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Abstract
Purpose  To distinguish functioning from failed filtration blebs (FBs) implementing a deep learning (DL) model on slit-lamp images.
Methods  Retrospective, cross-sectional, multicenter study for development and validation of an artificial intelligence classification 
algorithm. The dataset consisted of 119 post-trabeculectomy FB images of whom we were aware of the surgical outcome. The ground 
truth labels were annotated and images splitted into three outcome classes: complete (C) or qualified success (Q), and failure (F). 
Images were prepared implementing various data cleaning and data transformations techniques. A set of DL models were trained 
using different ResNet architectures as the backbone. Transfer and ensemble learning were then applied to obtain a final combined 
model. Accuracy, sensitivity, specificity, area under the ROC curve, and area under the precision-recall curve were calculated to 
evaluate the final model. Kappa coefficient and P value on the accuracy measure were used to prove the statistical significance level.
Results  The DL approach reached good results in unraveling FB functionality. Overall, the model accuracy reached a score 
of 74%, with a sensitivity of 74% and a specificity of 87%. The area under the ROC curve was 0.8, whereas the area under 
the precision-recall curve was 0.74. The P value was equal to 0.00307, and the Kappa coefficient was 0.58.
Conclusions  All considered metrics supported that the final DL model was able to discriminate functioning from failed FBs, 
with good accuracy. This approach could support clinicians in the patients’ management after glaucoma surgery in absence 
of adjunctive clinical data.
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Key messages

What is new:

What is known:

The slit lamp assessment is the most commonly adopted method to evaluate the filtration bleb (FB) 

functionality after glaucoma surgery, by using clinical grading scales. 

The evaluation of silt lamp images of filtration bleb can be challenging without knowing IOP, and a method 

for objectively assess all the biomicroscopic parameters is lacking. 

Artificial intelligence techniques are able to distinguish slit lamp images of functioning from failed filtration 

blebs without knowing the IOP values.  

Deep learning could support clinicians in the patients’ management after glaucoma surgery in absence of 

adjunctive clinical data 
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fields of ophthalmology, including glaucoma [13]. Neverthe-
less, the application of AI in glaucoma surgery is still very 
limited, with only one study that used deep learning (DL) 
(Mask R-CNN) to evaluate FBs after trabeculectomy. This 
study found that DL is promising in the FB monitoring after 
surgery but limited its interest in the evaluation of just one 
parameter, the bleb size, and its correlation with IOP [14].

The aims of this preliminary present study were to 
exploit AI techniques to distinguish slit lamp images of 
functioning from failed filtration blebs, by designing and 
implementing an image classification system. We devel-
oped a DL model based on a convolutional neural net-
work (CNN) using a ResNet architecture [15]. To improve 
the system accuracy, a complex operational pipeline was 
defined, starting from data transformation techniques to the 
transfer learning (TL) approach [16, 17]. Finally, to reach 
higher performances and to obtain more robust results, 
different models of analysis were combined by using the 
ensemble learning (EL) [18].

Methods

Patients

This was a retrospective, cross-sectional, multicenter Italian 
study. It was carried out at the University of Chieti-Pescara, 
University of Pisa, and the Glaucoma Unit of the IRCCS 
Fondazione Bietti (Rome) for patients’ enrollment, and in 
collaboration with the Datamantix S.r.l. Artificial Intelli-
gence Company, Udine, Italy, for data analysis. We collected 
119 color pictures of 12 o’clock located FBs from Caucasian 
patients who underwent FS and of whom we were aware of 
the outcome. FB pictures were provided from the three glau-
coma centers of each research unit (50 images from Pisa, 40 
from Chieti-Pescara, and 29 from Rome), at the 12th month 
follow-up.

All patients provided written informed consent prior to 
enrolment, after explanation of the purpose and possible 
consequences of the study. The study was prospectively 
approved by the Institutional Review Board of the Depart-
ment of Medicine and Ageing Science of the University ‘G. 
d’Annunzio’ of Chieti-Pescara, Chieti, Italy and adhered to 
the tenets of the Declaration of Helsinki.

Inclusion criteria for patients were the following: 
age ≥ 18 years, a diagnosis of open angle glaucoma, an 
uncontrolled IOP (> 21 mmHg) under maximal tolerated 
medical therapy and/or progression of the visual field (VF) 

Keywords  Glaucoma · Filtration surgery · Filtration bleb · Bleb functionality · Surgical outcome · Artificial intelligence · 
Deep learning

Introduction

To date, filtration surgery (FS) remains the most performed 
and effective approach to lower intraocular pressure (IOP) in 
patients with uncontrolled glaucoma. Among available options, 
trabeculectomy still represents the gold standard procedure.

