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ABSTRACT 

Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular 

Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including 

applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous 

driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or 

point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational 

resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE 

methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments 

using ground truth data, including 3D analyses and inference time.  

 

    
Figure 1: Examples of depth map inferred from single images, commonly known as Monocular Depth Estimation (MDE). 

 

 

1. INTRODUCTION 

Estimating depth from a single image, known as Monocular 

Depth Estimation (MDE, Figure 1), is a fundamental task in the 

field of computer vision and it is getting also useful in various 

photogrammetric task. MDE processes hold numerous 

advantages, being supportive and complementary for 

simultaneous localization and mapping (SLAM), scene 

understanding, 3D modelling, robotics, and autonomous driving. 

The retrieval of depth information becomes especially crucial in 

scenarios where alternative sources like stereo images, optical 

flow, or point clouds are unavailable (Bhoi et al, 2019).  

Traditional depth estimation methods using stereo images or 

video sequences (Kong and Black, 2015; Cheng and Huang, 

2015; Ha et al., 2016; Wei et al., 2022; Hossain and Lin, 2023; 

Stathopoulou and Remondino, 2023), require extensive 

computational resources and larger datasets than monocular 

depth estimation techniques, thus leading to the rise of MDE 

based on deep learning methods that rely on convolutional neural 

networks rather than hand-crafted features. 

 

1.1 Paper motivations and aims 

As MDE has become a key topic of research in the 

photogrammetric and computer vision communities, a holistic 

understanding and quantitative evaluation of state-of-the-art 

methods is necessary. MDE could be a complementary approach 

to photogrammetric multi-view stereo (MVS) methods or it could 

support navigation tasks or scene understanding. Therefore, this 

research work aims to: 

• Analyze and test some state-of-the-art methods able to infer 

depth information from single terrestrial images; 

• Perform quantitative evaluations (cloud-to-cloud distances, 

MAE, RMSE, MTF, etc.) with available ground truth data. 

Despite the numerous state-of-the-art depth estimation 

algorithms, it is important to evaluate their performance across 

various datasets and environments. Each algorithm is designed 

with specific assumptions and optimizations, making it 

challenging to claim that a single algorithm can effectively 

address all possible applications and scenarios. Therefore, it 

becomes crucial to test and compare different depth estimation 

methods to determine their strengths, weaknesses, and suitability 

for specific applications. By conducting such evaluations, we can 

gain insights into the applicability and robustness of these 

algorithms, enabling us to make informed decisions when 

selecting the most appropriate method for a given task or 

environment. Other unbiased MDE evaluations are presented in 

Kock er al. (2020), Dickson et al. (2021), Diab et al. (2022), 

Marelli et al. (2023), Nex et al. (2023), Theiner et al. (2023). 

 

 

2. MDE METHODS AND EVALUATION 

2.1 MDE methods 

This paper is dedicated to exploring monocular depth estimation 

(MDE) and thoroughly evaluating specific algorithms that play a 

crucial role in this area. From various available algorithms like 

VPD (Zhao et al., 2023), NVDS (Wang et al., 2023), DINOv2 

(Oquab et al., 2023), DepthFormer (Li et al., 2023), etc, we have 

chosen DPT, ZoeDepth, MiDaS, and DenseDepth. The scientific 

literature and other reputable sources like Paper with Codes have 

highlighted these algorithms as top performers, driving our 

selection. By concentrating on these algorithms, our study seeks 
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to uncover their unique characteristics and contributions, 

shedding light on their significant roles in the complex realm of 

monocular depth estimation. It is important to note that in the 

dynamic landscape of MDE, there is no single algorithm that 

universally outperforms others across all datasets and scenes. 

Hence, our study acknowledges the significance of considering 

and evaluating algorithms based on their application and 

compatibility with the dataset’s images. By concentrating on the 

chosen algorithms, our study seeks to uncover their unique 

characteristics and contributions, shedding light on their 

significant roles in the complex realm of monocular depth 

estimation.  

The selected MDE algorithms are hereafter introduced. 

