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Abstract: We consider a composite system consisting of two identical straight elastic beams under
longitudinal vibration connected by an elastic interface capable of counteracting the relative vibration
of the two beams with its shearing stiffness. We construct examples of isospectral composite beams,
i.e., countable one-parameter families of beams having different shearing stiffness but exactly the
same eigenvalues under a given set of boundary conditions. The construction is explicit and is based
on the reduction to a one-dimensional Sturm–Liouville eigenvalue problem and the application of a
Darboux’s lemma.

Keywords: composite beams; longitudinal vibration; isospectral systems; inverse eigenvalue problems

1. Introduction

Composite beams obtained by connecting two beam elements represent a structural
solution commonly used in designing long-span floor beams or bridge decks [1]. The con-
nection is the structural component having to bear the major consequences of stress and
fatigue during service, and therefore, the evaluation of its integrity is of great importance
for practical purposes. Nondestructive techniques based on dynamic measurements are
appealing for assessing damage to composite beams and have attracted much interest in
recent years; see, for example, [2,3] and the references therein.

In this paper, we consider a class of composite beams formed by two identical straight
elastic beams connected together and subjected to longitudinal vibration. Practical exam-
ples of this system are steel beams connected by an adhesive layer on the contact surface
and wood beams connected by means of wood studs that hinder sliding at the common
interface. A schematic view can be seen in Figure 1. In mathematical terms, the small free
undamped longitudinal vibration of such a composite beam of length L is governed by the
differential system in (z, t) ∈ (0, L)× (0, T0) [2]

∂
∂z

(
EA(z) ∂w1

∂z

)
+ µ(z)

2 (w2 − w1) = γA(z) ∂2w1
∂t2 ,

∂
∂z

(
EA(z) ∂w2

∂z

)
− µ(z)

2 (w2 − w1) = γA(z) ∂2w2
∂t2 ,

(1)

(2)

with supported end conditions at both ends, namely

w1(0, t) = w1(L, t) = 0, w2(0, t) = w2(L, t) = 0, t ∈ (0, T0), (3)

where w1(z, t), w2(z, t) is the axial displacement of the transversal section of beams 1 and 2,
respectively, at the transversal section of abscissa z at the moment of time t, where T0 > 0.
The area of the cross-section is denoted by A(z), A ∈ C2([0, L]), A(z) ≥ A0 > 0 in [0, L].
E is the Young’s modulus of the material, and γ is the volume mass density. E and γ are
assumed to be constant and positive. The coefficient µ(z)

2 , µ ∈ C0([0, L]), µ(z) ≥ µ0 > 0 in
[0, L] is the shearing stiffness per unit length of the connection.
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Figure 1. (a) Longitudinal view and cross-section of the composite beam. (b) Mechanical model for
axial vibration.

For free vibration with a radian frequency ω and for a normalized abscissa x = z
L ,

the longitudinal displacement may be assumed as

w1(x, t) = u1(x) cos(ωt), w2(x, t) = u2(x) cos(ωt), (4)

so that the eigenpair {λ = ω2 γL2

E , (u1(x), u2(x))} satisfies
(Au′1)

′ + k
2 (u2 − u1) + λAu1 = 0, x ∈ (0, 1),

(Au′2)
′ − k

2 (u2 − u1) + λAu2 = 0, x ∈ (0, 1),
u1(0) = u1(1) = 0,
u2(0) = u2(1) = 0,

(5)

(6)

(7)

(8)

where k(x) = µ(x)L2

E , A(x) = A
( z

L
)

and both u1(x) and u2(x) are not identically vanishing
functions.

