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Summary
Objective. The digital revolution in pathology represents an invaluable resource fto opti-
mise costs, reduce the risk of error and improve patient care, even though it is still adopted 
in a minority of laboratories. Barriers include concerns about initial costs, lack of confi-
dence in using whole slide images for primary diagnosis, and lack of guidance on transi-
tion. To address these challenges and develop a programme to facilitate the introduction of 
digital pathology (DP) in Italian pathology departments, a panel discussion was set up to 
identify the key points to be considered.
Methods. On 21 July 2022, an initial conference call was held on Zoom to identify the main 
issues to be discussed during the face-to-face meeting. The final summit was divided into 
four different sessions: (I) the definition of DP, (II) practical applications of DP, (III) the use 
of AI in DP, (IV) DP and education.
Results. Essential requirements for the implementation of DP are a fully tracked and auto-
mated workflow, selection of the appropriate scanner based on the specific needs of each 
department, and a strong commitment combined with coordinated teamwork (patholo-
gists, technicians, biologists, IT service and industries). This could reduce human error, 
leading to the application of AI tools for diagnosis, prognosis and prediction. Open chal-
lenges are the lack of specific regulations for virtual slide storage and the optimal storage 
solution for large volumes of slides.
Conclusion. Teamwork is key to DP transition, including close collaboration with industry. 
This will ease the transition and help bridge the gap that currently exists between many 
labs and full digitisation. The ultimate goal is to improve patient care.

Key words: digital pathology, artificial intelligence, computational pathology, education

Introduction

The adoption of digital pathology (DP) into pathology laboratories repre-
sents a significant shift in the routine work. This change affects all work-
stations and involves more than just converting glass slides to Whole 
Slide Images (WSI), as some might have mistakenly assumed. As dis-
cussed in the recent literature 1-4, the implementation of DP involves a 
fully tracked and automated pathology workflow, as well as the standard-
isation and interoperability of processes with the potential use of artificial 
intelligence (AI) tools for primary diagnosis with WSI. A gradual integra-
tion of hardware 5 and software 1,6 modifications and the implementation 
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of quality control (QC) checkpoints 2,7 during sample 
processing can ease the transition to DP. Although 
some guidelines and recommendations exist 8, few pa-
thology departments have completed a full transition 
to DP 9-11, in Italy like in the rest of the world. Start-up 
costs, lack of confidence in using WSI for primary di-
agnosis, and lack of transition guidance are barriers to 
adopting DP 12. To address these challenges and iden-
tify the key points for a transition to DP in Italian pathol-
ogy departments, a panel discussion was launched.

Meeting overview

A preliminary web call was held on July 21, 2022, 
via Zoom to determine the most critical topics to be 
discussed during the in-person meeting. The call in-
cluded the participation of young pathologists and 
residents, senior and expert pathologists with differ-
ent skills in digital pathology, as well as a computer 
scientist from different parts of Italy, stressing the 
multidisciplinary approach to the panel discussion. 
During this call (Fig. 1), the participants decided to 
structure the final meeting into four different ses-
sions, as follows:
•	 Session I focused on the definition of digital pa-

thology, ranging from a narrower interpretation as 
simply capturing WSI to a broader holistic concept 
impacting the traditional pathology workflow.

•	 Session II focused on the clinical use of DP and 
a list of the possible areas of application includ-
ed: primary histological and cytological diagnoses, 
telepathology (second opinion), quality assurance 
and computer-assisted pathology.

•	 Session III explored the use of AI for prognostic/
predictive purposes, as well as ethical implications 
and explainability.

•	 Session IV introduced the educational aim of DP 
as a next generation tool in teaching programs.

Session highlights

Session I: Definition and scopes

DP involves digitising and analysing glass slides us-
ing a WSI scanner and image viewer. However, this 
definition is limited and does not fully capture its 
scope  13. The European Society of Digital and Inte-
grative Pathology (ESDIP) recommends reimagining 
DP as a holistic approach that includes interventions 
at all stages of work in the pathology laboratory, in-
troducing and supporting innovation 14. This transition 
can include a fully tracked and automated workflow 1,6 
starting even before the sample arrives at the pathol-
ogy department, with the integration of the pathology 
laboratory information system (LIS) with the hospital’s 
Electronic Medical Record (EMR) Software 15 and the 
use of 2D barcodes for automated, paperless sam-
pling  6. Subsequent phases, such as grossing and 
archiving, can also be tracked and automated using 
macro capture cameras, speech-to-text devices, bar-
codes and BlocDoc 2,16,17. The selection of the appro-
priate scanning device for routine diagnostics should 
be based on the specific needs of each depart-
ment 7,18, such as workload and field of interests. The 
first variable may impact the choice of the entry level 
rack size, while the proportion of specific sub-special-
ity (i.e. prevalence of cytopathology) might require the 
need for Z-stack or extended focus options (Tab.  I). 
While DP offers the potential to reduce human error 19, 
it also raises unresolved questions, such as the lack of 
specific regulations for virtual slide storage 20 and the 
optimal storage solution for large volumes of slides. 
The successful implementation of DP requires the in-
volvement of the entire pathology team, including IT 
service, technicians, biologists, and molecular and 
computer scientists.
Finally, before going digital, it is essential to carefully 
analyse and possibly redesign the routine workflow 
and address potential issues with IT systems, in-
cluding performance, storage options and costs, and 
emergency backup procedures.

