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Abstract
Realizability and reactive synthesis from temporal logics are fundamental problems in formal verification. The complexity
of these problems for linear temporal logic with past (LTL+P ) led to the identification of fragments with lower complexities
and simpler algorithms. Recently, the logic of extended bounded response LTL+P (LTLEBR+P for short) has been introduced.
It allows one to express safety languages definable in LTL+Pand it is provided with an efficient, fully symbolic algorithm for
reactive synthesis. This paper features four related contributions. First, we introduce GR-EBR , an extension of LTLEBR+Pwith
fairness conditions, assumptions, and guarantees that, on the one hand, allows one to express properties beyond the safety
fragment and, on the other, it retains the efficiency of LTLEBR+P in practice. Second, we the expressiveness of GR-EBR starting
from the expressiveness of its fragments. In particular, we prove that: (1) LTLEBR+P is expressively complete with respect to
the safety fragment of LTL+P , (2) the removal of past operators from LTLEBR+P results into a loss of expressive power, and
(3) GR-EBR is expressively equivalent to the logic GR(1)of Bloem et al. Third, we provide a fully symbolic algorithm for
the realizability problem from GR-EBR specifications, that reduces it to a number of safety subproblems. Fourth, to ensure
soundness and completeness of the algorithm, we propose and exploit a general framework for safety reductions in the context
of realizability of (fragments of) LTL+P . The experimental evaluation shows promising results.
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1 Introduction

One of the most important problems in formal methods
and requirement analysis is establishing whether a specifi-
cation over a set of controllable and uncontrollable actions is
implementable (or realizable), that is, whether there exists a
controller that chooses the value of the controllable actions
and satisfies the specification, no matter what the values of
uncontrollable actions are [5, 6]. This problem has been
formalized in the literature under the name of realizabil-
ity [3]. The very close problem of reactive synthesis aims
at synthesizing such a controller, whenever the specifica-
tion is realizable. Usually, these problems are modelled as
two-player games between Environment, who tries to vio-
late the specification, and Controller, who tries to fulfill it.
Realizability is known to have a very high worst-case com-
plexity. In particular, it has a non-elementary lower bound
for S1S specifications [4], and it is 2EXPTIME-complete for
Linear Temporal Logic (LTL ) specifications [5, 6].

In order to apply realizability and reactive synthesis in
real-world scenarios, research has focused on the identifica-
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tion of fragments of S1Sand LTL , with a limited expressive
power, for which realizability can be solved efficiently.

Awell-knownexample isGeneralized Reactivity(1) (GR(1) ,
for short) [7]. In this fragment, a specification is syntacti-
cally partitioned into assumptions about the environment and
guarantees for the controller. Both of themare eitherBoolean
formulas (say, α) or safety formulas (Gα) or conjunc-
tions of recurrence formulas (

∧n
i=1 GFαi ). The dichotomy

between assumptions and guarantees reflects the way a sys-
tem engineer usually formalizes system requirements, which
is summarized by the following sentence: “the controller has
to behave in conformance to the guarantees, under the given
assumptions on the environment".

On a different direction, other approaches focused on
safety fragments ofLinearTemporal Logicwith Past (LTL+P )
[8, 9]. In particular, Extended Bounded Response LTL+P
(LTLEBR+P , for short) is a safety fragment of LTL+Pwith the
following features [9]: (i) its realizability problem is EXP-
TIME -complete; (ii) there exists a fully symbolic compilation
of its formulas into deterministic automata. This last feature,
in particular, contributes to a great improvement in solving
time for the synthesis problem.

A second research direction on reactive synthesis focuses
on finding good algorithms for the average case. Among
these, an important class of algorithms makes use of the so-
called safety reductions, that reduce the realizability problem
for the original formula to a sequence of subproblems for
safety formulas by bounding some behaviors of the former,
e.g., the visits to the rejecting states of the corresponding
automaton, by some integer k. The rationale behind these
techniques is that a safety problem is usuallymuch simpler to
solve, since it amounts to a strong reachability problem [10].
This is in turn inspired by safety reductions for the model
checking problem, where the validity of an LTL formula over
a Kripke structure is reduced to checking the reachability of
a given error state [11, 12]. Usually, safety reductions (for
both realizability and model checking) are: (i) sound, mean-
ing that a positive answer to any of the subproblems implies
a positive result of the original formula, and (ii) complete,
ensuring that there exists an upper bound μ such that, if the
k-th subproblem has a negative answer for all k ≤ μ, then
also the result for the original formula is negative. Mean-
ingful examples of safety reductions for realizability are the
contributions on bounded synthesis [13], which are based on
the pioneering work on Safraless algorithms [14], and all the
different encodings proposed for solving it [15].

1.1 Contributions

The main contributions of the paper are the following ones.
First, we introduce the logic of Generalized Reactivity(1)

LTLEBR+P (GR-EBR , for short), an extention of LTLEBR+P that
admits:

1. fairness conditions, in particular conjunctions of recur-
rence formulas, that is,

∧
i GFαi , forcing each formula αi

to be true infinitely often;
2. assumptions/guarantees in the formof anLTLEBR+P formula

augmented with fairness conditions.

In addition tomake it possible to express anyLTLEBR+P formula,
GR-EBR also allows one to define properties that are not cap-
tured by the safety fragment, like, for instance, Gp → Gq.

Second, we investigate the expressiveness of GR-EBR . We
begin with the analysis of the expressive power of LTLEBR+P ,
which, by definition, is a fragment of GR-EBR , and we prove
that it can express all and only the safety properties that are
definable in LTL+P . A crucial role in the proof of such an
expressive equivalence is played by past temporal modalities
of LTLEBR+P . Then, we prove that they are really neces-
sary by showing that the logic LTLEBR , that is, the fragment
of LTLEBR+Pwhere past modalities have been removed, is
strictly less expressive than LTLEBR+P . Finally, by exploiting
the previous results, we demonstrate that GR-EBR is expres-
sively equivalent to GR(1) [7].

Third, we study the reactive synthesis problem for
GR-EBR . In particular, we give an algorithm that, at each
iteration, builds a safety subproblem and checks its realiz-
ability. If it returns a positive result, then the initial formula
is realizable as well, and a controller implementing the spec-
ification can be effectively built; otherwise, it continues with
the next iteration. If the upper bound given by the reduction
has been reached, the algorithm outputs the unrealizability
of the initial formula. As a matter of fact, the upper bound is
doubly exponential in the size of the formula and thus pro-
hibitively large. For this reason, in practice, it is useful to use
the algorithm in parallel with another one checking for the
unrealizability of the formula. The first that terminates stops
the other and, thus, the entire procedure. A crucial property
of the algorithm is that the realizability check of each safety
subproblem is performed in a fully symbolic way, thus retain-
ing the distinctive feature of LTLEBR+P .

Fourth, we prove the correctness of the proposed algo-
rithm for realizability. To this end, we devise a novel
framework for deriving complete safety reductions in the
context of realizability of (fragments of) LTL+P . A notable
feature of the framework is that it provides a link to safety
reductions formodel checking, by showing that if a reduction
is complete formodel checking, then it is complete for realiz-
ability as well. On the one hand, this allows one to reason on
Kripke structures instead of strategies, which is simpler; on
the other hand, it enables the use of some reductions already
exploited in model checking for realizability, provided that
they conform to the framework. We use the framework to
derive a complete safety reduction for the realizability prob-
lem of GR-EBR . Moreover, we show how to apply it to prove
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the completeness of Bounded Synthesis [13] using the K-
Liveness reduction to safety [11].

Last but not least, we provide an implementation of the
algorithm as a prototype tool called grace (GR-ebr reAliz-
ability ChEcker). The experimental evaluation shows good
performance against tools for full LTL+P synthesis.

This work considerably extends [1, 2] by:

1. adding a characterization of the exact expressive power
of GR-EBR ;

2. providing the complete proofs of all lemmata and theo-
rems;

3. describing in detail the formalization of Bounded Synthe-
sis in terms of the proposed general framework;

4. improving the analysis of related work.

1.2 Relevance for SoSyM

The relevance of the present work for a journal like the
International Journal on Software and Systems Modeling
(SoSyM) is manyfold. It proposes a novel formalism to
express meaningful temporal properties, and pairs it with
some effective techniques to check their realizability. The
latter feature is fundamental in the context of correct-by-
construction design; moreover, it turns out to be quite useful
in the process of specification debugging: while satisfiability
checks fail to establish whether a specification is imple-
mentable, realizability can be successfully employed to solve
this task.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2,
we introduce basic notation and definitions. In Sect. 3,
we define the logic GR-EBR and we give an example of
GR-EBR specification. In Sect. 4, we determine the expres-
sive power of LTLEBR+P , LTLEBR , and GR-EBR . The symbolic
algorithm that solves GR-EBR realizability is given in Sect. 5.
In Sect. 6, we describe the framework for deriving complete
reductions and we apply it to the case of GR-EBR , proving
completeness of the algorithm described in the previous sec-
tion. In Sect. 7, we analyse related work. The outcomes of
the experimental evaluation are reported in Sect. 8. Finally,
in Sect. 9,we point out some interesting future research direc-
tions.

2 Preliminaries

2.1 Temporal logics

Linear Temporal Logic with Past (LTL+P ) is a modal logic
interpreted over infinite state sequences. Let � be a set of

proposition letters. LTL+P formulas are inductively defined
as follows:

φ:=p |¬φ |φ1 ∨ φ2 |X φ |φ1 U φ2 |Y φ |φ1 S φ2

where p ∈ �. Temporal operators can be partitioned into
future operators (next (X) and until (U)) and past operators
(yesterday (Y) and since (S)). We define the following com-
mon abbreviations, where � stands for any tautology, e.g.,
p ∨ ¬p: (i) release: φ1 R φ2 ≡ ¬(¬φ1 U¬φ2); (ii) eventu-
ally: Fφ1 ≡ �Uφ1; (iii) globally:Gφ1 ≡ ¬ F¬φ1; (iv) once:
Oφ1 ≡ � Sφ1; (v) historically: Hφ1 ≡ ¬O¬φ1; (vi) weak
yesterday: Zφ1 ≡ ¬ Y¬φ1. We say that an LTL+P formula
is pure past if (and only if) all its temporal operators are
past operators. We call pure past LTL+P , written as LTL+PP ,
the fragment of LTL+Pcontaining only pure past formulas.
Moreover, we denote by LTL+PBF the Bounded Future frag-
ment of LTL+P , that is, the fragment of LTL+Pwhere the only
admitted future temporal modality is X.

Formulas of LTL+Pare interpreted over state sequences.
A state sequence σ = 〈σ0, σ1, . . . 〉 is an infinite, linearly
ordered sequence of states, where each state σi is a set of
proposition letters, that is, σi ∈ 2� , for i ∈ N. We will
interchangeably use the term ω-word over the alphabet 2�

to refer to a state sequence. A set of ω-words is called ω-
language. Given two indices i, j ∈ N, with i ≤ j , we denote
by σ[i, j] the interval of σ from index i to index j , that is,
〈σi , . . . , σ j 〉 if i ≥ 0, or 〈σ0, . . . , σ j 〉 otherwise. Finally, we
denote by σ[i,∞] the (infinite) suffix of σ starting from i .

Given a state sequence σ , a position i ≥ 0, and an
LTL+P formula φ, we inductively define the satisfaction of
φ by σ at position i , written as σ, i |� φ, as follows:

1. σ, i |� p iff p ∈ σi ;
2. σ, i |� ¬φ iff σ, i 
|� φ;
3. σ, i |� φ1 ∨ φ2iff σ, i |� φ1 or σ, i |� φ2;
4. σ, i |� Xφ iff σ, i + 1 |� φ;
5. σ, i |� Yφ iff i > 0 and σ, i − 1 |� φ;
6. σ, i |� φ1 Uφ2 iff there exists j ≥ i such that σ, j |�

φ2, and σ, k |� φ1 for all k, with i ≤ k < j ;
7. σ, i |� φ1 Sφ2 iff there exists j ≤ i such that σ, j |�

φ2, and σ, k |� φ1 for all k, with j < k ≤ i ;

We say that σ satisfies φ, written as σ |� φ, if it satisfies
the formula at the first state, that is, if σ, 0 |� φ: in this case,
we say that σ is a model of φ. We say that two formulas φ

andψ are equivalent (φ ≡ ψ) if and only if they are satisfied
by the same set of state sequences.

2.2 Notation

Let φ be a LTL+P formula. We define the language of φ,
denoted by L(φ), as L(φ) = {σ ∈ (2�)ω| σ |� φ}. If
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φ contains only past operators, we change the definition
of the language of φ as follows: for all φ ∈ LTL+PP ,
the language of φ over finite words is L<ω(φ):={σ ∈
(2�)∗| σ = 〈σ0, . . . , σn〉 and σ, n |� φ}.

From now on, given a linear temporal logic L, with some
abuse of notation,wewill denote byL also the set of formulas
that syntactically belong to L. Conversely, we denote by �L�
the set of all and only those languages L of infinite words for
which there is a formula φ ∈ L (i.e.,φ syntactically belongs
to L) such that L = L(φ). For the logic LTL+PP , we denote
by �LTL+PP �<ω the set of languagesL over finite words such
that L = L<ω(φ) for some φ ∈ LTL+PP .

Notice that, since past modalities do not add expressive
power to LTL [16–18], �LTL � is the same as �LTL+P �.

2.3 !-regular expressions and (co-)safety classes

Let REG be the set of regular languages of finite words
[19]. An ω-regular language is a set of ω-words recog-
nized by an ω-regular expression, that is, an expression of
the form

⋃n
i=1 Ui · (Vi )

ω, where n ∈ N and Ui , Vi ∈ REG
for i = 1, . . . , n. We denote the set of ω-regular languages
by ω-REG . One of the seminal results in automata theory is
the correspondence between ω-regular languages and Büchi
automata [20, 21]. An important class ofω-regular languages
is the class of those languages preventing something “bad”,
e.g., a deadlock or a simultaneous access to a critical sec-
tion by different processes, from happening. Languages in
this class are called safety languages or, equivalently, safety
properties.

Definition 1 (Safety language [22])
Let L ⊆ �ω be an ω-regular language. We say that L is

a safety language if and only if for all the words σ ∈ �ω it
holds that, if σ /∈ L, then ∃i ∈ N · ∀σ ′ ∈ �ω · σ[0,i] · σ ′ /∈
L. The class of safety ω-regular languages is denoted by
SAFETY .