Assuming the beam profile A(x) is given, an inverse problem that is interesting for
applications consists of determining the shearing stiffness coefficient k(x) from spectral data,
e.g., the eigenvalues belonging to the spectrum under either Dirichlet or other boundary
conditions. Putting

A = a2, y = (y1 = au1, y2 = au2), (9)

system (5) and (6) reduces to the canonical Sturm–Liouville vectorial form

y′′ + λy = Qy, x ∈ (0, 1), (10)

with

Q =

(
q + k

2a2 − k
2a2

− k
2a2 q + k

2a2

)
, (11)

where the potential

q(x) =
a′′(x)
a(x)

, q ∈ C0([0, 1]), (12)

is given and k(x) is the unknown coefficient.
Several results have been established for this class of inverse spectral problems, notably

by Chern and Shen [4], Jodeit and Levitan [5,6], Shen [7], Getsezy and co-authors [8,9],
Carlson [10], Andersson [11], Yurko [12], and Shieh [13], to mention a few. In particular,
Shen [14] showed that a general two-by-two real symmetric smooth matrix Q can be
uniquely determined by the eigenvalues belonging to five spectra corresponding to suitable
boundary conditions. Chang and Shieh [15] extended the above result to the case of an
integrable m × m general real matrix-valued symmetric function Q, for which 1 + m2

spectral data can determine Q uniquely.
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By exploiting the special structure (11) of the matrix Q for our composite beam, we
show here that the inverse problem of determining k(x) in (10) and (11) can be framed
within the one-dimensional Sturm–Liouville inverse spectral theory and that, roughly
speaking, half of the eigenvalues of the Dirichlet spectrum in (5)–(8) and half of the eigen-
values of the cantilever spectrum (i.e., system (5) and (6) with ui(0) = u′i(1) = 0, i = 1, 2) of
the composite beam uniquely determine the shearing stiffness k(x). The analysis is based
on the fact that this class of composite beams is spectrally equivalent to two families of one-
dimensional Sturm–Liouville problems, and the eigenvalues of one family do not depend
on the coefficient k(x). We refer to Section 2 for a precise statement and related results.

Closely related to the inverse eigenvalue problem is the isospectrality problem for
(5)–(8), i.e., the characterization of coefficients k(x), which have the same spectrum as
a given coefficient (with fixed A(x)) for a particular set of boundary conditions. In the
scalar case, i.e., a single Sturm–Liouville equation in canonical form with scalar potential,
the isospectrality problem was solved by Trubowitz and co-workers in [16–19]; see also the
contributions by Coleman and McLaughlin for an impedance operator [20,21] and Gladwell
and Morassi for applications to longitudinally vibrating beams [22] and for special classes
of bending vibrating beams [23]. Jodeit and Levitan [5,6] proposed a method based on a
Gelfand–Levitan integral equation and trasmutation operators for a general real symmetric
matrix-valued smooth m×m matrix Q, m ≥ 2. Chelkak and Korotyaev [24] developed a
method for a complete parametrization of the isospectral set of matrix-valued L1-potentials.
We refer also to Shieh [13] for uniqueness theorems for inverse problems for vectorial
Sturm–Liouville equations in which all the eigenvalues of the system are of full multiplicity.

The above-mentioned papers deal with a complete characterization of the isospectral
potentials Q for vector-valued Sturm–Liouville operators. As far as this aspect is concerned,
the present paper has a more modest purpose: to show how to determine families of
composite beams (with fixed A(x)) that are isospectral to a given one for a given set
of boundary conditions. We will show that, under our assumptions, we can resort to a
classical Darboux lemma [25] for an explicit construction of isospectral composite beams.
The isospectral shearing stiffness coefficients k(x) belong to a neighborhood of a given
coefficient, and the construction is possible for composite beams with simple eigenvalues.

The paper is organized as follows. In Section 2, we show our main theoretical re-
sults concerning the unique determination of the shearing stiffness coefficient k(x) from
eigenvalue data and the construction of isospectral composite beams. Some examples are
presented in Section 3. A generalization of the above analysis to composite systems formed
by N ≥ 3 connected beams is attempted in Section 4. We will see that the results are weaker
in this case.

2. Theory

The following proposition establishes a spectral equivalence between the composite
beam system (5)–(8) and two one-dimensional Sturm–Liouville problems.