Session II: Specific applications 

Primary histological and cytological diagnosis 

The non-inferiority of WSI for primary histological di-
agnosis compared to glass slides has already been 

Figure 1. The participants to the preliminary web call held 
in Zoom. Left to right, top to bottom: Fabio Pagni, Filippo 
Fraggetta, Eleonora Leoni, Alessandro Caputo, Vincenzo del-
la Mea, Vincenzo L’Imperio, Francesco Merolla, Anna Maria 
Pisano (from the provider Global Studio) and Ilaria Girolami.
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established  21-25. Any issues encountered during im-
plementation can be addressed by streamlining the 
workflow 1,12. The application of digital technologies can 
reduce errors and lead times at every process stage. 
In contrast, primary cytological diagnosis has lagged 
behind histology due to several factors  26-29, like the 
three-dimensional nature of cytological specimens, 
which can make it difficult to capture all diagnostic in-
formation with the single-slice focus approach. New 
instruments implement extended focusing or Z-stack-
ing to solve this problem 30, but this can result in longer 
scan times longer scan times and possibly larger WSI 
file sizes. Different cytological preparations are more 
or less subject to these issues, with liquid-based cytol-
ogy showing the best performance 31. Improvements 
in primary diagnostics also include the ability to ar-
chive a slide’s morphology for legal purposes 32 and 
then use the biological material for molecular testing, 
which is particularly important for cytological material.

Telepathology and second opinion

Telepathology was one of the first uses of DP 32 with 
numerous advantages: i) multiple people can view the 
slide at the same time, ii) globally in seconds, and iii) 
adding detailed annotations. Sharing slides for sec-
ond opinion purposes may reduce friction and costs. 
However, careful legal regulation still needs to be im-
proved, and the international society should define 
the appropriate limits of its use. A further application 
of telepathology was started in underdeveloped coun-
tries to supply the absence of specialists or support 
local pathologists in their learning curve 34.

Quality assurance

DP can be used for external quality control by auto-
matically sending random cases for review. Internal 
review of cases can also be automated via the labo-
ratory information system without manually identifying 
and retrieving cases. The quality assurance process 
is made possible by instant sharing and concurrent 
WSI access without having to move slides  25 physi-
cally. DP can also facilitate cyto-histological correla-
tion, as demonstrated in cervical cancer screening 30, 
optimising costs and effort involved  30,35. In addition, 
a streamlined workflow with barcodes and barcode 
readers significantly reduces laboratory errors 36 such 
as identify and mix-up problems 1; transcription errors 
can be avoided with automated printers, and reading 
and matching errors thanks to the integration of pa-
tient information, gross images, BlocDoc images and 
digital slides on the same page through Laboratory 
Information System 2. Finally, DP can improve repro-
ducibility and accuracy in tasks such as estimating the 
percentage of Ki-67-positive cells or evaluating PD-L1 
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immunohistochemistry  37,38 by automatic validated 
web-based tools.

Computer-assisted diagnosis

Computer-assisted diagnosis (CAD) can only be used 
effectively when a significant part of routine histolo-
gy is digitised. CAD plays a key role developing and 
exploiting biomarkers and integrating multi-omics da-
ta. Machine learning can be used for a range of CAD 
applications, from leveraging WSIs and cell detection 
tools to speed up tasks like cell counting 39 to com-
prehensively analyse a WSI and generate a diagno-
sis, speeding up the diagnosis and improving its ac-
curacy 40,41. Other systems can identify and highlight 
specific features, saving time for the pathologist who 
would otherwise have to search for them 42. Finally, AI-
CAD tools can also be used to screen large batches 
of cases after scanning and triaging them: positive or 
suspicious cases can be prioritised and shown first to 
the pathologist to ensure faster turn-around times for 
these time-sensitive diagnoses.
Computer scientists and AI researchers, working 
closely with pathology labs, can be valuable members 
of the digital pathology team and work with private 
companies to develop AI-based tools. However, a lack 
of regulations in this area is currently preventing the 
full integration of these specialists into the pathology 
team, which should be tackled at the institutional level 
in the future. Some international digital societies (e.g. 
Digital Pathology Association) have already defined 
the use cases for this engagement, defined the stake-
holders’ roles, and discussed this partnership’s oppor-

