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A B S T R A C T

In this short note, we review the definition of photographic scale in the case of nadir and oblique images, and
derive exact formulae for calculating the scale of oblique images in general and special cases.
1. Introduction

Scale plays a versatile role in various aspects of photogramme-
try and geospatial data processing. In particular, scale variations in
oblique imagery have gained increasing relevance in recent times,
driven by the widespread availability of multi-perspective cameras like
the Leica CityMapper and Vexcel Osprey systems. These variations can
be substantial and need to be addressed during every phase of the
photogrammetric workflow.

Image scale directly affects the accuracy of measurements made
from oblique images. When determining the size or position of objects
on the ground, it is essential to account for the scale factor. Accurate
measurement requires the correct scaling of features in the images to
their real-world dimensions (Höhle, 2008; Verykokou, 2020).

Traditional bundle adjustment methods assign equal weights to
image point observations from different directions, but in aerial oblique
images, varying ground sample distances and non-standard error dis-
tributions arise due to scale differences. This diminishes bundle ad-
justment accuracy. To overcome this challenge, Xie et al. (2016) in-
corporates pixel scale to calculate a re-weighting factor, reflecting the
relative importance of individual measurements.

Another crucial aspect that demands careful scale consideration
is motion compensation. This process corrects distortions caused by
the movement of the imaging platform, like an aircraft or drone,
during image capture. Cutting-edge methods like Adaptive Motion
Compensation (AMC) (Dohr et al., 2022), that work in conjunction
with CMOS sensors, rely on estimating the point-spread function behind
image blurring, enabling image deconvolution. The size of this function
directly relates to the extent of motion blur, mainly estimated from
aircraft speed, image scale, and exposure time. It is noteworthy that
different image scales result in varying degrees of motion blur, further
underscoring the need to address scale variations.
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2. General formulae for the photographic scale

The Ground Sampling Distance (GSD) is the 3D Euclidean distance
between two adjacent pixel centres (whose distance in the image is 1
pixel) measured on the ground. Since ‘‘adjacent pixels’’ can be above
and to the side, dependency on direction is implicit in this definition.
It is also implied that the GSD depends on the position of the pixels
considered.

The photographic scale is the ratio – denoted by 1 ∶ 𝑚 – be-
tween a distance measured in a photograph and the corresponding
distance on the ground. The value 𝑚 represents the so-called scale
number. More precisely, we define two scale numbers as the ratio of the
length of infinitesimal segments at a given point, in the two directions
corresponding to the 𝑢 and 𝑣 axis in the image:
(

𝑚𝑢
𝑚𝑣

)

=

( 𝖽𝑆
𝖽 𝑢
𝖽𝑆
𝖽 𝑣

)

(1)

where 𝖽 𝑢 is the length of the infinitesimal image segment in the 𝑢
direction, 𝖽 𝑣 is the length of the infinitesimal image segment in the
𝑣 direction, 𝖽𝑆 is the length of the footprint (or back-projection) of
the image segment on the ground. The differential is computed at the
given point. With this definition, photographic scale is a 2-dimensional
vector that varies from point to point in the image.

The relationship between the scale numbers and the GSD involves
the pixels dimensions 𝛥𝑢 and 𝛥𝑣 (Kraus, 2007):

𝐺𝑆𝐷 =
(

𝛥𝑢 0
0 𝛥𝑣

)(

𝑚𝑢
𝑚𝑣

)

(2)

where the 𝑢 and 𝑣 axis correspond to columns and rows of the
photosensors array, respectively.
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Fig. 1. Ground and camera reference systems. By default the camera looks upward,
so to make it look downward one needs to rotate it by 𝜋 around 𝑋𝑐 or 𝑌𝑐 axis.

In order to derive a general expression for the photographic scale
in oblique images, we will take an analytical approach. The camera
station is represented by the centre of projection (COP) that we set to

𝐗0 =
⎛

⎜

⎜

⎝

0
0
𝐻

⎞

⎟

⎟

⎠

(3)

in the ground coordinates system (Fig. 1), so that 𝐻 is the height above
the ground of the camera. The camera angular attitude is given in
general by three Euler angles: 𝜔, 𝜙, 𝜅, that determine a rotation matrix
𝚁 = 𝚁𝑋 (𝜔)𝚁𝑌 (𝜙)𝚁𝑍 (𝜅). Let us assume for the time being that only 𝜙
(the rotation angle around the 𝑌 -axis), is non-zero. The corresponding
rotation matrix is