 

DenseDepth – High Quality Monocular Depth Estimation via 

Transfer Learning (Alhashim and Wonka, 2019): it employs a 

convolutional neural network to generate a detailed depth map 

from a single RGB image via transfer learning. Adhering to a 

conventional encoder-decoder design, it utilizes feature 

representations from well-performing pre-trained networks to 

initialize the encoder. Furthermore, it integrates augmentation 

and training methodologies that enhance the precision of the 

outcomes. In Figure 2, an overview of the encoder-decoder 

network utilized for depth estimation is presented. The encoding 

process involves transforming the input RGB image into a feature 

vector via the pre-trained DenseNet-169 (Huang et al., 2017) 

network, which has been trained on ImageNet (Deng et al., 2009). 

This resultant vector is then channeled through a sequence of 

successive up-sampling layers (Lehtinen et al. 2018), facilitating 

the creation of the final depth map at half the initial resolution. 

The configuration of these up-sampling layers, coupled with their 

corresponding skip-connections, constitutes the decoder 

component. The training of DenseDepth models involved 1 

million iterations on the NYU Depth V2 dataset and 300,000 

iterations on the KITTI dataset. 

 

          Input             Encoder          Decoder           Output                                                 

 

Figure 2: Overview of DenseDepth architecture.  

 

MiDaS v3.1 – A Model Zoo for Robust Monocular Relative 

Depth Estimation (Ranftl et al., 2020): the MiDaS family of 

models has its roots in a critical study within the realm of relative 

depth estimation where it is reported the value of dataset 

integration to attain superior zero-shot performance across 

diverse datasets. Depth prediction is executed within the realm of 

disparity space, encompassing inverse depth with considerations 

for scale and shift.  Training employs losses that are invariant to 

scale and shift to address uncertainties in true depth labels. 

Existing datasets for depth estimation are amalgamated and 

enriched with frames and disparity labels extracted from 3D 

films, thereby creating an extensive meta-dataset. As the 

evolution of MiDaS releases has unfolded through various 

iterations, a progressively increasing number of datasets have 

been integrated over time. The network structure of MiDaS 

follows a conventional encoder-decoder setup, where the encoder 

relies on an image-classification network. The original MiDaS 

v1.0 and v2.0 models utilize the ResNet-based design (He et al., 

2016). For the release of MiDaS v3.1, five encoder types are 

selected based on their perceived potential for downstream tasks. 

This choice stems from their high quality in depth estimation or 

their suitability for real-time applications due to low 

computational requirements. This selection criterion applies 

equally to the available sizes for encoder types, encompassing 

both small and large options. 

 

         Input              Encoder      Decoder             Output                                                 

 
Figure 3: The MiDaS architecture. 

 

ZoeDepth – Zero-shot Transfer by Combining Relative and 

Metric Depth (Bhat et al., 2023): it combines both monocular 

depth estimation (MDE) and relative depth estimation (RDE) 

approaches in a two-stage framework (Figure 44). In the first 

stage, an encoder-decoder structure is trained to estimate relative 

depths from the input image. This model is trained on a large 

variety of datasets, which improves its generalization to different 

scenes and environments. It builds upon the MiDaS (Ranftl et al., 

2020) training strategy for relative depth prediction which uses a 

loss that is invariant to scale and shift. In the second stage, 

components responsible for estimating metric depth are added as 

an additional head. This stage helps to refine the depth estimates 

by incorporating metric depth information, which is the absolute 

distance between objects in the scene. The ZoeD-M12-NK 

architecture, employs relative pretraining across 12 distinct 

datasets, coupled with metric fine-tuning on both indoor and 

outdoor datasets—namely, NYU Depth v2 (Silberman et al., 

2012) and KITTI (Geiger et al., 2013) jointly. 

 

 
Figure 44: The ZoeDepth architecture (Bhat et al., 2023). 

