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A B S T R A C T

This paper addresses the challenge of predicting dam level rise in hydroelectric power plants during floods
and proposes a solution using an automatic hyperparameters tuning temporal fusion transformer (AutoTFT)
model. Hydroelectric power plants play a critical role in long-term energy planning, and accurate prediction
of dam level rise is crucial for maintaining operational safety and optimizing energy generation. The AutoTFT
model is applied to analyze time series data representing the water storage capacity of a hydroelectric power
plant, providing valuable insights for decision-making in emergency situations. The results demonstrate that
the AutoTFT model surpasses other deep learning approaches, achieving high accuracy in predicting dam level
rise across different prediction horizons. Having a root mean square error (RMSE) of 2.78×10−3 for short-term
forecasting and 1.72 considering median-term forecasting, the AutoTFT shows to be promising for time series
prediction presented in this paper. The AutoTFT had lower RMSE than the adaptive neuro-fuzzy inference
system, long short-term memory, bootstrap aggregation (bagged), sequential learning (boosted), and stacked
generalization ensemble learning approaches. The findings underscore the potential of the AutoTFT model for
improving operational efficiency, ensuring safety, and optimizing energy generation in hydroelectric power
plants during flood events.
1. Introduction

Hydroelectric power plants with reservoirs play a crucial role in
electricity generation and regulation, providing flexibility in the man-
agement of accumulated water [1]. In Brazil, the electric power system
relies heavily on a hydrothermal energy matrix [2], where hydro-
electric plants with dams are essential for long-term energy planning
since they can store water for drought periods [3]. The operation of
a hydroelectric power plant involves optimizing energy generation to
minimize costs over time and ensure future energy supply [4]. Plant
operators follow prescribed operating procedures set by the national
system operator, which include considerations of inflow characteristics,
reservoir levels, and energy demand [5].

The sudden rise in river levels during storms, particularly in regions
prone to heavy rainfall like southern Brazil, poses a significant chal-
lenge for hydroelectric plants [6]. The possibility of abrupt variations
in water inflows due to storms and floods represents a risk for these

∗ Corresponding author at: Digital Industry Center, Fondazione Bruno Kessler, Trento, Italy.
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plants and their surroundings [7]. When a plant exceeds its storage
capacity and needs to release water, not only is the available energy
lost, but there is also a maximum spill limit that must be observed to
ensure safety and prevent damage to the dam [8].

Predicting dam level rise accurately and promptly is of utmost
importance for the safe and efficient operation of hydroelectric power
plants. It can serve as a valuable decision-support indicator for plant
operators, helping them anticipate emergency situations caused by
rapid water level fluctuations [9]. Effective predictions and evalua-
tion of the hydroelectric power plants can enable proactive measures
to be taken, such as adjusting energy generation [10] and reservoir
management strategies [11], optimizing spillage [12], and ensuring the
stability and reliability of the electrical power system [13]. Considering
the vast nomenclature that is used in this field, Table 1 presents the
abbreviations used here.

In light of this challenge, this paper proposes the use of an auto-
matic hyperparameters tuning temporal fusion transformer (AutoTFT)
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Table 1
Abbreviations and acronyms used.

Name Abbreviations

Adaptive neuro-fuzzy inference system ANFIS
Artificial neural networks ANNs
Automatic hyperparameters tuning TFT AutoTFT
Empirical wavelet transform EWT
Exponential linear unit ELU
Feed-forward network FFN
Fuzzy c-means FCM
Gated linear unit GLU
Gated residual network GRN
Grid partition GP
Interquartile range of error IQR
Long short-term memory LSTM
Maximum absolute error MaxAE
Mean absolute error MeanAE
Mean square error MSE
Median absolute error MedianAE
Normalized mean absolute error NMAE
Number of configurations explored NCE
Root mean square error RMSE
Root mean squared percentage error RMSPE
Root mean squared propagation RMSprop
Seasonal-trend decomposition based on loess STL
Sequence-to-sequence Seq2Seq
Standard deviation of error Std Dev
Stochastic gradient descent with momentum SGDM
Temporal fusion TF
Temporal fusion transformer TFT
Variance of error VAR

model for predicting dam level rise during floods. The temporal fu-
sion transformer (TFT) model combines the strengths of recurrent
neural networks, autoregressive models, and attention mechanisms,
allowing it to capture complex temporal patterns and make accu-
rate predictions [14]. The hyperparameters tuning process optimizes
the model’s hyperparameters to achieve superior performance and
generalization [15].

The evaluation of the proposed model is conducted using a time
series dataset representing the water storage capacity of a hydroelectric
power plant with a dam. The dataset includes historical information on
inflows, water levels, and other relevant factors. The performance of the
AutoTFT model is compared against existing forecasting approaches.