FS works by creating an intrascleral fistula between the 
anterior chamber and subconjunctival space, which leads to the 
elevation of the conjunctiva at surgical site and the formation 
of a filtration bleb (FB). The aqueous humor (AH) flows into 
bleb spaces and then is removed by several routes [1, 2]. There-
fore, FB represents the most critical structure after surgery since 
the long-term success of the procedure depends on its correct 
development and functionality [3]. Because of this, the accurate 
evaluation and monitoring of the bleb morphology and func-
tion during the postoperative period represent the most cru-
cial steps to reveal in time the earliest signs of surgical failure 
[4]. Though imaging systems such as anterior segment optical 
coherence tomography, ultrasound biomicroscopy, or in vivo 
confocal microscopy can significantly improve the FB evalu-
ation by providing reliable hallmarks of filtration ability along 
the entire surgical pathway, they require a significant expertise 
in the execution and interpretation, are time consuming, and not 
cost effective [5–7]. Therefore, the slit lamp assessment remains 
the most commonly adopted method to evaluate the FB over 
time. Different clinical grading scales have been proposed in 
the attempt to standardize the FB assessment at slit lamp and 
to improve the definition of surgical outcome [8–12]. These 
scales consider some morphological FB features such as eleva-
tion, height, vascularization of the central and peripheral bleb 
portions, and the AH leakage, to distinguish functioning from 
failing or failed cases. Overall, the interobserver agreement of 
these scales was reported good to excellent [10–12]. Neverthe-
less, when considering each single bleb feature, some of them 
present high interobserver agreements, whereas others present 
low to moderate agreements, or fail to show satisfying levels 
of agreement [10–12]. In addition, the evaluation of photo-
graphs can be challenging for untrained ophthalmologists, with 
consistency being considerably better between experienced 
observers compared to inexperienced graders [12]. Therefore, 
a method to objectively and accurately assess all the biomicro-
scopic parameters that are useful to define the FB functionality 
is still lacking. This is of crucial importance to correctly define 
the FB functionality without knowing the IOP value, as could 
be the case of a remote image evaluation for telemedicine.

In the last years, artificial intelligence (AI) proved valu-
able in improving medical imaging interpretation for screen-
ings, precision medicine, and risk assessment in different 
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damage confirmed on three consecutive examinations (Hum-
phrey field analyser (HFA) II 750; Carl Zeiss Meditec Inc., 
Dublin, CA, USA (30–2 test, full threshold)) before sur-
gery; history of fornix based mitomycin-C (0.02%, 2–3 min) 
augmented trabeculectomy, performed by one surgeon for 
each Center (Chieti-Pescara: LM; Pisa: MF; Rome: FO); 
absence of major intra or postoperative complications. 
Laser suture lysis, bleb needling, and the postoperative use 
of antimetabolites were allowed to promote bleb filtration. 
Trabeculectomy was considered successful when a third 
reduction of the baseline IOP, with IOP values ≤ 18 mmHg 
with or without the use of IOP lowering medications, was 
achieved at 12 months after surgery. Three different outcome 
classes were defined at the 12th month: (i) complete success 
(C), which is success without the use of medications; (ii) 
qualified success (Q), which is success with supplemental 
medical therapy; and (iii) failure (F).

Image analysis

Bleb pictures were taken in different shooting conditions by 
using the SL 9900 ELITE slit lamp (CSO, Costruzione Stru-
menti Oftalmici, Firenze, Italy), with the eye in downward 
gaze to expose at best the surgical site, and gently elevating 
the upper eyelid. Figure 1 shows representative FB images 
of the three outcomes classes, extracted from the collected 
set, taken in different shooting angles and light exposures.

By using an approach based on AI, it is possible to auto-
matically classify a whole image of a FB and get a qualita-
tive response. To proceed with this approach, images require 
an annotation process which has the purpose of assigning 
a label to each of them, according to the outcome classes. 
These labels identify the classification assigned to the surgi-
cal outcome, following the three classes C, Q, and F, and are 
given by experienced glaucoma surgeons. In particular, the 

images were randomly splitted into several groups, and each 
of them has been analyzed by glaucoma specialists (LB, 
CP). LB and CP manually classified each picture consider-
ing the image characteristics and other clinical data such as 
the IOP, the nature and timing of surgery, and the post-sur-
gical therapy (if any). After this first annotation, the images 
were reviewed by other experienced glaucomatologists (LA, 
MF, FO) to consider different experts' opinions and avoid 
misclassification of data. The review of the annotations 
by various specialists represents a crucial step in the DL 
process since truth labels are essential both in the learning 
phase and in the evaluation of the model.