tunities and pitfalls 43. There are already several exam-
ples of this fruitful collaboration in different scenarios, 
such as in the case of BigPicture. This public-private 
partnership brings together a wide range of expertise 
from academic institutions, SMEs, public organisa-
tions, pharmaceutical companies and an extensive 
network of partners contributing images  44. Another 
example is PathLAKE, a consortium that includes 
some of the UK’s leading digital and computational in-
novators from the National Health Service (NHS) and 
academia and has led to the creation of a computa-
tional pathology hub with to create the world’s largest 
repository of annotated digital WSI 45.

Session III: Digital Pathology and Artificial 
Intelligence, two sides of the same coin

Pathology increasingly involves computer science 
and, in particular, the use of various AI tools 46 (Tab. II). 
Computer scientists are developing new AI tools to im-
prove diagnostic accuracy and identify novel biomark-
ers for precision oncology. For example, the subjective 
nature of histopathological analysis due to differences 
in visual perception and data integration between ob-
servers can be addressed by automated AI-based ex-
traction of multiple sub-visual morphometric features 
on H&E-stained slides, leading to the birth of “path-
omics” 47. 

AI for diagnosis

The possible improvement in the real world of routine 
diagnoses ranges from cancer to non neoplastic pa-
thology, with a myriad of different attempts, only in part 

Table II. Definitions of the different terms used in computational pathology.
Definitions

Artificial Intelligence (AI) The theory and development of computer systems able to perform tasks that normally 
require human intelligence, such as visual perception, speech recognition, decision-
making, and in general problem solving.

Machine Learning (ML) Subfield of AI devoted to software or machines that improve the performance of tasks 
through exposure to data (e.g., a training set) and experience, without being explicitly 
programmed to solve such tasks.

Artificial Neural Network (ANN, NN) Systems inspired by the architecture of human and animals brains. As such, they 
include simulations of neurons, connected by synapses. Neurons are usually organised 
in layers: one for input, one for output, and a variable number of hidden layers in the 
middle. NNs are one of the ways machine learning is implemented. 

Deep Learning Subfield of machine learning, whose systems are characterised by the use of multiple 
layers to extract higher and higher level features from the input. The implementation 
usually occurs by means of NNs with many layers. 

Convolutional Neural Network (CNN) Convolutional neural networks are a type of deep neural networks where layers 
implement convolutional filters, particularly designed for image classification, object 
detection, etc.

Generative Adversarial Network (GAN) ML model for generation of data (text, images, etc) in which two neural networks are 
trained at the same time: one to mimic the images of the training set, the other to 
recognise whether the generated images are real or fake. Recent evolutions also allow 
classification through GANs.
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effective 49,49. Both supervised machine learning mod-
els and CNN-based approaches 48 can be used to dis-
criminate between benign and malignant tumours. An 
interesting and translational application regards deep 
CNNs trained on images of skin lesions to be com-
plementary associated to histological data  50. These 
methods have the potential to be approved for use in 
clinical practice and often focus on common and im-
pactful cancers such as breast and prostate cancer 
and melanocytic lesions. In parallel, AI can aid and 
augment pathologists in the evaluation of non-neo-
plastic diseases by helping in discrimination of enti-
ties, quantification of immunohistochemistry, and 3D 
reconstruction 7,51-53.

AI for prognosis

AI approaches have been used to predict clinical out-
comes based on the spatial arrangement and archi-
tecture of different tissue elements. For example, re-
search has shown that a graphical-derived computed 
feature based on the spatial distribution and type of 
tumour infiltrating lymphocytes (TILs) can be more ac-
curate at predicting outcomes than TIL density alone 
in cancers such as non-small cell lung cancer and tri-
ple-negative breast cancer 54-57.

AI for prediction

Pathologists are increasingly being asked to assess 
biomarkers as companions to therapy delivery, with 
programmed death ligand 1 (PD-L1) being one of 
the most common. AI on WSI was used to train a 
deep learning method (DL) to automatically score 
PD-L1 expression in images of non-small cell lung 
cancer biopsy samples 58. Predicting genetic com-
position from WSI is a promising area, with some 
initial positive results in specific settings (e.g. mi-
crosatellite instability)  59 and others with less clin-
ical focus and more speculative development (e.g. 
translocations 60.

Ethics and AI: what’s the role of explainability?