The main contributions of this paper are as follows:

• The proposal of an AutoTFT model for predicting dam level rise
during floods, leveraging its ability to capture complex temporal
patterns and make accurate predictions.

• The evaluation of the proposed model using real-world time series
data from a hydroelectric power plant, comparing its performance
against existing forecasting approaches.

• The identification of key factors and considerations in dam level
prediction, including the analysis of inflow characteristics, reser-
voir management strategies, and the impact of extreme weather
events.

The remainder of this paper is organized as follows: Section 2
provides an overview of related works in time series forecasting for
energy systems, highlighting their strengths and limitations. Section 3
describes the methodology, including the architecture and components
of the AutoTFT model. Section 4 presents the results and discussion,
analyzing the performance of the proposed model and its implications
for dam-level prediction. Section 5 concludes the paper, summarizing
the key findings and suggesting future research directions in the field
2

of dam-level forecasting for hydroelectric power plants.
2. Related works

In Brazil, the power generation schedule has been studied mainly
regarding optimizing the hydrothermal resources for security and econ-
omy in using the system [16]. The economy is considering the energy
cost over time, and security is regarding the confidence in having the
available power supply [17]. Although these concerns rule scheduling
problems, when there is a rise in the dam caused by floods, the manager
of the power plant becomes responsible for the control of the power
plant [9], and this is the focus of the study presented here.

A promising way to evaluate the rise of dam water level is to
evaluate the time series of its variation; therefore time series forecasting
may be an alternative for manager decision-making in electric power
plants with dams. In [8] using a seasonal-trend decomposition based on
loess (STL), the authors had a mean square error of 0.017 and 0.019 in
two monitoring points using their method called STL-extra-trees long
short-term memory (LSTM) for the prediction of dam displacement.

Streamflow predictions are a critical aspect of hydrological research
and play a pivotal role in various water resource management and
environmental applications. A substantial body of literature exists con-
cerning streamflow prediction methods and models. In the context of
streamflow simulation for Brazilian Atlantic Rainforest basins, Vilanova
et al. [18] builds upon existing research by exploring the feasibility of
employing artificial neural networks (ANNs) with distinct input and
output configurations. The findings reveal that daily rainfall up to
the third antecedent day exhibits strong correlations with runoff and
streamflow, while accumulated rainfall up to the preceding 90 days
correlates strongly with baseflow and streamflow.

The study presented by Saraiva et al. [19] contributes to the ongo-
ing efforts to enhance streamflow forecasting techniques, it conducts
a comparative analysis of two machine learning models (ANNs and
support vector machines) with wavelet transform and data resampling
via the bootstrap method. This analysis was applied to daily streamflow
time series data from the Sobradinho Reservoir in northeastern Brazil,
covering the period from 1931 to 2015. The findings demonstrate
that the ANN outperforms the support vector machines in terms of
forecasting accuracy, with the bootstrap, wavelet, and neural network
approach emerging as the most effective combination.

Nazari et al. [20] highlight the pressing global issue of flood impacts
on communities and the significance of effective reservoir management
strategies for flood control and mitigation. By investigating their model
performance within a simulated environment, constructed directly from
Saint-Venant equations, the research seeks to establish a model that
balances high prediction accuracy and scientific consistency, position-
ing it for real-time applications. By combining aspects of physics and
data-driven approaches, it aims to facilitate advancements in hydro-
logical modeling and the development of practical tools for real-time
applications.

The work of Siqueira et al. [21] focuses on evaluating the predictive
capability of ensemble streamflow forecasts for flood prediction across
South America, with a particular emphasis on the continent’s major
basins. Using medium-range precipitation forecasts from the ensem-
ble prediction model, a comprehensive continental-scale hydrologic-
hydrodynamic approach is employed to generate streamflow predic-
tions up to 15 days in advance. The study rigorously assesses these
forecasts over 4 years, comparing them against a reference simula-
tion derived from a precipitation dataset that consolidates data from
multiple sources.

Agarwal et al. [22] present a comprehensive approach by utiliz-
ing integrated modeling techniques, including the wavelet, multilayer
perceptron, time-delay neural network, and gamma memory neural
network, to forecast hourly river-level fluctuations, incorporating the
variable of storage rate change. They showed that the integration
of wavelet transforms further augments the predictive power of the
models. Poul et al. [23] apply multi-linear regression, ANN, ANFIS,

and k-nearest neighbors to forecast monthly flow in the St. Clair River,



International Journal of Electrical Power and Energy Systems 157 (2024) 109876S.F. Stefenon et al.

I
i

t
t
e
e
a
s

3

v
T
t
T
p

𝑥

t

𝑥

w
t
t
t
e

p
a
e
t
s
w
t

bridging the United States and Canada. The findings underscore the
significant enhancement in prediction accuracy when lag times of
flow, temperature, and precipitation are incorporated into the input
variables.

