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Abstract
Motivation: Engineering high-affinity binders targeting specific antigenic determinants remains a challenging and often daunting task, requiring 
extensive experimental screening. Computational methods have the potential to accelerate this process, reducing costs and time, but only if 
they demonstrate broad applicability and efficiency in exploring mutations, evaluating affinity, and pruning unproductive mutation paths.
Results: In response to these challenges, we introduce a new computational platform for optimizing protein binders towards their targets. The 
platform is organized as a series of modules, performing mutation selection and application, molecular dynamics simulations to sample confor
mations around interaction poses, and mutation prioritization using suitable scoring functions. Notably, the platform supports parallel exploration 
of different mutation streams, enabling in silico high-throughput screening on High Performance Computing (HPC) systems. Furthermore, the 
platform is highly customizable, allowing users to implement their own protocols.
Availability and implementation: The source code is available at https://github.com/pgbarletta/locuaz and documentation is at https://locuaz. 
readthedocs.io/. The data underlying this article are available at https://github.com/pgbarletta/suppl_info_locuaz

1 Introduction
The antibody (Ab) discovery process, a critical aspect of bio
therapeutics development, relies on the identification of one 
or more starting candidates, for instance via phage display, 
yeast display, and hybridoma technology. The affinity matu
ration follows through several steps of either site-directed 
mutagenesis, directed evolution, or deep mutational scanning 
which allow assessing the impact of specific mutations on Ab 
function and stability (Kennedy et al. 2018). The goal is to 
obtain an Ab with optimal stability, high affinity and specific
ity toward the target. In silico approaches can be extremely 
useful in this context, especially when structural data of the 
target are available. They include knowledge-based methods, 
trained on sequence and structure databases, physics-based 
methods, and hybrid approaches, all aiming at mimicking the 
details of protein-protein interactions at a lower cost and a 
shorter time (Sormanni et al. 2018).

Many popular empirical methods belong to the Rosetta 
suite(Sivasubramanian et al. 2009), which has been used ex
tensively, also in some case to optimize CDR3 sequences, 
producing Abs that were readily expressed and validated 
(Moriyama et al. 2023). For instance, Rosetta RAbD, an 

iterative protocol generating redesigned mutants and samples 
conformations via a Monte Carlo scheme using a specific en
ergy definition, led to the discovery of an Ab with a Kd 
�20 nM (Adolf-Bryfogle et al. 2018). This result is compara
ble to those of experimental methods, which very rarely de
liver Abs with pM binding affinity.

OSPREY (Hallen et al. 2018) is another well-established 
software which has proven capable of achieving a 100-fold 
increase in Ab affinity with just a single point mutation (Holt 
et al. 2023).

Physics-based approaches often rely on molecular dynam
ics (MD) simulations for conformational sampling. Among 
them, a protocol based on MD coupled with a Metropolis 
Montecarlo scheme using energies calculated via MMPBSA 
to accept sampled conformations led to an Ab with Kd 
�0.5 nM (Buratto et al. 2022). MDþFoldX is another 
method where the interaction energies are calculated exclu
sively with FoldX. It has been applied to Abs against the 
SARS-Cov-2 receptor binding domain identifying both muta
tions that could enhance Ab affinity and positions that could 
potentially host Ab escape mutations. (Barnes et al. 2022) In 
other approaches, the conformations generated via MD were 
selected with an acceptance criterion based on a consensus 
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score among multiple scoring functions giving raise to an 
evolutive optimization protocol for nanobodies and peptides, 
reaching affinities comparable to those of experimental tech
niques (Soler et al. 2019, Ochoa et al. 2021). A later imple
mentation exploiting replica-exchange MD allowed the de 
novo optimisation of Ab fragments (Soler et al. 2023).

Among the most advanced examples of knowledge-based 
methods, certainly those based on machine learning deserve 
to be mentioned, such as generative methods. In a recent ef
fort, 1 million Abs against the HER 2 growth factor receptor 
have been generated in a zero-shot fashion, without any 
training sample binding HER 2 or one of his homologs. From 
these designs, 421 binders were experimentally validated and 
three displayed stronger binding than trastuzumab, the Ab 
binder licensed as a drug (Shanehsazzadeh et al. 2023). 
Geometric deep learning is another interesting approach 
which has been experimentally proven to generate optimized 
CDR sequences of existing Abs (Shan et al. 2022). Along the 
same lines, a deep learning based method trained on 104 Ab 
variants of the antiHer2 Ab Trastuzumab, was used to pick 
among 108 mutants achieving affinities of Kd 0.1–10 nM, 
thus comparable to that of the original Ab they were derived 
from (Mason et al. 2021), Language models too have been 
used to optimise Abs with Kd <1nM (Hie et al. 2023).

Overall, deep-learning based methods are very promising 
but need a very large training set of experimental data, which 
might not always be available. These results highlight that in 
silico methods could be key to avoid massive experimental 
costs. Moreover, the variety of available protocols and of 
their intermediate steps allows to tailor each phase of the pro
cess, such as the mutation strategy or the affinity estima
tion criteria.

We propose here locuaz: A flexible, python-based platform 
whose primary goal is to optimize the binding affinity of an 
Ab (fragment) towards its target. In an evolutionary frame
work, locuaz mutates the candidate binder, samples confor
mations via MD and scores the affinity of the new complex. 
Each of these steps can be customized by the user. 
Importantly, the entire mutation pipeline allows the concur
rent generation of different mutation lineages in parallel. The 
platform can be containerized and run through different job 

scheduling systems, such as SLURM or PBS. It was con
structed using a modular approach both by selecting features 
from existing Ab evolutionary protocols and by developing 
new ones into a unique platform, in a way to facilitate 
updates, customizations and extensions.

