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A B S T R A C T   

Soilless culture is widely adopted for improving produce quality and yield and increasing input efficiency. Most 
of the benefits potentially achievable in soilless systems are possible through precise and continuous manage-
ment and adjustment of plant nutrition. Under operational conditions, the electrical conductivity (EC) is the main 
driving parameter leading fertigation strategies, but its measure in the drainage water can be not completely 
representative of the root zone in the growing medium. Nowadays low-cost sensors can be adopted to measure 
bulk EC (ECb) in the substrate. The Hilhorst equation is commonly used to convert the ECb into pore-water EC 
(ECw). This equation is widely calibrated for soil cultivation, but unable to perform properly for soilless substrate 
with high moisture content and water permittivity. In this work, two cultivation cycles of cherry tomato, 
managed in a closed-loop soilless system, were used to calibrate and validate two alternative models to the above 
equation (i.e., generalized additive model - GAM, and extreme gradient boost model - XGBoost). The models 
predicted ECw from the ECb recorded by substrate sensors. Plants were grown in rockwool using two different 
strategies for nutrient solution refill achieving different ECw trends during the cultivation. The Hilhorst equation 
confirmed its unsuitability for ECw prediction in soilless systems. ECw prediction through GAM was not satisfying 
at low and high ECw values. XGBoost was the most suitable model for ECw estimation, particularly at extreme EC 
values.   

1. Introduction 

A continuous monitoring of the electrical conductivity (EC) of 
nutrient solution is crucial to adequately manage open- and closed-loop 
soilless systems (Ahn and Son, 2022, Massa et al., 2020). In fact, low EC 
in the root zone may limit nutrient absorption and plant growth, 
reducing the quality of many vegetable species. Indeed, a moderate 
salinity of substrate has shown positive effects on the organoleptic 
quality and nutritional parameters of fruit-bearing crops, also reducing 
the accumulation of undesired molecules such as nitrates in leaf vege-
tables (Germano et al., 2022, Rouphael et al., 2018). However, high 
concentrations of salts at root level may cause physiological disorders in 
most of cultivated plants such as stomata closure, early flowering, water 
status imbalance, and qualitative and quantitative alterations. Further-
more, the presence of saline ions in the root zone can also cause nutrient 

deficiency impairing the normal absorption of other ions (Massa and 
Melito, 2019, Munns and Tester, 2008, Navarro et al., 2007). 

The EC is influenced by both nutrient and non-nutrient ions. 
Therefore, to ensure a proper balance between the concentration of 
nutrients in the fertigation solution and their actual uptake rate for 
optimal plant growth and development, it would be necessary to know 
exactly the ionic composition of the nutrient solution in the root zone. 
However, EC is the primary parameter monitored for managing the 
fertigation system under operational (commercial) conditions (Massa 
et al., 2020, Ahn and Son, 2019, Incrocci and Massa, 2017). In fact, EC 
monitoring allows the early detection of the accumulation or depletion 
of soluble salts in the recirculating nutrient solution, due to fluctuations 
in nutrient absorption related to crop evolution (Ahn and Son, 2022, 
Massa et al., 2020). The refill nutrient solution can then be regulated by 
adjustments of the dilution factor of the concentrated stock solution 
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through fertigation devices (Massa et al., 2011). Notwithstanding, the 
tuning of fertilizer injection cannot prevent the accumulation of some 
undesired elements (e.g., saline ions) naturally present in the irrigation 
water at concentrations higher than actual plant needs. Massa et al. 
(2020) reported two different EC-based strategies for managing the 
nutrient solution in closed-loop systems: i) the refill nutrient solution is 
opportunely modified to achieve a target EC level in the root zone; in 
this case, the continuous dilution of added fertilizers, combined with the 
parallel accumulation of undesired ions, will lead over time to a 
depletion of nutrients up to the minimum concentration tolerated by the 
crop; ii) the refill nutrient solution has always a constant EC and 
composition; this strategy will lead to an EC increase in the root zone 
until the maximum EC value tolerated by the crop. In both cases, when 
the critical condition occurs, the circulating solution is discharged and 
replaced, completely or partly, with a newly prepared nutrient solution. 
The choice between the two strategies mainly depends on the type of 
crop and the irrigation water quality (Massa et al., 2020, Ahn and Son, 
2019, Incrocci et al., 2017). 