To carry out a qualitative analysis, an image classifi-
cation task was therefore defined. Problems related to the 
image classification process are currently solved using DL 
techniques, a branch of AI which includes the deep neu-
ral networks, and in particular, a variant of them designed 
specifically for image analysis tasks, called CNN. Among 
the different architectures of these networks, there is a very 
effective one in the classification of the whole image, which 
is based on residual block approach and is called ResNet 
[15]. This network can be implemented in different variants 
based on the number of layers.

By configuring different numbers of channels and 
residual blocks in the module, it is possible to create dif-
ferent ResNet models, from the lighter 18 layers, called 
ResNet-18, to the deeper 152-layer, called ResNet-152. 
Figure 2 reports the general architecture of ResNet-101 
with the aim to show the general structure of the layers that 
make up the network, regardless of the number of those 
used. Figure 3 shows the detailed logic of a residual learn-
ing block that characterizes this type of network with the 
shortcut connections.

In this study, three different ResNet architectures were 
implemented to perform the experiments: ResNet-18, 

Fig. 1   Slit lamp images of the three groups. A Complete success (C). 
FB appears well-elevated and extended on the ocular surface, with 
indistinct margins and with a multi-cystic feature in the juxta-limbal 
side; the bleb-wall is hypo-vascularized and transparent. B Qualified 
success (Q). FB appears well-elevated on the ocular surface, shows 
a circumscribed shape (probably encapsulated in part) with relatively 

defined margins, and has a normal vascularization; the bleb-wall 
color indirectly indicates the presence of a thick bleb-wall. C Failure 
(F). FB appears flat, with a dense, and irregularly hyper-vascularized 
bleb-wall, and with indistinct margins; the entire ocular surface is 
hyperemic, with eyelids showing signs of Meibomian gland dysfunc-
tion
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ResNet-34, and ResNet-50. This choice is due to address 
the tradeoff between network capacity and dataset size. 
Usually, these models outperform by a significant margin 
in case the network is deeper and more complex. At the 
same time, if the dataset is small, a deep architecture can 
cause overfitting problems and provide poor generaliza-
tion. For this reason, since the number of images collected 
was limited, we did not consider ResNet architectures with 
more than 50 layers. The network capacity of smaller 
ResNet is sufficient to capture the essential image charac-
teristics to achieve the classification goal.

However, some critical issues made the network train-
ing process complicated: (i) the limited number of anno-
tated images to train the system on; (ii) the presence of 
distracting elements within the images, such as fingers 
and face masks; (iii) the high variability of conditions in 
which the studied phenomenon occurred; (iv) the pres-
ence of adjacent classes, that may show up with minimal 
differences between them, which make hard the FB dis-
crimination even by expert glaucomatologists; and (v) the 
presence of unbalanced outcome classes, with 47% of C, 
34% of Q and 19% of F.

Therefore, countermeasures were adopted to limit as 
much as possible these criticisms. In particular, we defined 
an operational pipeline as follows: (i) data preparation: the 
collected raw data are transformed into a form that is suit-
able for further processes and that can improve the model 
results; (ii) transfer learning: this technique is particularly 
highly effective when faced with domains with limited data, 
such as the medical one; and (iii) ensemble learning: by 
combining multiple models it is possible to reduce the high 
variance and bias of a single classification model. Figure 4 
depicts the whole pipeline from data preparation to the 

training of a set of models, and to the combination of mod-
els in a final one.

All experiments were performed on a workstation spe-
cific for AI purposes, based on the NVIDIA v100 GPU 
with 32 GB memory VRAM configuration. All the phases 
were developed using Python v3.10 with PyTorch v1.12.1 
as backend, to train ResNet models exploiting the best mod-
ern practices, while different open-source Python libraries, 
such as OpenCV, scikit-learn, and Matplotlib, were used to 
implement the data preparation phase, the evaluation of the 
models and the final analysis of the results.

Data preparation

The primary purpose of data preparation is to ensure that the 
raw data is thoroughly prepared for processing to improve 

Fig. 2   ResNet-101 architecture. Image generated using PlotNeuralNet open-source tool (https://​github.​com/​Haris​Iqbal​88/​PlotN​eural​Net)

Fig. 3   Residual learning: a building block. Image from the original 
ResNet paper (He K, Zhang X, Ren S, Sun J. Deep Residual Learning 
for Image Recognition. In CVPR. 2016;770–778)

https://github.com/HarisIqbal88/PlotNeuralNet
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the accuracy and consistency of the analyses. In the follow-
ing sections, we describe the three steps defined to apply 
cleaning, transformation, and augmentation processes to 
data, to address the critical issues.

