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Abstract: Age-related macular degeneration (AMD) is a complex and multifactorial disease and
a leading cause of irreversible blindness in the elderly population. The anti-vascular endothelial
growth factor (anti-VEGF) therapy has revolutionized the management and prognosis of neovascular
AMD (nAMD) and is currently the standard of care for this disease. However, patients are required to
receive repeated injections, imposing substantial social and economic burdens. The implementation
of gene therapy methods to achieve sustained delivery of various therapeutic proteins holds the
promise of a single treatment that could ameliorate the treatment challenges associated with chronic
intravitreal therapy, and potentially improve visual outcomes. Several early-phase trials are currently
underway, evaluating the safety and efficacy of gene therapy for nAMD; however, areas of controversy
persist, including the therapeutic target, route of administration, and potential safety issues. In this
review, we assess the evolution of gene therapy for nAMD and summarize several preclinical and
early-stage clinical trials, exploring challenges and future directions.
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1. Introduction
1.1. Definition of Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a chronic inflammatory eye disease
that involves the macular region with a strong hereditary component, typically affecting
people over 60 years of age. Pathologic changes involve the deeper retinal layers of
the macula and surrounding vasculature, resulting in central vision loss. The disease
has a prevalence of 8.7% worldwide [1] and is the most common cause of severe visual
impairment in developed countries [2–6]. Its prevalence is likely expected to rise due
to the exponential aging of the population. Principal risk factors for developing AMD
include age, smoking history, hyperlipidemia, family history, and ethnicity [7]. There
are two main types of AMD: non-neovascular and neovascular. Non-neovascular AMD
(“dry” AMD) accounts for almost 80–85% of all cases and is usually related to a more
favorable visual prognosis. The accumulation of retinal deposits, called drusen, is a
distinctive clinical finding and may be the first sign of the “dry” form of the disease. Retinal
pigment epithelial (RPE) changes, pigment clumping, or autofluorescence abnormalities
may also be early clinical signs [8]. The type and quantity of drusen define the early,
intermediate, and late stages of initial dry AMD but are not necessarily associated with
vision impairment [9]. Progression to geographic atrophy (GA) and neovascular AMD
(“wet” AMD or nAMD) is the key reason for severe vision loss as a result of AMD [10].
Neovascular AMD affects the remaining 15–20% of eyes with AMD and is characterized
by the formation of macular neovascularization (MNV). These new blood vessels may
cause an accumulation of subretinal, intraretinal, and sub-RPE fluid and bleeding, with
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metamorphopsia and central scotoma, respectively. Vascular endothelial growth factor
(VEGF) is the main factor responsible for this abnormal vascular proliferation.

1.2. Pathophysiology of nAMD

Although there has been extensive research conducted to understand AMD patho-
genesis, it remains not completely clear due to its multifactorial character. AMD is the
consequence of the interaction between metabolism, genetics, and the environment.

The RPE promotes a vascular background along its basal surface and an avascular
background along its apical surface. This creates an essential environment to maintain
retinal photoreceptor cells in healthy conditions. Vascular endothelial cells require survival
factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), and angiopoietin-1 [11] that can originate from the extracellular matrix, surround-
ing cells, or plasma; VEGF represents an important mediator of paracrine and endocrine
trophic support [12,13]. With aging, several changes happen in the RPE/Bruch’s membrane
complex, modifying its capacity to remove residual substances such as lipofuscin [14],
including the thickening of Bruch’s membrane, reduction of metabolic activity, loss of
mitochondria and reduced choroidal blood supply [15]. Moreover, aging increases the risk
of retinal and choroidal hypoxia. With age, the accumulation of lipofuscin, reactive oxygen
species (ROS) and other factors cause a thickening of Bruch’s membrane, that not only
decreases the removal of debris by the choriocapillaris but also acts as a barrier to the diffu-
sion of oxygen and nutrients from the choroid to the photoreceptors and the RPE [16,17].
Hypoxia in turn causes an upregulation of a heterodimer made up of HIF-1α and HIF-1β,
which is the Hypoxia-inducible factor-1 (HIF-1), [18]. HIF-1 regulates the transcription of
genes of VEGF and its receptor VEGFR, platelet-derived growth factor-B (PDGF-B) and its
receptor PDGFRβ, angiopoietin-2 (Ang2), stromal-derived factor-1 (SDF-1) and its receptor
CXCR4, and vascular endothelial-protein tyrosine phosphatase (VE-PTP) [19]. HIF-1, VEGF,
and VEGFR family are the principal intermediaries of angiogenesis regulation [20]. VEGF
is the most studied factor in the context of ocular neovascularization. Encoded by the VEGF
gene, this glycoprotein family, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E,
and VEGF-F and placental growth factor (PLGF), primarily activates cellular signaling
pathways to facilitate the development of new blood vessels, either de novo or from existing
ones. VEGF-A plays a crucial role in vascular proliferation and the migration of endothe-
lial cells for both physiological and pathological angiogenesis [21,22]. However, VEGF
expression by RPE cells seems to not be sufficient to cause MNV. In addition to secreted
factors, which are mainly governed by HIF-1, signals contributing to MNV formation also
encompass cues from the extracellular matrix and neighboring cells [12].

Inflammation is believed to play a central role in the pathogenesis of both dry and wet
AMD. In the literature, there is strong evidence to suggest that an abnormal complement
activation is significantly involved in the pathogenesis of the disease.

Even though complement activation products were detected in drusen nearly thirty
years ago [23,24], it was not until the early 21st century that a major heritable determinant
of AMD was identified as a single nucleotide polymorphism in the complement factor
H (CFH) gene [25–29]. This discovery motivated genotyping initiatives in AMD, leading
to the identification of further risk variants in other complement gene loci, such as C3,
C2, CFB, C9, CFI, and CFHR4 [26–34]. C3a and C5a have been found in soft drusen and
induce the upregulation of VEGF in RPE, increasing the risk of MNV associated with soft
drusen [35].