The EC can be forecasted in closed loops by prediction models (Moon 
et al., 2018) and/or measured by water sensors in the drainage tank or 
substrate sensors directly placed in the root zone (Massa et al., 2020; 
Incrocci et al., 2017). Under operational conditions, the measurements 
made in the drainage tank could indeed differ from the root zone EC. 
This discrepancy can be attributed to various factors, with the type of 
substrate and the irrigation system and scheduling being particularly 
relevant (Venezia et al., 2022, Incrocci et al., 2006). Substrate sensors, 
which contemporarily measure EC, water content (namely water 
permittivity), and temperature, are nowadays widely used in agriculture 
(Hardie, 2020). However, these sensors do not directly measure EC of 
the circulating solution in the root zone but rather the bulk EC of the 
volume portion where the sensor is placed (ECb). This measurement is 
influenced by water content, salinity, and temperature (Kargas and 
Kerkides, 2010). Generally, ECb is representative of the circulating so-
lution EC in situ and can be used to have an indication of the root zone 
salinity. However, when salinity increases and/or the water content 
varies significantly, the difference between the two measures may 
significantly increase (Lim et al., 2017) causing uncertainty in the 
operational fertigation management of soilless systems (Massa et al., 
2020; Ahn and Son, 2019). 

Electrical conductivity of the solution circulating in the pores of the 
substrate is defined pore-water electrical conductivity (ECw) and can be 
obtained by soil elution (Corwin and Yemoto, 2020; Wright, 1986) or 
direct soil water extraction (Lim et al., 2017). Alternatively, ECw can be 

estimated by mathematical models; the most used is the Hilhorst 
equation (Hilhorst, 2000). Substrate temperature (Ts), permittivity (εw), 
and ECb are the main driving variables of this equation. Many com-
mercial sensors, e.g., GS3 (METER Group Inc., Pullman, WA, USA) or 
WET (Delta-T Devices Ltd, Cambridge, UK), measure the parameters 
used in the Hilhorst equation to estimate ECw. However, these measures 
are not always reliable and depend on the environmental conditions 
such as soil/substrate moisture, temperature, and salinity (Bañón et al., 
2021, Kocárek and Kodešová, 2012, Kargas and Kerkides, 2012, Rose-
nbaum et al., 2011). 

The aim of this study was to identify the most performing model for 
the ECw prediction from the GS3 and later models (such as the TEROS 12 
sensor, compatible with GS3) sensor outputs (Ferrarezi et al., 2020) in a 
soilless system, comparing the Hilhorst model with two models well 
known to capture complex non-linear relationships in data: generalized 
additive model (GAM), and extreme gradient boost model (XGBoost). 
Two greenhouse trials with different EC management strategies were 
established using tomato plants to test and calibrate the models. Cherry 
tomato was chosen for its tolerance to EC variation and level in the root 
zone and its commercial relevance among other soilless crops. Indeed, 
soilless tomato is normally grown with nutrient solution EC between 2.5 
and 3.5 dS m− 1 and cherry tomato performs well even at higher EC level 
(3–7 dS m− 1) showing positive effect on produced quality without any 
reduction in yield (Lu et al., 2022, Petersen et al., 2015). For example, 
EC above 4.5 dS m− 1 has been found to increase sensory characteristics 
and sugar content (Cliff et al., 2012), lycopene and other antioxidant 
molecules (De Pascale et al., 2001, Wu and Kubota 2008). 