Data cleaning

Since images were taken in different shooting conditions, the 
brightness levels of pictures can be very different. Moreo-
ver, since the dataset is very small, few images can strongly 
affect the model evaluation and the final results. Therefore, 
a data cleaning process was necessary. Deep analysis has 
been conducted to identify the images that were too dark or 
too blurry, and that can neither help the model to improve 
the classification task, nor be used in the test set to evalu-
ate the prediction. Finally, 9 images were removed from the 
original collection, ending up with a total of 110 samples to 
train, validate and test the AI system. On the other hand, we 
decided to keep in the dataset all the other images that do 
not exhibit extreme lighting conditions, to enhance the per-
formance of the model. In fact, one of the best practices for 
building a reliable dataset is to include a sufficient number 
of images representing the subject of interest in different 
shooting conditions.

Data transformation

To improve the performance of an AI model trained on 
images, transformations to the images contained in the 

dataset are commonly applied. This step will make the sub-
ject of interest more evident, acting on colors, brightness, 
or even removing parts of the image. Images may contain 
many distracting elements that can negatively affect the 
model classification. Basically, these elements can cre-
ate wrong biases, since the ResNet architecture can start 
to deeper analyze the distracting elements to classify the 
surgery outcome, instead of the FB area. Moreover, CNNs 
usually require identical image sizes to work properly. Due 
to these reasons, all the images were cropped into squares of 
size 1024 × 1024 pixels, cutting the distracting elements, and 
centering the picture on the salient area for the classification. 
A deep neural network is computationally expensive; there-
fore, using squared images and keeping image size as low as 
possible is an adequate strategy. We defined a good tradeoff 
between image resolution and size to see the graphical infor-
mation necessary for the prediction task and to guarantee 
addressable training processes.

Data augmentation

To increase the amount of data, a set of techniques to gen-
erate artificial images can be applied. All these strategies 
fall within the data augmentation phase. This process helps 
the improvement of the model accuracy, adding more sam-
ples in the training set, and preventing overfitting. Differ-
ent types of transformations can be applied to the original 
samples. In this study, geometric transformations (clockwise 
and anti-clockwise rotations), per-pixel transformations 

Fig. 4   The operational pipeline of the qualitative analysis of func-
tional filtering bleb. The upper part of the figure reports the support-
ing task defined for the transfer learning technique. The lower part of 

the figure describes the pipeline for the classification of FB function-
ality, where the networks are initialized with the knowledge obtained 
from the supporting task
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(changes in brightness, contrast, saturation, and color lev-
els), and destructive transformations (increase blur level) 
were applied to the starting dataset. Therefore, using various 
combinations of these transformations, we generated a set 
of different datasets to run several training processes and 
compare the performance, with the purpose of highlighting 
the differences caused by the diversity of the images.

The experiments conducted prove that the data prepa-
ration phase has a significant impact on final results. In 
particular, both data cleaning and data transformation 
processes improved the learning of the model and the 
accuracy of the predictions. On the other hand, data aug-
mentation techniques did not considerably contribute to 
solve criticisms, since results obtained after these transfor-
mations were equivalent to the baseline models that used 
original data. On this basis, the first two phases described 
in this section have been applied to the dataset before pro-
ceeding with the training and the evaluation phases, avoid-
ing data augmentation.

Transfer learning

Transfer learning helps data scientists to take a blended 
approach from different models to fine-tune a solution to 
a specific problem. The sharing of knowledge between two 
or more different models, transferring knowledge from one 
to another, can result in a much more accurate and power-
ful model. In the following steps, we describe a dataset and 
a task that are different from the main aim of the study, 
but correlated and relevant in terms of image features. This 
allows us to get a supporting AI model and exploit the 
acquired knowledge to run the training of a new one on our 
main task, starting on a more robust basis.

