–468

Kapsalis A, Chardaire P, Rayward-Smith VJ, Smith GD (1995) The radio
link frequency assignment problem: A case study using genetic algorithms.
Lecture Notes on Computer Science 993:117–131

254

Bibliography

Karimi-Mamaghan M, Mohammadi M, Meyer P, Karimi-Mamaghan AM,
Talbi EG (2022) Machine learning at the service of meta-heuristics for
solving combinatorial optimization problems: A state-of-the-art. European
Journal of Operational Research 296(2):393–422

Karmarkar N (1984) A new polynomial-time algorithm for linear
programming. In: Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pp 302–311

Karp RM (1972) Reducibility among combinatorial problems. In:
Complexity of computer computations, Springer, pp 85–103

Kendall G, Knust S, Ribeiro C, Urrutia S (2010) Scheduling in sports: An
annotated bibliography. Computers & Operations Research 37(1):1–19

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings
of ICNN’95-international conference on neural networks, IEEE, vol 4, pp
1942–1948

Khachiyan LG (1979) A polynomial algorithm in linear programming. In:
Doklady Akademii Nauk, Russian Academy of Sciences, vol 244, pp
1093–1096

Kheiri A, Gretsista A, Keedwell E, Lulli G, Epitropakis MG, Burke EK
(2021) A hyper-heuristic approach based upon a hidden markov model
for the multi-stage nurse rostering problem. Computers & Operations
Research 130:105221

Kiouche AE, Bessedik M, Benbouzid-SiTayeb F, Keddar MR (2020) An
efficient hybrid multi-objective memetic algorithm for the frequency
assignment problem. Engineering Applications of Artificial Intelligence
87:103265

Kirkpatrick S, Gelatt D, Vecchi M (1983) Optimization by simulated
annealing. Science 220:671–680

Kletzander L, Musliu N (2020) Solving large real-life bus driver scheduling
problems with complex break constraints. In: Proceedings of the
International Conference on Automated Planning and Scheduling, vol 30,
pp 421–429

Kletzander L, Musliu N (2022) Hyper-heuristics for personnel scheduling
domains. In: Proceedings of the International Conference on Automated
Planning and Scheduling, vol 32, pp 462–470

255

Bibliography

Kletzander L, Musliu N, Van Hentenryck P (2021) Branch and price for bus
driver scheduling with complex break constraints. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol 35, pp 11853–11861

Kletzander L, Mazzoli TM, Musliu N (2022) Metaheuristic algorithms for
the bus driver scheduling problem with complex break constraints. In:
Proceedings of the Genetic and Evolutionary Computation Conference,
pp 232–240

Knust S (2010) Classification of literature on sports scheduling. http://ww
w2.informatik.uni-osnabrueck.de/knust/sportssched/sportlit_cl
ass/, last accessed: 20/10/2023

Kolen A (2007) A genetic algorithm for the partial binary constraint
satisfaction problem: an application to a frequency assignment problem.
Statistica Neerlandica 61(1):4–15

Koster AMCA, van Hoesel CPM, Kolen AWJ (1999) Optimal solutions for
a frequency assignment problem via tree-decomposition. Lecture Notes in
Computer Science 1665:338–349

Koster AMCA, van Hoesel SPM, Kolen AWJ (2002) Solving partial
constraint satisfaction problems with tree decomposition. Networks
40(3):170–180

Kummer AF (2021) A study on the home care routing and scheduling
problem. PhD thesis, Universidade Federal do Rio Grande do Sul

Kummer AF, Buriol LS, de Araújo OC (2020) A biased random key
genetic algorithm applied to the VRPTW with skill requirements and
synchronization constraints. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pp 717–724

Kummer AF, de Araújo OCB, Buriol LS, Resende MGC (2022) A
biased random-key genetic algorithm for the home health care problem.
International Transactions in Operational Research