2. Material and methods 

2.1. Greenhouse experiment 

2.1.1. Plant material and growing conditions 
This study was carried out in a greenhouse located at the Research 

Centre for Vegetable and Ornamental Crops of the Council for Agricul-
tural Research and Economics (Pescia, Tuscany, Italy, latitude 43.54 N, 
longitude 10.42E) under typical Mediterranean climate conditions. The 
experiment was repeated in two different experimental trials: spring- 
summer (2021) and autumn–winter (2021–2022). Greenhouse temper-
ature was kept between 13 and 34 ◦C by a cooling system during sum-
mer, and a heating system during winter. Climatic parameters, i.e., air 
temperature, air relative humidity (RH), and global radiation were 
monitored with an environmental station (OPI system, EVJA srl., NA, 

Fig. 1. Schematic representation of the cultivation bench system.  
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Italy) Cherry tomato seedlings (cv. ‘Genio’, HM. Clause SAS) with 4/5 
expanded leaves were transplanted in rockwool cubes (10 × 10 cm2) and 
irrigated with half-strength nutrient solution (the composition of the 
nutrient solution in mM was: 12.00 N-NO3

- , 1.00 N-NH4
+, 1.50 P2-, 10.00 

K+, 5.00 Ca2+, 2.50 Mg2+, 0.65Na+, 5.66 S-SO4
2-, 0.50Cl- for macronu-

trient, and in µM: 15.0 Fe2+, 20.0B-, 1.0 Cu2+, 5.0 Zn2+, 10.0 Mn2+, 1.0 
Mo2+ for micronutrients; the EC was 2.72 dS m− 1) for one week to 
stimulate root penetration. Then, rockwool cubes were inserted in 
rockwool slabs (1 m × 0.15 m × 0.75 m), previously fully soaked with 
nutrient solution. The greenhouse consisted of six cultivation benches 
each organized in a separate closed loop soilless system. Each bench had 
10 slabs and a drainage tank for collecting the excess of nutrient solution 
drained out from the substrate. The volume of the tank was 35 L over a 
total volume (tank plus slabs) of 110 L for each closed system. Three 
plants were transplanted on each slab for a final plant density of 3 plants 
m− 2. The nutrient solution absorbed by plants was continuously 
replenished in the drainage tank through water level sensors to keep the 
total nutrient solution volume as constant as possible in each cultivation 
bench (Fig. 1). Daily irrigation was provided by a drip irrigation system 
(10 drippers per slab) from the drainage tank, frequency and duration 
were scheduled to have a high leaching fraction (30–40 % depending on 
day time), however water was recirculated before sampling 3 times the 
volume of the drainage tank (which roughly corresponded to 100 % the 
total water volume of each bench), ensuring greater homogeneity be-
tween the composition of nutrient solution in the slabs and tank. 

Plants were grown until the harvest of the sixth truss of fruits in both 
the cycles; the spring summer cycle lasted 90 d after transplant while the 
autumn–winter cycle lasted 148 d after transplant. 

2.1.2. Electrical conductivity management 
The EC of the nutrient solution was managed differently in the two 

cultivation cycles. In the spring-summer cycle, EC had three different 
salinity levels (three benches) kept fairly constant during the cultivation 
cycle. The initial nominal EC levels, i.e., 4.2, 7.5, and 9.0 dS m− 1 (B1, B2, 
and B3 treatments, respectively), were obtained adding 15, 45, and 75 
mmol L–1 of NaCl to the previously described nutrient solution. The 
nutrient solution absorbed by plants was reintegrated in the drainage 
tank with fresh nutrient solution with a full amount of nutrients: cor-
responding to the crop nutrient uptake concentration. No additional 
NaCl was added, maintaining a concentration equivalent to that found in 
the irrigation water (0.65 mM). This expedient was adopted to prevent 
NaCl accumulation and nutrient accumulation or depletion in the 
recirculating nutrient solution thus resulting in EC levels very close, on 
average, to the initial values throughout the cultivation cycle.(Fig. 2a). 
In the autumn–winter cycle, no NaCl was added to the initial nutrient 
solution. The nutrient solution absorbed by plants was replaced in the 
drainage tank by fresh nutrient solution with 10 mM (on average). Such 
an addition of NaCl to the irrigation water was causing a progressive 
increase in EC up to a maximum value (roughly 8 dS m− 1) that was then 
restored to the initial minimum value (roughly 4 dS m− 1) after flushing 
the nutrient solution (Fig. 2b). This treatment was applied in triplicate 
and, in terms of management techniques for the refill of the nutrient 
solution, was representing an operational (commercial) management 
(Massa et al., 2020). However, in the Mediterranean commercial 
greenhouses, salt-tolerant cherry tomato varieties are commonly grown 
hydroponically with EC reaching 7.0–7.5 dS m –1 in specific stages of the 
cultivation cycle to obtain high quality berries. As matter of fact, the 
tested variety did not show difference between 4.5 and 7.5 dS m− 1 in 
previous experiments (unpublished data). 