Let L be a temporal logic. We say that L is a safety frag-
ment of LTL+P if and only ifL ⊆ LTL+P andL(φ) is a safety
language (Def. 1), for all formulas φ ∈ L. A formula φ is
called a safety formula if L(φ) is a safety language.

Besides SAFETY , we introduce the class of (ω-regular)
co-safety languages, called coSAFETY , which is defined as
the dual of SAFETY , i.e., L ∈ coSAFETY if and only if L ∈
SAFETY , where L is the complement language of L.

We give an alternative, equivalent definition of the
SAFETY class of Def. 1, that will be useful in the following:

SAFETY :={L ⊆ �ω|L = K · �ω ∧ K ∈ REG }

We define the class SAFETYSF (coSAFETYSF ) as the set
obtained from SAFETY (resp. coSAFETY ) by restricting K to
be a star-free expression, that is, a regular expression devoid

of the Kleene star [23]. In particular, coSAFETYSF :={L ⊆
�ω|L = K · �ω ∧ K ∈ SF }, where SF ⊆ REG is the set
of star-free regular expressions. With ω-SFwe denote the set
of star-free ω-regular expressions. We recall that star-free
expressions (SF ) and pure-past LTL (LTL+PP ) have the same
expressive power. The same holds for theω-SFclass and LTL .

Proposition 1 (Thomas [24], Lichtenstein et al. [16])
�LTL+PP �<ω = SF and �LTL � = ω-SF .

We will use the following normal-form theorem, stated
in [25], that proves that any LTL -definable safety (resp., co-
safety) language can be expressed by a formula of the form
Gα (resp., Fα), where α ∈ LTL+PP , and vice versa. An inde-
pendent proof of such a theorem can be derived from the
results by Thomas in [24]. Hereafter, we will denote by �Gα�
(resp., �Fα�) the set of ω-languages recognized by a formula
of the form Gα (resp., Fα) with α ∈ LTL+PP .

Theorem 1 (Chang et al. [25]) It holds that:

�LTL � ∩ SAFETY = �Gα� and �LTL � ∩ coSAFETY = �Fα�

The logic Safety-LTL [8, 25, 26] is defined as the set of
LTL formulas such that, when in negated normal form, do
not contain existential temporal operators (i.e.,U and F).
Safety-LTL is a safety fragment of LTL [26]. In [25], it is
proved that Safety-LTL is expressively complete with respect
to the safety fragment of LTL+P .

Theorem 2 �Safety-LTL� = �LTL � ∩ SAFETY

A summary of the expressiveness of the considered log-
ics is given in Fig. 1. Note that the intersection of SAFETY ,
coSAFETY and �LTL+P � is not empty, since there are lan-
guages that are definable in LTL+Pand are both safety and
co-safety, like, for example, the language of the formula
XXX(Yq ∧ Yp).

2.4 The reactivity classes

In the following, we briefly recall the Temporal Hierachy
defined by Manna and Pnueli in [27]. The top class in the
hierarchy is the class Reactivity(N), which consists of all and
only the formulas of the form:

N∧

i=1

(

GF(αi ) → GF(βi )

)

,

where αi , βi ∈ LTL+PP , for i = 1, . . . , N , for some N ∈ N.
We denote the classes Reactivity(1), …, Reactivity(N) by

R(1) , …, R(N) , respectively. It is known that LTL is exactly as
expressive as the union of Reactivity(N), for all N ∈ N.

In [7], Bloem et al. introduced a logic obtained fromReac-
tivity(1) by increasing the number of subformulas of the form
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Fig. 1 A comparison of the expressiveness of the considered logics

GF that a formula can contain, maintaining the constraint of
having only one implication. The resulting class, called Gen-
eralized Reactivity(1), is defined as follows.

Definition 2 (GR(1) [7]) Generalized Reactivity(1) (GR(1)
for short) is the set of all and only the formulas of the form
(αI ∧G(αT ) ∧ ∧m

i=1 GFαi ) → (βI ∧G(βT ) ∧ ∧n
j=1 GFβ j ),

where (i) αI , βI are Boolean formulas, (ii) αT , βT are
LTL+PBF formulas, wheremodality X can only occur in a non-
nested form, and (iii) αi , β j are LTL+PP formulas, for all
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, for some m, n ∈ N.

2.5 Extended bounded response LTL+P

Extended Bounded Response LTLwith Past (LTLEBR+P , for
short) is a fragment of LTL+P , which has been recently intro-
duced in the context of reactive synthesis [9]. Below, we
recall its syntax.

Definition 3 (The logic LTLEBR+P [9]) Let a, b ∈ N. An
LTLEBR+P formula χ is inductively defined as follows:

η:=p | ¬η | η1 ∨ η2 | Yη | η1 S η2 PurePast Layer

ψ :=η | ¬ψ | ψ1 ∨ ψ2 |Xψ |ψ1 U[a,b]ψ2 Bounded FutureLayer

φ:=ψ | φ1 ∧ φ2 |Xφ |Gφ | ψ R φ FutureLayer

χ :=φ | χ1 ∨ χ2 | χ1 ∧ χ2 BooleanLayer

where the bounded until operator ψ1 U[a,b]ψ2 is a short-
hand for the LTL formula

∨b
i=a(Xi (ψ2) ∧ ∧i−1

j=0 X
j (ψ1)),

with Xnψ = ψ if n = 0, and Xnψ = XXn−1ψ otherwise
(for all n ∈ N and all ψ ∈ LTL+P ). A bounded eventually
operator F[a,b]φ1 can be defined as �U[a,b]φ1. Similarly, we
define the bounded globally operatorG[a,b]φ1 as¬F[a,b]¬φ1.
Since LTLEBR+P features only past temporal modalities and
the tomorrow, the release and the bounded until future tem-
poral modalities, it is a safety fragment of LTL (see Theorem
3.1 in [26]).

The syntax of LTLEBR+P is articulated over layers, that
impose some syntactic restrictions on the formulas that canbe
generated by the grammar. As an example, LTLEBR+P forces
the first argument of any release operator to contain no fur-
ther R or G modalities.1

Any formula of LTLEBR+Pcan be rewritten into an equiv-
alent formula in the following normal form.

Definition 4 (Normal Form of LTLEBR+P [9]) The normal
form of LTLEBR+P is the set of all and only the formulas of
the following type:

Xi1αi1 ⊗ · · · ⊗ Xi j αi j ⊗
Xi j+1Gαi j+1 ⊗ · · · ⊗ XikGαik ⊗

Xik+1(αik+1Rβik+1) ⊗ · · · ⊗ Xih (αihRβih )

whereα1, . . . , αih , βik+1 , . . . , βih ∈ LTL+PP ,⊗ ∈ {∧,∨},
and i, j, k, h ∈ N.

We define LTLEBR as the fragment of LTLEBR+Pdevoid of
the pure past layer.

Definition 5 (The logic LTLEBR ) The logic LTLEBR is obtained
from LTLEBR+Pby removing past temporal operators.

2.6 Automata

The relationships between temporal logic and automata on
infinite words have been extensively and successfully inves-
tigated in the literature (see, for instance, [28]). In the
following, we will focus our attention on symbolic represen-
tations, which can be exponentially more succinct than the
explicit-state one. Thus, we restrict our attention to symbolic
automata, which are defined as follows.

Definition 6 (Symbolic automaton on infinite words) A sym-
bolic automaton on infinite words over the alphabet � is a
tuple A = (V , I , T , α), where (i) V = X ∪ �, with X a set
of state variables and� a set of input variables, (ii) I (X) and

1 As a matter of fact, the layered structure of LTLEBR+P formulas was
inspired by the steps of the algorithm for the construction of symbolic
automata starting from LTLEBR+P -formulas. We refer the reader to [9]
for details.
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T (X , �, X ′), with X ′ = {x ′ | x ∈ X}, are Boolean formulas
which define the set of initial states and the transition rela-
tion, respectively, and (iii) α(X) is an LTL+P formula over
the variables in X which defines the accepting condition.

The variables x ′ in X ′ are called the primed version of the
variables x in X , and are supposed to represent the value of
x in the next state.

We will make use of deterministic symbolic automata,
which are defined as follows.

Definition 7 (Deterministic symbolic automaton on infinite
words) A symbolic automaton A = (V , I , T , α), with V =
X ∪ �, is deterministic iff (i) the formula I has exactly one
satisfying assignment, and (ii) the transition relation is of the
form:

T (X , �, X ′):=
∧

x∈X

(x ′ ↔ βx (V ))

where βx (V ) is a Boolean formula over V , for each x ∈ X .

Symbolic automata over infinite words recognize a set of
infinite words, called the language of the automaton, which
is defined as follows.

Definition 8 (Language of a symbolic automaton) Let A =
(V , I , T , α)be a symbolic automaton.A run τ = 〈τ0, τ1, . . . 〉
is an infinite sequence of states (evaluations of the variables
in X ) such that any two consecutive states (evaluations) sat-
isfy the formula T , for some assignment to the variables
in �. A run τ is induced by the word σ iff τ0 |� I and
(τi , σi , τi+1) |� T , for all i ≥ 0. A run τ is accepting iff
τ |� α. A word σ is accepted byA iff there exists an accept-
ing run induced by σ in A. The language of A, denoted by
L(A), is the set of all and only the infinite words accepted
by A.

We define the following classes of symbolic automata over
infinite words, which differ from each other in the acceptance
condition.

Definition 9 (Safety Automata, R(1)Automata, and GR(1)
Automata) Let A = (V , I , T , α) be a symbolic automaton
over infinite words. We say that A is

• a safety automaton iff α:=Gβ;
• a R(1) automaton iff α:=GFβ → GFβ ′;
• a GR(1) automaton α:= ∧m

i=1 GFβi → ∧n
j=1 GFβ

′
j .

where β, β ′, βi , β
′
j ∈ LTL+PP and m, n ∈ N.

2.7 Model checking, realizability, and synthesis

We conclude the section by formally stating the problems of
model checking, realizability, and synthesis.As a preliminary
step, we recall the notion of (finite) Kripke structure.

Definition 10 (Kripke structure) AKripke structure is a tuple
M = (�, Q, I , T , L), where

1. � is the input alphabet;
2. Q is the (finite) set of states;
3. I ⊆ Q is the set of initial states;
4. T ⊆ Q × Q is a complete transition relation;
5. L : Q → 2� is the labeling function that assigns to each

state the set of proposition letters in � that are true in it.

We denote the number of states in M , i.e., |Q|, by |M |.
A infinite trace of M is a sequence of states such that any
consecutive pair of states (qi , qi+1) in it belongs to T . Given a
traceπ :=〈q0, q1, . . . 〉 in M , we denote by L(π) the sequence
〈L(q0), L(q1), . . . 〉. A path π is called initialized if and only
if q0 ∈ I .

Themodel checking problem takes as input aKripke struc-
ture and a temporal formula, and verifies whether or not all
the initialized traces of the former satisfy the latter.

Definition 11 (Model checking for LTL+P ) Let M be a
Kripke structure and φ be an LTL+P temporal formula. The
model checking problem is the problem of verifying whether
or not forall initialized tracesπ of M , it holds that L(π) |� φ,
written M |� Aφ, where A is the “for all paths” modality of
CTL.

Realizability and reactive synthesis are, in some sense,
more ambitious than model checking, as they aim at estab-
lishing whether a given temporal formula φ over two sets U
and C of uncontrollable and controllable variables, respec-
tively, is implementable and, if this is the case, to synthesize
a possible implementation. Realizability is usually modeled
as a two-player game between Environment, who tries to
violate the specification, and Controller, who tries to fulfill
it. In this setting, an implementation of the specification is
represented by a strategy.

Definition 12 (Strategies and languages of strategies) Let U
and C be two disjoint sets of input (or uncontrollable) and
output (or controllable) variables, respectively. A strategy
g is a function g : (2U)+ → 2C (where (2U)+ is the set of
finite, non-empty sequences of elements in 2U). The language
of the strategy g, denoted by L(g), is the set of all and only
the sequences 〈(U0 ∪ C0), (U1 ∪ C1), . . . 〉 such that Ui ∈ 2U
and Ci = g(〈U0, . . . ,Ui 〉), for all i ≥ 0.

Definition 13 (Realizability and synthesis for LTL+P ) Let φ
be an LTL+P temporal formula over � = U ∪ C, where U is
the set of input variables, C the set of output variables, and
U ∩ C = ∅. We say that φ is realizable if and only if there
exists a strategy g : (2U)+ → 2C such that L(g) ⊆ L(φ).
If φ is realizable, the synthesis problem is the problem of
computing such a strategy.
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The strategies we are mainly interested in are those that
can be represented finitely. In the literature, there are two
main (and equivalent) representations of finite strategies,
namely, Mealy machines and Moore machines. In this paper,
we focus on the first ones.

Definition 14 (Mealy machine) A Mealy machine is a tuple
M = (�U, �C, Q, q0, δ), where

1. �U and �C are the input and output alphabets, respec-
tively;

2. Q is the (finite) set of states and q0 is the initial state;
3. δ : Q × �U → �C × Q is the total transition function.

We say that an infinite word σ = 〈σ0, σ1, . . . 〉 ∈ (�U∪�C)ω
isaccepted by M iff there exists a trace 〈(q0, σ0), (q1, σ1), . . . 〉
∈ (Q × (�U ∪ �C))ω such that δ(qi , σi ∩ �U) = (σi ∩
�C, qi+1), for all i ≥ 0. The language of M , denoted by
L(M), is the set of all the infinite words accepted by M .

A fundamental feature of the realizability problem for
LTL+P is the following small model property [5, 14, 29],
which ensures that each realizable LTL+P formula has at least
one finitely representable strategy.

Proposition 2 (Small model property of LTL+P [5]) Let φ be
an LTL+P formula and n = |φ|. If φ is realizable by a strategy
g, then there exists a Mealy machine Mg such that (i) Mg

has at most 22
c·n

states, for some constant c ∈ N, and (ii)
L(Mg) ⊆ L(φ).