Proposition 1. Let A ∈ C2([0, 1]), A(x) ≥ A0 in [0, 1], k ∈ C0([0, 1]), and k(x) ≥ k0 in [0, 1],
where A0 and k0 are positive constants.

Let {λ, (u1, u2)} be an eigenpair of the composite beam System (5)–(8). Then, either

u2 = u1 in [0, 1], (13)

or, alternatively,
u2 = −u1 in [0, 1]. (14)

If (13) holds, then {λU , U = u1 + u2} is an eigenpair of{
(AU′)′ + λU AU = 0, x ∈ (0, 1),
U(0) = U(1) = 0.

(15)

(16)

If (14) holds, then {λV , V = u1 − u2} is an eigenpair of



Appl. Sci. 2023, 13, 7606 4 of 11

{
(AV′)′ + λV AV = kV, x ∈ (0, 1),
V(0) = V(1) = 0.

(17)

(18)

Proof. The proof of (13) and (14) is by contradiction. Let us assume there exists a constant
β (β 6= 0) such that

u2 = βu1 in [0, 1], |β| 6= 1. (19)

Using (19) in (5)–(8), we obtain

(β + 1)((Au′1)
′ + λAu1) = 0 in (0, 1) (20)

which implies
(Au′1)

′ + λAu1 = 0 in (0, 1). (21)

Comparing (21) with (5), we conclude that

k(u2 − u1) = 0 in [0, 1], (22)

which implies u2 = u1; that is, β = 1, which is a contradiction.
Finally, the eigenvalue problems (15)–(16) and (17)–(18) follow from (5)–(8) by sum-

ming and subtracting (5) and (6), respectively, and by taking into account the boundary
conditions.

Remark 1. Note that, in order to distinguish the two classes of principal modes, it is enough to know
the axial strain u′i, where i = 1, 2, at one end of the beam, say u′1(0), u′2(0). In fact, for in-phase
motion, we have u′1(0) = u′2(0), whereas for out-of-phase vibration, we have u′1(0) = −u′2(0).
Note that u′1(x)u′2(x) 6= 0 for x = 0 and x = 1.

Remark 2. The eigenvalues of (5)–(8) may not be simple, with multiplicity at most equal to
2. For the uniform composite beam with A(x) = 1 and k(x) = k0 constant, where k0 > 0,
the eigenvalues are double if and only if k0 = (n2 − m2)π2 for integer numbers m, n with
n > m ≥ 1. Clearly, if 0 < k0 < 3π2, then all the eigenvalues are simple.

Remark 3. Proposition 1 can also be extended to other boundary conditions, for example, the
cantilever end conditions:

u1(0) = u2(0) = 0, u′1(1) = u′2(1) = 0. (23)

The eigenvalues {λ′i}i≥1 of (5)–(6) and (23) are given by

{λ′i}i≥1 = {λU′
l }l≥1 ∪ {λV′

n }n≥1, (24)

where {λU′
l }l≥1, {λV′

n }n≥1 are, respectively, the eigenvalues of{
(AU′)′ + λU′AU = 0, x ∈ (0, 1),
U(0) = U′(1) = 0,

(25)

(26)

and {
(AV′)′ + λV′AV = kV, x ∈ (0, 1),
V(0) = V′(1) = 0.

(27)

(28)

From Proposition 1, it is seen that, when the composite beam vibrates in the principal
modes of (15) and (16), the two beams are subject to in-phase motions (u1, u2 = u1),
and the strain energy stored inside the connection vanishes. On the contrary, the two
beams oscillate according to out-of-phase motions (u1, u2 = −u1) when the composite
beam vibrates in the principal modes of (17) and (18). These latter modes are the only
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principal modes affected by the shearing stiffness of the connection, and therefore, only the
family of eigenvalues {λV

n }n≥1 contains information about the stiffness of the connection.
It follows that the problem of determining k(x) from spectral data in (5)–(8) coincides with
the problem of determining k(x) in the scalar Sturm–Liouville Problem (17) and (18). By the
Liouville transformation (y = aV, A = a2), Problems (17) and (18) can be reduced to the
canonical form {

y′′ + λy =
(

q + k
a2

)
y, x ∈ (0, 1),

y(0) = y(1) = 0,

(29)