DPT – Dense Prediction Transformer (Ranftl et al., 2021): it 

is an architecture for dense prediction tasks (Figure 5). DPT 

utilizes an encoder-decoder design, where the encoder 

incorporates a transformer as the fundamental computational 

component. The method adopts the Vision Transformer (ViT) 

(Dosovitskiy et al., 2020) as the foundational architecture, 

converting its bag-of-words (tokens) representation into image-

like feature representations at different resolutions. These 

representations are then progressively merged using a 

convolutional decoder to generate the ultimate dense prediction 

output. DPT-Base, DPT-Large, and DPT-Hybrid are three DPT 

architectures which are based on ViT architectures (Vit-Base, 

ViT-Large, and ViT-Hybrid) in terms of reassembling tokens 

from different layers. ViT-Base employs the patch-based 

embedding approach and includes 12 transformer layers, while 

ViT-Large adopts the same embedding technique but 

incorporates 24 transformer layers and features a broader feature 

size D (feature dimension of each token). Additionally, ViT-

Hybrid utilizes a ResNet50 for calculating the image embedding, 

and it is followed by the inclusion of 12 transformer layers and is 

fine-tuned on the KITTI and NYUv2 datasets. 

 
Figure 5: DPT Architecture (Ranftl et al., 2021). 
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2.2 Metrics 

For the quantitative evaluation of inferred depth maps, various 

metrics are commonly employed to assess the disparities between 

a predicted depth and its corresponding ground truth. These 

metrics include: 

• Root Mean Squared Error (RMSE), 

• Mean Absolute Error (MAE), 

• Peak Signal-to-Noise Ratio (PSNR) (Johnson, 2006), 

• Mean Relative Error (MRE), 

• Structural Similarity Index Measure (SSIM) (Brunet et al., 

2011) 

They all provide effective means to measure the accuracy and 

quality of the depth estimation process. Valuable insights into the 

performance of depth prediction algorithms and their alignment 

with ground truth data can be gained by analyzing these metrics. 

 

2.2.1 Edge sharpness analysis with MTF, ESF and LSF 

The Modulation Transfer Function (MTF) serves as a crucial 

specification in the design of imaging systems to assess system 

quality (Kohm, 2004). MTF is essentially the normalized 

magnitude of the Fourier Transform of the point spread function 

of the imaging system. Alternatively, it characterizes how 

sinusoidal wave patterns are weakened based on their spatial 

frequency. Therefore, the MTF quantifies the level of sharpness 

present in the resulting image after reconstruction (Kohm, 2004). 

The MTF is a measure derived from the contrast of the image in 

relation to the contrast of the object (Winston et al., 2005) and is 

obtained by normalizing the absolute value of the Fourier 

Transform of the Point Spread Function (PSF) (Williams and 

Becklund, 2002). One of the approaches for determining MTF is 

utilizing edges. The edge spread function (ESF) characterizes 

how the system responds to a high-contrast edge. The Fourier 

Transform of the LSF’s (Line Spread Function) normalized 

magnitude yields a one-dimensional cross-section within the 

two-dimensional MTF structure. Alternative techniques exist to 

directly compute the system’s MTF from the ESF, thereby 

obviating the necessity for differentiation (Tatian, 1965). A 

prerequisite for determining MTF from edges is the presence of 

an accurate ESF representation. The slanted edge algorithm 

capitalizes on the edge’s phase shift across the sampling grid to 

generate an enhanced ESF, termed “super-resolved”. In-house 

scripts are used to compute MTF, ESF and LSF on specific edges 

in the inferred depth maps and compare them to the GT (Section 

4). 

 

3. DATASETS 

The considered datasets focus mainly on terrestrial architectural 

outdoor and indoor scenarios, with large depth changes in the 

scene. Two publicly available datasets were considered and used 

for evaluating the MDE methods presented in Section 2: 

1) ENRICH1 (Marelli et al., 2023) is a versatile dataset designed 

for evaluating photogrammetric and computer vision 

algorithms, including MDE. In contrast to other datasets, 

ENRICH provides higher resolution images with varying 

lighting conditions, camera orientations, scales, and fields of 

view. It comprises three distinct sub-datasets, namely 

ENRICH-Aerial, ENRICH-Square, and ENRICH-Statue, 

each showcasing unique characteristics for algorithm testing.  

2) ArchDepth2 (Welponer et al., 2022) constitutes an extensive 

collection of synthetic RGB images paired with accurate 

metric depth maps. Comprising approximately 24,000 

images, this dataset showcases photorealistic outdoor views 

featuring primarily historical buildings and squares. 