Lahsinat Y, Boughaci D, Benhamou B (2018) Breakout variable
neighbourhood search for the minimum interference frequency assignment
problem. Journal of Systems and Information Technology 20(4):468–488

Lai X, Hao JK (2015) Path relinking for the fixed spectrum frequency
assignment problem. Expert Systems with Applications 42(10):4755–4767

256

http://www2.informatik.uni-osnabrueck.de/knust/sportssched/sportlit_class/
http://www2.informatik.uni-osnabrueck.de/knust/sportssched/sportlit_class/
http://www2.informatik.uni-osnabrueck.de/knust/sportssched/sportlit_class/

Bibliography

Laidoui F, Bessedik M, Si-Tayeb FB, Bengherbia N, Khelil MY
(2018) Nash-pareto genetic algorithm for the frequency assignment
problem. Procedia Computer Science 126:282–291, knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 22nd
International Conference, KES-2018, Belgrade, Serbia

Lal B, Balakrishnan A, Caldwell BM, Buenconsejo RS, Carioscia SA (2018)
Global trends in space situational awareness (ssa) and space traffic
management (stm). Tech. rep., Institute for Defense Analyses Washington
DC

Lamas-Fernandez C, Martinez-Sykora A, Potts CN (2021) Scheduling double
round-robin sports tournaments. In: Proceedings of the 13th International
Conference on the Practice and Theory of Automated Timetabling, vol 2,
pp 435 – 448

Land AH, Doig AG (1960) An automatic method of solving discrete
programming problems. Econometrica 28(3):497–520

Landete M, Sainz-Pardo JL (2022) The domatic partition problem in
separable graphs. Mathematics 10(4):640

Lasfargeas S, Gagné C, Sioud A (2019) Solving the home health care problem
with temporal precedence and synchronization. In: Bioinspired Heuristics
for Optimization, Springer, pp 251–267

Lester MM (2022) Pseudo-boolean optimisation for robinx sports
timetabling. J Sched 25:287–299

Lewis R, Thompson J (2011) On the application of graph colouring
techniques in round-robin sports scheduling. Computers & Operations
Research 38(1):190–204

Lewis R, Thiruvady D, Morgan K (2019) Finding happiness: an analysis of
the maximum happy vertices problem. Computers & Operations Research
103:265–276

Li J, Kwan RS (2003) A fuzzy genetic algorithm for driver scheduling.
European Journal of Operational Research 147(2):334–344, fuzzy Sets in
Scheduling and Planning

Li J, Pardalos PM, Sun H, Pei J, Zhang Y (2015) Iterated local search
embedded adaptive neighborhood selection approach for the multi-depot

257

Bibliography

vehicle routing problem with simultaneous deliveries and pickups. Expert
Systems with Applications 42(7):3551–3561

Lin DY, Hsu CL (2016) A column generation algorithm for the bus driver
scheduling problem. Journal of Advanced Transportation 50(8):1598–1615

Lin K, Wang W, Wang X, Ji W, Wan J (2015) Qoe-driven spectrum
assignment for 5g wireless networks using sdr. IEEE Wireless
Communications 22(6):48–55

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the
traveling-salesman problem. Operations research 21(2):498–516

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T
(2016) The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives 3:43–58

Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In:
Handbook of metaheuristics, Springer, pp 320–353

Lourenço HR, Paixão JP, Portugal R (2001) Multiobjective metaheuristics
for the bus driver scheduling problem. Transportation Science
35(3):331–343

Lü Z, Hao JK (2012) Adaptive neighborhood search for nurse rostering.
European Journal of Operational Research 218(3):865–876

Lu Z, Martínez-Gavara A, Hao JK, Lai X (2023) Solution-based tabu search
for the capacitated dispersion problem. Expert Systems with Applications
223:119856

Luna F, Blum C, Alba E, Nebro AJ (2007) ACO vs EAs for solving
a real-world frequency assignment problem in GSM networks. In:
Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, Association for Computing Machinery, New York, NY,
USA, GECCO ’07, p 94–101