Fig. 2. Electrical conductivity (EC) values measured daily in the recirculating nutrient solution through a portable conductimetry (i.e., pore-water EC) and volu-
metric water content (VWC) values measured through the GS3 sensor. Data correspond to the single EC and WC values for the B1, B2, and B3 treatments (4.2, 7.5, 
and 9.0 dS m− 1) in the first experimental trial (a, c) or to the average value of the three benches in the second experimental trial (b, d). DAT = days after transplant. 
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2.2. Data collection and sensors 

GS3 soil moisture sensors (METER Group Inc., Pullman, WA, USA) 
were used in this work to measure ECb, Ts, and volumetric water content 
(VWC, Fig. 2c, d) in the growing medium. The volumetric water content 
was estimated through the measure of permittivity of a magnetic field 
emitted by the GS3 sensor (Amente et al., 2000, Hilhorst, 2000). The 
calibration of permittivity for the soilless substrates was done in 
accordance with the sensor manufacturer procedures. The GS3 sensor 
was placed in the side of the rockwool slabs, in a middle position be-
tween two tomato plants as indicated in Fig. 1, data of the sensors were 
monitored and recorded using an environmental station (OPI system, 
EVJA srl., NA, Italy). 

The ECw was measured directly in the tank of circulating nutrient 
solution with a portable conductivity-meter (Hanna Instruments, 
Woonsocket, RI, USA) every day at 9:00 am throughout the two culti-
vation trials. At the same time the output of the GS3 sensor was 
retrieved. The nutrient solution was recirculated for 10 min before the 
measurements to assure that circulating nutrient solution was homog-
enized with the drainage tank. The ECw was also measured in the slab 
where the GS3 sensor was placed using the portable conductivity-meter, 
collecting the nutrient solution with a syringe (50 mL sample). The 
measure was repeated at different day time during the experiment. 

2.2.1. Pore-water EC prediction with the Hilhorst equation 
The ECw (dS m− 1) was estimated with the following equation (Hil-

horst, 2000): 

ECw =
εw • ECb

εb − εb=0
(1)  

where ECb is the bulk electrical conductivity as output of the GS3 sensor, 
εb=0 is the permittivity when ECb is equal to 0, εb is the dielectric 
permittivity of the bulk soil, εw is the permittivity of the soil pore-water. 
The last quantity can be calculated as follows: 

εw = 80.3 − 0.37 × (Ts − 20) (2) 

where Ts represents the substrate temperature measured by the 
sensor. The dielectric permittivity of the bulk soil εb was calculated as 
described by the manufacturing instructions, using the following 
equation: 

εb =
εraw

50
(3)  

where εraw is the raw data of dielectric permittivity provided by the 
instrument. 