(30)

with q = a′′
a . Inverse problems for (29) and (30) are well-known due to the cornerstone con-

tributions by Borg [26], Levinson [27], Gelfand-Levitan [28], Hochstadt [29], and Hald [30],
among others. For example, if A(x) = A(1− x) (a given coefficient) and k(x) = k(1− x)
in [0, 1], then the Dirichlet spectrum {λV

n }n≥1 uniquely determines the coefficient k(x).
The symmetry condition on k(x) can be removed by adding a second spectrum correspond-
ing, for example, to the set of eigenvalues {λV′

n }n≥1 of the cantilever end conditions. We
refer to the above-mentioned papers and to the book by Gladwell [31] for more details on
the uniqueness results and also on reconstruction strategies.

We now consider the determination of isospectral composite beams. Let {Â(x), k̂(x)}2
be a composite beam formed by two connected beams of cross-sectional area A(x), and as-
sume Dirichlet conditions at both ends. By Proposition 1, we know that {λi}i≥1 =
{λU

l }l≥1 ∪ {λV
n }n≥1, where {λU

l }l≥1 does not depend on the shearing stiffness k(x) and
{λV

n (k̂(x))}n≥1 are the eigenvalues of{
(ÂV′)′ + λV ÂV = k̂V, x ∈ (0, 1),
V(0) = V(1) = 0.

(31)

(32)

We wish to determine other shearing stiffness coefficients k(x) such that all the
eigenvalues of {

(ÂV′)′ + λV ÂV = kV, x ∈ (0, 1),
V(0) = V(1) = 0,

(33)

(34)

coincide exaclty with the eigenvalues of (31) and (32), e.g.,

λV
n (k̂) = λV

n (k) for every n ≥ 1. (35)

As a first step, we reduce (31) to their canonical form via the Sturm–Liouville transfor-
mation (y = âV, Â = â2):{

y′′ + λVy =
(

q̂ + k̂
â2

)
y, x ∈ (0, 1),

y(0) = y(1) = 0,

(36)

(37)

with q̂ = â′′
â . Next, the analysis developed in [19] shows how to obtain a Sturm–Liouville

operator with a potential q isospectral to the potential
(

q̂ + k̂
â2

)
. The analysis in [19] is

based on a double application of a Darboux lemma [25]. For the sake of completeness,
a brief description of the Darboux lemma is provided in Remark 5 below. It turns out that

q(x) = q̂(x) +
k̂(x)
â2 − 2

d2

dx2

(
log
(

1 + c
∫ x

0
y2

m(s)ds
))

, (38)
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where c > −1 and m = 1, 2, . . . , and ym(x) is the mth Dirichlet eigenfunction of (36)
and (37) normalized by

∫ 1
0 y2

m(s)ds = 1. Therefore, assuming q(x) = q̂(x) + k
â2 , for every

m = 1, 2, . . . , we obtain a composite beam {Â(x), k(x)}2 with shearing stiffness

k(x) = k̂(x)− 2câ2(x)ym(x)

(
2y′m(x)

1 + c
∫ x

0 y2
m(s)ds

− cy3
m(x)(

1 + c
∫ x

0 y2
m(s)ds

)2

)
, (39)

which has exactly the same eigenvalues of {Â(x), k̂(x)}2, e.g., λV
n (k̂) = λV

n (k) for every
n ≥ 1. To conclude the construction of a real “physical” isospectral composite beam, we
need to show that the shearing stiffness k(x) is positive in [0, 1]. Since, by hypothesis,
k̂(x) ≥ k0 > 0 in [0, 1], by (39), there exists k′0 > 0, and there exists δ > 0 (possibly
depending on m and k′0) such that k(x) ≥ k′0 > 0 in [0, 1] for every c > −1 and c ∈ [−δ, δ].
In conclusion, the composite beam {Â(x), k(x)}2 is isospectral to {Â(x), k̂(x)}2 under
Dirichlet end conditions.