Supporting task and dataset

In this study, the images collected are taken using a specific 
slit lamp. The classification task is difficult since it consid-
ers these specific types of images and there are no similar 
categories in the known public datasets used to pre-train 
the CNNs. The general idea is to solve a similar task using 
comparable images, training a network, and then using the 
obtained knowledge (the neural network weights) to train a 
different network with the aim of classifying the surgery out-
come. Figure 4 depicts this process. By using a web scraping 
technique, a specific dataset has been created. In particular, 
the following keywords were selected to perform the search 
on Google: “glaucoma filtration bleb”, “glaucoma filtering 
bleb”, “filtering bleb”, “glaucoma”, “conjunctival bleb”, “fil-
tration surgery”, and “trabeculectomy”. Because we were 
not aware of IOP values and of the use of IOP lowering 
medications, FB images constituting the supporting dataset 
were evaluated according to the Indiana Bleb Appearance 

Grading System (IBAGS) [8]. The IBAGS is a standard-
ized and objective system for grading of FB anatomy and 
proved valuable and reliable over other grading scales [8, 
10]. It contains a set of photographic standards for grading 
bleb height (H), extent (E), vascularity (V), and leakage with 
the Seidel test (S). Since images constituting the supporting 
dataset were not directly taken at slit lamp, the feature S was 
not considered.

All the images collected were analyzed to remove the 
not relevant ones and they were labeled by experienced 
glaucomatologists (LB, CP) according to the IBAGS scales 
of H, E, and V. The supporting dataset, which includes a 
total of 147 samples, has been used to train a ResNet model 
for three classification tasks, with the height (H0–H4), the 
extent (E0–E4), and the vascularity (V0–V4) intervals as 
target classes, respectively, to explore which model could 
be the best candidate to act as supporting model. Since the 
best results have been achieved for the classification of con-
junctival vascularity, the model trained to solve this task has 
been selected as the base for the next steps.

Training the supporting model

Since we wanted to exploit the potential of different ResNet 
architectures, we trained more than one model. In particu-
lar, ResNet-18, ResNet-34, and ResNet-50 have been trained 
using a training set of 118 images, and a validation set of 
29 samples. In all the experiments carried out, the image 
size considered has been 1024 × 1024 pixels, and no other 
transformations have been applied.

Finally, the weights of these networks have been saved to 
initialize the training processes for the main task.

Ensemble learning

Ensemble learning refers to algorithms that combine the 
predictions from two or more models to obtain better pre-
dictive performance. We adopted this approach because 
with more than one ResNet model we can leverage the 
capabilities of the different network variants described in 
previous sections and elaborate a final classification model 
by combining results. In such a way, we simulated a sort of 
request for an opinion to ophthalmologists with different 
expertise.

Ensemble settings

To improve the robustness and the capacity of generalization 
of the AI system, the predictions of three different models have 
been combined using an ensemble technique. In particular, the 
soft voting ensemble method has been applied, considering the 
same weight for each classifier since there are no reasons to set 
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different importance levels. Therefore, the final target label is 
defined as the class with the greatest sum of weighted confi-
dence levels.

Training the models

Once the data preparation techniques and the overall work-
flow have been defined, the final models have been trained. 
The whole dataset has been split randomly into a train-
ing set (60%), a validation set (20%), and a test set (20%). 
Thanks to the transfer learning approach, the acquired 
knowledge of the supporting task has been used to initialize 
a more robust classifier. Moreover, the parameter optimi-
zation and the fine-tuning phases have been conducted to 
achieve a great performance in the FB functionality clas-
sification. Therefore, the three networks have been trained 
using different key parameters. The number of epochs for 
the ResNet-18, ResNet34, and ResNet-50 have been set 
to 25, 15, and 30, respectively, while the batch size has 
been equal to 16 in all cases. As for supporting task mod-
els, the three networks have been trained using an Adam 
optimizer and the CrossEntropyLoss as loss function. We 
found the more appropriate learning rates for the mod-
els and the training phases have been implemented using 
the technique of discriminative fine-tuning, based on dif-
ferent learning rates for different layers groups [19, 20]. 
In particular, we considered starting values in the range 
[1e-6,1e-4]. Moreover, we exploited the stochastic gradient 
descent with warm restarts (SGDR), to make the training 
processes more efficient [21]. Finally, the predictions of 
the three resulting networks were combined using the soft 
voting ensemble technique.

Evaluation and statistical analysis

Student t test and chi-square test were used to evaluate pre-
operative demographic data and gender differences among 
groups. To evaluate the AI system, a set of metrics were 
calculated [22, 23]. Moreover, to provide more details about 
model performance, we illustrate additional metrics for each 
target class on the test set.

In particular, we show accuracy, sensitivity, specific-
ity, area under the ROC curve (AUC), and area under the 
precision-recall curve (AUPR). Since the classes were 
unbalanced, the overall measures were computed using the 
micro-average calculation to aggregate all the categories’ 
contributions.