Notice that the constant c in Prop. 2 depends on the
algorithms used for building the nondeterministic Büchi
automaton for the languageL(φ) and on the algorithms for its
determinization (e.g.,Safra’s algorithm [30] or alternating
cycle decomposition [31]) to obtain an equivalent determin-
istic Rabin automaton (see [5]). It immediately follows that
c can be effectively computed, obtaining a concrete upper
bound for the size of the Mealy machine in Prop. 2.

In general, the realizability problem for an LTL+P formula
can be reduced to a Büchi game [32], that requires the player
Controller to visit infinitely often a state (or a set of states) in
the arena. In the case of safety specifications, the full power
(and complexity) of Büchi games is not necessary. Safety
games [33, 34] are indeed a restriction ofBüchi games,where
the goal of Controller is to visit only states in a given set,
called safe states.

Definition 15 (Safety game) LetA = (V , I , T , α) be a sym-
bolic deterministic safety automaton (see Def. 9) such that
V = X ∪ �, and � = C ∪ U, with C ∩ U = ∅, and
α:=G(β), with β ∈ LTL+PP . A safety game is a triple
G = 〈A, C,U〉. We say that Controller wins G iff there
exists a strategy g : (2U)+ → 2C such, for all sequences
U = 〈U0,U1, . . . 〉 ∈ (2U)ω, the run τ induced by U =

〈U0 ∪ g(U0),U1 ∪ g(U0,U1), . . . 〉 in A is accepting, that
is, it only visits states τ (i.e., evaluations of the variables in
X ) such that τ |� β.

In the following, we will reduce the realizability problem
for GR-EBR to a sequence of safety games.

3 The logic of GR-EBR

In this section, we introduce the logic Generalized Reac-
tivity(1) LTLEBR+P (GR-EBR , for short), an extension of
LTLEBR+Pwith fairness conditions of the form GFα, with
α ∈ LTL+PP , and assumptions/guarantees, in the form of
a logical implication.

Formulas of the logic GR-EBR are defined as follows.

Definition 16 (The logicGR-EBR ) The logicGR-EBR consists
of all and only the formulas of the following form:

(

ψ1
ebr ∧

m∧

i=1

G Fαi

)

→
⎛

⎝ψ2
ebr ∧

n∧

j=1

G Fβ j

⎞

⎠

where m, n ∈ N, ψ1
ebr , ψ

2
ebr ∈ LTLEBR+P and αi , β j ∈

LTL+PP , for all i, j ∈ N.

In order to show the expressive power and naturalness of
GR-EBR , we give an example of a meaningful specification
that can be formulated in it.More precisely, we take an exam-
ple that was originally proposed in [9], and we extend it with
fairness conditions, assumptions, and guarantees.

Let us consider an arbiter that, given a request from a
client i , with i ∈ {1, . . . , n}, assigns it a grant in such a
way to guarantee the following properties: (1) the grant is
assigned at most k time units after the request is issued, for
some k > n (bounded response); (2) the arbiter can assign a
grant to at most one client at a time (mutual exclusion). The
(conjunction of the) two requirements are the guarantees for
the controller. The assumptions for the environment are the
following: (1) initially, there are no requests; (2) if a client
issues a request at time i , then it cannot issue a new request
until time i + k + 1; (3) each client issues infinitely many
requests.

Let us now show how to specify the expected behavior of
the arbiter by means of a GR-EBR formula. First of all, we
model the requests coming from the n clients with n (uncon-
trollable) variables r1, . . . , rn . Similarly, the grant for the
request ri can be modeled with a (controllable) variable gi ,
for each i ∈ {1, . . . , n}. The assumption for the environment
are expressed by the formula φe, which is defined as follows:

n∧

i=1

¬ri ∧
n∧

i=1

G(ri → G[1,k]¬ri ) ∧
n∧

i=1

G Fri
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The guarantees for the controller are captured by the formula
φc, which is defined as follows:

n∧

i=1

G(ri → F[0,k]gi ) ∧ G

⎛

⎝
∧

1≤i< j≤n

¬(gi ∧ g j )

⎞

⎠

The overall specification is the GR-EBR formula φe → φc.
The corresponding GR(1) specification is obtained by substi-
tuting the subformulas ri → G[1,k]¬ri and ri → F[0,k]gi

with the equivalent pure past one Yk+1ri → H[1,k]¬ri and
Yk+1ri → O[1,k]gi , respectively, where Yk , H[0,k], and O[0,k]
are the past operators specular toXk ,G[0,k], and F[0,k], respec-
tively.

4 Expressiveness of GR-EBR

In this section, we study the expressiveness of GR-EBR . As
a preliminary step, we work out the case of LTLEBR+P , on
which GR-EBR is based.

Wefirst prove that LTLEBR+P is expressively completewith
respect to the safety fragment of LTL+P . Moreover, we show
that past temporal operators, which play a crucial role in the
proof of the expressive completeness of LTLEBR+P , are really
necessary: we prove that LTLEBR , that is, LTLEBR+Pdevoid
of past temporal operator, is strictly less expressive than
LTLEBR+P .

Then, we investigate the expressiveness of GR-EBR andwe
prove that:

1. it is strictly more expressive than LTLEBR+P , and thus it
can express all safety properties definable in LTL+Pand
beyond;

2. it is expressively equivalent to GR(1) .

All the proofs which are not reported in the main body of the
paper can be found in the appendix (Sect. A).

4.1 Expressiveness of LTLEBR+P

In this part,we study the expressiveness of theLTLEBR+P logic.
In particular, we compare the set of languages definable
in LTLEBR+Pwith the set of safety languages expressible
in LTL+P , and prove that the two sets are equal, that is
�LTLEBR+P � = �LTL � ∩ SAFETY . Consequently (see Theo-
rem 2), LTLEBR+Pand Safety-LTL are expressively equivalent
(i.e., �LTLEBR+P � = �Safety-LTL�).

First we recall the normal-form theorem stated in Theo-
rem 1, establishing that �LTL � ∩ SAFETY = �Gα�. Proving
that �LTLEBR+P � = �LTL � ∩ SAFETY is straightforward. In
[26], Sistla proved that any fragment of LTL+Pwith only X,
R, and G as future temporal modalities defines only safety

properties, and thus is a safety fragment of LTL+P . Since
LTLEBR+P -formulas contain only universal (future) tempo-
ral operators, it follows that LTLEBR+P is a safety fragment
of LTL+P (this corresponds to the left-to-right direction). For
the right-to-left direction it suffices to show that the normal
form Gα is syntactically definable in LTLEBR+P (i.e.,Gα ∈
LTLEBR+P and thus also L(Gα) ∈ �LTLEBR+P �, for any
α ∈ LTL+PP ).

Theorem 8 �LTLEBR+P � = �LTL � ∩ SAFETY .

4.2 Comparison with G˛

Although we proved the expressive equivalence between
LTLEBR+Pand Gα, we note that LTLEBR+Poffers a more nat-
ural language for safety properties than the Gα fragment.
Consider for example the following property, expressed in
natural language: either p3 holds forever, or there exists two
time points t ′ ≤ t such that (i) p1 holds in t , (ii) p2 holds
in t ′, and (iii) p2 holds from time point 0 to t . The prop-
erty can be easily formalized in LTLEBR+Pby the formula
p1R(p2Rp3). The equivalent formula in the Gα fragment is
G(H(p3)∨O(p2 ∧O(p1)∧H(p3))), which is arguably more
intricate.

4.3 Comparison with Safety-LTL

Safety-LTL is the fragment of LTL (thus with only future tem-
poral modalities) containing all and only the LTL -formulas
that, when in negated normal form, do not contain any until
or eventually operator. From Theorems 2 and 8, it immedi-
ately follows that LTLEBR+Pand Safety-LTL are expressively
equivalent, namely �LTLEBR+P � = �Safety-LTL�.

Unlike LTLEBR+P , Safety-LTL does not impose any syn-
tactic restriction on the nesting of the logical operators;
as a matter of fact, G(p1 ∨ Gp2) belongs to the syntax of
Safety-LTL but not to the syntax of LTLEBR+P , even though
G(p1 ∨ Gp2) ≡ G(¬p2 → Hp1) ∈ LTLEBR+P . The
restrictions on the syntax of LTLEBR+Pare due to algorith-
mic aspects: each layer of the syntax of LTLEBR+P (recall
Def. 3) corresponds to a step of the algorithm for the con-
struction of deterministic and symbolic automata starting
from LTLEBR+P -formulas [9]. As a matter of fact, in prac-
tice, LTLEBR+Phas shown to avoid an exponential blowup in
time with respect to known algorithms for automata con-
truction for safety specifications [9]. Last but not least, the
realizability problem of LTLEBR+P is EXPTIME -complete [9],
as opposed to the realizability of LTL+P , which is 2EXP-
TIME-complete [5, 6]. Consider now LTLEBR , which is the
fragment of LTLEBR+Pdevoid of past operators (Def. 5). Since
each formula of LTLEBR syntactically belongs to Safety-LTL ,
it immediately follows that �LTLEBR� ⊆ �Safety-LTL�. In
Sect. 4.4, we will prove that the converse direction does
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not hold, that is LTLEBR is strictly less expressive than
LTLEBR+Pand Safety-LTL .

4.4 Expressiveness of LTLEBR

In Sect. 4.1, we have proved that the following equivalences
hold:

�LTLEBR+P � = �Gα� = �LTL � ∩ SAFETY = �Safety-LTL�

In particular, thanks to the use of the pure past layer (recall
Def. 5), LTLEBR+Pcan easily capture the whole class of �Gα�,
and thus the whole class of �LTL � ∩ SAFETY . However, one
may wonder whether the pure past layer is really necessary,
or whether the class �Gα� can be expressed in LTLEBRwithout
the use of past operators.

Recall fromDef. 5 that LTLEBR is defined as the fragment of
LTLEBR+Pdevoid of the pure past layer. In this part, we prove
that the removal of past operators from LTLEBR+P results into
a loss of expressive power, namely:

�LTLEBR � � �LTLEBR+P � (1)

This result proves that past modalities, although being not
important for the expressiveness of full LTL (since �LTL � =
�LTL+P � [16–18]), can play a crucial role for the expressive
power of fragments of LTL , like, for instance, LTLEBR .

4.4.1 The general idea

We will prove Eq. (1) by showing that �LTLEBR � �

�Safety-LTL�. The result in Eq. (1) follows from the fact
that �Safety-LTL� = �LTLEBR+P �. We shall prove that the
language of the Safety-LTL -formula ϕG:=G(p1 ∨ G(p2))
cannot be expressed by any LTLEBR -formula. The formula
ϕG belongs syntactically to Safety-LTL , and thus L(ϕG) ∈
�Safety-LTL�. We also note that ϕG can be expressed in
LTLEBR+P . Indeed, it holds that:

G(p1 ∨ G(p2)) ≡ G(¬p2 → H(p1)) (2)

Since G(¬p2 → H(p1)) ∈ LTLEBR+P , it holds that L(ϕG) ∈
�LTLEBR+P �. It is worth noticing the following points: (i)
G(¬p2 → H(p1)) is of the form Gα, where α ∈ LTL+PP
(α is a pure past formula); (ii) the formula ϕG is equivalent
to G(p2) ∨ ((X Gp2)Rp1), but the latter formula does not
syntactically belong to LTLEBR nor to LTLEBR+P , due to the
restriction that forces the leftmost argument of any release
operator to contain no universal temporal operators (i.e.,R
and G).

The proof of the undefinability of ϕG is based on the fact
that all formulas of LTLEBR can constrain, for any time point

i in an infinite state sequence, only a bounded prefix before
(or interval around) i .

Consider again the formula ϕG:=G(p1 ∨ G(p2)). The
language L(ϕG) is expressed by the ω-regular expression
({p1})ω + ({p1})∗ · ({p2})ω. Written in natural language,
each model of ϕG cannot contain a position in which ¬p2
holds preceded by a position in which ¬p1 holds.

Remark 1 Let σ ⊆ (2�)ω be a state sequence. It holds that:

σ |� ϕG ⇒ ¬∃i, j( j ≤ i ∧ σ j |� ¬p1 ∧ σi |� ¬p2)

Let i,kσ j be the state sequence such that at time points i
and k it holds p1 ∧ ¬p2, at time point j it holds ¬p1 ∧ p2,
and for all the other time points p1 ∧ p2 holds (a formal
definition of i,kσ j will be given later). The membership of
i,kσ j to L(ϕG) depends on the value of the three indices i , j
and k, as follows.

Remark 2 If i < j and k < j , then i,kσ j |� ϕG. Conversely,
if i ≥ j or k ≥ j , then i,kσ j 
|� ϕG.

As we will see, given a generic formula ψ ∈ LTLEBR , one
can always find some values for the indices i , j and k such
that (a) j is chosen sufficiently greater than i ; (b) k is chosen
sufficiently greater than j ; (c) ψ is not able to distinguish
the state sequence i,iσ j from i,kσ j . Since, by Remark 2,
i,iσ j ∈ L(ϕG) but i,kσ j /∈ L(ϕG), this proves the undefin-
ability of ϕG in LTLEBR . The rationale is that the LTLEBR logic
combines bounded future formulas (i.e., formulas obtained
by aBoolean combination of propositional atoms andX oper-
ators) and universal temporal operators (i.e.,G and R). This
implies the fact that, for a generic model σ of an LTLEBR -
formulaψ , at each time point i ≥ 0 of σ (this corresponds to
the universal temporal operators) only a finite and bounded
suffix after i (this corresponds to the LTL+PBF -formulas)
can be constrained by ψ (this can be thought of as a sort
of bounded memory property of this logic). Equivalently,
this means that each LTLEBR -formula is not able to constrain
any finite but arbitrarly long (unbounded) prefix of a state
sequence, contrary, for instance, to the case of the formula
G(¬p2 → H(p1)) (that is equivalent to ϕG, see Eq. (2)).