Luna F, Estébanez C, León C, Chaves-González JM, Nebro AJ, Aler
R, Segura C, Vega-Rodríguez MA, Alba E, Valls JM, Miranda
G, Gómez-Pulido JA (2011) Optimization algorithms for large-scale
real-world instances of the frequency assignment problem. Soft Computing
15(5):975–990

258

Bibliography

Mak NH, Seah WK (2009) How long is the lifetime of a wireless sensor
network? In: 2009 International Conference on Advanced Information
Networking and Applications, pp 763–770

Mankowska DS, Meisel F, Bierwirth C (2014) The home health care
routing and scheduling problem with interdependent services. Health Care
Management Science 17(1):15–30

Mannino C, Oriolo G, Ricci F, Chandran S (2007) The stable set problem
and the thinness of a graph. Operations Research Letters 35(1):1–9

Mara S, Norcahyo R, Jodiawan P, Lusiantoro L, Rifai AP (2022) A
survey of adaptive large neighborhood search algorithms and applications.
Computers & Operations Research 146(105903)

Maron O, Moore A (1997) The racing algorithm: Model selection for lazy
learners. Artificial Intelligence Review 11(1):193–225

Martello S, Toth P (1986) A heuristic approach to the bus driver scheduling
problem. European Journal of Operational Research 24(1):106–117, oR
and Microcomputers Miscellaneous OR Applications

Martí R, Gallego M, Duarte A (2010) A branch and bound algorithm for
the maximum diversity problem. European journal of operational research
200(1):36–44

Martí R, Martínez-Gavara A, Sánchez-Oro J (2021) The capacitated
dispersion problem: An optimization model and a memetic algorithm.
Memetic Computing 13:131–146

Martí R, Martínez-Gavara A, Pérez-Peló S, Sánchez-Oro J (2022) A review
on discrete diversity and dispersion maximization from an or perspective.
European Journal of Operational Research 299(3):795–813

Méndez-Díaz I, Zabala P (2008) A cutting plane algorithm for graph coloring.
Discrete Applied Mathematics 156(2):159–179

Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent
networks. Princeton University Press

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)
Equation of state calculations by fast computing machines. The journal of
chemical physics 21(6):1087–1092

259

Bibliography

Mischek F, Musliu N (2022) Reinforcement learning for cross-domain
hyper-heuristics. In: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, pp 4793–4799

Misir M, De Causmaecker P, Vanden Berghe G, Verbeeck K (2011) An
adaptive hyper-heuristic for chesc 2011. In: OR53 Annual Conference

Mladenović N, Hansen P (1997) Variable neighborhood search. Computers
& Operations Research 24(11):1097–1100

Mladenović N, Todosijević R, Urošević D, Ratli M (2022) Solving
the capacitated dispersion problem with variable neighborhood search
approaches: From basic to skewed vns. Computers & Operations Research
139:105622

Montemanni R (2001) Upper and lower bounds for the fixed spectrum
frequency assignment problem. PhD thesis, University of Glamorgan

Montemanni R, Smith DH (2010) Heuristic manipulation, tabu search and
frequency assignment. Computers & Operations Research 37(3):543–551

Montemanni R, Smith D, Allen SM (2001) Lower bounds for fixed spectrum
frequency assignment. Annals of Operations Research 107(1-4):237–250

Montemanni R, Moon JN, Smith DH (2003) An improved tabu search
algorithm for the fixed-spectrum frequency-assignment problem. IEEE
transactions on vehicular technology 52(4):891–901

Montemanni R, Smith D, Allen S (2004) An improved algorithm to determine
lower bounds for the fixed spectrum frequency assignment problem.
European Journal of Operational Research 156(3):736–751