 
1 https://github.com/davidemarelli/ENRICH  

Moreover, images collected with our in-house stereo-vision 

SLAM-based system GuPho (Torresani et al., 2021; Menna et al., 

2022) were also used to apply MDE methods and perform metric 

evaluations of derived point clouds. 

 

 

4. EXPERIMENTS 

The processing and analyses were performed using an Intel E5-

1650 @3.2GHz, 32 GB RAM and NVIDIA 

GeForce GTX 1050 Ti GPU.  In the following, comparative 

analyses of the described algorithms (Section 2) are given.  

 

4.1 ENRICH-Statue images 

ENRICH-Statue comprises four sub-sets of images. For our 

evaluation, we selected the dataset labeled "camera 1" consisting 

of 50 images captured in partly cloudy weather conditions. Figure 

6 present samples of estimated depth maps obtained using 

ZoeDepth, MiDaS, and DPT algorithms. From a visual 

standpoint, it is evident that DPT demonstrates superior 

performance in estimating the depth of nearby objects compared 

to ZoeDepth while it exhibits a higher likelihood of producing 

inaccurate depth estimates for far away objects. Table 1 and 2 

report the evaluation of the MDE methods using various metrics 

(Section 2.2), including inference time, on all images of the 

ENRICH-Statue dataset. Following Marelli et al. (2023), we 

provide evaluation results using a depth threshold suitable as well 

as non-capped predictions. Such depth cap is used to exclude far 

away areas belonging, e.g., to the sky.  Our assessment shows 

that ZoeDepth demonstrates the fastest inference on the 

ENRICH-Statue dataset, surpassing the second fastest algorithm 

(MiDaS) by approximately twice the speed. In terms of metrics, 

the DPT algorithms (DPT-Large and DPT-Hybrid) outperform 

both ZoeDepth and MiDaS in most of the metrics, although 

ZoeDepth exhibits superior performance in terms of SSIM.  

The predicted depth maps are also converted into point clouds 

using the Open3D library (Zhou et al., 2018). Figure 7 shows the 

resulting shaded point clouds from the viewpoints close to the 

original camera perspective. Two distinctive cases are presented: 

the former image, partially containing the sky (upper row) and 

the latter one, representing the same object from another 

viewpoint, without any distant object in the frame (bottom row). 

The results of the ZoeDepth model, although subjectively the best 

in terms of predicting the relative depth between objects in the 

foreground and the background, are heavily blurred at the object 

edges, which is visible as an outline around the objects due to 

point shading. Those errors heavily influence the metrics for 

images containing the sky, as ZoeDepth predicts there high and 

inconsistent values, which also “blend in” the objects due to edge 

smoothness. The complex geometry of the statue placed in the 

foreground also resulted in a very noisy 3D reconstruction. 

Compared to ZoeDepth, the results of DPT-Hybrid are better in 

terms of consistency: the noise level at the statue, the façade in 

the background and the sky is lower and the sharpness of the 

edges slightly improves. However, the error of predicting the 

relations between distances from the camera to the foreground 

and the background are high. In the case of the picture without 

the sky, a small part of the point cloud is missing due to 

incorrectly predicting very small depth values. A similar, but 

more severe case happens for the same area for MiDaS output. 

The MiDaS model tackled well the task of predicting the depth 

of the façades located in the image backgrounds. The network 

output for mostly flat areas such as walls, as well as for the sky, 

is coherent, which together with the sharp edges between the 

2 https://3dom.fbk.eu/projects/on-going/archdepth  
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foreground and the background, would be helpful for filtering out 

the depth values belonging to the sky. However, MiDaS created 

highly noisy point clouds of the statue, which deteriorated its 

final scores and resulted in highly erroneous points in the middle 

bottom areas of both analyzed depth maps. 