4.4.2 The normal form

The limitation of LTLEBR -formulas mentioned before is more
evident in the normal form for the LTLEBR logic, that we will
define in this part.We first give some preliminary definitions.
We define Bounded Past LTL+PP (LTL+PBP , for short) as the
set of all and only the LTLEBR+P formulas that are a Boolean
combination of propositional atoms and yesterday operators
(Y). We use the shortcut Ynψ for denoting ψ is n = 0, and
Y Yn−1ψ otherwise. We use also the shortcut ψ1S[a,b]ψ2 for
denoting the formula

∨b
i=a(Yi (ψ2)∧∧i−1

j=0 Y
j (ψ1)). Given a
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formula α ∈ LTL+PBP , we define its temporal depth, denoted
as D(α), as follows:

• D(p) = 0, for all p ∈ �

• D(¬α1) = D(α1)

• D(α1 ∧ α2) = max{D(α1), D(α2)}
• D(Yα1) = 1 + D(α1)

• D(α1S[a,b]α2) = b + max{D(α1), D(α2)}

For each α ∈ LTL+PBP , the language L<ω(α) consists only
of words of length at most D(α)+1. Recall from Sect. 2 that,
given an infinite state sequence σ = 〈σ0, σ1, . . . 〉 and some
n ≥ 0, σ[n−d,n] is the interval of σ of length at most d ending
at index n. The crucial property of LTL+PBP -formulas, that
can be shown with a simple induction, is that their truth over
a state sequence σ can be checked by considering only a
finite and bounded interval of σ , whose length depends on
the temporal depth of the formula. This is summarized by
the following remark.

Remark 3 For any α ∈ LTL+PBP , with temporal depth d =
D(α), and for any n ≥ 0, it holds that σ, n |� α if and only
if σ[n−d,n] |� α.

We give now the normal form for LTLEBR , and we refer
to it as Normal-LTLEBR . The normal form of LTLEBR forces
any universal unbounded operator, like globally or release,
to contain only LTL+PBP -formulas. Formally, we define Nor-
mal-LTLEBR as the normal form described in Def. 4 but such
that each αi , βi is a bounded past LTL formula. For sake of
clarity, we write here below the full definition.

Definition 17 (Normal Form of LTLEBR ) The normal form of
LTLEBR is the set of all and only the formulas of the following
type:

Xi1αi1 ⊗ · · · ⊗ Xi j αi j ⊗
Xi j+1Gαi j+1 ⊗ · · · ⊗ XikGαik ⊗

Xik+1(αik+1Rβik+1) ⊗ · · · ⊗ Xih (αihRβih )

where each αi , βi ∈ LTL+PBP , ⊗ ∈ {∧,∨}, and i, j, k, h
∈ N.

By applying the same transformation from LTLEBR+P to its
normal form given in [9], one obtain the following lemma.

Lemma 4 �LTLEBR � = �Normal-LTLEBR �.

The normal form of LTLEBRmakes it easier to prove Eq.
(1). Take, e.g., the formula XXG(p∨Yp∨YYp), that belongs
toNormal-LTLEBR . It is clear that, at each time point, this for-
mula can constrain only the interval consisting of the current
state and its two previous states (in fact its temporal depth is
3).

4.4.3 The main proof

We now show that the formula ϕG is not definable in the
logicNormal-LTLEBR . Undefinability in LTLEBR follows from
Lemma 4.

Given three indices i, j, k ∈ N such that i 
= j and
k 
= j , we formally define the state sequence i,kσ j =
〈i,kσ

j
0 , i,kσ

j
1 , . . . 〉 as follows:

i,kσ
j

h =

⎧
⎪⎨

⎪⎩

{p1} if h ∈ {i, k}
{p2} if h = j

{p1, p2} otherwise

The core of the main theorem is based on the fact that any
formula of type Gα or αRβ, where α and β are bounded past
LTL+PP formulas, is not able to distinguish the state sequence
i,iσ j with i < j (which is a model of ϕG) from i,kσ j with
k > j (which is not a model of ϕG), for sufficiently large
values of i , j and k. The choice for the values of the three
indices is based on the values of the temporal depth of α

and β. Since the globally operator is a special case of the
release operator, that is Gα ≡ ⊥Rα, it suffices to prove the
property for formulas of type αRβ. We first prove two fun-
damental properties that show that, for any interval of i,iσ j

of length at most d (for any d ∈ N), we can find the exact
same interval in i,kσ j , and vice versa. The two properties are
proved by the following lemma. Figure2 shows the idea of
this correspondence.

Lemma 5 Let d ∈ N. For all i ≥ d, for all j ≥ i + d, and for
all k ≥ j + d, it holds that:

Property 1: ∀n′ ≥ 0 · ∃n ≥ 0 · i,kσ
j

[n′−d,n′] = i,iσ
j

[n−d,n]
Property 2: ∀n ≥ 0 · ∃n′ ≥ 0 · i,iσ

j
[n−d,n] = i,kσ

j
[n′−d,n′]

Lemma 5 allows to prove that the state sequences i,iσ j

and i,kσ j are indistinguishable for each formula of type αRβ

(and, consequently, of type Gα), with α, β ∈ LTL+PBP .

Lemma 6 Letα, β ∈ LTL+PBP , and letd = max{D(α), D(β)}
be the maximum between the temporal depths of α and β. It
holds that i,iσ j |� αRβ iff i,kσ j |� αRβ, for all i ≥ d, for
all j ≥ i + d, and for all k ≥ j + d.

By using Lemma 6 as the proof for the base case, we
prove by induction on the structure of the formula that
any formula in Normal-LTLEBR is not able to distinguish
the state sequences i,iσ j and i,kσ j for sufficiently large
values of i, j, k. In the following, given a formula ψ ∈
Normal-LTLEBR , wewill denotewithmψ themaximumnum-
ber of nested next operators in ψ , and with dψ the maximum
temporal depth between all its LTL+PBP -subformulas.
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Fig. 2 Graphical exemplification of Lemma 5

Lemma 7 Let ψ ∈ Normal-LTLEBR . It holds that i,iσ j |� ψ

iff i,kσ j |� ψ , for all i ≥ mψ + dψ , for all j ≥ i + dψ , and
for all k ≥ j + dψ .

Thanks toLemma7, it is simple to prove the undefinability
ofG(p1∨G(p2)) in LTLEBR , establishing that LTLEBR is strictly
less expressive than Safety-LTL .

Theorem 3 �LTLEBR � � �Safety-LTL�.

Proof Consider the formula ϕG:=G(p1 ∨ G(p2)). We prove
that there does not exists a formula ψ ∈ LTLEBR such that
L(ψ) = L(ϕG). We proceed by contradiction. Suppose that
there exists a formula ψ ∈ LTLEBR such that L(ψ) = L(ϕG).
By Lemma 4, there exists a formula ψ ′ ∈ Normal-LTLEBR
such that L(ψ) = L(ψ ′). Let mψ ′ be the maximum number
of nested next operators in ψ ′, and let dψ ′ be the maximum
temporal depth between all the LTL+PBP -subformulas in ψ ′.
Let k, i and j be three indices such that: (i) i ≥ mψ ′ + dψ ′ ;
(ii) j ≥ i + dψ ′ ; (iii) and k ≥ j + dψ ′ . Consider the two
state sequences i,iσ j and i,kσ j . By Lemma 7, i,iσ j ∈ L(ψ ′)
if and only if i,kσ j ∈ L(ψ ′), that is i,iσ j ∈ L(ϕG) if and
only if i,kσ j ∈ L(ϕG). Since it holds that i,iσ j ∈ L(ϕG) but
i,kσ j /∈ L(ϕG), this is clearly a contradiction. ��
Corollary 1 �LTLEBR � � �LTLEBR+P �.

4.5 Expressiveness ofGR-EBR

We are now ready to study the expressiveness of GR-EBRby
comparing it with (i) LTLEBR+P , (ii) Manna and Pnueli’s tem-
poral hierarchy, and (iii) GR(1) .

4.6 Comparison with

LTLEBR+Pand the (co-)safety LTL fragment
We start by comparing GR-EBRwith LTLEBR+P . Each
LTLEBR+P formula φ is a GR-EBR formula as well. In fact,

the formula φ is equivalent to (� ∧ �) → (φ ∧ �) which
belongs toGR-EBR , thus: LTLEBR+P ⊆ GR-EBR and of course
�LTLEBR+P � ⊆ �GR-EBR �.

From Theorem 8, it follows that any safety language
definable in LTL is definable in GR-EBR as well. In addition,
GR-EBR is strictly more expressive than LTLEBR+P , since the
former can express also non-safety properties, like Gp →
Gq, and thus:

�LTLEBR+P � � �GR-EBR �

�LTL � ∩ SAFETY � �GR-EBR �

Thanks to the implication in the syntax of GR-EBR , we can
also define co-safety properties. Actually, it turns out that
we can express all the LTL -definable co-safety properties.
Take a language L ∈ �LTL � ∩ coSAFETY . By Theorem 1,
L = L(Fα), for a given formula α ∈ LTL+PP . Now, any
formula of type Fα (with α ∈ LTL+PP ) can be easily defined
with the syntax of GR-EBRby the formula (G¬α) → ⊥.
Therefore:

�LTL � ∩ coSAFETY � �GR-EBR �

4.7 Comparison with the temporal hierarchy

We consider the Reactivity(N) class (R(N) ) of the Temporal
Hierarchy (see Sect. 2.4) for N = 1.We recall that the result-
ing class, R(1) (i.e.,Reactivity(1)), comprises all and only the
formulas of type:

G Fα → G Fβ

with α, β ∈ LTL+PP . Since any R(1) -formula is syntacti-
cally also a GR(1) -formula, it is straightforward to see that
GR-EBR is at least as expressive as R(1) .

Proposition 3 �R(1) � ⊆ �GR-EBR �.
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4.8 Comparison withGR(1)

Recall fromDef. 2 that GR(1) is defined as the set of formulas
of this type:

⎛

⎝αI ∧ G(αT ) ∧
m∧

i=1

G Fαi ) → (βI ∧ G(βT ) ∧
n∧

j=1

G Fβ j

⎞

⎠

where

(i) αI , βI are Boolean formulas,
(ii) αT , βT are LTL+PBF formulas where modality X can

only occur in a non-nested form, and
(iii) αi , β j are LTL+PP formulas, for all i ∈ {1, . . . , m} and

j ∈ {1, . . . , n}, for some m, n ∈ N.

We prove that GR-EBR is expressively equivalent toGR(1) .

Theorem 4 �GR-EBR � = �GR(1) �.

Proof We first prove that �GR-EBR � ⊆ �GR(1) �. Let φ be a
formula of GR-EBR . By definition, φ is of this type:

⎛

⎝ψ1
ebr ∧

m∧

i=1

G Fαi ) → (ψ2
ebr ∧

n∧

j=1

G Fβ j

⎞

⎠

By Theorem 8, there exists two LTL+PP formulas α1, α2 such
thatψ1

ebr ≡ Gα1 andψ2
ebr ≡ Gα2. Therefore, φ is equivalent

to:
⎛

⎝� ∧ Gα1 ∧
m∧

i=1

G Fαi ) → (� ∧ Gα2 ∧
n∧

j=1

G Fβ j

⎞

⎠

which syntactically belongs to GR(1) . This proves that
�GR-EBR � ⊆ �GR(1) �.

For proving the opposite inclusion, consider a formula
φ ∈ GR(1) . By definition, φ is of the following form:

(αI ∧ G(αT ) ∧
m∧

i=1

G Fαi ) → (βI ∧ G(βT ) ∧
n∧

j=1

G Fβ j )

Without loss of generality, consider the left-hand side of
the implication (the argument works in the very same way
for the right-hand side).

By applying the pastification method [9, 35] to αT , we lift
the occurrences of the next operator X in αT to the top level
and obtain an equivalent formula of the form Xα′

T such that
α′

T ∈ LTL+PP . Now, since, for any state sequence σ , it holds
that σ, i |� Y� if and only if i > 0, that is, i is not the initial
state, it holds that G(Xα′

T ) is equivalent to G(Y� → α′
T ),

which is of the desired form Gα′ with α′:=Y� → α′
T .

Fig. 3 Comparison of the expressive power of LTLEBR+P , LTLEBR and
GR-EBR . For ease of exposition, we highlighted the rectangles corre-
sponding to LTLEBR+P , LTLEBR and GR-EBRwith thick borders

Therefore, we obtain that any GR(1) formula can be trans-
lated into an equivalent one of the form:

(αI ∧ G(α′) ∧
m∧

i=1

G Fαi ) → (βI ∧ G(β ′) ∧
n∧

j=1

G Fβ j )

whereα′, β ′ ∈ LTL+PP . Since bothαI ∧G(α′) andβI ∧G(β ′)
syntactically belong to LTLEBR+P , this proves that the whole
formula belongs to GR-EBR and thus �GR(1) � ⊆ �GR-EBR �.

��
Figure3 shows the comparison between the expressive

power LTLEBR+P , LTLEBR andGR-EBR and the other fragments
that we considered.

Our goal is to solve the realizability problem for GR-EBR
specifications by reducing it to realizability subproblems for
safety specifications. The reduction to safety, which we will
give in Sect. 5, generates a safety formula for each integer
k, in such a way to guarantee the following important prop-
erties: (i) soundness, ensuring that the realizability of the
kth subproblem implies the realizability of the starting for-
mula, and (ii) completeness, establishing the existence of an
upper bound μ such that the unrealizability of all the kth

subproblems with k ≤ μ implies the unrealizability of the
starting formula. In Sect. 5, we describe a symbolic algorithm
that performs a safety reduction for the realizability problem
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Fig. 4 Low-level view of the
procedure for the realizability of GR-EBR formulas

from GR-EBR specifications. In order to prove completeness
of such algorithm, in Sect. 6 we introduce a general frame-
work for deriving (sound and) complete safety reductions for
arbitrary fragments of LTL , andwe instantiate this framework
to the GR-EBR case.

5 GR-EBR synthesis: the algorithm

In this section, we describe the algorithm for solving realiz-
ability of GR-EBR specifications.

The procedure consists of three steps. Firstly, we build
the product between the two symbolic safety automata for
the safety parts of both assumptions and guarantees, and we
define a GR(1)accepting condition for it in order to main-
tain the language-equivalence with the original formula. The
second step consists of a so-called degeneralization, that,
by using deterministic monitors, turns the GR(1)accepting

condition into a Reactivity(1) (R(1) , for short) condition.
The third and last step, that is the core of the procedure,
reduces the realizability problem over the above automaton
to a sequence of safety games (Def. 15), that is, realizabil-
ity problems over safety (and symbolic) automataAk

safe, one
for each index k ∈ N. The structure of the full procedure is
depicted in Fig. 4.

