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Abstract: Stiffness modulus represents one of the most important parameters for the mechanical
characterization of asphalt mixtures (AMs). At the same time, it is a crucial input parameter in the
process of designing flexible pavements. In the present study, two selected mixtures were thoroughly
investigated in an experimental trial carried out by means of a four-point bending test (4PBT)
apparatus. The mixtures were prepared using spilite aggregate, a conventional 50/70 penetration
grade bitumen, and limestone filler. Their stiffness moduli (SM) were determined while samples
were exposed to 11 loading frequencies (from 0.1 to 50 Hz) and 4 testing temperatures (from 0 to
30 ◦C). The SM values ranged from 1222 to 24,133 MPa. Observations were recorded and used to
develop a machine learning (ML) model. The main scope was the prediction of the stiffness moduli
based on the volumetric properties and testing conditions of the corresponding mixtures, which
would provide the advantage of reducing the laboratory efforts required to determine them. Two
of the main soft computing techniques were investigated to accomplish this task, namely decision
trees with the Categorical Boosting algorithm and artificial neural networks. The outcomes suggest
that both ML methodologies achieved very good results, with Categorical Boosting showing better
performance (MAPE = 3.41% and R2 = 0.9968) and resulting in more accurate and reliable predictions
in terms of the six goodness-of-fit metrics that were implemented.

Keywords: stiffness modulus; asphalt mixture; machine learning; categorical boosting; artificial
neural network

1. Introduction

In the civil engineering domain, transportation infrastructure represents one of the
major application fields, and flexible pavements prepared with asphalt concretes are still the
most used technological solutions in every road network all over the world [1]. To evaluate
whether an asphalt mixture (AM) is suitable for civil engineering applications, road agencies
charged with pavement maintenance and construction often refer to performance indicators
related to the mechanical behavior of the mixture under consideration. A failure to reach
the standard thresholds related to the parameters considered could result in unsuitable
mechanical behavior, causing the formation of typical fatigue or low-temperature cracks
that would inevitably reduce the service life of the pavement. Serviceability would then
be compromised, thus causing serious safety-related issues for every road user. For this
reason, it is crucial to properly characterize the mechanical behavior of asphalt mixtures
from a performance-based perspective [2–4].
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The conventionally adopted approach is experimental: it allows the mechanical per-
formances of the investigated AMs to be accurately evaluated, but it is time-consuming,
and very expensive laboratory tests are often required. Furthermore, this approach has
other drawbacks, such as (i) the need to repeat the experimental campaign when any
compositional variable of the investigated mixture changes, with resulting impacts on time
and costs; and (ii) the presence of skilled laboratory technicians that must be familiar with
all the test protocols [5–10].

To overcome these drawbacks, the efforts of the scientific community have been fo-
cused on the development of mathematical models that allow each parameter involved in
the mechanical characterization of a mixture to be individually handled. This achievement
involved identifying complex constitutive equations that, embedded within specialized ma-
terials mechanics software, allow the performance parameters of a mixture to be accurately
predicted [11–18]. These advanced constitutive models provide a detailed understanding
of the mechanical responses of bituminous mixtures, coupled with useful methodologies
for pavement monitoring [19].

However, in recent years, alternative non-physically-based models which use soft
computing techniques have gained popularity within the academic community. Unlike
constitutive equations, these machine learning (ML) models do not depend on the nature
of a problem, and they possess the outstanding capability of being able to model even very
different phenomena [20]. They do not require a priori knowledge of the relationships
between inputs and their corresponding outputs, but they still allow accurate, fast, and
reliable predictions to be produced [21–24].

Some of the most commonly used soft computing techniques are based on artificial
neural networks (ANNs) or decision trees (DTs). The functioning of the former is intended
to mimic that of the human biological nervous system by using simple elementary units
named artificial neurons. Being highly interconnected and organized in successive layers,
artificial neurons allow neural networks to model even highly nonlinear phenomena by
producing both fast and accurate predictions in terms of several output variables, namely
permeability, interface shear stiffness modulus, compressive strength, stress at failure, and
so on [25–34]. However, the difficulty of interpreting neural models coupled with the
challenges associated with the optimization of the multiple hyperparameters involved [35]
make them somewhat difficult to handle.

In contrast, simple decision rules allow DT-based algorithms to produce equally
accurate predictions [36,37], making them competitive with those produced by ANN
models, but without the interpretability issues. This factor makes them preferable for
solving many regression or classification problems [38]. Therefore, two different soft
computing techniques were investigated and implemented in the present study: the former
involved the development of an ANN-based model, whereas the latter was based on a DT
algorithm known in the scientific literature as CatBoost. By way of example, in recent years,
CatBoost was successfully implemented to predict the Pavement Condition Index values of
asphalt concrete overlays [39].