2 Materials and methods
As shown in Fig. 1A, the workflow of Locuaz is organized in 
functional units called Blocks, namely the Mutation Chooser, 
which determines which mutation has to be applied, the 
Mutator, which actually applies the mutation to the struc
ture, the Sampler, which performs MD simulation to relax 
the system, the Complex Scorer, which evaluates the effect of 
the current mutation on the binding affinity, and finally the 
Pruner, which decides whether a lineage should be stopped 
because it is not promising or not. These units were envi
sioned to support the interchangeable use of built-in tools or 
of third-party external programs for each task. For example, 
Locuaz currently supports 9 different Scorers, 2 possibilities 
for the input topologies (Amber and GROMACS), 
GROMACS as MD engine used by the Sampler, 3 different 
Pruners and a highly-configurable Mutation Chooser. 
Different flavors of each block can be selected and combined 
at will, and new ones can be added, leading to a remarkable 
protocol flexibility.

The optimization process starts from a putative binder/tar
get complex and requires as input the selection of the portion 
of the binder to be optimized. The workflow then envisions 
the identification of multiple mutations by the Mutation 
Chooser block. The mutation sites can be one or many, can 
be either completely random, or guided by biological knowl
edge, or by physically-based methods, such as MMPB(GB) 
SA, which are used to recognize which residues are contribut
ing less to the binding affinity (Vald�es-Tresanco et al. 2021). 
The choice of the new amino acid is also configurable. The 
user can choose from different amino acid probability 
schemes, or assign each amino acid a custom probability. The 
Mutation Chooser also allows custom grouping of amino 
acids in order to force the choice of the amino acid to be 
within a certain category of amino acid like” polar” or” 

Figure 1. (A) User configurable Blocks of the protocol. (B) Protocol output along the optimization of an anti-p53 Ab fragment: Average scores for all 
complexes generated along the protocol. Gray markers correspond to complexes that were not selected for the next epoch. Dotted line marks the first 
epoch of the unrestrained optimization, showing that the lifting of restrains allowed the interface to find a lower energy interaction.
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aliphatic”, etc More information is available on the 
documentation.

Mutations are performed by any of the currently available 
Mutators (Soler et al. 2018, Tandiana et al. 2024).

After a mutation is applied, the Sampler performs MD sim
ulations using the GROMACS engine (Abraham et al. 2015) 
by adopting either GROMACS topologies, or those from 
Amber’s Tleap (Salomon-Ferrer et al. 2013), allowing the 
user to include non-standard residues, organic small mole
cules and ions. To maximize the throughput, all available 
GPU and CPU resources are pooled and the simulations are 
distributed among parallel branches (as many as the user 
requested) and are queued up for concurrent execution fol
lowing a Producer/Consumer strategy where, in case the 
number of requests cannot be fulfilled by the available 
resources, a “first come, first served” criterion is adopted.

Then, the sampled complex configurations are scored and 
their scores averaged. The score calculations are also dis
patched to the available resources, as previously described, to 
optimize the overall efficiency.

Finally, the user-selected Pruner compares the scores of the 
mutated binders against the original ones and selects the sub
set of mutated binders that are deemed to improve affinity. If 
a single scoring function is used, one possibility is to adopt a 
Monte Carlo-based Pruner (Soler et al. 2017), giving a chance 
also to mutations that are predicted to lead to slightly lower 
affinity. If, conversely, multiple scoring functions are 
employed, a consensus criterion Pruner can be used to decide 
which mutation branch is to be continued(Soler et al. 2019). 
In case no mutation is retained, the original binders are 
reused to generate a new set of mutants.

Each cycle of this protocol is called an epoch, while simul
taneous mutations give rise to different branches. A typical 
optimization process involves many epochs, as depicted on  
Fig. 1B. At each epoch a user-defined number of branches are 
generated, effectively forming a Directed Acyclic Graph 
(DAG). The width of this DAG, i.e. the number of active 
branches, is managed according to the available computa
tional resources. In Locuaz we included two methods: vari
able-width DAG, suitable when considerable computational 
resources are available, and constant-width DAG, in which 
the creation of new branches is limited by a previously se
lected constant width.

3 Application to the TWIST1 system
TWIST1 is a transcription factor which promotes the 
MDM2-mediated degradation of p53, one of the main tumor 
suppressors, by interacting with its binding site on p53, 
known as “Twist-box.” A llama nanobody (VHH) shown to 
interfere with TWIST1: P 53 interaction by binding to p53 
with moderate binding affinity was modelled by homology 
and then docked onto p53 (D’Agostino et al. 2022).

In order to improve the p53: VHH affinity, the complex 
was submitted to 5 epochs of optimization using positional 
restraints between the binder and the target. Then, 250 ns of 
NPT were carried out to confirm the improved stability. The 
most representative structure was chosen after clustering, and 
used to start another 13 epochs of unrestrained optimization 
for a total of 18 epochs. The optimisation process was moni
tored by plotting the 4 selected scoring functions along the 
epochs (Fig. 1B). In this particular example the Mutator 
Chooser was SPM4i, the Sampler used GROMACS 

topologies, the Scorers were EvoEF2, BLUUES, PIEPISA 
and gmxMMPBSA and the Consensus Threshold Pruner was 
used to select the best candidates. After the protocol run, all 
average scores had at least doubled and many promising can
didates were recovered from the last epoch. These can then 
be further validated by longer MD simulations, rescored if 
necessary, and, finally, undergo experimental validation.

This example, as well as further details on the specific fea
tures of each Block, can be found at https://lo cuaz.readthe 
docs.io/en/latest/tutorialsimple.html

Further tutorials are available in the documentation, each 
of them providing optimal parameters for different use cases: 
using topologies from GROMACS, building the topology 
from Tleap and optimizing a protein against a small ligand.
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