𝚁 =
⎛

⎜

⎜

⎝

cos (𝜙) 0 sin (𝜙)
0 1 0

− sin (𝜙) 0 cos (𝜙)

⎞

⎟

⎟

⎠

. (4)

The camera is represented in homogeneous coordinates by a 3 × 4
matrix:

𝙿 = 𝙺
[

𝚁,−𝚁𝐗0
]

(5)

where 𝙺 is 3 × 3 diagonal matrix that contains on the diagonal the focal
length (or principal distance) 𝑓 :

𝙺 =
⎛

⎜

⎜

⎝

𝑓 0 0
0 𝑓 0
0 0 1

⎞

⎟

⎟

⎠

. (6)

We are assuming that the image reference system has its origin in the
principal point. With these settings, 𝙿 writes:

𝙿 =
⎛

⎜

⎜

⎝

𝑓 cos (𝜙) 0 𝑓 sin (𝜙) −𝐻 𝑓 sin (𝜙)
0 𝑓 0 0

− sin (𝜙) 0 cos (𝜙) −𝐻 cos (𝜙)

⎞

⎟

⎟

⎠

. (7)

The action of the camera matrix (in homogeneous coordinates) is to
take a 3D point 𝐗 = (𝑋, 𝑌 ,𝑍, 1) in ground coordinates system and
project it onto a point 𝐱 in the image plane (See Appendix A):

𝑊 𝐱 = 𝙿𝐗 (8)

where the scalar 𝑊 is the depth of the ground point, which is defined
as the distance (in meters) of the point from the plane through the COP
parallel to the image plane. The depth 𝑊 is simply the third coordinate
of the ground point represented in the camera reference frame.

Since the ground plane has equation 𝑍 = 0, the homography that
maps the ground plane to the image plane is obtained by deleting the
third column of 𝙿:

𝙿3 =
⎛

⎜

⎜

𝑓 cos (𝜙) 0 −𝐻 𝑓 sin (𝜙)
0 𝑓 0

⎞

⎟

⎟

. (9)
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⎝ − sin (𝜙) 0 −𝐻 cos (𝜙) ⎠
Its inverse, 𝙿−13 maps from the image plane to the ground plane:

𝙿−13 =

⎛

⎜

⎜

⎜

⎝

cos(𝜙)
𝑓 0 − sin (𝜙)
0 1

𝑓 0
− sin(𝜙)

𝐻 𝑓 0 − cos(𝜙)
𝐻

⎞

⎟

⎟

⎟

⎠

. (10)

Considering a generic image point of homogeneous coordinates

𝐱 =
⎛

⎜

⎜

⎝

𝑢
𝑣
1

⎞

⎟

⎟

⎠

(11)

its back-projection onto the ground plane can be computed with 𝙿−13 𝐱.
After perspective division it has planimetric coordinates:

�̄� =
(

𝑋
𝑌

)

=

⎛

⎜

⎜

⎜

⎝

𝐻 (𝑓 sin (𝜙) − 𝑢 cos (𝜙))
𝑓 cos (𝜙) + 𝑢 sin (𝜙)

− 𝐻 𝑣
𝑓 cos (𝜙) + 𝑢 sin (𝜙)

⎞

⎟

⎟

⎟

⎠

(12)

while 𝑍 = 0 by definition.
The derivatives of �̄� are readily computed:

𝖽 �̄�
𝖽 𝑢

=

⎛

⎜

⎜

⎜

⎜

⎝

−
𝐻 𝑓

(𝑓 cos (𝜙) + 𝑢 sin (𝜙))2

𝐻 𝑣 sin (𝜙)
(𝑓 cos (𝜙) + 𝑢 sin (𝜙))2

⎞

⎟

⎟

⎟

⎟

⎠

(13)

𝖽 �̄�
𝖽 𝑣

=
⎛

⎜

⎜

⎝

0

− 𝐻
𝑓 cos (𝜙) + 𝑢 sin (𝜙)

⎞

⎟

⎟

⎠

. (14)

Since the scale is the ratio of lengths, we take the norm (𝑆 = ‖𝖽 �̄�‖)
thus obtaining:

𝑚𝑢 =
‖𝖽 �̄�‖
𝖽 𝑢

=
𝐻

√

𝑓 2 + sin2 (𝜙) 𝑣2

(𝑓 cos (𝜙) + 𝑢 sin (𝜙))2
(15)

𝑚𝑣 =
‖𝖽 �̄�‖
𝖽 𝑣

= 𝐻
|𝑓 cos (𝜙) + 𝑢 sin (𝜙)|

. (16)

These are the general formulae for the scale numbers when the
camera is tilted by 𝜙 around the 𝑌 -axis (which is parallel to the 𝑣 axis
in the image plane) as in Fig. 2.