Finally, an edge sharpness analysis was also used to assess the 

achieved details of estimated depths by ZoeDepth, DPT, and 

MiDaS. The aim is to assess the edge quality within the estimated 

depth and determine whether it effectively conveys the intricate 

details of objects in the scene. A specific area from the ground 

truth of an image within the ENRICH-Statue dataset and from the 

corresponding inferred depth maps was chosen (Figure 8a) to 

compute the ESF, LSF and MTF curves for ZoeDepth, DPT, and 

MiDaS methods (Figure 8b-d). As an indicative metric, the 

length of a 10% – 90% edge transition interval, i.e., edge width 

in pixels, was computed from ESF plots. Results for the ground 

truth depth image are also included for reference as almost 

perfect target scores. All graphs indicate clearly that the worst 

sharpness was achieved by ZoeDepth output. Its edge width 

reached 16 px, compared to the GT baseline of just 0.3 px. Both 

DPT and MiDaS models achieved similar edge widths (7.1 px 

and 6.3 px, respectively). Even if they clearly outperform 

ZoeDepth in this aspect, their curves are still far from the ground 

truth, especially in the case of the MTF.
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Figure 6: Examples of estimated depth maps using ZoeDepth, DPT-Hybrid, and MiDaS on the ENRICH-Statue images. 

 

 Inference Time (s) MAE (m) ↓ MRE (m) ↓ RMSE (m) ↓ PSNR ↑ SSIM ↓ 

ZoeDepth 1.996 22.647 0.532 35.056 25.646 0.616 

DPT_Hybrid 6.126 7.555 0.368 20.250 33.375 0.790 

DPT_Large             9.299 7.253 0.372 20.491 33.104 0.802 

MiDaS  4.490 20.133 1.728 53.456 23.125 0.699 

Table 1: Inference time and different metrics computed on the entire ENRICH-Statue dataset (no depth limit). 

 

 Inference Time (s) MAE (m) ↓ MRE (m) ↓ RMSE (m) ↓ PSNR ↑ SSIM ↓ 

ZoeDepth 1.996 20.591 0.530 24.598 27.839 0.619 
DPT_Hybrid 6.126 5.559 0.365 6.797 39.0622 0.795 
DPT_Large 9.299 5.440 0.369 6.843 38.977 0.806 

MiDaS 4.490 13.939 1.736 18.796 30.158 0.707 

Table 2: Inference time and different metrics computed on the entire ENRICH-Statue dataset (depth limited to 70 m). 
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Ground Truth ZoeDepth DPT-Hybrid MiDaS 

    

    

Figure 7: Visual comparison of the generated point clouds from the considered MDE methods with respect to the available GT for the 

ENRICH-Statue dataset. 

a)  
 

Figure 8: Edge sharpness analysis for an ENRICH-Statue image: the region of interest marked in red (a) and the results of ESF (b), 

LSF (c) and MTF (d) methods on depth maps estimated with ZoeDepth, DPT and MiDaS. 

                         

4.2 ArchDepth images 

Within the repository, the Piazza subset includes 9,000 pairs of 

RGB images and depth maps, organized based on cardinal 

directions and rendering cameras. The Piazza subset comprises 

four smaller datasets, named CityE, CityN, CityS, and CityW. We 

specifically utilized the CityW dataset (Folder cam6 - 640x480 

px, pinhole camera, 36mm sensor size, 20mm focal length), 

which contains 800 pairs of RGB images and depth maps. 

ZoeDepth, DPT, MiDaS, and DenseDepth algorithms are 

evaluated and Figure 9 and Table 3 display visuals and metrics. 

Once again, it is notable ZoeDepth's remarkable inference speed. 

Despite the DPT algorithm's superior performance in MAE, 

MRE, RMSE, and PSNR, it lags behind in terms of depth 

estimation speed per image, taking approximately 3x more time. 

In the terms of SSIM, DenseDepth outperforms the other three 

algorithms, while in terms of MAE, PSNR, and MRE, it exhibits 

superior performance compared to MiDaS and ZoeDepth. 