The membrane attack complex (C5b-9, MAC) is also found in drusen and in impaired
RPE cells of AMD-affected eyes [36]. Various factors are suggested to trigger complement
activation in the retina, including oxidative stress and the buildup of pro-inflammatory
derivatives from the visual cycle, such as lipofuscin components, apolipoproteins, and amy-
loid beta [37,38]. These elements are believed to interact with and amplify other established
pathological mechanisms, like RPE dysfunction stemming from choroidal vascular insuffi-
ciency. Oxidative stress has the potential to disrupt the regulation of the complement system
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by RPE cells. This disruption includes a decrease in the surface expression of complement
inhibitors, decay accelerating factor (CD55), and CD59, as well an impairment of comple-
ment regulation at the cell surface by CFH [39]. Furthermore, oxidative stress may impede
interferon-γ from effectively enhancing CFH expression in RPE cells. In vitro, products
resulting from the photo-oxidation of N-retinylidene-N-retinylethanolamine (A2E) in RPE
can activate the complement system [40]. Choroidal dendritic cells and retinal microglia
cells, both fundamental to retinal structure and metabolism, are “activated and recruited”
by locally injured and/or sublethal damaged RPE cells, related to RPE blebs, fragments,
and debris. They can maintain and enhance the local inflammation, not only activating
the complement, but also forming an immune complex and recruiting choroidal T-cells or
phagocytic cells, collectively contributing to the development of AMD [41,42]. Under the
stimulation of inflammatory mediators, RPE cells produce cytokines and chemokines, in-
cluding IL-4, -5, -6, -8, -10, -13, -17, IFN-β, IFN-γ, TGF-β, MCP-1, and VEGF. Inflammatory
cytokines can also enhance the secretion of VEGF [43–45].

As discussed above, genetics plays a role in the pathogenesis of nAMD. Genetic
variants implicated in nAMD encompass CFH, CFH-related genes, complement proteins
C3 and C9, the age-related maculopathy susceptibility (ARMS)2 gene, and the VEGF and
VEGFR axis [46–53]. Furthermore, inhibitor metalloproteinase (TIMP) 3, fibrillin, collagen
4A3, and metalloproteinase 19 and 9 appear to play a role in the development of nAMD [49].
(Figure 1).
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Figure 1. Overview of the pathophysiological process generating macular neovascularization (MNV).
Adapted from Campochiaro, Anderson et al., Ricci et al. [12,36,45].

1.3. Angiogenesis and VEGF Pathway

VEGF induces a vigorous angiogenic response in a variety of in vivo models [54,55].
VEGFR 1 and 2 are expressed in the cell surface of most blood endothelial cells. VEGFR-3,
instead, is largely restricted to lymphatic endothelial cells. The primary contributor to an-
giogenesis is suggested to be VEGF-A, as it interacts with both VEGFR-1 and VEGFR-2 [56].
In contrast, PLGF and VEGF-B interact only with VEGFR-1; VEGF-E (ort-virus-derived) is
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a selective VEGFR-2 agonist; VEGF-C and VEGF-D bind VEGFR-2 and VEGFR-3. There
is much evidence that VEGFR-2 is the major mediator of endothelial cell mitogenesis and
survival, as well as angiogenesis and microvascular permeability [21]. In contrast, VEGFR-1
does not mediate an effective mitogenic signal in endothelial cells, and it may perform an
inhibitory role by sequestering and preventing VEGF interaction with VEGFR-2 [57]. How-
ever, VEGFR-1 has an established signaling role in mediating monocyte chemotaxis [58].

2. Current Treatment Landscape in nAMD
2.1. Anti-VEGF Therapy: The Gold Standard

Intravitreal anti-VEGF therapies that target vascular permeability, angiogenesis, and
inflammatory responses by inhibiting VEGF signaling are the current gold standard treat-
ments for patients with nAMD [59]. Intravitreal anti-VEGF agents include aflibercept
(Eylea®; Regeneron Pharmaceutical, Inc., Tarrytown, USA and Bayer Healthcare, Berlin,
Germany) [60], ranibizumab (Lucentis®, Genentech, South San Francisco, CA, USA/Roche,
Basel, Switzerland) [57,61] and bevacizumab (Avastin; Genentech, off-label use) [62]. These
intravitreal anti-angiogenic agents used in clinical settings are based on limited activity
against factors belonging to the VEGF family. This entails the inhibition of the VEGF-A ac-
tivity observed in ranibizumab and bevacizumab, as well as aflibercept which has a broader
spectrum of action, neutralizing, in addition to VEGF-A, other VEGF family ligands, such
as VEGF-B, the placental growth factor-1 (PlGF-1), and placental growth factor-2 (PlGF-2).
Pegaptanib sodium (Macugen®; Bausch + Lomb; Bridgewater, NJ, US)), the first VEGF-
targeting agent approved by the U.S. Food and Drug Administration (FDA), is no longer
used. Recently, brolucizumab (Beovu®; Novartis, Basel, Switzerland) [63] and faricimab
(Vabysmo; Genentech/Roche, South San Francisco, CA, USA) have been approved for
ophthalmic use. Brolucizumab targets the major VEGF-A isoforms [64], but, after an ini-
tial widespread adoption, its use has since been significantly limited in certain countries
following several cases of severe occlusive retinal vasculitis [65]; faricimab is the latest
antibody to receive approval, and it simultaneously targets VEGF-A and angiopoietin-2
(Ang II) [66]. Biosimilars have now started to enter the market in certain healthcare systems,
in an attempt to make better use of resources. In terms of treatment regimens, non-monthly
treatment schedules, such as the pro re nata (PRN) strategy and the treat and extend (T&E)
protocol, have garnered considerable interest. In the PRN approach, the disease status is
evaluated monthly, and treatment is provided if deemed necessary. In the T&E approach,
treatment intervals are fixed based on the disease status observed during each visit [67]. At
present, the T&E regimen has emerged as the prevailing treatment approach on a global
scale, and future research directions are concentrating on even longer intervals between in-
jections. This highlights the need for more persistent therapeutic agents and the exploration
of alternative strategies to achieve prolonged efficacy.

Among the surgical methods for administering gene therapy products targeting the
inner retina, intravitreal (IVT) injections are the least invasive.

The majority of currently administered intravitreal AAVs face challenges in adequately
reaching the outer retina, RPE, and choroid because of the inner limiting membrane (ILM),
which acts as a physical barrier between the vitreous and the retina [68]. Although the de-
livery of gene therapy products to the outer retina and choroid has been enhanced with the
development of recombinant vectors like AAV2.GL and AAV2.NN [69,70], the utilization
of ADVM-022, an intravitreal AAV-based aflibercept gene therapy, was discontinued due to
dose-limiting toxicity [71]. Nevertheless, the fact that IVT injection is more immunogenic
than subretinal delivery has been highlighted [72,73] and may be useful in future studies.