Mosadegh H, Ghomi S, Süer G (2020) Stochastic mixed-model assembly
line sequencing problem: Mathematical modeling and Q-learning based
simulated annealing hyper-heuristics. European Journal of Operational
Research 282(2):530–544

Murphey RA, Pardalos PM, Resende MG (1999) Frequency assignment
problems. Handbook of Combinatorial Optimization: Supplement Volume
A pp 295–377

Nguyen TN, Huynh DT (2007) Extending sensor networks lifetime through
energy efficient organization. In: International Conference on Wireless
Algorithms, Systems and Applications (WASA 2007), IEEE, pp 205–212

260

Bibliography

Oladzad-Abbasabady N, Tavakkoli-Moghaddam R, Mohammadi M,
Vahedi-Nouri B (2023) A bi-objective home care routing and scheduling
problem considering patient preference and soft temporal dependency
constraints. Engineering Applications of Artificial Intelligence 119:105829

Ore O (1962) Theory of graphs

Peiró J, Jiménez I, Laguardia J, Martí R (2021) Heuristics for the capacitated
dispersion problem. International transactions in operational research
28(1):119–141

Phillips AE, O’Sullivan M, Walker C (2021) An adaptive large
neighbourhood search matheuristic for the ITC2021 sports timetabling
competition. In: Proceedings of the 13th International Conference on the
Practice and Theory of Automated Timetabling, PATAT, vol 2, pp 426 –
430

Pinacho-Davidson P, Bouamama S, Blum C (2019) Application of CMSA to
the minimum capacitated dominating set problem. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp 321–328

Pisinger D, Ropke S (2019) Large neighborhood search. In: Handbook of
metaheuristics, Springer, pp 99–127

Poon SH, Yen WCK, Ung CT (2012) Domatic partition on several classes of
graphs. In: International Conference on Combinatorial Optimization and
Applications, Springer, pp 245–256

Portugal R, Lourenço HR, Paixão JP (2008) Driver scheduling problem
modelling. Public Transport 1(2):103–120

Preskill J (2023) Quantum computing 40 years later. In: Feynman Lectures
on Computation, CRC Press, pp 193–244

Rasmussen MS, Justesen T, Dohn A, Larsen J (2012) The home care
crew scheduling problem: Preference-based visit clustering and temporal
dependencies. European Journal of Operational Research 219

Rasmussen RV, Trick MA (2008) Round robin scheduling–a survey. European
Journal of Operational Research 188(3):617–636

Rendl A, Prandtstetter M, Hiermann G, Puchinger J, Raidl G (2012) Hybrid
heuristics for multimodal homecare scheduling. In: Integration of AI and
OR Techniques in Contraint Programming for Combinatorial Optimzation
Problems, Springer, Heidelberg, pp 339–355

261

Bibliography

Ribeiro CC, Urrutia S (2007) Heuristics for the mirrored traveling
tournament problem. European Journal of Operational Research
179(3):775–787

Riege T, Rothe J (2005) An exact 2.9416n algorithm for the three
domatic number problem. In: International Symposium on Mathematical
Foundations of Computer Science, Springer, pp 733–744

Riege T, Rothe J, Spakowski H, Yamamoto M (2007) An improved exact
algorithm for the domatic number problem. Information Processing
Letters 101(3):101–106

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation
Science 40(4):455–472

Rosa A, Wallis WD (1982) Premature sets of 1-factors or how not to schedule
round robin tournaments. Discrete Applied Mathematics 4:291–297

Rosati RM, Schaerf A (2024) Multi-neighborhood simulated annealing for
the capacitated dispersion problem

Rosati RM, Petris M, Di Gaspero L, Schaerf A (2022) Multi-neighborhood
simulated annealing for the sports timetabling competition ITC2021.
Journal of Scheduling 25(3):301–319

Rosati RM, Bouamama S, Blum C (2023a) Construct, merge, solve and
adapt applied to the maximum disjoint dominating sets problem. In:
Metaheuristics, pp 306–321