Remark 4. By adapting the above analysis and using the results in [22], it can be shown that the
construction of isospectral composite beams also extends to other boundary conditions, such as,
for example, the support–free (cantilever) and free–free conditions.

Remark 5. Here, we recall the main steps for the determination of the potential q(x) in (39)
isospectral to the potential (q̂ + k̂/â2) under Dirichlet boundary conditions. The analysis is based
on a double application of the Darboux lemma [25]. Denote by Lr the standard Sturm–Liouville
operator with potential r ∈ C([0, 1]), i.e., Lru = −u′′ + ru. Let µ, λ be two real numbers. In its
simpler form, the Darboux lemma enables us to find a non-trivial solution z of a new equation
Lq̌z = λz if we know a non-trivial solution g, f of the equation Lrg = µg, Lr f = λ f , respectively,
corresponding to two different values λ, µ of the parameter and to a potential r. In particular, it
turns out that z = 1

g [g, f ], where [g, f ] = g f ′ − g′ f , and q̌ = r − 2(ln(g))′′. The potential q̌
is singular at those points of [0, 1] in which g has a zero. However, for such cases, we can modify
the above analysis by applying the Darboux lemma twice, obtaining Expression (39) of the regular
(i.e., continuous) potential q isospectral to (q̂ + k̂/â2). We refer to the book [19] (Chapter 5) for
more details.

3. Examples

As an application of the above results, we determine examples of composite beams
that are isospectral to the uniform composite beam with Â(z) = 1, µ̂(z) = π2, E = 1, γ = 1
and L = 1 under supported-end conditions. A direct calculation shows that â(x) = 1,
k̂(x) = π2, ym(x) =

√
2 sin(mπx), λ̂V

m = (1 + m2)π2, m = 1, 2, ....
The isospectral composite beam has a shearing stiffness coefficient k(x) given by (39).

The isospectral coefficients shown in Figure 2 have been derived for m = 1 and c = −0.1,
c = −0.2, and c = −0.3. The initial uniform beam corresponds to c = 0. Similarly,
isospectral coefficients for m = 2, with c = −0.05, c = −0.1, and c = −0.2 and for m = 5
with c = −0.08, c = −0.1, and c = −0.12 are shown in Figures 3 and 4, respectively.

It can be seen from these figures that when m is taken to be large, then the stiffness
coefficient k(x) depart significantly from that of the uniform beam k̂(x) = π2; that is,
the change becomes more sensitive to changes in c.
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c=-0.1

c=-0.2

c=-0.3

Figure 2. Isospectral stiffness coefficient k(x) as in (39) for m = 1 and c = −0.1,−0.2, and −0.3.
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Figure 3. Isospectral stiffness coefficient k(x) as in (39), for m = 2 and c = −0.05,−0.1, and −0.2.
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Figure 4. Isospectral stiffness coefficient k(x) as in (39), for m = 5 and c = −0.08,−0.1, and −0.12.
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The isospectral equivalence has been verified by finite element (FE) analysis. The nu-
merical procedure herein adopted is based on a standard FE model of the problem (33) and
(34) with a uniform mesh and continuous piecewise linear displacement shape functions
ϕj = ϕj(x), where j = 1, 2. The local matrix entries of the stiffness kij

e and mass matrix mij
e

are evaluated by the formulas

mij
e =

∫ xe+1

xe
Âϕi ϕjdx, kij

e =
∫ xe+1

xe
(Âϕ′i ϕ

′
j + kϕi ϕj)dx, (40)

where i, j = 1, 2, and are evaluated in exact form. A model with N = 200 equally spaced
finite elements was built by assembling the local matrices to form the global matrices
and properly assigning the Dirichlet boundary conditions. For N = 200, the first ten
eigenvalues for the cases c = −0.1 and m = 5 are given in Table 1 and are compared with
the exact values corresponding to the uniform beam. It is seen that the constructed beams
are isospectral to the original uniform beam within the limits of computing accuracy in
such an FE approximation.