Since, in the worst case, the upperbound given by the
safety reduction is doubly exponential in the length of the
formula, in practice it is useful to use our algorithm in par-
allel with another one that checks for the unrealizability of
the specification. The first that terminates stops the other
and, thus, the entire procedure, as summarized in Fig. 5. We
remark that we cannot check the unrealizability of φ by solv-
ing the dualized game (i.e., looking for aMoore-type strategy
of Environment) for ¬φ, because GR-EBR and LTLEBR+Pare
not closed under complementation.
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Fig. 5 High-level view of our procedure for the realizability of
GR-EBR formulas

Finally, note that, as for now, there is no incrementality
between an iteration and the next one, because of the lack of
incremental safety synthesizers. The only point that we save
between one iteration and the next one is the construction of
the two symbolic safety automata, which is performed only
once during the procedure.

5.1 Construction of the automaton with a
GR(1) condition

In this part, we describe the first step of the algorithm. Start-
ing from a GR-EBR formula φ:=(φ1

ebr ∧ ∧m
i=1 G Fαi ) →

(φ2
ebr ∧ ∧n

j=1 G Fβ j ), the objective is to obtain an automa-
ton A such that: (i) it has a GR(1)accepting condition, and
(ii) it recognizes the same language of φ, i.e.,L(φ) = L(A).
In order to do that, we first build the two symbolic safety
automata for the safety parts of both the assumptions and the
guarantees, that is for φ1

ebr and φ2
ebr . Since by definition both

are LTLEBR+P formulas, we use the transformation described
in [9], to which the reader is referred for more details.

From now on, let A(φ1
ebr ) and A(φ2

ebr ) be the automata
for φ1

ebr and φ2
ebr , respectively. Let Aebr be the product

automaton A(φ1
ebr ) × A(φ2

ebr ). The question is how to set
the acceptance condition of Aebr such that the conditions
(i) and (ii) above are fulfilled. We answer this question by
examining how the automataA(φ1

ebr ) andA(φ2
ebr ) are made

internally. Take for example the formulaGp (for some atomic
proposition p ∈ �). The safety automaton corresponding to
this formula (but the same holds for all LTLEBR+P formulas)
comprises an error bit as one of its state variables, let us call it
error, which is initially set to befalse (when the automa-
ton has not start to read any letter of the input word). The
transition function for error is deterministic and updates
error to true if ¬p holds in the current state, or keeps
its value otherwise. The set of safe states comprises all and
only those states in which error is false. In a symbolic

setting, this is expressed by the formula G¬error. In this
way, p is forced to hold constantly in all (and only) the words
accepted by the automaton.

A crucial property of each error bit is monotonicity: once
error is set to true, it can never be set to false again.
Formally, given a run τ of the automaton, it holds that, if
there exists i ≥ 0 such that τ(i) |� error, then τ( j) |�
error, for all j ≥ i . Monotonicity of error bits allows us to
express an accepting condition of type G¬error in terms
of G F¬error (which is of the GR(1) type) by maintaining
the equivalence.

Lemma 1 G¬error ≡ G F¬error, under the assumption
that error is monotone.

Proof Consider a run τ of an automaton with an accept-
ing condition of the type G¬error. If τ |� G¬error
then of course τ |� G F¬error. Suppose now that τ |�
G F¬error. If by contradiction we suppose that τ 
|�
G¬error, we have that there exists an i ≥ 0 such that
τ(i) |� error. By the monotonicity property, this would
mean that also τ( j) |� error, for all j ≥ i , that is
τ |� F Gerror, but this a contradiction with our hypothesis.
Therefore, we proved that changing the acceptance condition
of an automaton from aG¬error toG F¬errormaintains
the equivalence. ��

Let error1 and error2 be the error bits ofA(φ1
ebr ) and

A(φ2
ebr ), respectively. LetAGR(1)

ebr be the automaton obtained
from Aebr by replacing its acceptance condition with the
following GR(1)condition:

(G F¬error1 ∧
m∧

i=1

G Fαi ) → (G F¬error2 ∧
n∧

j=1

G Fβ j )

(3)

The intuition is that error1 and error2 keep track of the
safety parts of φ, that is φ1

ebr and φ2
ebr . The following lemma

proves the equivalence between φ and AGR(1)
ebr .

Lemma 2 Let φ be an GR-EBR formula. It holds that L(φ) =
L(AGR(1)

ebr ).

Proof Let φ ∈ GR-EBR . φ is of the following form:

(φ1
ebr →

m∧

i=1

G Fαi ) → (φ2
ebr →

n∧

j=1

G Fβ j )

By the theorems proved in [9], it holds that L(φ1
ebr ) =

L(A(φ1
ebr )) and L(φ2

ebr ) = L(A(φ2
ebr )).

Consider first the left-to-right direction. Let σ ∈ L(φ).
We prove that σ ∈ L(AGR(1)

ebr ). Each σ ∈ L(φ) is such
that: a. either σ |� ¬φ1

ebr ∨ ¬(
∧m

i=1 G Fαi ), b. or σ |�
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φ2
ebr ∧ ∧n

j=1 G Fβ j Recall that AGR(1)
ebr is defined as the

product automaton A(φ1
ebr ) × A(φ2

ebr ) with the acceptance
condition α defined as (G F¬error1 ∧ ∧m

i=1 G Fαi ) →
(G F¬error1 ∧ ∧n

j=1 G Fβ j ).

Consider case a. If σ |� ¬φ1
ebr ∨¬(

∧m
i=1 G Fαi ), then the

run induced by σ in AGR(1)
ebr is such that at least one of the

following two cases hold:

a.1. either ∃i ≥ 0 such that τ(i) |� error1, that is
τ |� F(error1). In this case, we exploit monotonic-
ity of error1. Since τ |� F(error1), it also holds
that τ |� F G(error1), that is τ 
|� G F(¬error1).
As a consequence, τ |� α, where α is the acceptance
condition of AGR(1)

ebr , and thus σ ∈ L(AGR(1)
ebr ).

a.2. or τ |� ¬∧m
i=1 G Fαi . In this case, of course, τ |� α

(that is, τ satisfies the acceptance condition of AGR(1)
ebr ),

and thus σ ∈ L(AGR(1)
ebr ).

Consider now the case b. If σ |� φ2
ebr ∧∧n

j=1 G Fβ j , then

σ |� φ2
ebr and σ |� ∧n

j=1 G Fβ j . Therefore, the run induced

by σ inAGR(1)
ebr is such that τ |� G(¬error2)∧∧n

j=1 G Fβ j ,
that implies that τ |� G F(¬error2)∧∧n

j=1 G Fβ j . There-

fore, τ |� α, and thus σ ∈ L(AGR(1)
ebr ). The opposite direction

can be proved similarly. ��

5.2 Optimization

Instead of considering the acceptance condition described
in Eq. (3), we propose to repeat the error bits inside each
fairness condition.

⎛

⎝
m∧

i=1

G F(αi ∧ ¬error1)) → (

n∧

j=1

G F(β j ∧ ¬error2)

⎞

⎠

(4)

This may be helpful during the safety game solving, since
it creates a redundancy that the solver may exploit during the
search. Obviously, this maintains the equivalence.

5.3 Degeneralization

The objective of this part is to transform the GR(1)accepting
condition of the automaton AGR(1)

ebr , that is of the form∧m
i=1 G Fαi → ∧n

j=1 G Fβ j , into a R(1)accepting condition
of the form G Fα → G Fβ. In this context, we will use the
term monitor as a synonym of symbolic deterministic safety
automaton (recall Def. 6).

In order to accomplish the task, for each αi (resp. for each
βi ), we define a monitor Mαi (resp. Mβi ) whose only state
variable is set to true when αi (resp. βi ) has been read and is

reset to false when all the αi (resp. βi ) have been read. For
this last condition, we define the monitors Mtot

α and Mtot
β .

Let Mαi and Mtot
α be the monitors such that (i) their

input alphabet is 2� (where � is the alphabet of the starting
GR-EBR formula); (ii) their set of state variables are {mαi }
and {mtot

α }, respectively; (iii) their set of safe states are their
reachable states; and (iv) their transition relations are the fol-
lowing (written in the SMV language [36]).

in i t (mαi ) := 0
next(mαi ) := case

αi : 1
mtot

α : 0
default : mαi
esac

in i t (mtot
α ) := 0

next(mtot
α ) := case

mα1 ∧ · · · ∧ mαm : 1
default : 0
esac
dumbline

Wedefine Mβ j and Mtot
β in a similar way as Mαi and Mtot

α ,
respectively, butwithαi substitutedwithβ j andα substituted
with β.

Let AR(1)
degen be the product between Mαi (for each 0 ≤

i ≤ m), Mβ j (for each 0 ≤ j ≤ n), Mtot
α and Mtot

β , whose
accepting condition is the R(1) formula G Fmtot

α → G Fmtot
β .

We can prove the following lemma, which states that this
step of the algorithm maintains the equivalence.

Lemma 3 L(AGR(1)
ebr ) = L(Aebr × AR(1)

degen).

Proof We prove separately the two directions. Consider first
the right-to-left direction. Let σ be an infinite word of
L(Aebr × AR(1)

degen). Then σ is a word in L(Aebr). More-

over, σ is a word in L(AR(1)
degen) and thus there exists a run

τ induced by σ such that τ |� G Fmtot
α → G Fmtot

β , that is,
τ |� F G¬mtot

α ∨ G Fmtot
β . We divide in cases:

• if τ |� F G¬mtot
α , then by the semantics of the temporal

operators F and G, there exists an i ≥ 0 such that for
all j ≥ i , τ j |� ¬mtot

α . By construction of the monitors
mtot

α , this means that there exists an i ≥ 0 such that for all
j ≥ i , τ j |� ∨m

k=1 ¬mαk . This implies that, there exists
a k ∈ [1, m] and an i ≥ 0 such that for all j ≥ i , such
that τ j |� ¬mαk . Indeed, suppose by contradiction that
it is not so: then for all k ∈ [1, m], there exists infinitely
many positions i ≥ 0 such that τi |� mαk . This would
mean that the monitor Mtot

α is set to true infinitely many
times, that is G Fmtot

α , but this is a contradiction with our
hypothesis. Therefore, it holds that τ |� ∨m

k=1 F G¬mαk ,
and thus also that τ |� ∧m

i=1 G Fαi → ∧n
j=1 G Fβ j .

Overall, since τ is induced by σ , we have that σ is a
word of L(Aebr) that induces a run τ such that τ |�
∧m

i=1 G Fαi → ∧n
j=1 G Fβ j , that is σ ∈ L(AGR(1)

ebr ).
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• If otherwise τ |� G Fmtot
β , then there exists infinitely

many positions i ≥ 0 such that τi |� mtot
β . Moreover,

it holds that for all i1 ≥ 0 and for all i2 ≥ i1, if
τi1 |� mtot

β and τi2 |� mtot
β , then, for all 1 ≤ k ≤ n,

there exists a i1 ≤ j ≤ i2 such that τ j |� mbk .
Putting together these two points, we have that for all
1 ≤ k ≤ n, there exists infinitely many i ≥ 0 such
that τi |� mbk . That is, τ |� ∧n

k=1 G Fmbk . By defini-
tion of the monitors Mβi and since τ is induced by σ ,
we have that σ is a word in L(Aebr) that induces a run
τ such that τ |� ∧m

i=1 G Fαi → ∧n
j=1 G Fβ j . That is,

σ ∈ L(AGR(1)
ebr ).

The proof of the left-to-right direction is specular. ��

5.4 Related work

Our degeneralization step is similar to the one proposed in
[37] for transforming a GR(1)condition to a one-pair Streett
condition, in the context of parity game solving. The main
difference is that, in this paper, we do not fix any order on
the visits to the conditions αi (resp. βi ). For example, Mtot

α

is set to true whenever all the αi have been read, no matter
the order. As noted in [38], this has the potential to be more
effective than imposing an order to the visits (like in [37]), for
example in the case where the order is 〈β1, β2, . . . , βn〉 but
Controller can never satisfy fairness βi after having satisfied
first the fairness βi+1.

5.5 Reduction to safety for reactivity(1) objectives

In this part, we describe a safety reduction tailored for
Reactivity(1) objectives. In Sect. 6, we will prove its com-
pleteness. We will apply this reduction on the automaton
AR(1)

degen obtained from the previous step. The intuition is to
use a counter to count and limit the number of positions, after
a position in which mtot

β holds, in which mtot
α ∧¬mtot

β holds.
We define the counter as follows.

Definition 18 (Counter for the reactivity(1) objective) Let
Ak

#→
α,β

be the symbolic deterministic safety automaton whose

only state variable is #→
α,β , whose set of safe states is rep-

resented by the formula G(#→
α,β < k) and whose transition

relation is the following:

ini t (#→
α,β

) := 0
next(#→

α,β
) := case

mtot
β

: 0
mtot

α : #→
α,β

+ 1

default : #→
α,β

esac

We define Ak
safe:=Aebr × Adegen × Ak

#→
α,β

, where

• Aebr is the product between φ1
ebr and φ2

ebr (recall
Sect. 5.1);

• Adegen is the automaton obtained from AGR(1)
ebr (recall

Sect. 5.3) by removing its accepting conditions, i.e., setting
it to �; and

• Ak
#→
α,β

is the monitor defined in Def. 18.

We set the accepting condition ofAk
safe to be the one ofAk

#→
α,β

,

i.e.,G(#→
α,β ≤ k).

The automaton Ak
safe is a symbolic deterministic safety

automaton (recall Def. 9), and therefore it can be used as an
arena for the safety game 〈Ak

safe, C,U〉 (recall Def. 15). In

practice, we check the realizability of Ak
safe by means of a

tool for safety synthesis. We start with k = 0, and we check
the realizabilty ofAk

safe: if Controller has a strategy, we stop,
otherwise we increment k and we repeat the cycle.

In the next section, we prove the soundness and the com-
pleteness of this algorithm.

6 GR-EBR synthesis: correctness via general
safety reductions

In this section, we prove the (soundness and) completeness
of the safety reduction described in Sect. 5. To this end, we
first formalize what a safety reduction is, and then we intro-
duce a general framework that gives sufficient conditions for
obtaining complete safety reduction for arbitrary fragments
of LTL . Finally, we instantiate the proposed framework to
the GR-EBR case in order to prove the completeness of the
algorithm of Sect. 5.