Some statistical measures, such as the P value and the 
Kappa coefficient, have been examined using the confusion 
matrix information. In particular, a one-sided binomial test has 
been computed to evaluate whether the overall accuracy rate is 
greater than the rate of the largest class, to see if the accuracy is 
better than the no information rate. Furthermore, the statistical 
coefficient Kappa allowed us to measure inter-rater agreement 
for categorical items. It is generally thought to be a more robust 
measure than simple percent agreement calculation, as it con-
siders the possibility of the agreement occurring by chance. 
Both P value and Kappa are considered helpful for a dataset 
with unbalanced classes, as in this study [24].

Results

One hundred and ten images were considered in the analy-
sis: C: 48 cases (44%), Q: 39 (35%), and F: 23 (21%). The 
demographic and clinical characteristics of patients and the 
three outcome classes are reported in Table 1. Group F had 
a significantly higher mean number of postoperative bleb 
manipulation procedures compared to Groups C and Q dur-
ing the 1st year after surgery (3.4 ± 0.5, 1.1 ± 0.2, 1.9 ± 0.6, 
respectively; p < 0.05).

Different metrics were analyzed to evaluate the model, 
with results computed on the test set reported below. Con-
sidering the total of correct predictions against the whole 
population of test cases (# true positives/# total images), 
we reached an overall accuracy score of 74%. Since we 
are interested to show the performance on three outcome 
classes, we computed the accuracy for each of them ((# 
true positives + # true negatives)/# total images). We 
obtained a score of 87%, 78%, and 83% for classes C, Q, 
and F, respectively. All these values appear good, consid-
ering the specific task of the study and the limits of the 
collected dataset.

Table 1   Preoperative 
demographic data of the three 
outcome classes

SD, Standard deviation; IOP, intraocular pressure; MD, mean defect
*p < 0.05 vs. Q; † < 0.05 vs. C

Group No Age 
(years ± sd)

Sex (M/F) IOP 
(mmHg ± sd)

MD (db ± sd) Time on medical therapy 
(months ± sd)

C 56 68.26 ± 14.8 30/26 29.03 ± 6.51  − 3.85 ± 2.54 84.24 ± 23.31
Q 40 70.3 ± 10.4 22/18 26.7 ± 3.1  − 5.2 ± 1.88 77.31 ± 19.12
F 23 69.69 ± 14.6 10/13 24.53 ± 6.58†  − 4.66 ± 3.11 96.12 ± 32.64 *
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Moreover, the classification achieved 74% sensitivity and 
87% of specificity. As expected, the category with the worst 
value of sensitivity was the class F, due to the limited num-
ber of failures in the original dataset, and the best category 
was the class C, thanks to the higher number of images 
in the training set. AUC and AUPR values, 0.8 and 0.74, 
respectively, highlight how the AI system can discriminate 
between the three outcome classes (Figs. 5 and 6). Figure 7 
shows the confusion matrix, which reports the results of all 
the predictions against the actual values assigned during the 
annotation phase.

Table 2, which reports other important metrics per each 
target class, further documents the satisfactory quality of 
the system. P-value was equal to 0.00307 (P < 0.05) and the 
Kappa coefficient was 0.58, and these metrics have been 
computed as described in the Evaluation and Statistical 
Analysis section. Kappa value is considered “Intermediate to 
good” for the Fleiss’ benchmark, and “Moderate” for Landis 
and Koch’s and Altman’s benchmarks [25–27]. Thus, both 
confirm the statistical significance of the final model.

Moreover, to highlight the main issues of the classifi-
cation model, we conducted a qualitative analysis of FB 
images that the AI system misclassified with the highest 
error (i.e., top losses images). Figure 8 shows some of these 
images, which appear difficult to classify, given the particu-
lar characteristics of FBs. Reasons underlying this arduous 
classification may depend on the fact that parameters char-
acterizing the FB functionality are in part bidimensional, 
such as vascularization or surface extension, in part three 
dimensional, such as the height, and in part dynamic, such 
as the aqueous humor leakage.

Discussion

The correct interpretation of the FB function in the routine clini-
cal practice, can be sometimes challenging without knowing 
IOP, even for glaucoma surgeons with a consolidated expertise.

In the present preliminary study, we developed a DL 
approach to analyze slit lamp images of FBs according to 
their known outcome, with the aim to distinguish function-
ing from failed cases. Even though the number of FB images 
contained in the dataset was limited and there were three target 
classes that further challenged the analyses, the final DL model 
reached good results for all the metrics that were considered.