2.2. Limitations of Anti-VEGF Therapy

Although positive results are achieved in the majority of patients, approximately
25–35% of individuals with nAMD either show suboptimal responses to existing anti-VEGF
treatments, experience delayed treatment failure, or require intensive and frequent IVT
therapy [74,75]. Among the 35% who do not respond optimally to therapy, more than
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10% experience deterioration despite treatment, and an additional 25% exhibit no signs
of improvement [76,77]. For patients who achieve disease stability, discontinuing therapy
could potentially have negative consequences, necessitating the continuation of treatment
at consistent intervals to maintain vision. Furthermore, in certain individuals with aggres-
sive nAMD, the continued use of anti-VEGF therapy, even after achieving stability, does not
sufficiently prevent the recurrence of the disease [78,79]. The consequences of a suboptimal
response and limited effectiveness over time, leading to poor vision, significantly affect the
outcomes reported by the patients. Moreover, the need for repeated treatments for nAMD
places a substantial burden on healthcare systems, patients, and their caregivers. Moreover,
present anti-VEGF treatments are associated with certain adverse events which, although
infrequent, can considerably affect eyesight. Endophthalmitis is a severe complication that
arises in approximately 1 in 3500 injections [80]. Another notable potential complication of
anti-VEGF therapy is the risk of intraocular inflammation, which, if severe, may lead to
irreversible vision loss [81]. Furthermore, a temporary increase in intraocular pressure is
frequently noticed shortly after IVT injection of all anti-VEGF agents [82]. The repeated
use of anti-VEGF treatments can also be associated with unfavorable effects. For example,
macular atrophy, which represents an advanced phenotype of nAMD and may result in
permanent vision loss, has been documented as being potentially linked to long-term anti-
VEGF use [83]. The causative relationship is still not well-defined, and it is possible that
macular atrophy is simply part of the natural history of some forms of treated MNV [84,85];
subretinal fibrosis represents another advanced manifestation of nAMD linked to perma-
nent vision impairment and can be the result of untreated nAMD itself, which complicates
any potential association between sub-retinal fibrosis and long-term anti-VEGF therapy.
Exploring alternative agents that provide comparable or enhanced efficacy while requiring
fewer injections and maintaining a longer duration of action could potentially address
many of these limitations.

2.3. Emerging Therapies and Need for Alternative Treatment Options

Conbercept (Lumitin; Chengdu Kang Hong Biotech, Chengdu, China) is a recently
tested agent designed to bind VEGFA, VEGF-B and PlGF [86], but the PANDA-1 and
PANDA-2 phase III trials for nAMD were concluded in 2021. They were halted because
the desired primary outcome, specifically the non-inferiority of conbercept compared to
aflibercept, was not attained (NCT03577899 and NCT03630952). OPT-302, a novel “trap”
molecule, binds to VEGF-C and VEGF-D, in turn inhibiting their activation of VEGFR2
and VEGFR3 [87]. This new agent is currently being assessed in phase III trials with
and without either ranibizumab (ShORe trial, NCT04757610) or aflibercept (COAST trial,
NCT04757636). Researchers have also attempted to develop eye drops either as potential
standalone treatments [88,89] or as an adjunct to optimize IVT therapy, but they have
yet to be proven effective. Port delivery systems (PDS) are innovative devices utilizing
surgically implantable reservoirs that are required to be refilled periodically and have
been developed to enable the continuous administration of anti-VEGF agents directly into
the eye through passive diffusion [90]. The FDA initially granted approval for a PDS
containing ranibizumab as a treatment option for nAMD but the product has since been
recalled and is no longer available commercially. Other treatments for nAMD, focusing on
the VEGF system and alternative pathways, including heparin-binding variants of VEGF
receptor 1 [91] and cells derived from induced pluripotent stem cells (iPSCs), have been
under assessment [92]. These multi-targeted therapies and alternative treatment options,
such as retinal gene therapy, may be the answer to the unmet needs in the treatment
of nAMD [93,94]. An attractive alternative approach, in fact, involves using a single
intraocular injection of a gene therapy vector that would continuously express an anti-
angiogenic protein to block the pathological neovascularization in AMD. The aim of this
review is to summarize the rationale and progress of preclinical and clinical trials using
gene delivery strategies for the treatment of nAMD.
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3. Gene Therapy Strategies for nAMD
3.1. Overview of Genes Targeted

As stated above, AMD is known to be a multifactorial disease, the development and
progression of which is governed by the complex interaction of various environmental and
genetic elements; aging is the primary factor, and drives the overexpression of VEGF-A
in the macular microenvironment among elderly patients. Advancements in technologies,
such as single-cell sequencing and genome-wide association studies (GWASs), have re-
vealed mutations and factors that contribute to the progression of AMD. Through GWASs,
specific genes, including CFH on chromosome 1 and ARMS2 and HTRA1, both residing on
chromosome 10, have emerged as significant loci closely linked to advanced AMD [26,95].
The CHF variant is primarily connected to the presence of drusen, whereas the ARMS2-
HTRA1 variant is correlated with the occurrence of subretinal or sub-RPE hemorrhages [96].
Although these genes are involved in the development of nAMD and may be useful pre-
dictors of treatment response, they have yet to be shown to have a significant role in its
treatment. Other genes including MMP9, CETP, and TIMP3 have been linked to nAMD due
to their roles in regulating the extracellular matrix remodeling [97], and the FGD6, HTRA1,
and CFH genes play pivotal roles in governing oxidative stress and inflammation, which in
turn regulate the advancement of angiogenesis, thereby contributing to the progression of
nAMD [98].

However, the RPE hypoxia previously described promotes an over-expression of the
hypoxia-inducible factor alpha (HIF-α) and VEGF-A by RPE cells, with the consequent
degeneration of the RPE cells themselves and of Bruch’s membrane [99]. Anti-VEGF
treatments have really shown that VEGFA/HIF-α-related genes (VEGF, VEGFR, PDGF,
PEGF) can be useful treatments; this makes VEGF, VEGFR, PDGF, and PEGF the primary
targets for the current gene therapy [100].

Gene therapy for nAMD faces challenges due to the complexity of the genes associated
with the condition. Unlike monogenic disorders with a small gene that can fit into an
AAV for the standard gene augmentation therapy, nAMD involves multiple genetic factors;
the already mentioned genes contribute to disease susceptibility, making it challenging to
devise a one-size-fits-all gene therapy. The diverse genetic landscape of nAMD adds a layer
of complexity, requiring a nuanced approach in developing gene therapies tailored to the
specific genetic factors.

3.2. Gene Silencing and Inhibition of VEGF Expression

Exploring gene silencing through small interfering RNA (siRNA) or microRNA
(miRNA) targeting VEGF is considered as a potential approach for AMD treatment [101].
Numerous clinical trials are currently underway, focusing on the utilization of precise
gene silencing methods [102–104]. After being introduced into cells, siRNA binds and
activates the RNA-induced silencing complex, which in turn targets and degrades any cells
complementary to the siRNA sequence, thereby preventing protein synthesis.