The main purposes of the present study are (i) to mechanically characterize two
different asphalt mixtures for pavement construction by investigating a fundamental
behavioral parameter, such as stiffness modulus (SM); and (ii) to model and predict the
performance of each mixture using ANN- and CatBoost-based ML algorithms. The two
investigated mixtures were designed for binder and base layers and were prepared using
spilite aggregate, a conventional 50/70 penetration grade bitumen, and limestone filler.
An extensive four-point bending test (4PBT) experimental campaign was carried out to
determine the stiffness modulus values of the mixtures under 11 loading frequencies and
4 testing temperatures, ranging from 0.1 to 50 Hz and from 0 to 30 ◦C, respectively. Three
to five specimens were tested for each condition, and the results were averaged to obtain
the dataset subsequently used to train and test the two different ML models.

State-of-the-art procedures were implemented in both the developed methodologies,
including k-fold cross-validation, overfitting detection, and extensive grid searches to
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find the best hyperparameter sets for each algorithm. Six different performance metrics
were investigated to determine the accuracy of the developed models and to evaluate
their generalization capabilities, namely mean absolute error, mean absolute percentage
error, mean squared error, root mean squared error, Pearson correlation coefficient, and
determination coefficient.

The results obtained emphasize that the developed ML model can provide accurate
and reliable stiffness modulus predictions, thus allowing these values to then be exploited
within the well-established design procedures. This represents the main contribution pro-
vided by the present study to the existing scientific literature. In addition, the sensitivity
analysis that was carried out confirms that ML models are able to understand the func-
tional relationships between the variables that were investigated, thus inspiring future
scientific applications.

The remainder of the paper is organized as follows: Section 2 describes the volumetric
characterization of the prepared mixtures and the experimental campaign that was carried
out. Section 3 provides an overall explanation of the ML framework, explaining all the
pre-processing and resampling techniques that were implemented in the developed models.
Section 4 describes the obtained predictive results and compares the performances of the
CatBoost and ANN models. Finally, Section 5 outlines the main conclusions and points out
future developments.

2. Materials and Methods

Two asphalt mixtures were investigated in the present study. They were designed for
binder and base course layers, respectively. The former involved the utilization of spilite
aggregate with a nominal maximum aggregate size of 16 mm (AML16) obtained from
the Bělice quarry (Benešov, Czech Republic). The latter was also prepared using spilite
aggregate, but the nominal maximum aggregate size was 22 mm (AMP22). The bitumen
used to prepare both the mixtures was a conventional one, with a penetration grade (PG)
at 25 ◦C ranging between 50 and 70 mm/10, meeting the technical specifications set by the
European standard EN 12591 [40] for paving grade binders (see Table 1). The binder was
obtained from the Litvinov refinery (Litvínov, Czech Republic). Finally, limestone filler
from the Velke Hydcice quarry was used.

Table 1. Characteristics of the use bituminous binder.

Basic Bitumen Characteristic Unit Value

Penetration at 25 ◦C mm/10 59
Softening point (ring and ball) ◦C 50.6

Breaking point after Fraas ◦C −11
Remaining penetration after short-term ageing (RTFOT) % 41

Softening point after short-term ageing (RTFOT) ◦C 54.2

The mix design followed the requirements set by Czech technical standard CSN
73 6121 [41]. The grading curves of both mixtures is given in Table 2. A volumetric
characterization of both the mixtures was carried out, and the results are summarized in
Table 3. The following additional requirements were also tested: (i) moisture susceptibility
according to EN 12697-12 [42] determined at 15 ◦C; and (ii) stiffness tested on 6 cylindrical
test specimens via repeated indirect tensile stress tests (IT-CY) according to EN 12697-26 [43]
at 15 ◦C.
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Table 2. Grading curves of tested asphalt mixtures and requirements according to the national
standard (CSN 73 6121 [41]).

Control Sieve (mm)
Grading Curve—Passing (%)

AML16 Mix Requirements AMP22 Mix Requirements

32 100 100
22 100 96 100–90
16 97 100–90 80 85–60
11 77 68
8 64 80–52 55 65–40

5.6 55 48
4 44 61–31 38
2 28 45–20 24 38–22
1 18 17

0.5 14 14
0.25 11 12
0.125 10 16–4 10 13–5
0.063 8.5 10–3 9.0 9–4

Table 3. Volumetric characterizations of AML16 and AMP22 mixtures.