Rosati RM, Kletzander L, Blum C, Musliu N, Schaerf A (2023b) Construct,
merge, solve and adapt applied to a bus driver scheduling problem with
complex break constraints. In: AIxIA 2022 – Advances in Artificial
Intelligence, pp 254–267

Rosati RM, Bouamama S, Blum C (2024) Multi-constructor CMSA for the
maximum disjoint dominating sets problem. Computers & Operations
Research 161:106450

Rosenkrantz DJ, Tayi GK, Ravi S (2000) Facility dispersion problems under
capacity and cost constraints. Journal of Combinatorial Optimization
4:7–33

262

Bibliography

Russell KG (1980) Balancing carry-over effects in round robin tournaments.
Biometrika 67(1):127–131

dos Santos JPQ, de Melo JD, Neto ADD, Aloise D (2014) Reactive
search strategies using reinforcement learning, local search algorithms
and variable neighborhood search. Expert Systems with Applications
41(10):4939–4949

Schneider M, Hoos HH (2012) Quantifying homogeneity of instance sets for
algorithm configuration. In: International Conference on Learning and
Intelligent Optimization, Springer, pp 190–204

Segura C, Hernández-Aguirre A, Luna F, Alba E (2016) Improving diversity
in evolutionary algorithms: New best solutions for frequency assignment.
IEEE Transactions on Evolutionary Computation 21(4):539–553

Shahmardan A, Sajadieh M (2020) Truck scheduling in a multi-door
cross-docking center with partial unloading–reinforcement learning-based
simulated annealing approaches. Computers & Industrial Engineering
139:106134

Shaw P (1998) Using constraint programming and local search methods
to solve vehicle routing problems. In: Proc. of the 4th Int. Conf. on
Principles and Practice of Constraint Programming (CP-98), Lecture
Notes in Computer Science, vol 1520, Springer-Verlag, pp 417–431

Shen Y, Kwan RSK (2001) Tabu Search for Driver Scheduling. In:
Computer-Aided Scheduling of Public Transport, vol 505, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 121–135, series Title: Lecture Notes in
Economics and Mathematical Systems

Shier DR (1977) A min-max theorem for p-center problems on a tree.
Transportation Science 11(3):243–252

Siddiqi UF, Sait SM (2018) An optimization heuristic based on
non-dominated sorting and tabu search for the fixed spectrum frequency
assignment problem. IEEE Access 6:72635–72648

Smith BM, Wren A (1988) A bus crew scheduling system using a set covering
formulation. Transportation Research Part A: General 22(2):97–108

Smith-Miles K, Muñoz MA (2023) Instance space analysis for algorithm
testing: Methodology and software tools. ACM Computing Surveys
55(12):1–31

263

Bibliography

Song H, Triguero I, Özcan E (2019) A review on the self and dual
interactions between machine learning and optimisation. Progress in
Artificial Intelligence 8(2):143–165

Sörensen K (2015) Metaheuristics—the metaphor exposed. International
Transactions in Operational Research 22(1):3–18

Soto M, Sevaux M, Rossi A, Reinholz A (2017) Multiple neighborhood
search, tabu search and ejection chains for the multi-depot open vehicle
routing problem. Computers & Industrial Engineering 107:211–222,
DOI https://doi.org/10.1016/j.cie.2017.03.022, URL https://www.
sciencedirect.com/science/article/pii/S0360835217301183

Sutton R, Barto A (2018) Reinforcement learning: An introduction. MIT
press

Talbi EG (2021) Machine learning into metaheuristics: A survey and
taxonomy. ACM Computing Surveys (CSUR) 54(6):1–32

Tiourine SR, Hurkens CAJ, Lenstra JK (2000) Local search algorithms for
the radio link frequency assignment problem. Telecommunication systems
13(2):293–314

