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To date, tissue biopsy still represents the mainstay for tumor diagnosis and molecular
characterization. However, it comes with several disadvantages, including the difficulty in
retrieving adequate tumor samples and performing longitudinal monitoring, together with
its inability to fully grasp both tumor heterogeneity and biological evolution [1–3]. The aim
of this Special Issue is to describe how liquid biopsy can serve in clinical practice, as well
as the advances in the development of novel liquid biopsy technologies.

Liquid biopsy is a minimally invasive procedure that has gained momentum due to its
capacity to overcome the aforementioned limitations. Blood is the most common matrix, but
alternatives such as urine or cerebrospinal fluid can be used. Tumor cells are continuously
releasing components within body fluids, such as nucleic acids, including DNA (cell-free
DNA (cfDNA) and circulating tumor DNA ctDNA) and microRNAs (miRNAs), but also
vesicles and proteins. This process occurs when cancer cells spread in the organism as
single units (circulating tumor cells, CTCs) or as clusters (CTC-c), a phenomenon not only
confined to late stages [4,5].

By analyzing such components, [especially cfDNA and cell-free RNA (cfRNA)] it is
possible to evaluate the response to a specific treatment, identify potential mechanisms
of resistance and, in perspective, modify the treatment accordingly [6–10]. However,
only a limited amount of ctDNA is obtainable from peripheral blood, and thus, a proper
preanalytical workflow is crucial [11–13]. In particular, through the simultaneous analysis
of cfDNA and cfRNA in the serial plasma samples, a direct comparison can be performed
to assess how the disease burden changes over time and understand how it is responding
to the treatments [13].

Moreover, changes in disease biology and the onset of mechanisms of resistance can
derive not only from genomic-based alterations, but also from epigenetic and transcrip-
tomics changes that can take place in the early stages of the disease [14,15]. Such events
can be described through the use of several liquid biopsy tools and can facilitate both
disease diagnosis and treatment decision making [10,16,17]. In particular, DNA methyla-
tion patterns are organ specific and appear to be feasible biomarkers to support diagnostic
imaging [15,17]. As a matter of fact, in metastatic colorectal cancer (mCRC), a RAS mutation
can become undetectable due to disease progression or because of a decrease in ctDNA
shedding. In this scenario, the use of a specific methylation panel was found to be helpful
in guiding the differential diagnosis. This finding is of great clinical importance, since
patients with mCRC switching to a RAS wild-type phenotype could be candidate for an
anti-EGFR-based therapy at progression [18].

Liquid-biopsy-based clinical diagnostics have gained an increasing importance in
recent years, alongside the emergence of targeted therapies.

Approximately 15% of advanced NSCLC present with activating mutations in EGFR,
which can be targeted by tyrosine kinase inhibitors (TKI) [19]. Liquid biopsy can be
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employed not only to determine the presence of activating EGFR mutations in treatment-
naïve patients for which the tissue sample is insufficient or inadequate for the molecular
analysis, but also in patients with a known EGFR mutation, after disease progression to
first- or second-generation TKIs, to identify the T790M resistance mechanism [20]. The
identification of EGFR mutations is also crucial for the management of early stage NSCLC
patients that can be candidates for adjuvant therapy with the 3◦ generation TKI Osimertinib.

The search of cell-derived elements through liquid biopsy can also help to identify
cases of disease recurrence, as shown for sarcomas presenting with EWSR1-associated
translocations [21]. This is a field of research that is also being explored in early stage breast
cancer (eBC) and early stage CRC (eCRC).

Aside from ctDNA, miRNAs are also promising blood-based biomarkers. Circulating
miRNA signatures have been found in the plasma of patients with lung cancer, and a three-
miRNA signature (mi-R-16-5p, miR-92a-3p and miR-451a) has been found to be associated
with the modulation of major signal transduction pathways in lung cancer, including EGFR,
K-RAS and PI3K/AKT [22].