In the principal point (𝑣 = 0, 𝑢 = 0), Formulae (15) and (16) reduces
to

𝑚𝑢 =
𝐻

𝑓 cos2 (𝜙)
(17)

𝑚𝑣 = 𝐻
𝑓 cos (𝜙)

. (18)

Expressions (17) and (18) characterise the scale number for oblique
images as a function of 𝐻∕𝑓 , which is the scale number for a nadir
image with the same height above ground 𝐻 . Please note that such
expressions are valid only at the principal point.

Simpler formulae are obtained using the depth of the ground point
𝑊 , which according to (8) writes, 𝑊 = 𝐩3𝐗, where 𝐩3 is the last row of
𝙿 (see Appendix A). In our specific case 𝐗 belongs to the ground plane
(𝑍 = 0), so: 𝐗 = [�̄�; 0; 1], thus obtaining:

𝑊 = −
𝐻 𝑓

𝑓 cos (𝜙) + 𝑢 sin (𝜙)
. (19)

We solve for 𝐻 in the resulting expression, thus getting:

𝐻 = −𝑊 cos (𝜙) −
𝑊 𝑢 sin (𝜙)

𝑓
(20)

and substitute it in the previous relationships, obtaining

𝑚𝑢 =
‖𝖽 �̄�‖
𝖽 𝑢

=
𝑊 |cos (𝜙)|

𝑓
(21)

𝑚𝑣 =
‖𝖽 �̄�‖
𝖽 𝑣

= 𝑊
𝑓

. (22)

Although these two formulae are equivalent to (15)–(16), they are more
convenient to compute as they involve a camera constant (𝑓 ) and 𝑊 ,
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Fig. 2. A simulation of nadir 𝜙 = 𝜋 and oblique 𝜙 = 𝜋 + 𝜋∕8 imaging. The ground and camera reference frames are shown (R = X, G = Y, B = Z). A grid of 100 × 100 pixels
cells is projected onto the ground plane to visualise the image footprint and the GSD variation.
𝚁 =
⎛

⎜

⎜

⎝

cos (𝜅) cos (𝜙) − cos (𝜙) sin (𝜅) sin (𝜙)
cos (𝜔) sin (𝜅) + cos (𝜅) sin (𝜔) sin (𝜙) cos (𝜅) cos (𝜔) − sin (𝜅) sin (𝜔) sin (𝜙) − cos (𝜙) sin (𝜔)
sin (𝜅) sin (𝜔) − cos (𝜅) cos (𝜔) sin (𝜙) cos (𝜅) sin (𝜔) + cos (𝜔) sin (𝜅) sin (𝜙) cos (𝜔) cos (𝜙)

⎞

⎟

⎟

⎠

. (23)

Box I.
which is simply the third coordinate of the ground point represented in
the camera reference frame. The dependency on 𝑢, 𝑣 and partially the
tilt angle are already accounted for by 𝑊 . Nonetheless, we could not
find any evidence of this definition in the literature.

The case we just illustrated was a special one. The most general
case would entail a full rotation matrix. Following the widespread
convention (Sigle and Heuchel, 2001), e.g., in PATB (Klein, 2009) and
Pix4D (Pix4D, 2021) – which corresponds to the transpose of the
standard recommended by Rosenfield (1959) in expression (2.7) – a full
rotation matrix where all the three angles 𝜔, 𝜙, 𝜅 are non-zero writes as
in Box I.