The concept of explainability, or the need for an ex-
planation of how and why the system reached cer-
tain conclusions in a complex decision support task, 
is important in medicine because physicians need to 
understand the rationale behind a particular diagnosis 
or treatment recommendation 61,62. Moreover, most re-
cent advances in this field have shown the capability 
of AI in detecting surrogate phenotypic modifications 
underlying genetic alterations, potentially easily as-
sessable through a microscope. These AI techniques, 
such as reverse engineering and explainability tools, 
can identify previously underestimated histological 
features, such as laminated fibrosis and clear tumour 

cells associated with HRD 63 and a low tumour-to-stro-
ma ratio, which may be a novel characteristic of the 
no specific molecular profile (NSMP) endometrial car-
cinoma molecular class  64. Several definitions have 
been proposed to characterise the explainability of 
AI in medicine, which could also apply to pathology, 
focusing on the intersection of interpretability, under-
standability, ease of use, and utility  62. Different pa-
thologists need different explanations to trust an al-
gorithm, and requests from clinicians as end-users 
can differ from those from regulators and government 
agencies. Collaboration between AI researchers, pa-
thologists, clinical colleagues, IT collaborators, private 
companies, and representatives of national health au-
thorities is crucial for the development and implemen-
tation of AI in a way that balances the advancement of 
knowledge with ethical concerns such as patient data 
security, avoidance of discrimination, and competing 
interests.

The lab of the future: what to expect from AI?

Indeed, the application of AI to the text-to-image 
translation domain is giving rise to different algo-
rithms available online and capable of translating the 
text to newly generated images, as in the case of 
DALL-E (https://labs.openai.com/) or stable diffusion 
tools (e.g. Lexica, https://lexica.art/). In particular, 
asking these tools to visualise “The lab of the future: 
what to expect from AI” what has been obtained is 
reported in Figure 2. It is interesting to note the dif-
ferent viewpoints enhanced by the two algorithms, 
the first highlighting the “integrative” role that AI can 
have in our practice by networking the different as-
pects of our routine work (from clinical data and im-
ages to molecular and omics bid data), as opposed 
to the more workflow-centred representation of the 
second, showing the perspective of a fully integrat-
ed and tracked laboratory system. In this sense, it is 
expected that pathology laboratories will increasingly 
rely on AI-based automation in the future. This could 
include monitoring diagnostic algorithmic results, us-
ing AI for quality assurance of laboratory data, and 
automated assessments in large-volume clinical 
trials 65. While some AI techniques are beginning to 
outperform humans at specific image-based tasks, 
pathologists should not fear being replaced by AI as 
true human-like AI is unlikely to become a reality in 
the next few decades  66,67. Instead, AI in pathology 
offers pathologists the opportunity to expand the 
scope of their practices and become more integrated 
into overall patient care  65. In this setting, recently, 
24 international experts in computational pathology 
unanimously agreed that AI would be routinely and 
impactfully used within pathology laboratories by 
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2030, with significant influence on key performance 
indicators (KPIs), pathology workforce and specific 
pathologist/technician tasks, as well as specific AI 
applications, integrated and automated diagnostics, 
regulatory/legal and ethical aspects 68.

Session IV: Educational aspects of digital pathology

Digital pathology can be used to enhance patholo-
gist education by providing access to annotated and 
clinically data-rich WSIs that multiple people can view 
at the same time. It can also help overcome techno-
phobia among senior pathologists by providing appro-
priate training 69 and can provide up-skilling through 
virtual lectures, as demonstrated by the recent expe-
rience of the COVID-19 pandemic 70. Digital patholo-
gy can also provide opportunities to learn about rare 
pathology cases and improve diagnostic accuracy by 
sharing digital image databases between hospitals. It 
can also generate virtual atlases and specific collec-
tions for exceptional series, adding a dynamic and in-
teractive experience. On the other hand, proper digital 
pathology usage requires knowledge about it. Thus it 
has to become part of the curriculum for Pathology 

residents and other involved professions, like labora-
tory technicians, biology and computer scientists, and 
IT managers 71.

Conclusions 

For a successful transition to digital pathology, it 
is crucial that all professionals involved, including 
those from the industry, actively work together and 
understand the missing elements that need to be 
addressed. Multidisciplinary work will ease the tran-
sition and help bridge the gap between many labs 
and full digitization. The ultimate goal is to improve 
patient care (Figure 3). Moreover a widespread use 
of DP in routine practice may change our daily pro-
fessional lives 72,73. In this way, technology can bring 
people closer together instead of separating them 
and undermining their humanity. DP can represent a 
possible solution to cover shortfalls in staffing due to 
retirement/maternity and carer leave, long-term sick 
leave, and so on, as already demonstrated by the UK 
experience 74.

Figure 2. Images generated through online-available algorithms for text-to-image generation, such as DALL-E (https://labs.
openai.com/) on the left and stable diffusion (https://lexica.art/) on the right, with the prompt “The lab of the future: what to 
expect from AI”.
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