According to Stefenon et al. [24], when performing time series fore-
casting, it is important to preprocess the data, identify and remove any
trends or seasonality, validate the models using appropriate evaluation
metrics, and potentially iterate on the models to improve accuracy.
They showed that using a seasonal and trend decomposition could have
a mean absolute percentage error 18% lower than the baseline method.
In the work of Li, Liu, and Tanaka [25], the Hodrick–Prescott filter was
applied to denoising the time series and enhance the predictions.

Aiming to reduce abrupt variations in the time series, Branco
et al. [26] applied the wavelet transform to preprocess the time series
data. Using their wavelet LSTM method, they had a root mean square
error (RMSE) of 1.45×10−3, which was lower than the adaptive neuro-
fuzzy inference system (ANFIS), group method of data handling, and
ensemble learning methods. In [27], the authors had the best result us-
ing the stacking ensemble model combined with the wavelet transform,
having a coefficient of determination of 0.9982. These works showed
that the wavelet transform can yield promising time series denoising
results.

The forecasting method depends on the characteristics of the data,
the presence of trends or seasonality, the amount of available data,
and the specific requirements of the problem at hand. According to
Medeiros et al. [28], several models can be applied to forecasting
problems, and using the most suitable model is a challenge. Using
a recurrent neural network they had an accuracy of up to 97.25%
with a mean coefficient of determination of 0.7632 when multiple
experiments are evaluated.

Besides using filters for noise reduction, the choice of the model
depends on the given problem. Seman et al. [29], compared the blend-
ing, bagging, boosting, random subspace, and stacked generalization.
They showed that the Hodrick–Prescott filter reduces the RMSE by 2.69
times using the random subspace approach. The proposed method had
better results than the original ensemble, standard LSTM, and LSTM
with the Hodrick–Prescot filter employed. In general, ensemble models
are becoming popular since they have lower computational effort given
their properties of combining weaker learners to create a stronger
structure [30].

Pereira et al. [31] presented a comparison of several forecasting
models applied for time series analysis in smart cities. The prophet
was faster to finish the training; however, it did not have the best
error results considering the normalized mean absolute error (NMAE).
Considering the prediction of American electric power, in their eval-
uation, the DeepAR had an NMAE of 3.47% been the best model for
this application. The DeepAR is a probabilistic forecasting method with
autoregressive recurrent networks that presents promising results for
time series forecasting [32].

In the work of Nazir et al. [33], the TFT is applied to forecast
energy consumption. This topic is important to be evaluated as the
management planning of energy use needs to be evaluated over time,
given that the time series forecasting of energy can be an extra input
for decision making. With a symmetric mean absolute percentage error
of 26.46%, the TFT outperforms other deep learning approaches, such
as the temporal convolutional network and LSTM.

With an equivalent goal, Wang et al. [34] proposed a variation of
the TFT called cross-entity TFT which uses an attention mechanism to
inter-entity correlations. In their application, the study is concerned
with the scheduling and optimization of the energy system; they show
that the presented method had lower errors than other models, even
considering different horizons. Several studies cover the scheduling
problem considering energy generation [35], this problem can be an-
alyzed considering the hydrothermal unit-commitment [36], where
several stochastic programming algorithms can be applied to optimize
3

the use of these resources [37]. h
According to Ben-Yelun et al. [38], hypertuning is a promising strat-
egy for determining the parameters for the prediction models. Based
on this approach tuning the model automatically is an advantage that
makes the AutoTFT an interesting strategy for time series forecasting.
Sharma et al. [39] applied the hypertuning in the Prophet forecasting
model for time series analysis, one advantage of using hypertuning in
time series forecasting strategies is that generally, the models take less
time to converge than computer vision applications where hypertuning
is also employed.

The Optuna proposed by Akiba et al. [40] is becoming popular
for hypertuning, especially applied in prediction applications, such
as impedance for circuit analysis [41], the critical temperature of
superconductors [42], sales estimations [43], and others. As presented
by Klaar et al. [44] the use of LSTM combined with empirical wavelet
transform (EWT) is a promising approach, even when sequence-to-
sequence (Seq2Seq) data is considered. Their method called EWT-
Seq2Seq-LSTM which uses the attention mechanism, had a 10.17%
lower mean square error (MSE) than the LSTM. Using Optuna, they had
a hypertuning that helped the EWT-Seq2Seq-LSTM to achieve better
performance.

As presented in [44] the Optuna framework is a that can be applied
to tuning the architecture of the network, having an optimized struc-
ture for time series forecasting. In their results applying an optimized
method, a 10.17% lower MSE was achieved. In the work of Klaar
et al. [45], the Optuna using a tree-structured Parzen estimator was
employed to optimize the structure of an ensemble learning approach
applied for energy price forecasting. Using decomposition methods, the
authors achieved an MSE of 3.37 × 10−9. In their final considerations,
qbal et al. [46] mentioned that their time series model may be further
mproved by hypertuning.