These settings lead to the following most general formulae (Ap-
pendix B):

𝑚𝑢 =
𝐻

√

𝑓 2+𝑣2+cos2 (𝜙)
(

−𝑓 2 +𝑓 2 cos2 (𝜔) −𝑣2 cos2 (𝜔) −𝑓 𝑣 sin (2𝜔)
)

(𝑢 sin (𝜙) +𝑓 cos (𝜔) cos (𝜙) −𝑣 cos (𝜙) sin (𝜔))2

(24)

𝑚𝑣 =
𝐻

√

𝑓 2 cos2 (𝜙)+𝑢2−𝑢2 cos2 (𝜔) cos2 (𝜙)+𝑓 𝑢 cos (𝜔) sin (2𝜙)
(𝑢 sin (𝜙) +𝑓 cos (𝜔) cos (𝜙) −𝑣 cos (𝜙) sin (𝜔))2

(25)

Again, it is to be noted that using 𝑊 leads to a much simpler
formulation:

𝑚𝑢 =
𝑊 |cos (𝜙)|

𝑓
(26)

𝑚𝑣 =
𝑊

√

1 − cos2 (𝜙) sin2 (𝜔)

𝑓
(27)

where the expression for 𝑚𝑢 is formally identical to (21) and the
expression for 𝑚𝑣 contains an additional term that vanishes for 𝜔 = 0.

3. Comparison with known formulae

We will start by examining the classic case in aerial photogramme-
try depicted in Fig. 3 where (i) the ground is flat (i.e., it has constant
200
Fig. 3. Geometric construction for defining the GSD in the case of nadir images (with
flat ground).

elevation) and (ii) the image plane and ground plane are parallel (this
corresponds to a nadir aerial photograph). It is immediate to verify that

𝑚𝑢 = 𝑚𝑣 = 𝐻
𝑓

= 𝑊
𝑓

(28)

from (15)–(16) and (21)–(22) respectively with sin(𝜙) = 0.
In this particular case, the scale is constant because 𝑊 is constant

(and equal to 𝐻), the image plane and the ground plane being parallel.
The scale does not depend on the point (nor on the direction) and it is
constant over the image.

It also turns out that, in this special case:
𝐻
𝑓

= 𝐿
𝑙
= 𝑆

𝑠
(29)

by triangle similarity in Fig. 3.
If either condition (i) or (ii) fails, the scale is no longer constant.

Failure of (i) corresponds to a topographic variation of the surface
(relief) and it is not the focus of this short note. Failure of condition
(ii) corresponds to oblique images.
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Fig. 4. Geometric construction for defining the GSD in the oblique case. This drawing
is a view of the principal plane.

All previous known formulae consider a special case of oblique
image (see Fig. 4), where the camera has only one inclination angle 𝛾
that specify a rotation around an axis orthogonal to the principal plane,
i.e., the vertical plane containing the principal axis. Let us assume that
this is also the 𝑌 -axis of the camera. The camera 𝑍-axis is contained
in the principal plane (it coincides with the principal axis), while the
𝑌 -axis is perpendicular to the screen. The segments 𝑠 and 𝑆 and the
angles 𝛼 and 𝛾 lie in the principal plane.

3.1. Digital photogrammetry approaches

In the special case depicted in Fig. 4, Höhle (2008) defines the scale
number as:

𝑚𝐿 = 𝐿
𝓁

=
𝐻 cos(𝛼)

𝑓 cos(𝛼 + 𝛾)
(30)

since

𝓁 =
𝑓

cos(𝛼)
(31)

𝐿 = 𝐻
cos(𝛼 + 𝛾)

(32)

where 𝛾 is the tilt angle, i.e., the angle formed by the camera’s principal
axis and the vertical direction (𝛾 = 0 for nadir views), and 𝛼 is the angle
between the ray of the given image point and the principal axis (see
Fig. 4). It is easy to see that with this definition the photographic scale
varies across oblique images.

From the similarity of the triangles in Fig. 4 it follows that

𝑚𝐿 = 𝐿
𝓁

= 𝑊
𝑓

. (33)

In the formula with 𝑊 the scale variation is due to 𝑊 itself, since the
image plane and the ground plane are not parallel.

It is easy to see that the definition of 𝑚𝐿 in (30) corresponds to our
𝑚𝑣 both in (16) and (22). The latter derives from (33); as for the former,
one needs to substitute 𝑢 = 𝑓 tan(𝛼), thus:

𝑚𝑣 =
𝐻 cos (𝛼)

|𝑓 cos (−𝜙 + 𝛼)|
(34)

where 𝜙 = 𝜋 − 𝛾. In this special case (𝜔 = 0, 𝜅 = 0), the 𝑣 direction is
orthogonal to the principal plane.