2.2.2. Pore-water EC prediction with a GAM 
Different types of linear and nonlinear regressions were tested to 

estimate the ECw. Since the relationship between ECw, temperature, εb, 
and ECb was not linear, a GAM with ECb as the nonlinear parameter was 
selected using the package “mgcv” in R. The GAMs allow to create 
smooth functions using additive base functions; in our study, the cubic 
spline was selected as smooth type with the “shrinkage” function (bs =
“cs” in mgcv). The model was built using the same variables of the 
Hilhorst equation: 

GAMεw = ECw × ECb × Ts(ECbsmoothed with cubic spline)

2.2.3. Pore-water EC prediction with a machine learning model 
Data were divided in two datasets: “Training” and “Test” with the 

Fig. 3. Regression plot between the pore-water electrical conductivity (ECw, dS m− 1) measured in the slab and the drainage tank (blue line) during the two tomato 
experimental trials. Data represent a limited number of measurements taken during the experimental trials (roughly 25 % of total). The identity line is reported in the 
graph (black dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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proportion of 80 % and 20 %, respectively, and scaled to values from 0 to 
3 to avoid problem of variance homogeneity between the variables. The 
selected models were trained with the Training dataset and tested with 
the Test dataset to increase the generalization capacity. A machine 
learning model based on the XGBoost was built with the same param-
eters used in the GAM and the Hilhorst equation. The XGBoost algorithm 
is a decision tree boosting system usable for classification and regression 
models (Chen and Guestrin, 2016). The XGBoost model was trained with 
the Training dataset using the package “xgboost” in R, identifying the 
model parameters that better optimized the algorithm through a turning 
process. The selected model was then used with the Test dataset to 
predict the ECw. The SHAP (SHapley Additive exPlanations) values were 
used to explain how the independent variables εw, ECb, and Ts were able 
to predict the dependent variable ECw. The SHAP approach offers 
interpretability for assessing machine learning models. It relies on 
Shapley values, a concept derived from game theory, to measure the 
contribution of individual features in a predictive model (Lundberg 
et al., 2020). The SHAP values were applied with the package “SHAP-
forxgboost” in R. 

2.2.4. Evaluation of model accuracy 
The accuracy of the tested models was evaluated with different 

metrics: 1) MAE (Mean Absolute Error) that represents the distance 
between the measured and predicted values obtained by averaging the 
absolute difference; 2) MSE (Mean Squared Error) that represents the 
average quadratic distance between the measured and predicted values; 
3) RMSE (Root Mean Squared Error) that is derivate by the square root of 
MSE; 4) R2 (Coefficient of determination) that is a measure of how well 
the values fit compared to the original values, measured by the ratio of 
the residuals variance over the total variance; and 5) Equation 

coefficients, intercept and the slope of the regression line between pre-
dicted and measured data (in a perfect model would tend to 0 and 1, 
respectively). 

3. Results and discussion 

The scatter plot between the ECw values measured in the nutrient 
solution, sampled from the rockwool slabs, and the ECw values measured 
in the drainage tank, recorded during the two tomato experimental 
trials, is reported in Fig. 3. The close dispersion around the identity line 
(1:1) and the determination coefficient, explaining the 88 % of experi-
mental variability, underlined a good agreement between the ECw 
measured in substrate and in drainage tank. However, this high level of 
homogeneity was the result of the experimental conditions. The high 
leaching fraction imposed at each irrigation events and the nutrient 
solution recycling before the samplings allowed to obtain an equilibrium 
between ECw in the cultivation substrate and the drainage tank, as 
already assessed in a previous work by Massa et al. (2011). This 
experimental expedient allowed the calibration of the proposed models 
using a dataset obtained from the combination of ECw measurements 
from both rockwool slabs and drainage tanks. 

Under operational conditions, the above conditions are unusual. The 
ECw measured in the substrate can in fact differ sometimes from that 
measured in the drainage tank depending on irrigation scheduling, 
climate, plant growth stage, cultivation system, and substrate conditions 
(Massa et al., 2020, Venezia et al., 2022, Heinen, 2001). Therefore, a 
continuous EC monitoring at root zone level might improve the appli-
cation of precision fertigation management, but the simple measure-
ment ECb can be misleading due to the poor correlation with ECw 
(Fig. 4). 