Bevasiranib, a modified naked RNA, results in the downregulation of VEGF-A by
means of its intracellular transcriptional inhibitor action and possibly its TLR3-mediated
activity, and may be the treatment of nAMD. A phase III human trial, which involved the
intravitreal administration of siRNA bevasiranib (NCT00499590), was halted, as it was
deemed unlikely to achieve its primary objective [105]. As bevasiranib may only inhibit new
VEGF synthesis, without impacting existing VEGF levels, a phase III trial (NCT00499590)
was also performed to assess the efficacy of the combined bevasiranib and ranibizumab
therapy for nAMD treatment, but this too was unlikely to meet its primary endpoint and
was terminated.

AGN211745 (formerly Sirna-027) is a chemically modified naked siRNA that has
VEGFR-1 as the target gene, inducing gene silencing by binding the complementary target
RNA with the lytic cytoplasmic protein complexes known as RNA-induced silencing
complexes, thereby reducing the level of VEGFR-mRNA and significantly inhibiting MNV
development, with the potential to treat nAMD. However, despite positive findings in
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the phase I/II study, a phase II trial administering Sirna-027 (NCT00395057) did not meet
crucial efficacy endpoints. (NCT00363714) [106].

Despite many efforts in multiple trials exploring gene silencing, studies have never
advanced beyond phase III, as gene silencing methods encounter several obstacles, includ-
ing RNA instability, limited bioavailability, and the potential for non-specific targeting.
These challenges, common to most drug delivery systems, significantly hamper the suc-
cessful application of siRNA therapeutics in the treatment of nAMD. Additionally, while
siRNA-based therapies have demonstrated theoretical advances for patients with nAMD,
this approach has not shown any superiority compared to conventional anti-VEGF treat-
ments. This is primarily because even with siRNA therapies, the requirement for repeated
injections persists, as their effect is temporary (3–7 days) due to their degradation by tissue
nucleases. Nonetheless, the possibility of extending these effects exists through chemical
alterations or the use of viral vectors, which could help maintain the efficacy of therapies
based on RNA interference.

An alternative to siRNAs involves the use of microRNAs (miRNAs) which are small
(18–22 nucleotide), single-stranded, noncoding RNAs that down-regulate the gene ex-
pression post-transcriptionally [107]. Various research studies have shown that the dys-
regulation of miRNAs is relevant both in experimental AMD models and in AMD sub-
jects, and may therefore potentially be associated with an increased risk of developing
AMD [108–110]. MicroRNA mimics or anti-miRNA have the potential to be biomarkers,
diagnostic tools, or targets for the control and treatment of this disease, by modulating
retinal cellular function [111]. Unfortunately, the miRNAs evaluated in animal models of
AMD behave differently compared to AMD patients; thus, their role in the disease remains
unclear [112].

3.3. Gene Delivery Approaches: Viral Vector-Based and Non-Viral Delivery

To achieve successful results in gene therapy, it is essential to use a vector that ensures
prolonged gene expression levels while minimizing the risks of toxicity and immune
reactions. Different types of vectors have been used.

3.3.1. Viral Vector-Based Delivery

Viral vectors are modified viruses commonly used in gene therapy approaches to
deliver therapeutic genes or RNA-based molecules to target disease cells. They have
been used as delivery vehicles to precisely transport therapeutic genetic material into the
target cells within the eye and achieve a sustained therapeutic effect. In gene therapy for
nAMD, vector selection is of paramount importance. For retinal gene supplementation,
the optimal selection is the recombinant adeno-associated viral vector (AAV) [113,114]. Its
small, single-stranded DNA genome of approximately 4.6 kilobases (kb) with organized
capsid structure makes it conducive to genetic modifications [115]. AAVs are currently
the most commonly used vector for retinal gene transfer in both preclinical studies and
clinical trials [116]. They provide advantages like extended transgene expression, minimal
risk of insertional mutagenesis, only slight inflammatory responses induced, and a low
chance of germline transmission [117,118]. The most extensive AAV serotypes studied
in ocular gene therapies are AAV2, AAV5 and AAV8 [119–121]. Gene therapy products
utilizing AAV vector systems, including Glybera (alipogene tiparvovec to treat hereditary
lipoprotein lipase deficiency) [122], Luxturna (voretigene neparvovec-rzyl), Zolgensma
(onasemnogene abeparvovec to treat spinal muscular atrophy type 1) [123] and Hemgenix
(Etranacogene dezaparvovec for the treatment of hemophilia B) [124], have received notable
approvals. Among these, Luxturna, the first approved gene therapy for a genetic disease, is
a recombinant AAV 2 vector containing human RPE65 complementary DNA that enables
RPE cells to produce the retinoid isomerohydrolase RPE65. After its efficacy and safety were
ultimately confirmed in an open-label, randomized and controlled phase 3 trial conducted
at two centers in the United States, Luxturna was authorized for gene augmentation
therapy in RPE65-associated retinal dystrophy [125] and stands out as a retinal gene



Biomedicines 2023, 11, 3221 8 of 22

therapy designed to treat Leber congenital amaurosis (LCA) [126]. However, a subset
of patients undergoing subretinal Luxturna injection developed progressive perifoveal
chorioretinal atrophy following surgery. Despite that, most patients did well on visual
function measures. Although the mechanism for chorioretinal atrophy is not known at this
time, there are several potential factors that must be considered, alone or in combination,
namely: direct toxicity of the AAV2 vector to the photoreceptors and RPE, inflammation or
immune response to the vector, surgical delivery and ocular factors [127]. Further studies
are necessary to determine what potential factors predispose patients to this complication
and to clarify what the implications are for gene therapy in nAMD, especially in terms of a
immune response.

Moreover, retroviruses and lentiviruses have been employed in various gene ther-
apy products, such as RetinoStat® (Oxford BioMedica, Oxford, UK, OXB-201) targeted
for nAMD (NCT01301443) and stem cell therapy. Notably, subretinal administration of
RetinoStat, a lentiviral vector expressing endostatin and angiostatin, demonstrated safety
and good tolerance. Patients with severe nAMD exhibited signs of clinical improvement,
including visual acuity stabilization and reduction in vascular leakage [128]. Nonetheless,
retroviruses and lentiviruses carry risks such as the potential for insertional mutagenesis
and germline transmission. Additionally, they might trigger more pronounced inflamma-
tory responses compared to AAVs. An important aspect of gene therapy is the possible
immune reaction towards the AAV capsid: in humans, administering AAV vectors, unlike
in many animal models, triggers antigen-specific T-cell activation, posing an increased
risk during the initial postoperative phase. A brief period of immunosuppression around
the surgery can help regulate immune responses until the capsid antigens are eliminated
from the infected cells [129]. The route of vector delivery significantly influences immuno-
genicity. Subretinal delivery is a favorable option for disorders primarily affecting the
RPE and/or photoreceptors. Given that the majority of inherited retinal disorders (IRD)
involve either or both of these cell types, the subretinal delivery emerges as the prevailing
administration route in gene therapy trials targeting monogenic conditions. This method
involves the creation of a retinotomy near the temporal vascular arcades, allowing the bleb
to slowly spread toward the foveal region, creating a shallow elevation [68]. Despite this
type of delivery method involving a temporary detachment of the retina, the existing trial
data indicates that it is generally safe and has the potential to offer effective therapeutic
outcomes [69–71].