In this same situation one could also try to compute the scale
by differentiation. The following relationships can be written with
reference to Fig. 4:

𝑠 =
𝑓 sin (𝛼) (35)
201

cos (𝛼)
𝐵 = 𝐻
cos (𝛾)

(36)

𝑆 = 𝐵 sin 𝛼
sin(𝜋∕2 − 𝛼 − 𝛾)

=
𝐻 sin (𝛼)

cos (𝛾 + 𝛼) cos (𝛾)
(37)

where (37) derives from the law of sines. Then:
𝖽𝑆
𝖽 𝛼

= 2𝐻
cos (2 𝛾 + 2 𝛼) + 1

(38)

𝖽 𝑠
𝖽 𝛼

= −
𝑓

sin2 (𝛼) − 1
(39)

and

𝑚𝑆 = 𝖽𝑆
𝖽 𝑠

= −
2𝐻

(

sin2 (𝛼) − 1
)

𝑓 (cos (2 𝛾 + 2 𝛼) + 1)
=

𝐻 cos2 (𝛼)
𝑓 cos2 (𝛾 + 𝛼)

. (40)

It is easy to see that this definition of 𝑚𝑆 in (40) corresponds to 𝑚𝑢
in (15) where one needs to set 𝑣 = 0 and 𝑢 = 𝑓 tan(𝛼) thus:

𝑚𝑢 =
𝐻 cos2 (𝛼)

𝑓 cos2 (−𝜙 + 𝛼)
(41)

where we identify 𝜙 = 𝜋 − 𝛾.
Formula (30) was presented by Höhle (2008) as the GSD for oblique

images, and later used by many authors (e.g. Xie et al. (2016), Pepe
et al. (2018), Balamuralidhar et al. (2021)). In a later paper Höhle
(2013) renamed it 𝐺𝑆𝐷ortho, and gave a new formula for what he called
𝐺𝑆𝐷ground, that matches (40).

3.2. Conventional analytical photogrammetry approaches

Conventional approaches to scale determination in oblique images,
originating from analogue-analytical photogrammetry (Lane, 1950;
Moffitt, 1967; Moffitt and Mikhail, 1980; Wolf, 1983), focus on scale
along two specific directions: the x-scale, perpendicular to the principal
line’s direction and the y-scale, which is along the former. The principal
line is defined as the intersection of the principal plane with the image
plane, and its orientation depends on the camera’s angular attitude.

For example, in Verykokou (2020), the x-scale 𝑠𝑥 is defined as

𝑠𝑥 =
𝑇 ′𝑇 ′

1
𝑇𝑇1

(42)

where 𝑇 ′ is the projection on the image plane of a world point 𝑇 , 𝑇 ′
1 is

the projection of 𝑇 ′ on the principal line and 𝑇1 is the projection of 𝑇
on the principal plane. For a camera with only one inclination angle 𝛾
(Fig. 4), Verykokou (2020) derives the following equation:

𝑠𝑥 =
𝑓 cos (𝛼 + 𝛾)

(𝐻 − 𝛥𝐻) cos (𝛼)
. (43)

Assuming that 𝑇 lies on the ground (𝛥𝐻 = 0), it is easy to see that (43)
is the inverse of 𝑚𝑣 expressed in (34).

The y-scale, computed along the principal line, is defined as

𝑠𝑦 =
𝑇 ′𝑇 ′

2
𝑇𝑇2

=
𝑑2 cos2 (𝜃)
𝑓 (𝐻 − 𝛥𝐻)

(44)

where 𝑇 ′ and 𝑇 ′
2 are the projections on the oblique image of two world

points 𝑇 and 𝑇2 belonging to the principal plane and the segment 𝑇 ′𝑇 ′
2

lies on the principal line. The angle formed by the camera’s principal
direction and the true horizon line is denoted with 𝜃 and 𝑑 is the
distance between 𝑇 ′ and the horizon point. Furthermore, the following
relation holds (Verykokou, 2020):
𝑑 cos (𝜃)

𝑓
=

sin (𝜃 − 𝛼)
cos 𝛼

(45)

Substituting (45) in (44) and given that 𝜃 = 𝜋∕2−𝛾 and sin (𝜋∕2 − 𝛾 − 𝛼)
= cos (𝛾 + 𝛼), it results 𝑠𝑦 = 𝑚−1

𝑢 , with 𝑚𝑢 expressed as in (41) for 𝑣 = 0.
This clarifies that in fact the expression for 𝑠𝑦 holds only for points
belonging to the principal line.