6.1 A framework of safety reductions for
LTL+P realizability

The central question of this section is: how can we obtain
a complete safety reduction for the realizability problem of
specifications written in (fragments of) LTL ? In the following,
we propose a framework to answer it.

6.2 A sound, but incomplete, safety reduction

Devising a sound and complete safety reduction for realiz-
ability is not a trivial task. Consider for example LTL . One
could be tempted to define a safety reduction that, given any
formula φ ∈ LTL , turns φ in negated normal form (NNF, for
short) and then transforms each F and U into the correspond-
ing k-bounded operator, that is F[0,k] and U[0,k], respectively,
obtaining a safety formula. The resulting reduction would be
sound, since the obtained formula implies the starting one,
but it would not be complete. Consider for example the for-
mula φ:=Gu ↔ Gc. The formula obtained from φ by means
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of this safety reduction is:

φk :=(F[0,k]¬u ∨ Gc) ∧ (F[0,k]¬c ∨ Gu)

Although φ is realizable, φk is unrealizable for each k ∈ N.
In fact, Environment can choose u in the first k steps and
¬u in the step k + 1: in this way, it falsifies both F[0,k]¬u
and Gu. Since Controller can force exactly one between the
formulas Gc and F[0,k]¬c, we have that φk is unrealizable,
and therefore this particular safety reduction is not complete
for realizability.

6.3 Definition of safety reduction

The core and the main novelty of our framework is a link
with safety reductions for model checking: in order to design
a complete reduction for the realizability problem, one can
prove that it is complete for the model checking problem and
then use our framework to derive completeness for realiz-
ability. On one hand, this allows to prove completeness at
the level of model checking, which is simpler than proving
completeness for realizability. On the other hand, this opens
the possibility of using existing safety reductions already
devised for model checking for realizability as well. We start
by defining what is a safety reduction in the context of our
framework.

Definition 19 (Safety reduction) Let S ⊆ LTL be a fragment
of LTL . A safety reduction for S is a function �·� such that, for
each formula φ ∈ S over the alphabet �, it holds that �φ� =
{φk}k∈N, where φk is a safety formula over the alphabet �

such that φk → φ, for any k ∈ N. With �φ�k , we will denote
the formula φk of the set {φk}k∈N.

6.4 Link between realizability andmodel checking

The rationale behind the link between realizability andmodel
checking is the following one: since we can easily view
Mealy machines as (a particular type of) Kripke structures
and viceversa, and since by Prop. 2 we can restrict realizabil-
ity to the search of finite strategies representable by Mealy
machines, the realizability problem of the LTL+P formula φ

can be reduced to checking if there exists a Mealy machine
Mg such that M ′

g |� Aφ, where M ′
g is the Kripke structure

corresponding to Mg .
The Kripke structure M ′

g corresponding to the Mealy

machine Mg = (2U, 2C, Q, q0, δ) is defined as M ′
g =

(2U∪C, Q′, I ′, T ′, L ′) where:

1. Q′ = Q × {qU | U ∈ 2U} × {qC | C ∈ 2C};
2. I ′ = {(q0, qU , qC ) ∈ Q′| δ(q0, U ) = (C, q ′) for any U

∈ 2U, C ∈ 2C and q ′ ∈ Q},

3. T ′ = {((q, qU , qC ), (q ′, qU ′ , qC ′))| δ(q, U ) = (C, q ′)
for any U , U ′ ∈ 2U, C, C ′ ∈ 2C, and q, q ′ ∈ Q′} and

4. L ′((q, qU , qC )) = U ∪ C .

The Kripke structure M ′
g is such that each trace of M ′

g cor-
responds to a word of Mg , and viceversa.

In proving the completeness theorem, we will abstract
from the concrete safety reduction and give the conditions
for a general safety reduction �·� (as defined in Def. 19) to
be complete. These conditions are formalized in Def. 20.

Definition 20 (Complete safety reduction) Let S ⊆ LTL be a
fragment of LTL , φ a formula in S, and �·� a safety reduction
for S. We say that �·� is μ-complete, for a given function
μ : N → N if and only if, for all φ ∈ S and for all Kripke
structures M :

M |� Aφ ⇔ ∃k ≤ μ(|M |) · M |� A�φ�k

We can finally state the main theorem of our framework,
which uses Def. 20 and Prop. 2 in order to establish that if a
safety reduction is complete for themodel checking problem,
then it is complete for the realizability problem as well.

Theorem 5 (Soundness and completeness for LTL+P realizability)
Let S ⊆ LTL be a fragment of LTL , φ ∈ S a formula over the
input variables U and output variables C (with n = |φ|) and
�·� a μ-complete safety reduction for S, for a given function
μ. It holds that:

φ is realizable ⇔ ∃k ≤ μ(2|U| · 2|C| · 22c·n
) · �φ�k is realizable

Proof Wefirst prove the soundness, which corresponds to the
right-to-left direction. Suppose there exists a k ≤ μ(2|U| ·2|C| ·
22

c·n
) such that �φ�k is realizable. Then, there exists a strategy

g : (2U)+ → 2C such that L(g) ⊆ L(�φ�k). By Prop. 2,
there exists a Mealy machine Mg = (2U, 2C, Q, q0, δ) with
input alphabet 2U and output alphabet 2C such that L(Mg) ⊆
L(�φ�k). Starting from Mg , let M ′

g = (2U∪C, Q′, I ′, T ′, L ′)
be the corresponding Kripke structure. The Kripke structure
M ′

g is such that each trace of M ′
g corresponds to a word of

Mg , and viceversa. Therefore all the traces π of M ′
g are such

that L ′(π) |� �φ�k , that is M ′
g |� A�φ�k . Since by hypothesis

�·� is a μ-complete safety reduction, by Def. 20, it holds that
M ′

g |� Aφ. This means that also L(Mg) ⊆ L(φ). Since Mg

is a Mealy machine, this implies that φ is realizable.
We now prove completeness, which corresponds to the

left-to-right direction. Suppose that φ is realizable. Since
φ ∈ S and since S ⊆ LTL ,φ is an LTL formula as well. There-
fore, by Prop. 2, there exists a Mealy machine Mg with input
alphabet 2U and output alphabet 2C such thatL(Mg) ⊆ L(φ)

with at most 22
c·n

states, for some constant c ∈ N. From Mg ,
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we build an equivalent Kripke structure M ′
g with input alpha-

bet�′ = 2U∪C, as described above for the soundness proof. It
holds that M ′

g |� Aφ. Since by hypothesis �·� is aμ-complete

safety reduction for S, and since |Q′| = 2|U| ·2|C| · |Q| (where
Q and Q′ are the set of states of Mg and M ′

g , respectively),

by Def. 20, there exists a k ≤ μ(2|U| · 2|C| · 22c·n
) such that

M ′
g |� A�φ�k . This means that also L(Mg) ⊆ L(�φ�k).

Since Mg is a Mealy machine, this means that there exists a
k ≤ μ(2|U| · 2|C| · 22c·n

) such that �φ�k is realizable. ��

6.5 Example

Let �·�bo and �φ�k
bo be the reduction and the formula φk

described in the example above, respectively (bo stands for
bounded operators). Since �φ�k

bo contains only universal or
bounded temporal operators, it is a safety formula; more-
over, �φ�k

bo implies φ (for any k ∈ N); thus �·�bo is a safety
reduction according to Def. 19.We have already seen that the
reduction is sound but not complete for realizability. Accord-
ing to our framework, this reduction is not even complete for
the model checking problem (i.e.,with respect to Def. 20),
and indeed a counterexample can be found in Fig. 1 of [11].

6.6 Novelty and usage

As already mentioned before, a distinguished and important
feature of our framework is that it provides a link with safety
reductions for the model checking problem. This opens the
possibility to use model checking safety reductions for the
realizability problem as well, provided that the reduction ful-
fills the requirements in Def. 20. In Sect. 6.9, we will prove
that the concrete safety reduction for GR-EBR specifications
that we described in Sect. 5.5 is completewith respect to Def.
20. Using Theorem 5, we will derive a corollary for the com-
pleteness of our algorithm.

6.7 In practice

The upper bound for the value of μ(·) (after which we can
answer unrealizable) is doubly exponential in the size of the
initial formula and therefore, in practice, it is prohibitively
large. It follows that usually the completeness of a safety
reduction can be exploited in practice only for making sure
that, starting from a realizable specification, we will eventu-
ally find a k ∈ N such that the kth subproblem is realizable.
Therefore, like K-Liveness for model checking [11], we can
use our algorithm in parallel with another one that checks for
the unrealizability of the specification. The first that termi-
nates stops the other and, thus, the entire procedure.

6.8 Formalization of bounded synthesis

It is worth noting that also bounded synthesis techniques [13]
can be formalized in our framework. This family of tech-
niques works for the entire class of Universal co-BüchiWord
automata (UCA , for short), which subsumes LTL+P . How-
ever, in this part, we focus only on bounded synthesis applied
on LTL+P formulas. Given an LTL+P formulaφ, bounded syn-
thesis algorithms build the Büchi automaton A¬φ for the
negation of φ (eq., the Universal co-Büchi automaton for φ)
and bound the number of times Controller player is forced
to visit the set of final states of the Büchi automaton A¬φ

(eq., the set of rejecting states of the Universal co-Büchi
automaton for φ). Consider the safety automatonAk defined
asA¬φ × Ck , where Ck is the safety automaton correspond-
ing to a counter that increments if it visits a final state ofA¬φ ,
retains its value otherwise, and whose safe states are all those
states where the counter has value less than k. We define the
set of safe states ofAk as the set of final states of Ck . We can
formalize bounded synthesis in our framework by means of
a safety reduction, that we call �·�bs, defined as follows: for
any LTL+P formula φ and for any k ∈ N, we define �φ�k

bs to
be any safety formula (not necessarily of LTL+P ) such that
L(�φ�k

bs) = L(Ak). Note that (i) �φ�k
bs is a safety formula

(sinceAk is a safety automaton); and (ii) �φ�k
bs implies φ (for

any k ∈ N); thus �·�bs is a safety reduction (Def. 19). This
reduction is also complete with respect to Def. 20 (see the
theorem below). From now, with id : N → N we denote the
identity function.

Theorem 6 The safety reduction �·�bs is id-complete.

Interestingly, the proof of Theorem 6 is exactly the com-
pleteness proof of the K-Liveness algorithm by Claessen and
Sörensson [11], which is a simple but very efficient algorithm
for model checking based on safety reductions.

By using the main theorem of our framework (Theorem
5), we can derive the completeness of bounded synthesis for
LTL+P [13, 15]. We remark that bounded synthesis works for
the full class of UCA and that this is the reason why here we
obtain a smaller upper bound with respect to [13, 29].

Corollary 2 (Completeness of Bounded Synthesis) Let φ be
an LTL+P formula over the set of variables � = U∪C. It holds
that φ is realizable if and only if there exists k ≤ 2|U|·2|C|·22c·n

such that �φ�k
bs is realizable.

In this paper, we do not consider the �·�bs safety reduction,
which corresponds to bounded synthesis and works with full
LTL+P , because we do not know yet if there exists a fully
symbolic translation from any �φ�k

bs to a safety automaton.
Since one of our desiderata is to use symbolic techniques
and since for LTLEBR+P there exists a fully symbolic pro-
cedure for obtaining an equivalent deterministic automaton
[39], we focus on fragments of LTL+P for which we can use
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LTLEBR+P for this task. As we have seen in Sect. 5, GR-EBR is
one of these.

6.9 Instantiation toGR-EBR

In this part, we prove the (soundness and) completeness
of the safety reduction for GR-EBR realizability described in
Sect. 5. In order to do that, we use the framework described
in Sect. 6.1. We call �·�ebr the safety reduction described in
Sect. 5. Since the framework works with formulas rather than
with automata, for all φ ∈ GR-EBR , we define �φ�k

ebr to be
any safety formula such that L(�φ�k

ebr) = L(Ak
safe). Recall

that with id : N → N we denote the identity function.

Theorem 7 �·�ebr is a id-complete safety reduction for
GR-EBR .

Proof We have to prove that, for all φ ∈ GR-EBR , for all
Kripke structures M and for all k ∈ N, it holds that:

M |� Aφ ⇔ ∃k ≤ id(|M |) · M |� A�φ�k
ebr

We prove separately the two directions. Consider first the
soundness which corresponds to the right-to-left direction.
Suppose that M |� A�φ�k

ebr . It holds that, for each initialized
trace π of M , L(π) |� �φ�k

ebr , where L(·) is the labeling
function of M . Let π be an initialized trace of M . By defi-
nition of �·�ebr , it holds that there exists a run τ induced by
L(π) such that: (i) τ is accepting in Aebr × Adegen , and (ii)
τ is accepting inAk

#→
α,β

. From the second point, we have that

either:

• #→
α,β make infinitely many resets. This means that there
exists infinitely many positions in τ in which mtot

α holds
and, after at most k occurrences of mtot

α , there is a mtot
β .

Therefore, in particular, there exists infinitely many posi-
tions in which mtot

β holds, that is τ |� G Fmtot
β .

• Or, the counter #→
α,β stops to increment because, because

it does not read any mtot
α . This means that there exists

finitely many positions in which mtot
α holds, that is τ |�

F G¬mtot
α .

Therefore, it holds that τ |� F G¬mtot
α ∨ G Fmtot

β , that is
τ |� G Fmtot

α → G Fmtot
β . Finally,wehave that τ is an accept-

ing run ofAebr ×Adegen such that τ |� G Fmtot
α → G Fmtot

β .
Since by hypothesis L(π) is induced by τ , by definition of
AR(1)

degen, we have that L(π) ∈ L(Aebr ×AR(1)
degen). By concate-

nating Lemma 2 and Lemma 3, we have that L(π) ∈ L(φ),
and therefore π |� φ. It follows that M |� Aφ.

We now prove completeness, which corresponds to the
left-to-right direction. Suppose that M |� Aφ, where φ ∈
GR-EBR .We prove this case by contradiction. Suppose there-
fore that for all k ≤ id(|M |), M 
|� A�φ�k

ebr . This means that

there exists an initialized trace π in M such that L(π) /∈
L(�φ�k

ebr), for all k ≤ id(|M |). By definition of �·�ebr , for
k = id(|M |), we have that for all runs τ induced by L(π)

in Aebr × Adegen × Ak
#→
α,β

, it holds that τ 
|� G(#→
α,β ≤ k).