Toffolo TA, Christiaens J, Van Malderen S, Wauters T, Vanden Berghe G
(2018) Stochastic local search with learning automaton for the swap-body
vehicle routing problem. Computers & Operations Research 89:68–81

Urli T (2013) json2run: a tool for experiment design & analysis. Computers
& Operations Research abs/1305.1112

Van Bulck D, Goossens D (2023a) First-break-heuristically-schedule:
Constructing highly-constrained sports timetables. Operations Research
Letters 51:326–331

Van Bulck D, Goossens D (2023b) The international timetabling competition
on sports timetabling (ITC2021). European Journal of Operational
Research 308(3):1249–1267

Van Bulck D, Goossens D, Schönberger J, Guajardo M (2020) Robinx: A
three-field classification and unified data format for round-robin sports
timetabling. European Journal of Operational Research 280(2):568–580

Van Bulck D, Goossens D, Clarner JP, Dimitsas A, Fonseca GHG,
Lamas-Fernandez C, Lester MM, Pedersen J, Phillips AE, Rosati RM
(2023) Which algorithm to select in sports timetabling? 2309.03229

264

https://www.sciencedirect.com/science/article/pii/S0360835217301183
https://www.sciencedirect.com/science/article/pii/S0360835217301183
2309.03229

Bibliography

Van-Rooij JMM (2010) Polynomial space algorithms for counting dominating
sets and the domatic number. In: International Conference on Algorithms
and Complexity, Springer, pp 73–84

Černý V (1985) Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications 45(l):41–51

Wallis WD (1983) A tournament problem. Journal of the Australian
Mathematical Society Series B 24:289–291

Wang P, Henz B (2017) Frequency assignment for joint aerial layer network
high-capacity backbone. Tech. rep., Army Research Laboratory Aberdeen
Proving Ground United States

Watson JP (2010) An Introduction to Fitness Landscape Analysis and Cost
Models for Local Search, Springer US, Boston, MA, pp 599–623

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks.
nature 393(6684):440–442

Welsh DJ, Powell MB (1967) An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal
10(1):85–86

de Werra D (1981) Scheduling in sports. In: Hansen P (ed) Studies on Graphs
and Discrete Programming, North Holland, pp 381–395

de Werra D, Jacot-Descombes L, Masson P (1990) A constrained sports
scheduling problem. Discrete Applied Mathematics 26:41–49

Weyland D (2015) A critical analysis of the harmony search algorithm—how
not to solve sudoku. Operations Research Perspectives 2:97–105

Wren A (2004) Scheduling vehicles and their drivers-forty years’ experience.
Tech. rep., University of Leed

Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for
the maximum weight clique problem. Annals of Operations Research
196:611–634

Xiang T, Li Y, Szeto WY (2021) The daily routing and scheduling problem of
home health care: based on costs and participants’ preference satisfaction.
International Transactions in Operational Research

265

Bibliography

Zhang D, Piao M, Zhang T, Chen C, Zhu H (2020) New algorithm of
multi-strategy channel allocation for edge computing. AEU-International
Journal of Electronics and Communications 126:153372

Zhao L, Wang H, Zhong X (2018) Interference graph based channel
assignment algorithm for D2D cellular networks. IEEE Access 6:3270–3279

266

	Ringraziamenti
	Acknowledgements
	Abstract
	Introduction
	Context
	Motivations and objectives
	Structure of the thesis

	I Methods
	Multi-Neighborhood Search
	Local search concepts
	Search space
	Cost function
	Neighborhood exploration and acceptance criterion
	Local search and metaheuristics

	Multi-Neighborhood Search
	Exploration and move selection
	Internal biases
	Differential cost evaluation
	Redundant solution representations
	Deterministic sequences
	Repair chains

	Multi-Neighborhood Simulated Annealing
	Initial solution
	Acceptance criterion
	Cooling scheme and cut-off
	Stopping criterion
	Algorithm description