AML16 Mix AMP22 Mix

Binder content 4.5% 4.2%
Air voids content 5.2% 5.3%

Bulk density 2.417 g/cm3 2.421 g/cm3

Moisture susceptibility 84% 81%
IT-CY stiffness at 15 ◦C 7537 MPa 8257 MPa

An experimental trial using a four-point bending test (4PBT) apparatus was performed
under several testing conditions. The test method principles and general conditions related
to the testing apparatus and the test specimens that were used are given in Annex B. The
resulting stiffness values were investigated by exposing the prismatic specimens to different
temperatures and frequencies. According to EN 12697-26 [43], the dimensions of the test
specimens should be 405 × 50 × 50 mm. To determine stiffness, eleven different loading
frequencies (from 0.1 to 50 Hz) and four different testing temperatures (from 0 to 30 ◦C)
were selected. As for the AMP22 mixture, five testing temperatures were investigated since
the stiffness moduli were also tested at 15 ◦C. The technical standard does not specifically
set a fixed number of frequencies to be tested, and, similarly, particular temperatures are
not prescribed. For national products, the standards may specify additional requirements,
e.g., one particular temperature, which is then linked to the mechanistic modelling of the
performance of the pavement structure. According to existing good practice in asphalt mix
testing, several temperatures are usually used to either simulate the behavior response of
the mixture to the conditions occurring in the pavement—e.g., 0 ◦C for winter and 30 ◦C for
summer—or at least three different temperatures are selected to plot the so called master
curve, in which the resulting stiffness values are shifted by applying the time–temperature
superposition principle to one selected temperature. This curve is then used to interpret
the behavior of the asphalt mix under the different conditions which can occur on a road,
such as low or high temperatures and different traffic loading intensities. The latter effect
is simulated in the test by the used frequencies, i.e., very low or very high frequencies
simulate either low or fast-moving traffic, and the pavement is put through cyclic loading
and resting periods. The frequency is changed according to the speed and intensity that is
being simulated. To dynamically simulate this traffic loading effect, test methods such as
4PBT are able to determine a large variability in the responses of the specimen depending
on the loading frequency and temperature. The test setup and instrumentation for 4PBT is
shown in Figure 1. For each temperature, and for the whole range of frequencies between
0.1 Hz and 50 Hz, three to five specimens were tested, and the average results are reported
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in Table 4. These outcomes constituted the dataset that was later used to train and test the
developed ML algorithms.
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Table 4. Outcomes of the 4PBT experimental trial carried out on AML16 and AMP22 mixtures.

Mix
Testing

Temperature
(◦C)

Stiffness Modulus (SM) (MPa) under Loading Frequency (Hz)

0.1 1 2 3 5 8 10 15 20 30 50

AML16

0 14,606 18,939 20,203 20,984 21,874 22,763 23,067 23,785 24,104 23,862 23,751
10 7346 11,335 12,659 13,497 14,510 15,453 15,855 16,639 17,108 17,733 17,844
20 3001 5325 6276 6912 7769 8574 9009 9722 10,317 11,238 11,618
30 1265 2140 2506 2831 3285 3754 4005 4496 4891 5777 6387

AMP22

0 13,719 18,268 19,697 20,435 21,364 22,196 22,654 23,245 23,672 24,133 23,691
10 6633 10,741 12,142 13,017 14,097 15,108 15,613 16,485 16,959 17,847 17,912
15 5887 8803 9845 10,503 11,320 12,123 12,534 13,172 13,606 14,396 14,664
20 1975 4521 5467 6089 6857 7757 8210 8897 9414 10,414 11,155
30 1222 1681 2073 2472 2962 3433 3660 4061 4377 5192 5896

With the aim of obtaining a detailed understanding of the collected dataset, a prelim-
inary exploratory analysis was carried out by diagramming the stiffness modulus (SM)
as a function of the testing temperature and loading frequency. This practice is useful
in identifying potential existing relationships and correlations between different pairs of
features [44]. The marked trends between the considered variables can be observed in
Figure 2. Since the data came from the analysis of two different mixtures, cyan and red
triangles were used to represent the data collected during the tests of the AML16 and
AMP22 mixture specimens, respectively.

To quantify the correlations between SM and the influencing variables under con-
sideration, Pearson correlation factors were computed, thus creating a so-called Pearson
correlation matrix (Figure 3). This tool provides a measure of the strength of an estimated
linear correlation between two given variables [45]. This strength can vary within a range
from −1 to +1. The minus and plus signs represent inverse and direct proportionality,
respectively. The closer the absolute value of the Pearson correlation factor is to unity, the
stronger the correlation between the variables considered.