Table 2 provides a summary of the most relevant related works in
he field of time series forecasting and their key findings. Considering
he promising results of the TFT for time series forecasting, this paper
mploys hyperparameters tuning on this model in a multi-horizon
valuation. Additional information about the structure of the AutoTFT
nd the application proposed in this paper is presented in the next
ection.

. Multi-horizon time series forecasting

Time series forecasting is a statistical approach to predict future
alues based on historical data points ordered chronologically [47].
ime series forecasting aims to capture the underlying patterns and
rends within the data and make predictions about future values [48].
he assumption is that the future values of a variable depend on its
ast values and potentially other factors [49].

For the time series forecasting considering 𝐷 samples,

(𝑡 − (𝐷 − 1)𝛥),… , 𝑥(𝑡 − 𝛥), 𝑥(𝑡) (1)

o forecast future value,

(𝑡 + 𝑃 ), (2)

here 𝛥 is the period of the samples, 𝑥 is the considered value, 𝑡 is the
ime user evaluation, and 𝑃 are the steps forward. When 𝑃 is equal
o one means one step ahead; therefore for multi-horizon forecasting,
he value of 𝑃 is varied depending on how many steps ahead are
valuated [50].

Every step ahead that is considered takes into account the last
rediction, based on this, multi-horizon time series forecasting becomes
problem more difficult to handle since it can have accumulated

rrors from the previous predictions. Two principal approaches are used
o tackle this challenge: the direct method, which involves training
eparate models for each forecast horizon, and the recursive method,
hich uses a single model to make a one-step prediction and then feeds

his prediction back as input for the subsequent steps. Each approach

as implications for the computational efficiency and forecast accuracy
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Table 2
Summary of related works in time series forecasting.

Study Methodology Findings

Li et al. [8] Applied a combination of STL, extra-trees, and stacked LSTM
neural network

Using the proposed STL-extra-trees LSTM they were able to
achieve an MSE of 0.017 for the prediction of dam displacement.

Stefenon et al. [9] Wavelet transform and LSTM with attention for predicting dam
levels.

Achieved lower RMSE compared to other methods, highlighting
the effectiveness of wavelet transform in denoising time series
data.

Pereira et al. [31] Complete comparison of time series forecasting models for smart
cities.

DeepAR model showed promising results with the lowest
normalized mean absolute error for the prediction of American
electric power.

Salinas et al. [32] Propose a combination of probabilistic forecasting model and
autoregressive recurrent networks.

The proposed DeepAR overcomes several time series foresting
models considering different real-world applications.

Nazir et al. [33] TFT for energy consumption forecasting in smart grids. TFT outperformed other approaches, including temporal
convolutional network and LSTM, in terms of symmetric mean
absolute percentage error.

Wang et al. [34] Cross-entity TFT with attention mechanism for energy system
optimization.

Cross-entity TFT demonstrated lower errors compared to other
models, particularly in the context of scheduling and
optimization of energy systems.

Sharma et al. [39] Time series analysis using a hypertuned Prophet for the internet
of things.

With the hypertuning and other adjustments, the Prophet had
an MSE of 0.13 for predicting future energy consumption.

Klaar et al. [44] EWT combined with LSTM and attention mechanism for time
series forecasting.

Demonstrated superior performance of EWT-Seq2Seq-LSTM with
attention mechanism in reducing the error compared to the
LSTM.

Klaar et al. [45] Optuna to optimize the structure of an ensemble learning
approach.

Showed that a hypertuned model had superior results than the
LSTM and the use of attention mechanism and denoising can
further improve the predictions.
Fig. 1. Concept of prediction for multi-horizon time series.

of the model. An example of this concept is presented in Fig. 1, where
each additional step forward 𝑃 is one extra step ahead in a longer
horizon evaluation.

Attention mechanisms have been recently applied to time series
forecasting tasks, enhancing the performance of models in capturing
long-range dependencies and improving accuracy [51]. In time series
forecasting, attention mechanisms allow the model to selectively focus
on relevant historical time steps while making predictions for future
time steps. This selective attention enables the model to assign different
weights or importance to different time steps based on their relevance
to the prediction at hand [52].

An approach that incorporates attention mechanisms for time se-
ries forecasting is the transformer [53]. Transformers consist of self-
attention layers, which allow the model to attend to different parts of
the input sequence when making predictions [54]. A model that stands
out in this implementation is the TFT.