Extracellular vesicles (EVs) are membrane-bound nanoparticles containing proteins
and nucleic acids, including mRNA, miRNA and non-coding RNA. A recently published
study investigated the potential use of a targeted RNA sequencing panel to evaluate tissue
and plasma samples from glioblastoma multiforme (GBM) for RNA fusion transcripts.
The fusion transcript FGFR3-TACC3 was detected in both tissue and plasma samples,
and its longitudinal evaluation suggested the feasibility of plasma-based RNA fusion
monitoring [23]. EVs can, moreover, remodel the tumor immune microenvironment (TME)
and modulate the crosstalk among cancer cells, immune cells and other cells encompassing
the TME. Analyzing the elements enclosed in circulating EVs is a promising strategy to
better understand the dynamics of tumor immune regulation, and it could serve as a
tool for liquid biopsy in cancer immunotherapy. In NSCLC, for example, the reduced
presence of endothelial-derived EVs in blood is related to response to immune checkpoint
inhibitors [24]. Similar to other cancer-derived elements, EVs can be found not only in
peripheral blood, but also in other matrices. For example, urinary-derived EVs and urinary
bladder cancer (UBC) organoids (i.e., ex vivo mini tumors grown from a patient’s tumor
fragment) have been found to be predictive biomarkers of response to chemotherapy [25,26].

CTCs and CTC-c have been regarded as the potential unit for metastatic spreading [27,28].
CTC-c are extremely rare, representing a challenge for their deployment as liquid biopsy
and prompting for the development of detection systems with greater sensitivity and
specificity. The CellSearch system is the gold standard for the enumeration of CTCs in a
standardized and validated manner [29]. However, due to its dependency on the epithelial
cell adhesion molecule (EpCAM), this system can identify only cancer cells with epithelial
phenotypes [29].

However, metastatic spreading is related to epithelial-to-mesenchymal transition, and
mesenchymal CTCs are more invasive, chemo resistant and have been associated with
reduced survival outcome.

Consequently, the development of non-EpCAM-based assays capable of identifying
also mesenchymal CTCs represents a major challenge. In this regard, alternative methods
capable of extracting CTCs from peripheral blood based upon their size and deformability
with respect to leukocytes have been successfully evaluated. Supporting evidence also
comes from another study in which the use of a size-based tool enabled the detection of CTC-
c in patients with eBC, as well as in cases classified as CTC-c negative by CellSearch [4,5].

CTC-c are more frequently observed in eBC rather than in MBC, thus sustaining the
hypothesis that cancer cell dissemination is a phenomenon that takes place much earlier
than clinically detectable metastases. Notably, when comparing DNA alterations in the
primary tumor and in CTC-c, 30–70% correspondence was observed. However, CTC-c were
also characterized by exclusive alterations, suggesting either subclonality of the primary
tumor or shedding from occult micrometastases [30].
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The role of CTCs has also been investigated in lung cancer. Longitudinal changes in
PD-L1 expression by CTCs were assessed in patients with advanced NSCLC treated with
nivolumab. After 8 weeks of therapy, the ratio of PD-L1 positive CTCs was reported to be
significantly lower than at baseline. PFS was, moreover, increased in patients with a higher
PD-L1 positivity rate. This suggests that even though it may be important that the PD-L1
positivity rates after the beginning of the therapy become lower than the ones reported
at baseline, it is preferable to have a few cancer cells that show a persistent response to
the therapy. Furthermore, at 6 months from the beginning of the therapy, higher PD-L1
positivity rates were found to be predictive of the long-term efficacy of PD-1 blockade, in
contrast with that which was observed in the early phase of treatment [31]. Moreover, CTCs
collected from peripheral blood samples were employed to analyze protein expression
and evaluate drug sensitivity, which was ultimately found to correspond with the clinical
outcome [32].

Further, CTC detection is associated with earlier cancer metastasis and reduced sur-
vival outcomes in patients with early pancreatic cancer and with increased risk of death in
patients with metastatic castration resistant prostate cancer [33,34].

Liquid biopsy comprises several technologies that can provide additional data on
cancer biology, treatment resistance and survival outcome. The integration of its multipara-
metric features with tissue biopsy will ultimately lead to new opportunities for personalized
medicine.
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