Let τ be one of these runs. There exists a position i in τ such
that τi |� (#→

α,β = v), for some v > k. By definition of the
counter #→

α,β , the run τ is such that:

∃0 < h1 < h2 < · · · < hv · ( τh1 |� mtot
α

∧ τh2 |� mtot
α ∧ . . . τhv |� mtot

α ∧
∀h1 ≤ h ≤ hv · (τ j |� ¬mtot

β ))

Recall that τ is a run induced by L(π). Since v > k, k =
id(|M |) and M is a finite-stateKripke structure, the positions
h1 . . . hv in π (attention: not in τ ) cannot be all different.
That is, there exists at least two indexes s, e ∈ N such that: (i)
1 ≤ s < e ≤ v, (ii) πhs = πhe , and (iii) πhs |� mtot

α . Starting
from π , we can build a looping trace π ′ that agrees with π

in the prefix π[0,he] and then loops on the interval π[hs ,he]. It
holds thatπ ′ is an initialized trace of M and it induces a run τ ′
such that τ ′ |� G Fmtot

α ∧ F G¬mtot
β , that is τ ′ 
|� G Fmtot

α →
G Fmtot

β . Nevertheless, since M |� Aφ, by Lemma 2 and

Lemma 3, we have that L(π ′) ∈ L(Aebr × AR(1)
degen), and

therefore this is a contradiction. This means that it has to
hold that L(π) ∈ L(�φ�k

ebr), that is π |� �φ�k
ebr for all the

initialized traces π of M , and thus there exists a k ≤ id(|M |)
such that M |� A�φ�k

ebr . ��
With Theorem 5, we derive the following corollary that

proves the completeness of our procedure.

Corollary 3 For any formula φ ∈ GR-EBR , it holds that: φ

is realizable iff ∃k ≤ id(2|U| · 2|C| · 22c·n
) such that �φ�k

ebr is
realizable.

7 Related work

GR(1)has been introduced in [7, 40]. It is known that GR(1) is
a good candidate for writing specifications of real-world sce-
narios, with a relatively low complexity: the realizability
problem can be solved with at most a quadratic number of
symbolic steps in the size of the specification [7]. Moreover,
its importance as a specification language is accentuated by
the fact that the majority of the patterns that are most com-
monly used in industrial specifications [41] can be compiled
into GR(1) specifications [42]. Nonetheless, GR(1)presents
some restrictions that limit its use as a specification lan-
guage: (i) safety assumptions/guarantees are either Boolean
formulas or formulas of the form Gα, where the only tem-
poral operator admitted in α is the next operator X and
no nesting of next operators is allowed; (ii) assumptions
are syntactically constrained to be formulas controlled by
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Environment, in the sense that the variables inside the next
operators of the safety part of the assumptionsmust be uncon-
trollable. In GR-EBRwe relax these syntactical restrictions
of GR(1) : for example, the safety assumptions and guaran-
tees can be any arbitrary LTLEBR+P formula, like, for instance,
G(r → F[0,10]g). For this reason, GR-EBR can be considered
an extension not only of LTLEBR+P , but also of GR(1) .

On the algorithmic side, the (strict) realizability problem
for GR(1) is solved in [7] by building a symbolic arena (called
game structure) and by solving a fixpoint computation over
it, that requires O(N 2) symbolic operations, where N is the
size of the specification. In this paper, we follow a differ-
ent approach based on a reduction to safety, that generates
a sequence of deterministic safety automata over which the
corresponding game can be solvedwith atmost a linear num-
ber of symbolic steps.

The strict semantics for the realizability problem of
GR(1) is supported by many tools, including slugs [43] and
spectra [44], the last one providing also advanced language
features (like, for example, support for bounded counters
and arithmetic operations) intended to help the writing of
specifications. Interestingly, with the goal of refining the
assumptions of anunrealizableGR(1) specification into a real-
izable one but still maintaining the assumptions as general as
possible, also algorithms for computingminimal refinements
of the assumptions have been proposed [45].

In [46], Morgenstern and Schneider identify a syntactical
fragment of LTL , whose formulas correspond to determinis-
tic Büchi automata. The fragment is defined in such a way
that it corresponds to the temporal hierarchy defined in [27]
(as a matter of fact, each formula of GR-EBR can be trans-
formed into an equivalent one of that fragment by expanding
bounded operators). Realizability is solved by exploiting
known algorithms like subset construction and Miyano-
Hayashi breakpoint construction for the determinization of
the automata. On the contrary, the compilation of GR-EBR to
automata is fully symbolic, which has been proved in [9] to
be a key point for performance, compared to classical algo-
rithms for determinization.

Bounded synthesis [13, 15] belongs to the class of Safra-
less techniques [14], and it consists in bounding the number
of times Controller is forced to visit a rejecting state of a Uni-
versal co-Büchi automaton (UCW , for short) for the initial
formula. This corresponds to a safety automaton, which can
be either (i) made deterministic by a suitable generalization
of the classical subset construction [29, 47], or (ii) encoded
into a constraint system [13, 15] (e.g., SAT- or SMT-based)
which bounds also the size of a candidate controller (this also
allows one to tackle undecidable problems, for instance in
the case of distributed or parametric synthesis). Both choices
work for the whole class of UCW , and thus for full LTL . A
significant drawback of such an approach is that the UCW ,
which can be exponentially larger than the initial specifica-

tion, is explicitly represented. Moreover, in the first case, the
algorithm for the determinization turns out to be quite com-
plex, since each state of the resulting automaton is actually
a function. This can also result into a very large state space,
that can be tackled by exploiting either antichains [29] or
BDDs [47]. In contrast, as we will see, we define a reduc-
tion tailored to GR-EBR formulas that allows us to exploit the
LTLEBR+P transformations introduced in [9] for a fully sym-
bolic mapping of the initial formula directly into a sequence
of symbolic safety automata. In particular, we never build
any explicit-state automaton and we avoid the subsequent
use of determinization algorithms.

ss

7.1 A short account of the tool BOSY

BoSy is a tool for reactive synthesis from LTL+P specifications
based on bounded synthesis [48]. The main algorithm of
BoSy takes a temporal formula φ in input and consists
of the following steps: (i) it builds the Universal co-Büchi
automaton (UCW ) for φ; this automaton is built by execut-
ing one of the two tools ltl3ba [49] and spot [50], and
it is explicitly represented; (ii) the automaton is optimized,
e.g., by analyzing its strongly connected components [13];
(iii) the optimized automaton, along with the bound k on the
visits to its rejecting states, is encoded into a constraint sys-
tem (e.g., SAT, QBF, SMT) and solved by a corresponding
backend. Among the different encodings, the one based on
Quantified Boolean Formulas (QBF) appears to be the most
efficient one in practice [15], and thus it is the default one
and the one with which we compare our tool grace. Finally,
BoSy starts two threads, one checking the realizability of the
formula and the other checking the unrealizability. Since we
will evaluate grace and BoSy only on realizable formulas
(the only ones of interest in our context), in order to make
fair the comparison with BoSy, we commented the part of
the source code of BoSy that starts the thread for the unre-
alizability check.

8 Experimental evaluation

We implemented the algorithm described in Sect. 5 and sum-
marized in Fig. 4 in a prototype tool called grace (which
stands for GR-ebr reAlizability ChEcker). 2

We chose safetysynth [51] as a BDD-based backend
for solving each safety game (Def. 15). safetysynth imple-
ments the classical BDD-based backward fixpoint for finding
a strategy for Controller in a safety game represented in
AIGER format [52].

2 https://es-static.fbk.eu/tools/grace/
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Fig. 6 grace compared to
BoSy (on the left) and to strix
(on the right). In both plots, the
two axis show the solving time
(in seconds) in logarithmic
scale. The red dotted lines
represent the timeout (180s)

As competitor tools, we chose BoSy [15, 48, 53] and
strix [54, 55]. strix is based on parity games and is the
winner of SYNTCOMP 2018, 2019 and 2020, while BoSy
implements the Bounded Synthesis approach: we refer the
reader to Sect. 7 for a description of Bounded Synthesis and
for a description of the BoSy tool. We set a timeout of 180
seconds. The experiments have been run on a 2.7 GHz AMD
16-cores machine with 64 GB of RAM.

We remark that a comparison with GR(1) synthesis tools
is nontrivial. The majority of the tools for GR(1)only support
the realizability of the strict implication (see for example
[43]), not the standard one (which is our case). Therefore,
although the latter can be reduced to the former [7], a non-
trivial practical effort is required to write an algorithm for
this translation.

8.1 Description of the benchmarks set

Weconsidered benchmarks of two types: (i) artificial, and (ii)
derived from the SYNTCOMP [51] benchmarks’set. Regard-
ing the artifical benchmarks, we partitioned them in four
categories, each containing 30 benchmarks scalable in their
dimension N , for a total of 120 formulas. The categories are
the following ones:

1. G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . ))) →
G(

∧N
i=1(ui ↔ Xci ))

2. (G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . ))) ∧
X NGuN ∧ G FuN ) → (

∧N
i=1(ui ↔ XN ci ) ∧ G FcN )

3. (G(u0) ∧ X G(u1) ∧ · · · ∧ XNG(uN ) ∧ ∧N
i=1 G Fui ) →

(
∧N

i=1 G(ui ↔ ci ) ∧ ∧N
i=1 G Fci )

4. (¬u0∧G[0,N ]¬u0∧XN+1Gu0) → (
∧N

i=1 G(u0 ↔ Xci )∧∧N
i=1 G F(ci ∧ u0))

The variables starting with u are uncontrollable, while those
starting with c are controllable. All the benchmarks are
realizable, and were specifically crafted to elicit potential
criticalities of grace. The formulas in the first category
consist of an implication between two LTLEBR+P formulas.
The second category extends the first one by adding to
its assumptions (resp. the guarantees) the stabilization con-
straint XNGuN (resp. XNGcN ) and a single fairness G FuN

(resp. G FcN ). In the third category, the formula correspond-
ing to both the assumptions and the guarantees is such
that half of it is safety and the other half is fairness. In
particular, there are multiple fairnesses, as many as the
dimension N . Finally, the benchmarks in the fourth category
have been specifically designed in order to force the mini-
mum k of the termination of grace to increase with their
dimension.

Regarding the benchmarks derived from the SYNTCOMP
benchmarks set, we included (i) simple_arbiter_N (for each
N ∈ {2, 4, 6, 8, 10, 12}), escalator_ bidirectional, which
belong to the SYNTCOMP benchmarks’ set, and (ii) our
example for an arbiter, with N ∈ {1, . . . , 15}.

8.2 Discussion of the results

Figure6 shows the comparison of the tools on the solving
time of all the benchmarks. All times are in seconds and
the scale is logarithmic. From Fig. 6 (left), we can see that
almost all points are above the diagonal and, in particular,
are located on the uppermost axis of the plot, which repre-
sents the timeout for the tool BoSy. This behavior involves
formulas of both types (artificial and derived from SYNT-
COMP), and of all four categories (of artificial benchmarks).
In particular
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Fig. 7 Survival plot comparing the tools grace, BoSy and strix on
the percentage of benchmarks solved in less than t seconds, for each
t ∈ {0, . . . , 180}

Fig. 8 grace versus BoSy on number of safety sub-problems

• on category 1, BoSy takes 0.5 sec. for N = 4 and it
reaches the timeout with N = 5; for N = 4, the corre-
sponding automaton (after optimization) has 40 states;

• on category 2 (and similarly for category 3), for N = 5
the solving time of BoSy is 49.2 sec., and the corre-
sponding automaton (after optimization) has 48 states;
with greater values of N , BoSy reaches the timeout;

• on category 4, the solving times of BoSy on N = 13, 14
are 19.4 and 136.3 sec., respectively, and the correspond-
ing automata have 27 and 31 states, respectively.

• on simple_arbiter_N, BoSy takes 45.7 sec. for
N = 8, and reaches the timeout for N = 10.

A more precise study of the complexity of BoSy shows
that the majority of the time spent by it is due to the con-
struction of the UCW (Universal coBüchi Word automaton)
corresponding to the input formula, which is the task of the
tools ltl3ba and spot. On the contrary, it is clear from Fig. 6
(left) that grace avoids this bad behavior, most likely due to
the fact that the explicit state UCW is never built.

Let us now consider the tool strix (Fig. 6, right). It can be
noted that, on the category example-arbiter, the solv-

ing times of strix are consistently better than the ones of
grace. A careful study reveals that all those benchmarks are
transformed to the equi-realizable formula true by the pre-
processor of Owl [56] (a tool forω-automata manipulation),
which strix is based on.

In Fig. 7, we reported a survival plot showing, for each
t ∈ {0, . . . , 180}, the percentage of benchmarks solved by
each of the tools in less than t seconds. An analysis of Fig. 7
shows that, although in Fig. 6 (right) there are some points
below the diagonal (representing benchmarks inwhich strix
performs better thangrace), themajority of the points stands
above the diagonal.

The plot in Fig. 8 shows, for each index k ranging from
1 to 31 (these correspond to the number of columns), on
how many benchmarks (of both types) grace or BoSy
terminate with index k (this corresponds to the height of
a column). The benchmarks in category 4 and the ones
of simple_arbiter_N force grace to terminate with
increasing values of k. The plot in Fig. 8 points out that BoSy
does not incur in this growth, except for one benchmark.Nev-
ertheless, the solving times of grace are still better than the
ones of BoSy. For example, for N = 14of category 4,grace
takes 20.4 sec., whileBoSy takes 161 sec. This witnesses the
fact that each safety sub-problem generated by grace is very
simple to solve.

9 Conclusions and future work

In this paper, we proved the expressive completeness of
LTLEBR+Pwith respect to the safety fragment of LTL+P .
We showed also that the removal of past operators from
LTLEBR+P results into a loss of expressive power.

With the objective of expressing properties beyond the
safety fragments while retaining an efficient synthesis prob-
lem, we introduced the logic of GR-EBR , an extension
of LTLEBR+P [9] adding fairness conditions and assumes-
guarantees formulas, and studied its realizability problem.
We proposed a general framework to derive complete safety
reductions in the context of realizability of (fragments of)
LTL , and then we used it as the core of an algorithm for
the realizability of GR-EBR formulas. The experimental eval-
uations showed good performance against other tools for
(bounded) synthesis.