The classic formulae (Lane, 1950; Verykokou, 2020) differ from
our approach in two key aspects: (i) they decompose scale along
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
different extrinsic directions (i.e. directions depending on the external
orientation of the camera), and (ii) they reference elements like the
principal line, the true horizon line and the horizon point, which are
not readily available in our formulation. In contrast, our approach takes
a different perspective by breaking down scale variation along two
intrinsic directions, namely along the 𝑢 and 𝑣 axes of image coordinates.

4. Conclusions

Scale plays a versatile role in various aspects of photogrammetry
and geospatial data processing. However, determining the scale of
oblique images can be a somewhat intricate task in modern digital
photogrammetric procedures. This obstacle arises because available
formulae involves computing geometrical elements that are typically
associated with analytical methods and may not be readily available.
In addition, known formulae refers only to a special case where the
cameras has only one inclination angle (Fig. 4).

The primary objective of this short note is to introduce a general
alternative definition of image scale – based on image space derivatives
– as outlined in Eqs. (26)–(27). This approach seamlessly integrates
with digital photogrammetric procedures (e.g., motion compensation,
bundle adjustment), distinguishing itself from prior analytical methods
that predominantly relied on 2D graphical interpretations for image
scale determination. By presenting this unique perspective, our ap-
proach has the potential to provide fresh insights and enhance our
understanding of the inherent characteristics of oblique photographs
in the context of modern digital photogrammetry.
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Appendix A. Perspective projection equation

Perspective projection in homogeneous coordinates writes
(Faugeras, 1993):

𝜆𝐱 = 𝙿𝐗 (A.1)

where the 𝜆 is a scale factor that accounts for the homogeneous
representation. To derive an expression for 𝜆 let us expand the product
𝙿𝐗, where 𝙿 = 𝙺

[

𝚁, 𝐭
]

, 𝐭 = −𝚁𝐗0, 𝚁 is a rotation matrix and 𝙺 is given
y (6):

𝙿𝐗 =
⎛

⎜

⎜

⎝

𝑓 𝑡1 + 𝑅1,1 𝑋1 𝑓 + 𝑅1,2 𝑋2 𝑓 + 𝑅1,3 𝑋3 𝑓
𝑓 𝑡2 + 𝑅2,1 𝑋1 𝑓 + 𝑅2,2 𝑋2 𝑓 + 𝑅2,3 𝑋3 𝑓

𝑡3 + 𝑅3,1 𝑋1 + 𝑅3,2 𝑋2 + 𝑅3,3 𝑋3

⎞

⎟

⎟

⎠

(A.2)

Since 𝐱3 = 1, it turns out that 𝜆 = 𝑡3 + 𝑅3,1 𝑋1 + 𝑅3,2 𝑋2 + 𝑅3,3 𝑋3, and
this is the 𝑍 coordinate of the point represented in the camera reference
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system. i.e., the depth of the point 𝑊 .
Appendix B. Derivation of general formulae

All the derivations have been done with the help of the Matlab
Symbolic Toolbox, with the following code.

syms omega phi kappa alpha f H u v W real

K = [f 0 0 ; 0 f 0; 0 0 1];

a = [0 phi 0];

Rx = [1 0 0
0 cos(a(1)) -sin(a(1))
0 sin(a(1)) cos(a(1))]; % omega

Ry = [cos(a(2)) 0 sin(a(2))
0 1 0

-sin(a(2)) 0 cos(a(2))]; % phi

Rz = [cos(a(3)) -sin(a(3)) 0
sin(a(3)) cos(a(3)) 0
0 0 1]; % kappa

R = Rx*Ry*Rz;

COP = [0 0 H]’;
P = K * [R , -R*COP];

X_bar = inv(P(:,[1 2 4])) * [u v 1]’;
X_bar = (simplify(X_bar(1:2)./ X_bar(3), ’Steps’, 20));

% comment these lines for formulae without W
H = (simplify(solve(W == (P(3,:) * [X_bar; 0; 1]), H), 20));
X_bar = (simplify(subs(X_bar), 20));

Du = (simplify(jacobian(X_bar, u),’Steps’,20));
Dv = (simplify(jacobian(X_bar, v),’Steps’,20));

mu = (simplify(norm(Du),’Steps’,20));
mv = (simplify(norm(Dv),’Steps’,20));

% uncomment these lines for special case formulae
% v = 0;
% u = f * tan(alpha);
% mu = simplify(subs(mu),’Steps ’,20);
% mv = simplify(subs(mv),’Steps ’,20);
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