Fig. 4. Regression plot between bulk electrical conductivity (ECb, dS m− 1) and pore-water electrical conductivity (ECw, dS m− 1) measured during the two tomato 
experimental trials (blue line). The identity line is reported in the graph (black dashed line). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Indeed, previous studies reported not clear relationships between the 
above variables directly measured in the substrate through GS3 sensors 
under salinity treatments (Lim et al., 2017). In agreement, under our 
experimental conditions, ECw increased 1.2 folds as a function of ECb at 
higher salinity levels; the scatter plot between the ECw and ECb values 
measured in the rockwool slabs during the two tomato trials is reported 
in Fig. 4. The unclear pattern and the low determination coefficient 
highlighted the unsuitability of a simple linear model to describe the 
relation between these two values. Therefore, results underline the ne-
cessity of a model to convert ECb directly measured in the substrate into 

ECw for the correct management of the nutrient solution in soilless 
systems. 

The ECw values predicted with the Hilhorst equation and those 
measured in the cultivation system were poorly correlated (Fig. 5a), as 
indicated by the very low value of the determination coefficient (R2 =

0.13) and high values of the main other error coefficients (Table 1). In 
particular, the ECw predicted by this equation was more accurate at low 
salinity level while a strong underestimation of data was highlighted at 
higher ECw values also showing different trends with poor prediction 
accuracy (Fig. 6). Similar unsatisfactory results were obtained by Bañón 

Fig. 5. Comparison between the predicted and the measured pore-water electrical conductivity (ECw) values (dS m− 1) using different models and the “Test” dataset. 
The linear regression plots show predicted and measured values in the slabs (grey dots) and the tanks (brown dots) using: Hilhorst equation (a), GAM (c), and 
XGBoost (e). The interactions using two levels of εw (<60 in red and > 60 in blue) are showed for: Hilhorst equation (b), GAM (d), and XGBoost (f). The equations are 
reported in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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et al. (2021) who argued that this variability could mainly be related to 
different levels of εw in the root zone. To better identify the role of εw in 
this poor correlation, this parameter was grouped in two levels: below 
and above 60 % (v/v), a threshold limit always proposed by Bañón et al. 
(2021). For εw above 60 % the slope of the linear regression between 
predicted and measured values decreased, while for εw below 60 % the 
slope coefficient increased although a very high degree of data spread 
was observed at low salinity levels. Our results confirmed that the Hil-
horst equation is a poor predictor when εw is not constant and/or higher 
than 60 % as previously reported by other authors (Bañón et al., 2021, 
Scoggins and van Iersel, 2006). 

Since the relationship between ECb and εw data was non-linear, 
GAMs could be appropriate for the simulation of ECw allowing the 

creation of models with non-linearity and smooth of the prediction. 
GAMs have been already broadly adopted to estimate EC in water basin 
(Maloney et al., 2012, Morton and Henderson, 2008) and lands (Jordán 
et al., 2004). In our study case, the variable ECb was set as non-linear. 
The presence of εw or Ts as smoothed function did not increase the 
model precision (data not shown). Therefore, a simpler model with only 
ECb as smoothed variable was selected. This model increased the accu-
racy of ECw predictions compared with Hilhorst equation (Fig. 5c) as 
highlighted by the higher determination coefficients (R2 = 0.66), and 
lower MAE, RMSE, and MSE (Table 1). Indeed, data simulated by the 
GAM followed more precisely the time course of measured data 
compared with the simulations obtained with the Hilhorst equation 
(Fig. 6). The GAM was not influenced by the level of εw, as indicated by 

Table 1 
Comparison among the accuracy metrics of the three different prediction models of pore-water electrical conductivity (ECw). Data are plotted in Fig. 5. Mean absolute 
error (MAE), root mean square error (RMSE), mean squared error (MSE), determination coefficient (R2), linear regression between predicted and measured values.  