3.3.2. Non-Viral Delivery

Among the non-viral delivery techniques, the most straightforward approach is phys-
ical delivery, which involves injecting naked plasmid DNA, siRNA, mRNA or miRNA.
However, this method has a limited efficacy due to the rapid degradation and minimal
uptake [130]. Non-viral gene delivery through chemical techniques is attractive due to its
lower potential to trigger immune responses, straightforward scalability and cost savings
in production [131].

DNA nanoparticles consisting of a single molecule, compacted using polyethylene
glycol (PEG)-substituted lysine peptides (CK30-PEG), have been utilized for transporting
payloads of up to 20 kb in size [132,133]. These nanoparticles have demonstrated safety in
diverse mouse models of retinal degeneration [134,135].

Lipid-based transfection systems have proven to be effective in delivering target genes
to retinal cells in various studies. Numerous lipid-based drugs designed for eye diseases
are accessible for transporting CRISPR or ribonucleoproteins for base editing [136,137].
Niosomes, consisting of cholesterol and uncharged single-chain surfactant [138,139], exhibit
potential as non-viral carriers for gene delivery [140–142]. In ocular gene therapy, polymer-
based platforms like chitosan, hyaluronic acid, polyethyleneimine (PEI), poly(amidoamine)
(PAMAM), PEG, poly (lactic-glycolic acid) (PLGA) and poly(L-lysine) (PLL) have been
under investigation [101,130].
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3.4. Gene Editing Technologies and CRISPR/Cas9

Gene editing technology involves the manipulation of the target gene at the DNA or
genomic level. The most common gene editing system to date uses clustered, regularly
interspaced, short palindromic repeat (CRISPR) endonucleases such as Cas9, which can cut
the DNA at a precise, targeted location, to either ablate or repair a destructive mutation [143].
The CRISPR/Cas9 system comprises a guide RNA targeting the gene of interest and an
endonuclease that creates a site-specific double-stranded DNA “cut”, enabling precise
genetic modification [144]. This allows for the lasting and accurate modification or removal
of a mutation associated with a specific disease [145]. However, when addressing mutations
in a single gene, CRISPR may not be effective for patients without a recognized genetic
diagnosis. The CRISPR-Cas9 system has several potential advantages over other editing
tools such as its simplicity of target design, ease of generating large-scale libraries and
relatively low cost [146,147]. Moreover, the genome editing with CRISPR-Cas9 enables
multiple editing through the engagement of multiple guide RNAs (gRNAs) [148,149].
Treatment for AMD patients can involve the use of the adeno-associated viral vector (AAV)-
CRISPR tool, utilizing CjCas9 (Campylobacter jejuni) [150,151], and type-V CRISPR-Cas
systems with LbCpf1 nucleases. AAV-delivered CjCas9 can accurately target and modify
specific sites in the human or mouse genome, inducing mutations in RPE cells. In this
context, CjCas9 can target the VEGFA or Hif1a gene in RPE cells, potentially reducing the
size of laser-induced neovascularization. This approach may evolve into an in vivo genome
editing therapy for nAMD [152]. Progress in CRISPR/Cas9 technology, including base and
prime editing, holds the promise of improving the efficiency and cost-effectiveness of using
CRISPR/Cas9 to treat retinal diseases such as nAMD.

However, a key challenge in the application of CRISPR/Cas9 technology remains the
manufacturing and production for in vivo editing [153], and all CRISPR applications in
retinal diseases including nAMD have been largely experimental; clinical trials of CRISPR
for nAMD are lacking, as the field is still exploring safety and efficacy concerns.

The genomic impacts of transduction using AAV vectors encoding CRISPR-Cas nu-
cleases are still under investigation; high levels of AAV integration (up to 47%) into Cas9-
induced double-strand breaks (DSBs) are in therapeutically relevant genes in cultured
murine neurons, mouse brain, muscle, and cochlea, and this should be recognized as a com-
mon outcome for applications that utilize AAV for genome editing [113]. Moreover, efficient
gene delivery and editing can be achieved through the ocular delivery of mRNA packaged
in lipid nanoparticles (LNPs). Subretinal injections of LNPa containing Cre mRNA in the
mouse show a tdTomato signal in the RPE, enabling genome editing in the retina; in the
future, this can be used to correct genetic mutations that lead to blindness [114].

4. Clinical Trials and Promising Gene Therapy Approaches

Clinical trials investigating gene therapy for nAMD currently adopt two strategies:
the intraocular administration of modified viral vectors expressing antiangiogenic proteins,
and RNA interference molecules to contrast the VEGF overexpression.

To this purpose, PEDF, endostatin, angiostatin, secreted extracellular domain of
VEGFR1 and sFLT-1 have been targeted by gene therapy [154].

4.1. PEDF

A phase I clinical trial (ClinicalTrials.gov: NCT00109499) explored the safety of
AdGVPEDF.11D in patients affected by advanced nAMD. The investigators delivered
the PEDF gene via an adenoviral vector with deficient replication (by deletion of E1, E3,
and E4). PEDF is an important endogenous antiangiogenic factor, and its levels are low
in the presence of nAMD. Adenovirus, a double-strand DNA virus, can carry up to 37 kb
for transgene delivery [155–158]. The participants received an intravitreal injection of
AdGVPEDF.11D with dosages ranging from 1E6 and 1E9 particle units (PU). In 25% of
cases, there were reports of mild and temporary intraocular inflammation, with no severe
adverse events. Although the study was not designed to assess the therapeutic efficacy,

ClinicalTrials.gov
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neovascularization was observed to be stable or reduced in patients receiving 1E8 or 1E9
PU, compared to those receiving lower doses.