TFT employs a hierarchical structure that captures both short-term
and long-term dependencies in time-series data, making it suitable for
a wide range of applications such as forecasting, signal processing, and
sequential decision-making [55]. Given the challenge of multi-horizon
time series forecasting, Fig. 2 presents how this approach is applied for
inflow forecasting in the context of hydroelectric management. The TFT
model will be used in this work and is explained in the next subsection.
4

Fig. 2. Inflow forecasting for hydroelectric power plants.
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3.1. Temporal fusion transformer

In the TFT architecture, the input time series data is first processed
by an encoder consisting of multiple transformer layers. Each trans-
former layer employs self-attention mechanisms to capture temporal
dependencies within the time series [55]. In the transformer encoder
the attention mechanism is given by:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (3)

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, respectively,
nd 𝑑𝑘 is the dimensionality of the key vectors.

Based on that, the multi-head attention [56] is:

ultiHead(𝑄,𝐾, 𝑉 ) = Concat(head1,… ,headℎ)𝑊 𝑂 (4)

and,

head𝑖 = Attention(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ), (5)

where 𝑊 𝑄
𝑖 ,𝑊 𝐾

𝑖 , and 𝑊 𝑉
𝑖 are the linear transformation matrices for

each attention head.
In this architecture, the feed-forward network (FFN) is:

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (6)

where 𝑥 is the input, 𝑊1,𝑊2 are weight matrices, and 𝑏1, 𝑏2 are bias
vectors. Following, the residual connection is:

Residual(𝑥) = LayerNorm(𝑥 + FFN(𝑥)) (7)

where LayerNorm normalizes the input across the last dimension.
The fusion component of TFT comes into play after the encoding

stage. It fuses the hidden representations across different time steps
to capture temporal patterns and relationships. This fusion process
allows the model to learn how the past values of the time series
influence future predictions. The fused representations are then fed into
a decoder, which predicts the future values of the time series [57].

The temporal fusion (TF) layer is given by:

TF(𝑥) = LayerNorm(𝑥 + FFN(𝑥)) (8)

which is similar to the residual connection in the transformer encoder.
The temporal fusion gating is:

Gating(𝑥, 𝑔) = sigmoid(𝑥)⊙ 𝑔 (9)

where 𝑔 is the gating vector. Then, the temporal fusion equation can
be described as:

TF_eq(𝑥1,… , 𝑥𝑡, 𝑔) = TF(𝑥1)⊕⋯⊕ TF(𝑥𝑡)⊕ 𝑔 (10)

where ⊕ represents concatenation.
Finally, the output of the encoder (decoder) is a set of hidden

representations that encode the temporal and contextual information
of the input sequence. The output layer can be represented as:

Output(𝑥) = 𝑥𝑊out + 𝑏out (11)

where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the output layer’s weight matrix and bias vector.
The TFT provides interpretability by incorporating a gating mech-

anism, enabling it to identify each input variable’s importance at
different time steps. This allows users to understand the relative signif-
icance of different factors in the forecasting process [58]. The ability
to handle multivariate data, capture long-range dependencies, and
provide interpretability makes the TFT a valuable model for time series
analysis and prediction [59].

The gated residual network (GRN) is a residual gated mechanism
that allows the network to skip the non-linear transformation of an
input 𝑎 in a context 𝑐. The primary function of the gating mechanism
within GRNs is to modulate the contribution of the input and the
5

residual connection, thereby enhancing the model’s capacity to learn
Table 3
Hyperparameters evaluated in the hypertuning procedure (adjusted model).

Hyperparameter Way to set Range

hidden_size Choice [8, 32]
n_head Choice [2, 8]
learning_rate Log uniform [1e−4, 1e−1]
scaler_type Choice [‘robust’, ‘standard’]
max_steps Choice [500, 1000]
batch_size Choice [8, 32]
random_seed rand int [1, 20]

complex functions and mitigating the vanishing gradient problem often
encountered in deep networks. The residual block is given by:

𝜂1 = ELU(𝐖1𝐚 +𝐖2𝐜 + 𝐛1) (12)

𝜂2 = 𝐖2𝜂1 + 𝑏2 (13)

GRN(𝐚, 𝐜) = LayerNorm(𝑎 + GRU(𝜂2)) (14)

here ELU is the exponential linear unit, GLU represents the gated
inear unit, and provides the flexibility of suppressing unnecessary
arts of the GRN. Consider GRN’s output 𝛾 then GLU transformation
s defined by:

LU(𝛾) = 𝜎(𝐖4𝛾 + 𝑏4)⊙ (𝐖5𝛾 + 𝑏5) (15)

.2. Quantile outputs

TFT can be extended to provide quantile outputs, allowing the
odel to predict not just the expected value, but also the uncertainty

f the prediction. This can be particularly useful in applications where
t is essential to have a more complete understanding of the prediction,
uch as in weather or economic forecasting [60].