Table 1. Comparison between exact (λexact) and FE results (λFE) of the list (λn)10
n=1.

λexact (rad/s) 19.74 49.35 98.70 167.78 256.61

λFE 19.74 49.36 98.76 167.99 257.12
Error

(
λFE−λexact

λexact

)
× 10−3 0.13 0.32 0.67 1.24 1.98

λexact (rad/s) 365.17 493.48 641.52 809.31 996.83

λFE 366.23 495.43 644.86 814.65 1005.0
Error

(
λFE−λexact

λexact

)
× 10−3 2.89 3.96 5.20 6.60 8.17

4. Extension to Multiple Connected Beams

Let us consider a supported composite system {Â, k̂}N obtained by connecting N
equal beams, where N ≥ 2, as considered in (5)–(8), with a cross-sectional area Â(x) and
where the shearing stiffness of the (N − 1) connections is k̂(x). The free axial vibration is
governed by the boundary-value differential system (Âu′)′ + λÂu =

k̂(x)
2

Cu, x ∈ (0, 1),

u(0) = u(1) = 0,

(41)

(42)

where u(x) = (u1(x), . . . , uN(x)) and where C is an N × N Jacobi matrix

C =



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1


. (43)

Let us represent u on the basis of the eigenvectors of C, namely

u(x) =
N

∑
j=1

η̂(j)(x)c(j), η̂(j)(x) = u(x) · c(j), (44)

where
Cc(j) = χ(j)c(j), c(j) · c(i) = δij, (45)

where i, j = 1, . . . , N. A direct calculation shows that, for every j = 1, . . . , N,
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χ(j) = 4 sin2
(

ϑj

2

)
,

ϑj =
(j− 1)π

N
,

c(j)
i =

1
cj

cos
(

ϑ

2
(2i− 1)

)
, i = 1, . . . , N,

(46)

(47)

(48)

where cj are suitable positive normalization constants. Note that 0 = χ(1) < χ(2) < · · · < χ(N).
By using (44) in (41) and (42), and taking into account (45), we obtain the N uncoupled
one-dimensional Sturm–Liouville eigenvalue problems for the functions {η̂(i)(x)}N

i=1: (Â(η̂(i))′)′ + λÂη̂(i) = χ(i) k̂
2

η̂(i), x ∈ (0, 1),

η̂(i)(0) = η̂(i)(1) = 0.

(49)

(50)

Note that in (49), the index i is fixed and not summed.
It follows that if λ is an eigenvalue of the composite System (41) and (42), then λ

belongs to one family of the N Sturm–Liouville Problems (49) and (50) for some index i,
i = 1, . . . , N, and vice versa.

We note that χ(1) = 0 and c(1) =
1√
N
(1, . . . , 1); namely, the strain energy stored inside

the (N − 1) connections of the composite system vanishes identically since the beams
vibrate according to u(x) = η̂(1)(x)c(1), which are all in phase with each other. The larger
the index i, the larger the number of active connections, up to the case i = N, for which all
beams vibrate out-of-phase to the adjacent ones.

We now attempt to generalise the procedure shown in Section 2 to the case N ≥ 3.
By the above analysis, the eigenvalues {λk}k≥1 of {Â, k̂}N are given by

{λk}k≥1 =
N⋃

i=1

⋃
n≥1

λ
(i)
n , (51)

where {λ(i)
n }n≥1 are the eigenvalues of (49) and (50).