	Parameter tuning
	Further combinations of neighborhoods

	Construct, Merge, Solve, and Adapt
	The CMSA Algorithm
	Construct: construction procedure
	Merge: sub-instance
	Solve: exact solver
	Adapt: aging

	Multi-Constructor CMSA
	Parameter tuning in CMSA

	II Applications of Multi-Neighborhood Search
	Minimum Interference Frequency Assignment
	Problem definition
	Related work
	Solution method
	Search space and initial solution
	Multi-neighborhood
	Metaheuristic and move selection
	Adaptation to MI-FAP-I and MI-FAP-II

	Experimental results
	Benchmarks
	Parameter tuning
	Comparison results for MI-FAP-I
	Comparison results for MI-FAP-II

	Discussion
	Larger neighborhoods
	Instance-based tuning

	Conclusions

	Sports Timetabling
	Related work
	Problem formulation
	Solution method
	Search space
	Initial solution generation
	Multi-neighborhood
	SwapHomes
	SwapTeams
	SwapRounds
	PartialSwapTeams
	PartialSwapRounds
	PartialSwapTeamsPhased

	Metaheuristic

	Experimental results
	Instances
	Parameters and tuning
	Analysis of the results
	Analysis of PartialSwapTeamsPhased

	Comparison with other algorithms
	Conclusions

	Home Healthcare Routing and Scheduling
	Related work
	Problem definition
	Solution method
	Search space
	Initial solution
	Multi-neighborhood
	Neighborhood MovePatient
	Neighborhood SwapPatients
	Neighborhood InRouteSwap
	Composition of neighborhoods

	Metaheuristic

	Datasets and generators
	Dataset by MaMB14
	Dataset by Kumm21
	Our generator and dataset
	File formats

	Experimental analysis
	Parameter tuning
	Comparative results on the dataset of MaMB14
	Comparative results on Kumm21's dataset
	Results on our new dataset

	Conclusions

	Capacitated Dispersion Problem
	Related work
	Problem definition
	Solution method
	Search space
	Initial solution strategy
	Multi-neighborhood
	Move selection
	Cost function
	Metaheuristic

	Datasets and generators
	Experimental analysis
	Tuning
	Results
	Algorithmic insights

	Conclusions

	III Applications of CMSA
	Bus Driver Scheduling
	Problem description
	Problem input
	Solution
	Work and break regulations
	Driving time regulations
	Working time regulations
	Split shifts

	Objectives

	Related work
	The CMSA approach to the BDS problem
	Greedy heuristic
	Sub-instance and exact solver

	Experimental results
	Parameter tuning
	Analysis of the results

	Conclusions

	Maximum Disjoint Dominating Sets Problem
	Graphical problem illustration
	Related work
	Integer linear programming formulations
	Model 1 with symmetry breaking constraints
	Model 2 with symmetry breaking constraints

	Multi-Constructor CMSA for the MDDSP
	Constructors
	Color-Ddsr
	P-Maxr, P-Minr and R-Lidr
	Iamr
	Mdds-Ghr
	Constructor selection

	Sub-instance
	Lexicographic objective function
	Parameters
	Algorithmic details

	Experimental results
	Instances
	Parameter tuning
	Results
	Results on random geometric graphs
	Results on random graphs, Watts-Strogatz and Barabási-Albert networks
	ILP model results

	Statistical analysis

	Conclusions

	IV Reinforcement Learning
	Reinforcement Learning for Multi-Neighborhood Search and Multi-Constructor CMSA
	Related work
	Reinforcement learning strategy
	RL for Multi-Neighborhood Search
	Case studies
	Examination Timetabling
	Sports Timetabling

	Experimental results
	Results for Examination Timetabling
	Results for Sports Timetabling

	Discussion

	RL for Multi-Constructor CMSA
	Results
	Conclusions

	Conclusions
	Research contributions
	Results
	Future research directions

	List of publications
	Bibliography