It can be observed that the testing temperature showed the strongest negative corre-
lation with the stiffness modulus (R = −0.92), while the loading frequency displayed a
small positive correlation (R = +0.28). A categorical variable was assigned to distinguish
between the two mixtures, and it was subsequently encoded according to alphabetical
order to determine its Pearson correlation factor with the SM values. As such, 0 and +1
were assigned to identify the AML16 and AMP22 mixtures, respectively. However, the
Pearson correlation between the encoded categorical variable and the stiffness modulus
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was comparatively low (R = −0.04). No correlation could be found between the loading
frequency, the testing temperature, and the categorical variable, thus allowing these three
variables to be considered independently and therefore making them usable as inputs in
subsequent predictive modeling steps [46].
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3. Machine Learning Framework
3.1. Categorical Boosting

This section focuses on the development of a predictive model called Categorical
Boosting (or CatBoost) which is capable of predicting the mechanical behavior of AMs in
terms of SM. The methodology is based on a decision tree ensemble approach in which
each generated decision tree sequentially learns from previous ones to fine-tune its learning
and improve its predictive performance [47].

In 2017, Yandex (Moscow, Russia) engineers proposed CatBoost as an advanced ma-
chine learning algorithm. Unlike standard gradient-boosting techniques, CatBoost employs
innovative ordered boosting to address target leakage and prediction shift issues [48]. Fur-
thermore, one of the most significant advantages of this algorithm lies in its ability to deal
with various data formats and sizes, unlike other conventional ML techniques. CatBoost
can automatically operate with categorical variables, encoding them without showing any
conversion issues.

Overall, the main advantages of CatBoost can be summarized as follows [49,50]:
(a) effectiveness in dealing with small-scale datasets and with categorical features; (b) high
stability and efficiency; (c) less parameter tuning; and (d) oblivious tree building reduces
overfitting, improving accuracy and generalizability.

3.2. Artificial Neural Network

Unlike decision tree-based models, a neural model is based on an artificial neural
network whose structure is similar to that of the human nervous system. Such mathe-
matical models are characterized by multiple and interconnected artificial neurons which
are typically organized in sequences of three different layers called input, hidden, and
output [51]. The first layer is composed of as many neurons as there are pieces of input
information, namely the variables influencing the SM. The second layer serves to process
the input information, and the number of neurons or which it is composed determines the
computational power of the neural network. Finally, the last layer provides the predicted
value of the target variable, here referred to as the SM. Both the hidden and the output
layers are equipped with activation functions. To deal with nonlinearities, the former
usually employs a nonlinear activation function, while the latter usually employs a simple
linear transformation.

Each connection is weighted, and the strength of this methodology lies in the variability
of the connection weights, which are iteratively determined based on the loss function
results achieved during the training phase. In general, for each iteration of the training
algorithm, the output parameter estimation provided by a neural model (Equation (1)) can
be described as follows:

f (X) = W2[ fA(W1X)] (1)

where X denotes the input information vector, fA denotes the activation function of the
hidden layer, and W1 and W2 denote the matrices of the weights related to the connec-
tions between the input and hidden layers and between the hidden and output layers,
respectively. The mathematical formulations by which the weight matrices are accordingly
adjusted are known as training algorithms, and the main ones can be deeply explored via
the relevant scientific literature [52–54].

Over the years, machine learning models based on artificial neural networks have
proven able to successfully approximate even highly nonlinear functions, returning out-
standing performance in several pavement engineering applications [55–57].
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3.3. Grid Search and k-Fold Cross-Validation

To enhance both the speed of convergence and the accuracy of the model, each fea-
ture underwent min–max normalization. This pre-processing procedure ensured that the
observation values were scaled to a range between 0 and +1, according to Equation (2):

xnorm =
x − xmin

xmax − xmin
(2)

where, for each variable, xnorm is the normalized value, x is the observed value, and xmin
and xmax represent its minimum and maximum values, respectively. Subsequently, roughly
the 75% of the dataset was used to train the models (75 observations out of 99). A five-
fold cross-validation technique was employed to fairly evaluate the resulting training
and validation performances of both models (CatBoost and ANN), and to subsequently
optimize their parameters according to a grid search [58]. Detailed descriptions of the
hyperparameters and search ranges of each model are provided in Table 5.

Table 5. Grid search for the best hyperparameters for each model.