4.2. Anti-VEGF

Intravitreal and subretinal injection of FLT-1 (also known as VEGFR-1) or FLT-1 derivates
have been tested on nAMD patients after encouraging results on animal models [159]. FLT-1 ex-
pression is normally upregulated by hypoxia, neutralizing VEGF-A, and thereby preventing
its dimerization with membrane receptor VEGFR-2 and the consequent pro-angiogenic path-
way. The intravitreal injection of AAV2-sFLT01, encoding for a fusion protein composed by
sFLT-1 domain 2 and the Fc domain of IgG1, was tested in a phase I trial (ClinicalTrials.gov:
NCT01024998, Sanofi Genzyme, Paris, France), whereas the subretinal administration of
recombinant AAV (rAAV).sFLT-1, encoding the natural soluble FLT-1, was experimented
on in a phase I/IIa trial (ClinicalTrials.gov: NCT01494805, Avalanche Biotechnologies).

In the first trial, the viral vector was demonstrated to be safe, not detectable sys-
temically and not eliciting immunogenic activity. Moreover, the encoded protein was
detectable within 52 weeks in 5 of the 10 patients treated with the highest dosage (2E10
vector genomes). In general, the expression was dose-related, but variable among the
subjects, with 80% of non-expressers showing, at baseline, anti-AAV2 antibody titers of
1:400 or greater, indicating a considerable impact of individual characteristics in determin-
ing the response to treatment. Although the treatment was well tolerated at all dosages,
it did not produce any significant anatomical (retinal thickness) and functional (BCVA)
improvement [160].

The phase I/IIa trial NCT01494805 confirmed the safety and effectiveness of the
subretinal injection of the rAAV.sFlt-1 vector, resulting in an increase in retinal sFLT-1 levels.
Forty patients suffering from nAMD were assigned to low-dose, high-dose or control arms.
A regular intravitreal injection of ranibizumab was administered when patients showed a
BCVA reduction or intraretinal/subretinal fluid increase on OCT or augmented leakage
on fluorescein angiography during the 36-month follow-up. The number of intravitreal
treatments and changes in BCVA and retinal thickness were recorded during the 36-month
follow-up. This gene therapy demonstrated safety and good tolerance; however, no notable
changes were observed in the examined endpoints [161–163]. The induced endogenous
expression of anti-VEGF has also been explored in humans, after encouraging results on
animal models.

In a phase I clinical trial (ClinicalTrials.gov: NCT03748784, Adverum Biotechnologies,
Redwood City, CA, USA), an AAV2-derived vector, 7m8 (AAV.7m8-aflibercept), named
ADVM-22, was administered via intravitreal injection in 18 nAMD aflibercept-responder
patients. Aflibercept expression, BCVA, OCT changes and the need for a rescue treatment
with standard intravitreal injection of aflibercept were assessed. The BCVA maintenance
and retinal thickness reduction on OCT were observed in 12 patients who received 2E11 or
6E11 doses of ADVM-22, with 10 of them (83%) not requiring rescue treatment for about
11 months [164]. The ADVM-22 was assessed in the INFINITY trial for diabetic macular
edema (DME) and in the OPTIC clinical trial in patients with nAMD. The data from the
studies show marked differences in the safety profile between the two patient populations,
with rapid, clinically relevant decreases in intraocular pressure refractory to steroids, requir-
ing subsequent additional treatment in the treated eye of some of the patients with DME.
Although no similar clinically relevant events were observed in the OPTIC trial patients,
this unexpected occurrence has disrupted further evaluation of the intervention [165].

Positive results were also obtained with the delivery of a gene encoding a soluble mon-
oclonal portion of an anti-VEGF antibody structurally similar to ranibizumab. The safety
and tolerability of this gene treatment, called RGX-314 and administered via subretinal
injection, was tested in a phase I/IIa trial (ClinicalTrials.gov: NCT03066258, REGENXBIO).
The 42 enrolled nAMD patients had previously been treated with anti-VEGF intravitreal
injections. They were divided into 5 cohorts receiving the adeno-associated viral vector
(NAV AAV8) at different doses (3E9, 1E10, 6E10, 1.6E11 and 2.5E11 genome copies [GC]
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per eye). The rescue treatment consisted of intravitreal anti-VEGF in the case of vision loss
of 5 or more ETDRS letters; persistent, increased or new intra/subretinal fluid on OCT; or
the appearance of new macular hemorrhage. The aqueous levels of the encoded protein
were observed to increase in a dose-dependent manner in the five subgroups, with the
RGX-314 protein reaching 260.5 ng/mL in 1 year in the 6E10 cohort (six patients). In the
same sub-group at 24 months, BCVA was improved by 14 ETDRS letters, and the central
retinal thickness remained stable at the baseline. BCVA remained stable at 2 years, with
changes within one ETDRS line in cohort 2, 4, and 5. The rescue treatment after 2 years
was necessary in all cohorts, with a lower mean number in the higher dose cohorts (2.8,
4.4 and 2 ranibizumab injections in cohorts 3, 4 and 5, respectively), whereas the first
two cohorts received a higher number of rescue injections (10.3 and 9.3 in cohort 1 and 2,
respectively). RGX-314 showed a good tolerability; overall, the intervention demonstrated
no severe adverse events at the lower doses; 2 participants in the highest dose group
developed retinal pigmentary changes that resulted in vision loss. As a consequence, the
protocol was amended [166]. These results encouraged several more studies on RGX-314
safety and efficacy on nAMD patients: a phase II trial (ClinicalTrials.gov: NCT04832724)
comparing the effects of two different doses in two subretinal formulations, the clinical and
the eventual commercial formulations, a phase II trial (ClinicalTrials.gov: NCT04514653)
comparing 3 different doses of RGX-314 with ranibizumab, a randomized combination of
a fixed dose of RGX-314 with either topical or local steroid formulations post-treatment,
and a 5-year follow-up trial with a sub-study on the affected fellow-eye (ClinicalTrials.gov:
NCT03999801). Unfortunately, no conclusive data from these trials are currently avail-
able [167].

4.3. Endostatins and Angiostatins

The subretinal injection of viral vectors encoding endostatin and angiostatin, which
are endogenous inhibitors of angiogenesis, showed good preclinical results on mice with
laser-induced neovascularization [168,169]. These results prompted a phase I clinical study
(ClinicalTrials.gov: NCT01301443, Oxford Biomedica) on subretinal treatment with the non-
replicating bicistronic EIAV vector encoding both endostatin and angiostatin (RetinoStat)
on humans with advanced nAMD. The trial enrolled 21 patients that were divided into
three cohorts receiving a different treatment dose (4E4, 2.4E5 and 8E5 transduction units
[TU]). The gene therapy was safe, well tolerated and generated a sustained expression
of angiostatin and endostatin, which was detected in aqueous humor samples of eight
patients for up to 2.5 years and in 2 patients for more than 4 years. Unfortunately, despite
a documented reduction of fluorescein leakage, the treatment produced no functional
improvement [170].