Quantile regression is a type of regression that predicts not only
he mean of the target variable but also the distribution of the target
ariable. In TFT, this can be achieved by modifying the final layer of the
etwork to output quantiles of the prediction instead of just the mean.
iven a set of quantiles, 𝜏, the quantile regression loss is defined as:

(�̂�, 𝑦) =
𝑛
∑

𝑖=1
𝜌𝜏𝑖 (𝑦𝑖 − �̂�𝑖) (16)

here 𝑛 is the number of data points, �̂� is the predicted value, 𝑦 is the
ctual value, and 𝜌𝜏 is the quantile loss function defined as:

𝜏 (𝑧) =

{

𝜏𝑧 𝑧 ≥ 0
(𝜏 − 1)𝑧 𝑧 < 0

(17)

The quantile loss function measures the deviation between the
redicted and actual values at the specified quantiles. By optimizing
his loss function, the TFT model can learn to predict the quantiles of
he target variable, allowing it to capture not only the mean of the
arget but also its distribution [61].

.3. Hypertuning

To perform a complete evaluation of the AutoTFT model, this
odel is evaluated using default and adjusted hyperparameters. The

djusted hyperparameters being evaluated are presented in Table 3.
hese hyperparameters are the hidden size, number of heads (𝚗_𝚑𝚎𝚊𝚍),

earning rate, scaler type, maximum steps (𝚖𝚊𝚡_𝚜𝚝𝚎𝚙𝚜), batch size, and
andom seed.

During the hypertuning process combinations of hyperparameters
re tried and evaluated automatically to define the best structure for
he model, therefore evaluations of the hyperparameters individually
re not necessary. The complete architecture of the AutoTFT model is
resented in Fig. 3.

The original model is compared to the hypertuned one in a statisti-
al assessment where the Wilcoxon test is applied. The Wilcoxon test is
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Fig. 3. AutoTFT architecture.
a nonparametric hypothesis test to assess whether the population mean
ranks differ. In this paper, the Wilcoxon test was applied considering
the predicted and observed values (for the short and median-term). The
null hypothesis is that the distributions of the two vectors are the same.
The alternative hypothesis is that the true location shift is not equal to
zero [62].

Considering that there is a discussion regarding the use of shallow
architectures and deep learning. For the final evaluation of the Au-
toTFT, a benchmarking with the ANFIS [63], bootstrap aggregation
(bagged) [64], sequential learning (boosted) [65], stacked general-
ization [66] ensemble learning approaches [67], and LSTM [68] are
presented. Variations of the structure of these models are presented
for a complete assessment. The summary flowchart of the proposed
approach and evaluation used in this paper is presented in Fig. 4.

4. Results and discussion

The TFT algorithm was written in Python. The experiments were
computed on Google Colab using an NVIDIA Tesla T4 graphics pro-
cessing unit of 16 GB with allocated 12 GB of random access memory.
In the analysis presented in this paper, the RMSE, root mean squared
percentage error (RMSPE), maximum absolute error (MaxAE), mean
absolute error (MeanAE), and median absolute error (MedianAE) are
evaluated [69].

4.1. Dataset

The considered data is based on measurements from the automatic
hydraulic control of a hydraulic power plant during a flood. In 20 days
and 1 hour, the level of the dam increased from 20.46% to 86.27%. This
situation raises the problem of emergency situations in power plants
with dams, and how is necessary for the manager of the power plant
to make decisions when it happens.

Given this task, the recorded data from a hydraulic power plant
located in Pelotas River, Santa Catarina state, Brazil, is used to perform
a time series forecasting to have the information in advance, and
6

Fig. 4. Summary flowchart of the proposed approach.

do not face emergency situations. The considered measurements were
recorded in July 2020, considering a time interval of 1 h, corresponding
to 481 records.1 The recorded data is presented in Fig. 5.

4.2. Model evaluation

The first evaluation is regarding the time step predicted horizon
(previously defined as 𝑃 ) and the number of configurations explored
(NCE). The results are presented in Table 4.

The errors were higher when the analysis is considering the median
term compared to the short-term forecasting. Using a higher NCE the
model needs more time to be computed, given that not all the results
were better when more configurations were explored, the maximum of
NCE equal to 10 is evaluated. For the median-term forecasting with a
horizon equal to 30, the best result was found using an NCE equal to

1 https://github.com/SFStefenon/AutoTFT.

https://github.com/SFStefenon/AutoTFT
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Table 4
Median and short-term evaluation considering different horizons and configurations explored.