Figure 10 reports the edge sharpness analysis on an image (and 

predicted depth maps) from the ArchDepth dataset, which is of 

much lower resolution (640 x 480 px). The resulting edge widths 

for ZoeDepth, DenseDepth, DPT_Hybrid and MiDaS reached 

5.2 px, 3.4 px, 1.2 px and 1.0 px, respectively, with the ground 

truth baseline of 0.1 px. Both DenseDepth and ZoeDepth failed 

to create sharp depth edges. Similarly, to the analysis presented 

for the ENRICH dataset (Figure 8), MiDaS and DPT achieved 

reasonable and comparable results, but still severely less sharp 

compared to the ground truth. 

 

4.3 GuPho images 

 

Further experiments are conducted using indoor images collected 

with the FBK GuPho system (Torresani et al., 2021; Menna et 

al., 2022) and the ZoeDepth method (Figure 11). Inferred depth 

maps are converted into point clouds using the Open3D library 

(Zhou et al., 2018) and, given the flat indoor surfaces, best fitting 

analyses are performed for floor, ceiling, and wall areas. Metrics 

are reported in Table 4, highlighting few cm errors from 

predicted and ground truth geometries.

 

 Inference Time (s) MAE (m) ↓ MRE (m) ↓ RMSE (m) ↓ PSNR ↑ SSIM ↓ 

ZoeDepth 1.421 5.710 1.339 6.154 40.185 0.551 

DPT_Hybrid 4.106 2.735 0.630 4.358 44.016 0.640 

DenseDepth 1.846 3.157 0.710 5.050 42.844 0.320 

MiDaS 1.473 3.244 0.798 4.821 42.747 0.446 

Table 3: Different metrics computed on the entire CityW section of the ArchDepth dataset. 

 Case 1 - RMSE [mm] Case 2 - RMSE [mm] Case 3 - RMSE [mm] 

Floor  9 22 9 

Ceiling  19 25 25 

Right Wall 9 67 36 

Left Wall  21 49 49 

Mean  14 41 30 

Table 4: Metrics for the ZoeDepth MDE on the GuPho images (Figure 11): the RMSE (σ) was calculated individually for the floor, 

ceiling, right wall, and left wall. Additionally, the average (Mean) of RMSE was also determined as the part of the analysis. 
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Figure 9: Examples of estimated depth on single images of the ArchDepth dataset using ZoeDepth, DPT, MiDaS, and DenseDepth. 

a)   
Figure 10: Edge sharpness analysis for an ArchDepth building facade image: the region of interest marked in red (a) and the results of 

ESF (b), LSF (c) and MTF (d) methods on depth maps estimated with ZoeDepth, DenseDepth, DPT and MiDaS. 
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Figure 11: Visual impressions and comparisons (Table 4) for the recovered depths and point clouds derived from ZoeDepth on the 

GuPho dataset.  

 

5. CONCLUSIONS 

The crucial role of MDE methods and performances on some 

datasets were presented. MDE is of interest in various fields such 

as scene comprehension, 3D modeling, robotics, and autonomous 

driving. MDE is becoming more and more popular due to their 

reliability and deep learning performances. This study has 

provided an analysis and evaluation of some MDE methods using 

different metrics such as inference time, MAE, MRE, RMSE, 

PSNR, and SSIM. According to our evaluating, defining an 

algorithm as a winner is impossible. Determining a singular 

optimal algorithm exhibiting superior performance across all 

datasets proves to be a challenging task. This challenge arises due 

to the nuanced influence of application, training and varying 

scenarios on the algorithm process. When considering the aspect 

of time, ZoeDepth demonstrated the quickest inference time 

compared to the other algorithms. While when we consider 

different metrics, DPT and MiDaS had better performances. 

In our view, the majority of existing MDE algorithms suffer from 

a limitation in training diversity, specifically in terms of various 

areas and image types. For instance, when the training dataset 

lacks a sufficient number of images featuring the sky, it can lead 

to challenges in accurately estimating depth in those particular 

regions. 

In future work, our focus will be on the integration of MDE into 

the GuPho V-SLAM system to achieve real-time depth 

prediction. By combining the capabilities of V-SLAM with 

MDE, we aim to enhance the robustness and completeness of 3D 

reconstruction e.g., in textureless environments. Additionally, 

our research will explore alternative methods for MDE, 

considering various deep learning architectures and traditional 

computer vision approaches.  
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