4.4. Complement Cascade Inhibition

The complement cascade activation with membrane attack complex (MAC) accumu-
lation has been observed to be upregulated in AMD patients, with consequent RPE cell
damage. This process is thought to play an important pathogenetic role in both atrophic
and nAMD [171]. CD59 is a membrane that prevents MAC formation on the cell membrane
in the final phases of the complement cascade leading to cell lysis. Therefore, a soluble
form of this molecule has been studied for gene therapy applications in dry AMD and
nAMD. For the latter, a phase I trial (NCT03585556) adopting the intravitreal injection of
AAVCAGsCD59, a viral vector encoding for soluble CD59 was initiated, but the results
have yet to be made available.

4.5. RNA Interference

Another gene-based therapeutic strategy to reduce the expression of VEGF and its
receptors is gene silencing with siRNAs. As previously mentioned, these artificial RNA
strands are capable of forming complexes with complementary mRNA, selectively silencing
their expression after transcription. Preclinical successes on nAMD models led to clinical
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trials adopting bevasiranib, a 21-nt RNA silencing the VEGF encoding mRNA, and ANG
211745, a 21-nt RNA that silences the mRNA encoding for FLT-1, also known as VEGFR1.

Bevasiranib was the first siRNA approved for IVT use in clinical trials on nAMD
patients. This treatment was proved safe in a phase I trial (ClinicalTrials.gov: NCT00722384,
OPKO Health) adopting five dosing regimens (0.1, 0.33, 1, 1.5 and 3 mg). Since bevasiranib
inhibits VEGF synthesis, but does not affect the preexisting VEGF levels, and its efficacy
as a monotherapy was demonstrated insufficient in a phase II trial (ClinicalTrials.gov:
NCT00259753), resulting in BCVA loss and neovascular lesion enlargement, this gene
therapy was subsequently associated with intravitreal ranibizumab in patients affected
by nAMD in a phase III trial (ClinicalTrials.gov: NCT00499590). Despite its promising
rationale, the trial did not meet its primary endpoint and was terminated.

Another phase III trial testing the efficacy and safety of the combined bevasirinab-
ranibizumab therapy was aborted even before the enrollment started due to concerns
regarding its Toll-like receptor (TLR) action, which was detected in murine models, and
observed to induce RPE cell apoptosis [105].

The first phase I trial (ClinicalTrials.gov: NCT00363714, Allergan, Dublin, Ireland)
assessing another intravitreal si RNA (ANG 211745) safety in nAMD patients showed good
results, but the following phase II trial failed to reach its therapeutic targets [106]. Further
concerns emerged on the TLR3 pathway activation; thus, more specific gene treatments
were developed to overcome this limitation. In a phase I trial, the intravitreal injection of
PF-045236 (ClinicalTrials.gov: NCT00725685), a 19-nt siRNA silencing the hypoxia-induced
gene RTP801, was tested on patients with MNV or DME and was demonstrated to be
safe and well tolerated [172]. In the subsequent phase II MONET trial (ClinicalTrials.gov:
NCT00713518), this gene therapy showed no superiority in improving BCVA when com-
pared with ranibizumab, but the two treatments combined showed synergetic efficacy [173].

The need to frequently combine treatment regimes in order to obtain the best outcome
for the patient highlights the complexity of nAMD pathogenesis and, consequently, the
need for a multifactorial therapeutic approach. To this purpose, a single gene therapy
that regulates the expression of different proangiogenic molecules simultaneously would
represent the ideal solution; preclinical studies by Askou et al. evaluated multigenic
lentiviral vectors in human cells and in mouse retina that encode for both PEDF and
anti-VEGF miRNA [174].

Several other clinical trials are currently recruiting, but the results are still awaited.
These trials are included in Table 1 but have not been discussed in this review, as conclusive
data have yet to be published.

Table 1. Clinical trials investigating gene therapy for nAMD.

Trial ID Development Tested Drug Route of
Administration Mechanism Results

NCT00109499 Phase I AdGVPEDF.11D Intravitreal injection Induction of PEDF expression Safe, MNV size stable or reduced with dose
1E8 or 1E9 PU

NCT01024998 Phase I AAV2-sFLT01 Intravitreal injection

Induction of gene AAV2-sFLT01
encoding for an anti-angiogenic
fusion protein formed by FLT-1

and IgG1 Fc domain that
neutralizes VEGF-A before it

binds its receptor

Safe, good protein expression levels, but
without significant anatomo-functional

results

NCT01494805 Phase I/IIa AAV (rAAV).sFLT-1 Subretinal injection

Induction of gene encoding the
natural anti-angiogenic protein
FLT-1 that neutralizes VEGF-A

before it binds its receptor

Safe, no significant anatomo-functional
results

NCT03748784 Phase I AAV.7m8-
aflibercept Intravitreal injection

Induction of endogenous
aflibercept expression in

confirmed exogenous
aflibercept-responding patients

BCVA and retinal thickness maintenance in
12 patients out of 18 (10 of them not
requiring rescue treatment for about

11 months)
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Table 1. Cont.

Trial ID Development Tested Drug Route of
Administration Mechanism Results

NCT03066258 Phase I/IIa
RGX-314 (5 cohorts

with
different doses)

Subretinal injection

Induction of endogenous
anti-VEGF protein (similar to
ranibizumab) expression in

confirmed
ranibizumab-responding patients

Induction of endogenous
anti-VEGF protein (similar to
ranibizumab) expression in

confirmed
ranibizumab-responding patients

Safe, good efficacy with functional and
anatomical stabilization or improvement

and less rescue treatments in patients
treated with higher doses

NCT04832724 Phase II

RGX-314 (clinical vs.
eventual

commercial
formulation)

Recruiting, data not availableNCT04514653 Phase II RGX-314 vs.
ranibizumab

NCT03999801 Phase II

RGX-314 vs.
ranibizumab

and
RGX-314 + local vs.
RGX-314 + topical

steroids

NCT01301443 Phase I RetinoStat Subretinal injection
Induction of supplemental

endogenous endostatin and
angiostatin expression

Safe.
Non-significant effectiveness

NCT03585556 Phase I AAVCAGsCD59 Intravitreal injection

Induction of soluble CD59
expression to prevent MAC

formation and cellular damage
and apoptosis

Data not available

NCT00722384 Phase I Bevasiranib

Intravitreal injection Post-transcription silencing of
VEGF mRNA

Safe

NCT00259753 Phase II Bevasiranib Vision loss and MNV extension

NCT00499590 Phase III

Bevasiranib
combined with

intravitreal
ranibizumab

Terminated due to missed primary
endpoints

NCT00363714 Phase I AGN 211745 Intravitreal injection Post-transcription silencing of
FLT-1 (VEGFR-2) mRNA Safe