NCE Horizon RMSE RMSPE MaxAE MeanAE MedianAE Time (s)

3

1 3.03 × 10−2 3.51 × 10−3 3.03 × 10−2 3.03 × 10−2 3.03 × 10−2 123.94
2 7.87 × 10−2 9.12 × 10−3 8.55 × 10−2 7.84 × 10−2 7.84 × 10−2 101.83
3 7.23 × 10−1 8.38 × 10−2 9.20 × 10−1 7.04 × 10−1 6.68 × 10−1 122.09

10 2.70 × 10−1 3.13 × 10−2 3.19 × 10−1 2.66 × 10−1 2.80 × 10−1 219.21
20 5.82 × 10−1 6.77 × 10−2 7.88 × 10−1 5.76 × 10−1 5.43 × 10−1 608.96
30 3.41 3.96 × 10−1 6.15 2.96 2.41 898.52

5

1 3.33 × 10−2 3.87 × 10−3 3.33 × 10−2 3.33 × 10−2 3.33 × 10−2 143.70
2 9.22 × 10−3 1.07 × 10−3 1.27 × 10−2 7.88 × 10−3 7.88 × 10−3 178.28
3 7.94 × 10−3 9.20 × 10−4 1.13 × 10−2 7.05 × 10−3 7.52 × 10−3 195.32

10 1.26 × 10−1 1.47 × 10−2 2.86 × 10−1 9.96 × 10−2 6.17 × 10−2 754.31
20 1.73 2.01 × 10−1 2.76 1.49 1.12 420.98
30 8.93 × 10−1 1.04 × 10−1 1.48 8.15 × 10−1 6.60 × 10−1 1779.95

10

1 2.26 × 10−3 2.62 × 10−4 2.26 × 10−3 2.26 × 10−3 2.26 × 10−3 371.92
2 6.64 × 10−3 7.70 × 10−4 7.44 × 10−3 6.58 × 10−3 6.58 × 10−3 481.35
3 1.02 × 10−2 1.18 × 10−3 1.23 × 10−2 9.66 × 10−3 1.15 × 10−2 316.18

10 1.68 × 10−1 1.94 × 10−2 2.18 × 10−1 1.63 × 10−1 1.67 × 10−1 901.76
20 1.90 2.20 × 10−1 2.72 1.81 1.84 3330.00
30 1.32 1.54 × 10−1 2.48 1.22 1.25 2381.50
Fig. 5. Original signal: Variation of the level of the reservoir of the power hydraulic
plant.

Fig. 6. Original and forecasted signals.

5, using this configuration the forecasting and the original signal are
presented in Fig. 6.

The horizon equal to 30 means that the manager would have the
information of a possible emergency situation 30 h before it occurs,
which would be appropriate to alert the team to perform the precau-
tions given this possible scenario. The comparison of the observed and
7

the predicted results for a horizon of 30 h are presented in Fig. 7.
Fig. 7. Observed and forecasted signals.

Even considering a measurement of the level of the dam during a
flood, the variation of the level was not abrupt which makes possi-
ble medium-term forecasting, if abrupt variations happen short-term
forecasting would be more adequate where the model forecasts con-
sidering a shorter horizon. Short-term forecasting has a more dynamic
adjustment since the has fewer steps ahead to predict.

First evaluations were computed using default values of hyperpa-
rameters (pre-defined) for the AutoTFT. Given that complete hypertun-
ing with adjusted setup values would possibly enhance the performance
of the model, the adjusted hyperparameters were evaluated. After the
hypertuning, the model using the updated values is called adjusted. The
setup for this evaluation is explained in Section 3.3.

Considering the hyperparameter search space, statistical analysis
with the evaluation of the variance of error (VAR), the standard devi-
ation of error (Std Dev), and the interquartile range of error (IQR) are
also presented in Table 5. The use of hyperparameters given a range
of possible variations was shown to be more promising than the use
of default values in this evaluation. The RMSE of the adjusted AutoTFT
was 80 times lower than the model using its default setup for short-term
forecasting. Considering the 𝑝-value the null hypothesis is rejected for
all models, meaning that the distribution of the two populations, from
which the samples are taken, has a median distinct.

The AutoTFT model had a promising outcome for the time series
forecasting considering a signal with low noise, not having high fre-
quencies. When high noising signals are considered the application of
this method is less recommended since the focus of the predictions of
the proposed method is the signal trend. When high frequencies can
be disregarded, the combination of denoising techniques and trend-
decomposing methods may be a solution to deal with complex signals
having high nonlinearities.
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Table 5
Statistical evaluation of the errors given default and adjusted values of hyperparameters.

Short-term 𝑃 = 3 Median-term 𝑃 = 30

Default Adjusted Default Adjusted

RMSE 2.23 × 10−2 2.78 × 10−3 2.15 1.72
RMSPE 2.58 × 10−3 3.23 × 10−4 2.50 × 10−1 2.00 × 10−1

MaxAE 2.79 × 10−2 4.34 × 10−3 2.57 2.08
MeanAE 2.09 × 10−2 2.38 × 10−3 2.09 1.67
MedianAE 2.49 × 10−2 1.90 × 10−3 2.26 1.79
VAR 6.21 × 10−5 4.61 × 10−6 2.40 × 10−1 1.65 × 10−1

Std Dev 7.88 × 10−3 2.15 × 10−3 4.90 × 10−1 4.06 × 10−1

IQR 1.80 × 10−2 5.26 × 10−3 4.66 × 10−1 7.42 × 10−1

P-valuea 0.375 0.125 9.31 × 10−10 9.31 × 10−10

a Results of Wilcoxon test.
Table 6
Benchmarking (one step ahead).