Fig. 5   ROC curves Fig. 6   Precision-recall curves

Fig. 7   Confusion matrix for the test set data
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In more detail, when considering the overall accuracy 
and the accuracy for each class, the DL model was able 
to correctly distinguish successes from failures, properly 
classifying the three outcome classes in two-third of cases 
(74%). When the accuracy was computed per each single 
outcome class, the model reached more than four fifths of 
correct classifications for the C (87%) and F class (83%), 
and more than three fourths for the Q class (78%). Thus, as 
evident, excellent results were obtained especially for suc-
cessful cases, either for the class C or Q. On the other hand, 
since the outcome class F was less represented, measures 
of the model were less performant, with AUC, AUPR, and 
F1-score values lower than 20%, 32%, and 36%, respectively, 
compared to outcome class C. Nevertheless, the accuracy 
and the specificity of the class of failures were excellent 
(83% and 94%, respectively), indicating that the model learnt 
the major critical features that characterize failures.

When looking at sensitivity, the system achieved good 
performance in classifying classes C and Q, whereas it was 
slightly confused for the class F, as highlighted by met-
rics shown in Table 2. Regarding specificity, high values 
confirmed high true negative rates for each class. All these 
results were achieved thanks to the design of a complex 
operational pipeline that combined several advanced tech-
niques, which permitted advancements compared to simpler 
applications of AI with CNN in glaucoma or other ocular 
diseases [28, 29].

Therefore, in a general critical interpretation, we may 
state that this pioneering study is particularly promising in 
the FB assessment since one may expect that measures could 
further improve by adding more samples to the dataset.

To date, just a previous study used DL to investigate FBs 
after glaucoma surgery, but in a less articulated way and 
focusing the attention just on the bleb size [14]. In this study, 
Wang et al. analyzed successful FBs without discriminating 
between complete or qualified success, and without con-
sidering failures. Thus, the authors were unable to provide 
information on the ability of the DL model in discriminat-
ing complete from qualified successes, and successes from 
failures, which is the main clinical need in the post-surgical 
follow-up of patients.

In comparison with the extremely poor literature that 
explored this topic, our approach presents some important 
strengths.

First, we addressed a more complex task by designing and 
implementing an AI system which was able to make quali-
tative analysis on the whole FB image but was also able to 
provide some indirect geometric information derived from 
quantitative parameters (size, height, surface). Though AI 
cannot directly yield quantitative data since it looks at the 
whole image, the evaluation of pixels characteristics (such as 
color and position) constituting the FB image may provide 

Table 2   Summary of the most important metrics per each target class

AUC​ Area under the ROC curve; AUPR area under the precision-
recall curve; FPR false positive rate; FNR false negative rate; TPR 
true positive rate; TNR true negative rate

Metric Class C Class Q Class F

Accuracy 0.86957 0.78261 0.82609
AUC​ 0.87308 0.775 0.67222
AUPR 0.85909 0.70833 0.53333
F1-score 0.85714 0.70588 0.5
Adjusted F-score 0.89194 0.78635 0.61409
FPR 0.15385 0.2 0.05556
FNR 0.1 0.25 0.6
TPR (sensitivity) 0.9 0.75 0.4
TNR (specificity) 0.84615 0.8 0.94444
Precision 0.81818 0.66667 0.66667

Fig. 8   Examples of top loss images. A Classified as F, predicted as C. 
A dense and thick conjunctiva in the iuxta-limbal region may underlie 
a failed bleb; however, the avascularity and the features of the pos-
terior part of the bleb (conjunctiva slightly elevated and transparent) 
indicate a contained fibrosis and efficient aqueous humor filtration. 
B Classified as Q, predicted as F. Despite the presence of evident 
fibrosis and vascularization for the most part of the FB (asterisk), 

the nasal and posterior peripheral regions of the bleb present signs 
of filtration with a less vascularized, transparent, and elevated con-
junctiva (arrows). C Classified as Q, predicted as F. The predominant 
aspect of the bleb is flat and fibrotic, indicating a failure. However, at 
a deeper observation, the nasal margin of the scleral flap (arrowhead) 
is still separated from the surrounding sclera permitting in part the 
aqueous humor outflow
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additional quantitative information. Thus, three-dimensional 
features essential to evaluate the FB functionality in a more 
comprehensive way, such the bleb elevation, can be indirectly 
derived thanks to the graphical information embedded in two-
dimensional images. The good model performance led us to 
hypothesize that a significant set of features has been extracted 
during the training process. Due to the black-box nature of the 
AI systems, we have no information about this aspect which, 
therefore, should be evaluated in further studies.