NCT00725685 Phase I PF-04523655 Intravitreal injection Post-transcription silencing of
hypoxia-induced gene RTP801 Safe

NCT00713518 Phase II PF-04523655 versus
Ranibizumab Intravitreal injection

A 19-nucleotide methylated
double stranded siRNA targeting

the RTP801 gene

Not significantly more effective than
ranbizumab, but synergetic with it in

improving BCVA

NCT05657301 Phase I KH631 Subretinal injection
Adeno-associated virus 8 vector

that encodes a human VEGF
receptor fusion protein

Recruiting, no results posted

NCT05672121 Phase I/II KH631 Subretinal injection
Adeno-associated virus 8 vector

that encodes a human VEGF
receptor fusion protein

Recruiting, no results posted

NCT05536973 Phase II
ADVM-022
(AAV.7m8-
aflibercept)

Intravitreal injection

Induction of endogenous
aflibercept expression in

confirmed exogenous
aflibercept-responding patients

Recruiting, no results posted

NCT05197270 Phase I/II 4D-150 Intravitreal injection
Dual transgene payload,

expressing aflibercept and an
anti-VEGF-C RNAi

Recruiting, no results posted

NCT06031727 Phase I HG202 Not specified Knockdown of Vascular
Endothelial Growth Factor A Recruiting, no results posted

NCT05903794 Phase I EXG102-031 Not specified
Expressing a fusion protein that is
able to bind all subtypes of VEGF

as well as the angiopoietin 2
Recruiting, no results posted

NCT05099094 Phase I IDLV
Intravitreal/

intracameral/
subretinal

IDLV vector is engineered to carry
the VEGFA antibody gene Recruiting, no results posted

NCT05407636 Phase III RGX-314 Subretinal/
suprachoroidal

Induction of endogenous
anti-VEGF protein

Recruiting, no
results posted

NCT04704921 Phase IIb/III RGX-314 Subretinal/
suprachoroidal

Induction of endogenous
anti-VEGF protein

Recruiting, no
results posted

PEDF = pigment epithelium derived factor; MNV = macular neovascularization; VEGF = vascular endothelial
growth factor; PU = particle units; VEGFR = vascular endothelial growth factor receptor.



Biomedicines 2023, 11, 3221 14 of 22

5. Conclusions and Future Perspective

AMD is a complex disease characterized by a variety of genetic and molecular fac-
tors contributing to its pathogenesis and development. The approach to date for nAMD
management is VEGF-A-based antiangiogenics; currently, the developed therapeutics
are anti-VEGF antibodies or recombinant fusion proteins. However, the monthly repet-
itive intravitreal injection of these agents only achieves a limited control of nAMD, and
its progression.

Gene therapy is a rapidly evolving field and is radically different from previously
available forms of treatment. It has both advantages and potential disadvantages, but it
could reduce the treatment burden by providing sustained and long-lasting therapeutic
effects; when a therapeutic gene is successfully integrated into patient cells, it can con-
tinuously produce the desired protein, which in the case of nAMD most likely results
in the down-regulation of VEGF. The need for a reduced frequency of treatment clearly
has advantages for the patient, with significant improvement in the quality of life and
preservation of vision and a reduction in the socio-economic burden associated with sight
loss. Viral vector gene therapy appears to be the most promising option in nAMD, but the
multifactorial character of the disease implies that gene therapy will require considerable
effort to realize desirable therapeutic outcomes.

Furthermore, gene therapy raises several concerns. The potential off-target effects have
already been mentioned; however, the main safety concern is ensuring precise control over
gene expression; once a gene is introduced or modified in a cell, it cannot be easily switched
off. This is of particular concern if the therapeutic gene has the potential to produce a
protein that may be harmful if overexpressed. Furthermore, once a gene is modified, there
is limited control over its expression; this is important, as the level of function may not be
adjusted according to changing patient needs [175,176].

Moreover, the selection of promoters plays a crucial role in gene therapy for retinal
diseases. Promoters are DNA sequences that control the initiation of gene expression, deter-
mining when and where a therapeutic gene is activated. In retinal gene therapy, the choice
of promoter influences the specificity, strength and duration of gene expression within
the target cells. Different retinal diseases may require distinct promoter characteristics.
Precision in promoter selection helps avoid off-target effects and enhances the therapeutic
gene’s therapeutic efficacy. Additionally, the durability of gene expression is a critical
consideration. Some diseases may benefit from sustained expression over an extended
period, necessitating the use of promoters that support long-term gene activity. Overall,
the strategic choice of promoters in nAMD gene therapy is pivotal for optimizing treatment
outcomes, tailoring expression patterns to specific cell types, and achieving the desired
therapeutic effects while minimizing unintended consequences [177].

The number of studies reported in the literature is vast; this review does provide an
exhaustive analysis but represents the issues the authors considered pertinent regarding
gene therapy for nAMD. While gene therapy approaches, including those involving AAV
vectors and CRISPR-Cas nucleases, are actively being explored, their widespread clinical
application for nAMD is still in the investigational stage.

The results of the clinical trials described in this review may lay the foundations to
revolutionize treatment plans for nAMD in the future. Challenges and areas of controversy
persist, but progress has been made to optimize the dosage of these drugs, the routes of
administration, post-injection management and long-term benefits. Future gene therapy
studies need to live up to several key expectations to advance the field effectively. Future
studies should focus on enhancing the precision and specificity of gene therapies. This
involves developing technologies that can accurately target specific cells or tissues, mini-
mizing off-target effects. The sustainability of gene therapies is crucial; ensuring that the
therapeutic effects persist over the long term is essential for the success of these treatments,
particularly in chronic conditions like nAMD. Continued efforts must be made to improve
the safety profiles of gene therapies. This includes minimizing adverse reactions, immune
responses, and other potential risks associated with the delivery of therapeutic genes.
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Moreover, gene therapy approaches can be combined with other treatment modalities,
such as anti-VEGF therapies, to potentially enhance the overall effectiveness of treatment.
While gene therapy for nAMD is still in its early stages, ongoing research and advance-
ments in gene delivery methods, vector development, and gene editing technologies hold
promise for improving its efficacy and safety profile and advancing the potential of clinical
applications and patient benefit.
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