We aim at extending the work done in the following direc-
tions: (i) as far as we know, there are no safety synthesizers
(like safetysynth) that are able to exploit incremental-
ity; since in our context, the only part of the automaton
that changes between one iteration and the next one is the
counter, some work may be saved; (ii) stabilizing constraints
are successfully used in model checking, in particular by the
K-Liveness algorithm [11], in order to shrink the search of
the search space; we expect that realizability may also ben-
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efit from them; (iii) since GR(1) is a very efficient fragment,
it is important to investigate whether there is a compilation
from GR-EBR to GR(1) ; (iv) we know that the realizability
problem of GR-EBR is bounded below by EXPTIME (by EXP-
TIME -completeness of LTLEBR+P ) and bounded above by
EXPTIME [2] (by EXPTIME [2]-completeness of LTL+P ): we
aim at precisely characterizing its worst-case complexity; (v)
last but not least, we aim at exploiting the proposed frame-
work for more expressive logics, such as full LTL .
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Appendix A Proofs

In this section of the Appendix, there are all the proofs that
are missing from the main body of the paper.

Theorem 8 �LTLEBR+P � = �LTL � ∩ SAFETY .

Proof We first prove that �LTLEBR+P � ⊆ �LTL � ∩ SAFETY .
Let φ ∈ �LTLEBR+P �. By Def. 5, φ ∈ LTL+P , and thus, since
�LTL � = �LTL+P �, it holds that L(φ) ∈ �LTL �. Moreover,
since LTLEBR+Pcontains only universal temporal operators,
by Theorem 3.1 in [26], it is a safety fragment of LTL , and
we have that L(φ) ∈ SAFETY . Therefore, L(φ) ∈ �LTL � ∩
SAFETY .

We now prove that �LTL � ∩ SAFETY ⊆ �LTLEBR+P �. Let
φ be a formula such that L(φ) ∈ �LTL � ∩ SAFETY . By The-
orem 1, L(φ) ∈ �Gα�. Now, Gα (for any α ∈ LTL+PP )
is a formula that syntactically belongs to LTLEBR+P , that is
Gα ∈ LTLEBR+P , and thus �Gα� ⊆ �LTLEBR+P �. It follows
that L(φ) ∈ �LTLEBR+P �. ��
Lemma 4 �LTLEBR � = �Normal-LTLEBR �.

Proof Obviously �Normal-LTLEBR � ⊆ �LTLEBR �, since each
formulaψ that belongs toNormal-LTLEBR can be turned into
an equivalent one ψ ′ ∈ LTLEBR by expanding each bounded
past operators into conjunctions/disjunctions of yesterday
operators.

For proving �LTLEBR � ⊆ �Normal-LTLEBR �, it is sufficient
to apply the transformations described in [39] for the trans-
lation of LTLEBR+P into normal form. In particular, since by

definition ψ has no past temporal operators, the only past
operators in ψ ′ are the ones introduced by the pastification
step described in [39], which are all bounded, that is either
Y or S[a,b]. ��
Lemma 5 Let d ∈ N. For all i ≥ d, for all j ≥ i + d, and
for all k ≥ j + d, it holds that:

Property1 :∀n′ ≥ 0 · ∃n ≥ 0 · i,kσ
j

[n′−d,n′] = i,iσ
j

[n−d,n]
Property2 :∀n ≥ 0 · ∃n′ ≥ 0 · i,iσ

j
[n−d,n] = i,kσ

j
[n′−d,n′]

Proof Take any value for i , j , and k such that: (i) i ≥ d, (ii)
j ≥ i + d, (iii) k ≥ j + d. Given any interval of length d of
the state sequence i,iσ j , we show how to find an exact same
one in i,kσ j , and viceversa.

The constraints above on the three indices ensure that both
the state sequences i,iσ j and i,kσ j contain only three types
of intervals of length at most d. Consider i,kσ j (the case for
i,iσ j is specular). The three types are the following:

Type 1: ({p1, p2})n for some 0 ≤ n ≤ d;
Type 2: ({p1, p2})n · ({p1}) · ({p1, p2})d−n−1, for some 0 ≤

n < d;
Type 3: ({p1, p2})n · ({p2}) · ({p1, p2})d−n−1, for some 0 ≤

n < d;

The situation is depicted in Fig. 2. Given any interval of
any of the three types above, we show below how to find the
very same interval in i,iσ j (Fig. 2 tries to show visually this
correspondence):

• each interval of i,kσ j of type ({p1, p2})n is equal to
i,iσ

j
[0,n];

• each interval of i,kσ j of type ({p1, p2})n · ({p1}) ·
({p1, p2})d−n−1 is equal to i,iσ

j
[i−n,i+d−n−1].

• each interval of i,kσ j of type ({p1, p2})n · ({p2}) ·
({p1, p2})d−n−1 is equal to i,iσ

j
[ j−n, j+d−n−1];

This proves Property 1.
Similarly, the correspondence between intervals of i,iσ j

and intervals of i,kσ j is the following:

• each interval of i,iσ j of type ({p1, p2})n is equal to
i,kσ

j
[0,n];

• each interval of i,iσ j of type ({p1, p2})n · ({p1}) ·
({p1, p2})d−n−1 is equal to i,kσ

j
[i−n,i+d−n−1].

• each interval of i,iσ j of type ({p1, p2})n · ({p2}) ·
({p1, p2})d−n−1 is equal to i,kσ

j
[ j−n, j+d−n−1];

This proves Property 2. ��
Lemma 6 Letα, β ∈ LTL+PBP , and let d = max{D(α), D(β)}
be the maximum between the temporal depths of α and β. It
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holds that i,iσ j |� αRβ iff i,kσ j |� αRβ, for all i ≥ d, for
all j ≥ i + d, and for all k ≥ j + d.

Proof Take any value for i , j , and k such that: (i) i ≥ d, (ii)
j ≥ i + d, (iii) k ≥ j + d. We first prove the left-to-right
direction. Suppose that i,iσ j |� αRβ. We divide in cases:

1. Suppose that i,iσ j , n |� β for all n ≥ 0. Since β ∈
LTL+PBP and D(β) ≤ d, it holds that i,iσ

j
[n−d,n] |� β,

for all n ≥ 0. Suppose by contradiction that there exists
some n′ ≥ 0 such that i,kσ

j
[n′−d,n′] |� ¬β. By Property

1 of Lemma 5, this means that there exists some n′′ ≥ 0
such that i,iσ

j
[n′′−d,n′′] |� ¬β. But this is a contradiction.

Thus, it holds that i,kσ
j

[n′−d,n′] |� β for all n′ ≥ 0, that is,

for all n′ ≥ 0, and thus i,kσ j |� αRβ.
2. Suppose that ∃n ≥ 0 · (i,iσ j , n |� α ∧ ∀0 ≤ m ≤ n ·

i,iσ j , m |� β). We divide again in cases:

(a) Suppose that n < k. Then i,iσ
j

[0,n] = i,kσ
j

[0,n].
Clearly, it holds that i,kσ j , n |� α and i,kσ j , m |� β

for all 0 ≤ m ≤ n. Therefore i,kσ j |� αRβ.
(b) Suppose that n ≥ k. In particular, it holds that

i,iσ
j

[n−d,n] |� α ∧ β. We use a contraction argument
for proving that in this case there exists a smaller
index at which the release satisfies its existential part
(i.e., the formula α). Consider the time point i − 1.
It holds that i,iσ

j
[i−1−d,i−1] = i,iσ

j
[n−d,n] and thus,

since i,iσ
j

[n−d,n] |� α ∧ β and α, β ∈ LTL+PBP ,

we have that i,iσ
j

[i−1−d,i−1] |� α ∧ β. Moreover,
i,iσ

j
[0,i−1] is a prefix of i,iσ

j
[0,n], and thus, given that

i,iσ
j

[p−d,p] |� β for all 0 ≤ p ≤ n, it holds that
i,iσ

j
[p−d,p] |� β for all 0 ≤ p ≤ i − 1. From this, it

follows that i,iσ j , i − 1 |� α and i,iσ j , m |� β for
all 0 ≤ m ≤ i − 1. Since i − 1 < k, by Item 22a, it
holds that i,kσ j |� αRβ.

We now prove the right-to-left direction. Suppose that
i,kσ j |� αRβ. We divide in cases:

1. Suppose that i,kσ j , n |� β. This case is specular to Item
1.

2. Suppose that ∃n ≥ 0 · (i,kσ j , n |� α ∧ ∀0 ≤
m ≤ n · i,kσ j , m |� β). Since α, β ∈ LTL+PBP and
D(α), D(β) ≤ d, it holds that ∃n ≥ 0 · (i,kσ

j
[n−d,n] |�

α ∧ ∀0 ≤ m ≤ n · i,kσ
j

[m−d,m] |� β). We divide again in
cases:

(a) If n < k, then i,kσ
j

[0,n] = i,iσ
j

[0,n] and thus i,iσ j , n |�
α and i,iσ j , m |� β for all 0 ≤ m ≤ n, that is
i,iσ j |� αRβ.

(b) If k ≤ n ≤ k+d, then i,kσ
j

[n−d,n] = i,kσ
j

[n−k−i−d,n−k−i]
(we used again a contraction argument). Since by

hypothesis i,kσ
j

[n−d,n] |� α, it holds also that
i,kσ

j
[n−k−i−d,n−k−i] |� α. Moreover, i,kσ

j
[0,n−k−i] is

a prefix of i,kσ
j

[0,n], and thus, since by hypothesis
i,kσ

j
[p−d,p] |� β for all 0 ≤ p ≤ n, it also holds that

i,kσ
j

[p−d,p] |� β for all 0 ≤ p ≤ n − k − i . Therefore
i,kσ

j
[n−k−i−d,n−k−i] |� α and i,kσ

j
[m−d,m] |� β for all

0 ≤ m ≤ n − k − i . Since l +n − i < k, by Item 22a,
it holds that i,iσ j |� αRβ.

(c) Otherwise n > k + d. We have that i,kσ
j

[n−d,n] =
i,kσ

j
[i−1,i−1−d] (also in this case we used a contrac-

tion argument). Since by hypothesis i,kσ
j

[n−d,n] |� α,

it also hold that i,kσ
j

[i−1,i−1−d] |� α. Moreover
i,kσ

j
[0,i−1] is a prefix of i,kσ

j
[0,n] and thus, since by

hypothesis i,kσ
j

[p−d,p] |� β for all 0 ≤ p ≤ n, it also

holds that i,kσ
j

[p−d,p] |� β for all 0 ≤ p ≤ i − 1.

Therefore i,kσ j , i − 1 |� α and i,kσ j , m |� β for all
0 ≤ m ≤ i −1. Since i −1 < k, by Item 22a, it holds
that i,iσ j |� αRβ.

��

Lemma 7 Let ψ ∈ Normal-LTLEBR . It holds that i,iσ j |� ψ

iff i,kσ j |� ψ , for all i ≥ mψ + dψ , for all j ≥ i + dψ , and
for all k ≥ j + dψ .

Proof Take any value for i , j , and k such that: (i) i ≥ mψ +
dψ , (ii) j ≥ i +dψ , (iii) k ≥ j +dψ .We proceed by induction
on the structure of the formula ψ .

For the base case, we consider three cases: (i) formulas in
LTL+PBP , that is such that all its temporal operators refer to
the past and are bounded; (ii) formulas of typeGα, whereα ∈
LTL+PBP ; (iii) formulas of typeαRβ, whereα, β ∈ LTL+PBP ;

We consider the case of a formula α ∈ LTL+PBP , and
suppose that i,iσ j |� α. By definition of i,iσ j and i,kσ j , it
always holds that i,iσ

j
0 = i,kσ

j
0 . Since α ∈ LTL+PBP refers

only to the current state or to thepast, it follows that i,iσ j |� α

if and only if i,kσ j |� α.
Consider now the case for αRβ, where α, β ∈ LTL+PBP .

Since mαRβ = 0 (i.e., the are no next operators in this for-
mula), we can apply Lemma 6, having that i,iσ j |� αRβ if
and only if i,kσ j |� αRβ. Since Gα = ⊥Rα, this proves also
the case for the globally operator.

For the inductive step, since by hypothesis ψ belongs to
the normal form of LTLEBR , it suffices to consider only the
case for the next operator, conjunctions and disjunctions.

Consider first the case for the next operator, and suppose
that i,iσ j |� Xψ ′. For any indices k, i and j such that i ≥
mXψ ′ +dXψ ′ , j ≥ i+dXψ ′ and k ≥ j+dXψ ′ , wewant to prove
that i,kσ j |� Xψ ′. By definition of the next operator, it holds
that i,iσ j , 1 |� ψ ′. Now, let τ be the state sequence obtained
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from i,iσ j by discarding its initial state, that is τ :=i,iσ
j

[1,∞).
Obviously, τ |� ψ ′. We observe that τ is equal to the state
sequence i−1,i−1σ j−1. Since the maximum number mψ ′ of
nested next operators inψ ′ ismXψ ′ −1 (whileαψ ′ remains the
same), we can apply the inductive hypothesis on ψ ′, having
that i−1,k−1σ j−1 |� ψ ′.

By definition of τ , it follows that i,kσ j |� Xψ ′.
We consider now the case for conjunctions, and suppose

that i,iσ j |� ψ1 ∧ψ2, for generic indices k, i and j such that
i ≥ mψ1∧ψ2 +dψ1∧ψ2 , j ≥ i +dψ1∧ψ2 , and k ≥ j +dψ1∧ψ2 .

It holds that i,iσ j |� ψ1 and i,iσ j |� ψ2. Moreover,
mψ1 ≤ mψ1∧ψ2 and mψ2 ≤ mψ1∧ψ2 . Similarly, dψ1 ≤
dψ1∧ψ2 and dψ2 ≤ dψ1∧ψ2 . This means that we can apply the
inductive hypothesis both onψ1 andψ2 on the current indices
k, i and j . By inductive hypothesis, we have that i,kσ j |� ψ1

and i,kσ j |� ψ2. It follows that i,kσ j |� ψ1 ∧ ψ2. The case
for ψ1 ∨ ψ2 is specular. ��
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