Moreover, our approach allowed us to carry out analysis 
of the FB without the aid of external data or further process-
ing of parts of the image. This represents a significant aspect 
since it could open considerations on the use of the AI in 
the field of telemedicine after glaucoma surgery which, to 
date, has never been explored. As the COVID-19 pandemic 
brought to our attention, the possibility to remotely moni-
tor patients with teleconsultations represents an important 
and unmet issue in chronic diseases requiring frequent con-
trols, such as glaucoma [30, 31]. Whether our results will be 
confirmed in further larger studies, DL models could help 
clinicians in assessing FB functionality by analyzing home-
made pictures of FBs, in patients who cannot attend medical 
consultations with regularity.

Second, all the applied techniques, such as data prepara-
tion, transfer, and ensemble learning, improved the accuracy 
of the classifier and the overall robustness of the system. In 
fact, without the implementation of all the phases described 
in the pipeline, the evaluation of the classification and the 
statistical measures would have been worse. Finally, our 
model was not only a binary classification between successes 
and failures, but allowed us to distinguish among three target 
classes, thus permitting a more accurate prediction of the 
surgical outcomes. In support of this, measures showed that 
the final DL model performs well for each outcome class, 
and it is also able to distinguish adjacent categories which, 
on the other hand, represent the main reasons leading the 
model to misclassify.

This is a crucial point since our AI system misclassified 
some FB images with a higher error than the other classifi-
cations. When reviewing in detail these images, we noticed 
that they were particularly hard to classify without adjunc-
tive clinical information such as IOP, also for expert glau-
comatologists. Generally, this occurs when FBs present a 
mixed morphology in which coexist favorable and unfavora-
ble macroscopic features (Fig. 8). Some clinical features of 
the bleb-wall such as color, transparency, thickness (indi-
rectly derived from the tissue transparency), and margins 
profile, may be in certain cases not particularly defined. 
In these circumstances, the FB may concomitantly show 
characteristics of good functionality along with features 

indicating failure. Thus, since the predominant feature could 
not be easily identifiable, clinicians and, therefore, also the 
AI system, can be confused and make mistakes in interpret-
ing the bleb filtration ability.

On the other hand, we may hypothesize that other mor-
phological bleb features such as vascularization, extension 
or elevation could be better exploited by the AI system to 
correctly classify the FB functionality.

All these considerations highlight the complexity of the 
investigated task and should be intended as a strong point 
in favor of our model, since it wrongly classifies ambiguous 
images that need a deeper analysis and external patients’ 
data. Nevertheless, since the black box nature of AI present 
significant limitations, the explainability of the present AI 
system should be investigated in future works.

The present study, since is a preliminary investigation 
on a new topic, presents some significant limitations. As 
detailed in the methods section, there were some critical 
issues that complicated the AI learning process. However, 
the particular approach (Fig. 4) and the applied techniques 
we adopted, improved the final performance of the model 
compared to baseline experiments permitting to solve in 
large part criticisms.

As already stated, the number of images in the dataset 
was limited, this generating critical issues both in the train-
ing and in evaluation steps. In particular, the lack of an 
optimal number of images hindered learning all the useful 
details needed for the classification, leading to a poor gen-
eralization. Moreover, the target categories were not equally 
represented in the dataset, causing the typical issues related 
to the unbalanced classes. In this case, it is pivotal to verify 
that the model does not create any type of bias in favor of 
the better represented classes. Thanks to the data preparation 
phase and the presence of three research centers in collect-
ing the dataset, the higher degree of diversification in the 
case selection helped to mitigate this issue. Furthermore, 
the statistical metrics proved that the accuracy of the model 
was significant.

With the aim to make the dataset more robust and increase 
the overall accuracy of the AI system, upcoming works have 
been planned to obtain additional images, paying attention 
to improving the class balancing. In addition, to have a more 
precise focus on the region of interest, investigation on more 
sophisticated image cropping techniques will be conducted. 
Finally, combinations of FB imaging with demographic and 
clinical data will be explored, to evaluate possible correla-
tions and new algorithms.

In conclusion, this study firstly investigated a potential 
application of the AI in the FB functionality assessment 
after glaucoma surgery. Our results, despite preliminary and 
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requiring further confirmation, suggest that AI could be a 
new promising tool, potentially capable of improving the FB 
evaluation regardless of clinical data. Because telemedicine 
is rapidly growing, these preliminary findings may contrib-
ute to better defining the potential area of application of the 
teleglaucoma after surgery, especially in the regular patient 
follow-up, when hospital or outpatient consultations are not 
feasible.
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