Model Structure RMSE RMSPE MaxAE MeanAE MedianAE Time (s)

ANFIS
GP 1.25 × 10−1 1.50 × 10−2 2.75 × 10−1 1.04 × 10−1 9.93 × 10−2 10.22
FCM 8.45 × 10−2 1.01 × 10−2 1.63 × 10−1 6.95 × 10−2 6.89 × 10−2 3.84
Subtractive 1.29 × 10−1 1.53 × 10−2 2.32 × 10−1 1.05 × 10−1 1.10 × 10−1 4.20

Ensemble
Stacked 4.28 5.45 × 10−1 6.01 4.10 3.99 26.75
Bagged 3.04 3.83 × 10−1 3.48 3.02 3.09 19.40
Boosted 2.76 3.48 × 10−1 3.18 2.75 2.82 188.55

LSTM
Adam 1.81 2.24 × 10−1 2.18 1.79 1.76 22.21
SGDM 1.38 1.68 × 10−1 2.09 1.27 1.26 19.00
RMSprop 3.29 × 10−1 4.11 × 10−2 6.59 × 10−1 2.79 × 10−1 2.44 × 10−1 22.96

AutoTFT Default 2.14 × 10−1 2.48 × 10−2 2.14 × 10−1 2.14 × 10−1 2.14 × 10−1 437.14
Adjusted 𝟒.𝟏𝟐 × 10−2 4.77 × 10−3 𝟒.𝟏𝟐 × 10−2 𝟒.𝟏𝟐 × 10−2 𝟒.𝟏𝟐 × 10−2 495.05

The underlined values are the best results for each method and the bold values are the overall best results.
.

To highlight that the applied hypertuned AutoTFT (adjusted) is
appropriate to perform the time series forecasting presented in this
paper, Table 6 presents a comparative analysis for one step ahead to
other models. The ANFIS, ensemble learning approaches, LSTM, and
AutoTFT using default settings are compared to the proposed strategy.

The long-term forecasting horizon helps the operator to have the
information in advance, however, when the horizon becomes bigger the
predictions may have higher errors. Considering that one step ahead
means one hour in this study, one-step-ahead forecasting is acceptable
for ab action in the power plant decision-making, and therefore, is used
for the final benchmarking presented here.

Considering the ANFIS model, for a complete evaluation, different
structures were analyzed, the fuzzy c-means (FCM), grid partition
(GP), and subtractive clustering are considered. For the ensemble ap-
proach, the stacked, bagged, and boosted are evaluated. For the LSTM,
the results of the use of the Adam, stochastic gradient descent with
momentum (SGDM), and root mean squared propagation (RMSprop)
optimizers are presented.

The AutoTFT with default setup had results slightly better than the
LSTM with RMSProp optimizer. If this model version is compared to
the ANFIS, the model becomes inferior and inadequate. Considering
a defined hyperparameter search space (adjusted model), the results
of the AutoTFT were considerably better than all other models. These
results show that proper model tuning may enhance its forecasting
capability, being the best strategy for the task discussed here.

5. Final remarks

The time series forecasting of the level of dams in hydroelectric
power plants shows to be a promising way to improve the security of
the power plant giving extra information for decision-making during
emergency situations. Additionally, the information may be incorpo-
rated into the stochastic optimization problem of power generation
scheduling. Given those possibilities, the application of the proposed
method showed to be practicable.

The results present in this work showed that wider hypertuning is
8

better than the use of standard (pre-defined) tuning values. Considering
an adjusted model, it was possible to evaluate the forecasting consid-
ering different horizons. The evaluation showed that it becomes harder
to predict values considering longer terms.

With an RMSE of 4.12×10−2 the adjusted AutoTFT outperforms
well-established models such as ANFIS, LSTM, bootstrap aggregation,
sequential learning, and stacked generalization ensemble learning ap-
proaches for one step ahead. A disadvantage of the AutoTFT is its
higher requested computational effort, which results in more time for
training, in this study this was not a restriction since the evaluation
was performed offline, however, for application in embedded systems
the AutoTFT may not be the most suitable approach.

In future research, it would be interesting to evaluate the perfor-
mance of this AutoTFT model considering signals with higher noise,
which was not the case in the measurement of the level of the hy-
droelectric dam presented here. Given high nonlinearities, the use of a
hybrid method, such as some discussed in the literature review would
be interesting.
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