Model MAE 
(dS m− 1) 

RMSE 
(dS m− 1) 

MSE 
(dS m− 1) 

R2 Predictions vs measurements equation 

Hilhorst equation  1.94  2.43  5.88  0.132 y = 2.1 + 0.40x 
GAM  0.826  1.027  1.06  0.668 y = 2.5 + 0.59x 
XGBoost  0.405  0.623  0.389  0.876 y = 0.8 + 0.87x  

Fig. 6. Values of pore-water electrical conductivity (ECw, dS m− 1) measured (black dots) and predicted with the different models (red lines): Hilhorst equation (a), 
GAM (b), and XGBoost (c). The observations represent all datasets (Training + Test). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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the slope coefficient in Fig. 5e. However, the linear regression analysis 
between predicted and measured data showed an intercept of 2.5 dS m− 1 

and a slope of 0.59, indicating a trend of overestimation for low values of 
ECw and an underestimation for high values of ECw (Fig. 5c) with a 
general poor performance in the simulation of the extreme values 
(Fig. 6). 

The model obtained with the XGBoost approach performed better 
than the other two models in terms of error coefficients (Table 1) and 
explained the 83 % of the experimental variability (R2 = 0.83). The 
linear regression between predicted and measured values produced an 
intercept and a slope very close to 0 and 1, respectively (Fig. 5e and 
Table 1). The XGBoost model was also able to adequately predict the 
ECw in the slabs even at extreme values of EC and εw (Fig. 5e and Fig. 6). 
Machine learning models have already been applied to predict water EC 
(Mestanza et al., 2022, Al-Mukhtar and Al-Yaseen, 2019), and the de-
cision tree-based models, such as XGBoost, are among the most used (Ali 
Khan et al., 2022, Guan et al., 2022). Compared with other tree-based 
machine learning approaches, XGBoost models have the capacity to 
exploit complex nonlinear relationships between driving variables 
thereby preventing model overfitting and leading to more generalizable 
models (Jia et al., 2019). 

The SHAP values for the XGBoost model were calculated allowing to 
observe the influence of each variable in every sample of our dataset 
(Fig. 7). For high values of ECb and εw (color tending to purple), high 
correspondent outputs were observed. On the contrary, a drop in the 

output values around 20 ◦C was observed for Ts. Despite SHAP values are 
capable to explain complex model such as XGBoost, this result did not 
imply that Ts directly increased or decreased the ECw, but rather that the 
probability of finding ECw with low values was higher when Ts was close 
to 20 ◦C. In other words, the SHAP coefficient showed correlation but 
not causation (Han et al., 2022, Kaur et al., 2020). In a recent work, 
Mestanza et al. (2022) found that machine learning models, such as 
XGBoost, were the best models to predict extreme soil EC in term of 
RMSE and MAE, while GAMs were accurate only at low EC levels (0–4 dS 
m− 1). Our results in soilless were consistent with their findings in soil. 

Cherry tomatoes are confirmed an optimal test species to calibrate 
EC models for soilless systems due to their good tolerance to high sub-
strate water content and ECb that in our experimental conditions were 
even higher than those previously described in the available literature 
(Bañón et al., 2021, Kargas and Lim et al., 2017, Kerkides, 2012). 

4. Conclusions 

To the best of our knowledge, this is the first calibration study in 
substrate (rockwool) soilless system for the determination of ECw from 
ECb, using XGBoost model, using a very large and variable range of EC in 
the root zone. This work demonstrates the strength of machine learning 
models for the ECw prediction in soilless growing condition allowing to 
overcome the low accuracy of Hilhorst equation at high εw. Results 
highlighted the possibility of monitoring continuously and with high 

Fig. 7. Graphical representation of SHAP values for the XGBoost model. In the SHAP summary plot (a) each point represents an observation for three different 
variables, the position on the X axes indicates the impact of that observation on the output value (ECw) and the value on the rows represents the total impact on model 
output. The dots color indicates the value for a particular variable, purple for high value and yellow for low value. The SHAP dependence plot (b) shows the 
contribution of each variable to the model output in a XY graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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accuracy the ECw status at root level with a bulk, low cost, EC sensor 
such as GS3. However, machine learning models such as XGBoost tend to 
be very precise in the training conditions but their applicability under 
different agronomic conditions such as a different substrate would 
require further validation and investigations. 
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