Let us fix the index i, i = 2, . . . , N.
We first reduce (49), where λ = λ(i), to canonical form by defining (y(i) = âη̂(i), Â = â2) as (y(i))′′ + λ(i)y(i) =

(
q̂ + χ(i) k̂

â2

)
y(i), x ∈ (0, 1),

y(i)(0) = y(i)(1) = 0,

(52)

(53)

with q̂ =
â′′

â
. Next, we adapt the analysis based on Darboux’s lemma to obtain a new

stiffness coefficient k(i)(x) isospectral to (49) and (50) (with λ = λ(i)), namely, (Â(η(i))′)′ + λ(i) Âη(i) = χ(i) k(i)

2
η(i), x ∈ (0, 1),

η(i)(0) = η(i)(1) = 0.

(54)

(55)

Here,

χ(i)k(i)(x) = χ(i) k̂(x)− 2câ2(x)y(i)m (x)

 2(y(i)m )′(x)

1 + c
∫ x

0 (y
(i)
m )2ds

− c(y(i)m )3(x)(
1 + c

∫ x
0 (y

(i)
m )2ds

)2

, (56)

For a c > −1 and |c| small enough, m = 1, 2, . . . , where y(i)m (x) is the mth eigenfunction
of (52) and (53). Note that k(i) also depends on the index i since y(i)m depends on i.
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We can now construct a composite system {Â(x), k(i)(x)}N such that all the eigenval-
ues {λ(i)

n }n≥1 of (54) and (55) belong to its spectrum. Let us multiply (54) by c(i), where (i)
is a fixed index, not summed, where i = 2, . . . , N. Recalling (45), we have

(Â(η
(i)
n )′c(i))′ + λ

(i)
n Âη

(i)
n c(i) =

k(i)

2
C(η

(i)
n c(i)), x ∈ (0, 1), (57)

such that the function u(i)
n = η

(i)
n c(i) is a non-trivial solution to (Â(u(i)

n )′)′ + λ
(i)
n Âu(i)

n =
k(i)(x)

2
Cu(i)

n , x ∈ (0, 1),

u(i)
n (0) = u(i)

n (1) = 0.

(58)

(59)

We have proved that the composite systems {Â, k̂}N , and {Â, k(i)}N share the same
eigenvalues {λ(i)

n }n≥1. However, if an index j ≥ 2 is chosen with j 6= i, then k(i) and k(j) are
not necessarily equal in [0, 1]. It follows that, in general, it is not possible by this approach to
construct isospectral composite systems unless, of course, N = 2. This case was considered
in Section 2.

5. Conclusions

In this paper, we have considered a special composite system formed by two equal
elastic beams under axial vibration connected by an elastic interface with shearing stiffness
k. We have shown how to construct composite systems with different shearing stiffness
coefficients but with exactly all the same eigenvalues of an assigned system.

The analysis was based on reducing the free vibration problem of the composite system
to two equivalent one-dimensional eigenvalue problems. The eigenvalues of one problem
corresponded to in-phase motions of the two connected beams and did not depend on
k. The other problem involved out-of-phase motions of the beams, and the eigenvalues
depended on k. The application of a classical Darboux lemma to this second eigenvalue
problem allowed the determination of explicit expressions of countable families of isospec-
tral shearing stiffnesses, valid for various boundary conditions and in a sufficiently small
neighbourhood of the initial stiffness. The extension of the above results to a composite
system obtained by connecting N ≥ 3 beams is, in general, not possible, at least by this
approach, as discussed in Section 4.

The closed-form expressions of the isospectral shearing stiffness coefficients found
in this paper are new in the literature of two-dimensional vector-valued Sturm–Liouville
problems. Concerning possible engineering applications, our results confirm that the
diagnostic problem of identifying the connection stiffness from natural frequency mea-
surements only is severely ill-posed because the solution is clearly not unique. Secondly,
the explicit expressions of the isospectral coefficients can be useful as a benchmark for
estimating the accuracy of numerical models. Finally, our results may be used for designing
the connection of a composite beam with assigned natural frequencies. This topic is the
subject of ongoing research.
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