ML Model Hyperparameter Search Range Optimal Value

CatBoost
Max depth 3–6 3

Learning rate 0.005, 0.01, 0.05 0.01
Max iterations 500, 1000, 5000 5000

ANN

Hidden layer size 1–50 38
Activation function Identity, Logistic, TanH, ReLU ReLU

Solver SGD [52], Adam [59] Adam
Max iterations 500, 1000, 5000 1000

Once the best hyperparameter combination was identified, the best-calibrated model
was tested on an independent testing set made from the remaining 24 observations (roughly
25% of the dataset). This allowed several goodness-of-fit measures to be determined,
including mean absolute error (MAE), mean absolute percentage error (MAPE), mean
squared error (MSE), root mean squared error (RMSE), Pearson correlation coefficient (R),
and determination coefficient (R2) [47].

Their mathematical formulations (Equations (3)–(8)) are presented below:

MAE =
1
n

n

∑
i=1

∣∣SMTi − SMPi

∣∣ (3)

MAPE =
1
n

n

∑
i=1

∣∣∣∣SMTi − SMPi

SMTi

∣∣∣∣× 100 (4)

MSE =
1
n

n

∑
i=1

(
SMTi − SMPi

)2 (5)

RSME =

√
1
n

n

∑
i=1

(
SMTi − SMPi

)2 (6)

R =
1

n − 1

n

∑
i=1

(
SMTi − µSMTi

σSMTi

)(
SMPi − µSMPi

σSMPi

)
(7)

R2 = 1 − ∑n
i=1
(
SMTi − SMPi

)2

∑n
i=1

(
SMTi − µSMTi

)2 (8)

where SMTi is the actual i-th value of the stiffness modulus, SMPi is the model-predicted
stiffness modulus value for the i-th observation, i is the observation index, n is the total
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number of observations, and µ and σ are the mean and the standard deviation values, re-
spectively. An overfitting detection algorithm was also implemented to avoid any potential
overfitting phenomena. During the training phase, before proceeding with the subsequent
iteration, both ML models determined their corresponding best loss value coupled with
the number of iterations since this optimal value was achieved. If the latter overtook a
predetermined upper threshold (here set as 20), the algorithm automatically stopped the
training phase.

4. Results and Discussion

To justify the choice of the CatBoost approach and highlight its better performance
compared with that of the ANN model, an in-depth comparative analysis was carried
out in the present study. It is important to mention that both models were calibrated and
subsequently tested using the same observations to ensure a fair performance comparison
in terms of the same goodness-of-fit measures.

A one-to-one visual comparison between the experimental target vector, the outputs
predicted by CatBoost, and those predicted by the ANN can be observed in Figure 4. The
histogram plot displays black bars representing the test set values, grey bars representing
the CatBoost predictions, and cyan bars representing the ANN predictions. The horizontal
axis shows the IDs of the 24 observations from which the test set was composed. Both
the ANN and CatBoost predictions closely match the observed SM experimental data,
with CatBoost performing slightly better than the ANN. This finding can be considered
significant since it highlights the accuracy and the reliability of both developed models.
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To gain a deeper comprehension of the capabilities of each model, regression diagrams
for the two outlined models can be observed in Figure 5. The observed experimental
values and the corresponding model predictions are plotted on x-axis and the y-axis,
respectively. The 45-degree black line represents perfect accuracy, i.e., 100% accurate
predictions. Training, validation, and testing observations are denoted by red triangles,
green crosses, and blue circles, respectively. A testing Pearson correlation coefficient for
each model is displayed at the top of the corresponding regression diagram. It can be
observed that the predictions of both models are closely aligned to the perfect accuracy
line, which further confirms the excellent results that we obtained. Again, the CatBoost
predictions showed a slightly higher accuracy, highlighted by a higher Pearson correlation
coefficient (0.9990).
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This condition is further highlighted in Figure 6, in which only the results obtained
during the testing phase are shown. It can be observed that, based on the same testing
vector, the predictions made by the CatBoost model (grey circles) are closer to the perfect
accuracy line with than those made by the ANN model (cyan circles).
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A detailed comparison of the results achieved by the two outlined models can be
found in Table 6, described in terms of the six goodness-of-fit measures. As was previously
mentioned, to ensure a fair comparison, both ML models were calibrated using the same
observations, and both employed the same pre-processing and resampling algorithms.

Based on the results obtained during the testing phase, it can be observed that the
difference between the two models in terms of prediction accuracy is roughly an order of
magnitude for each goodness-of-fit metric. The CatBoost model displayed the lowest error
metric values (MAE, MAPE, MSE, and RMSE) and the highest correlation metric values (R,
and R2), as is shown in Table 6.

Although the performance of each model was remarkable, it can be concluded that the
most reliable and successful one was CatBoost. For this reason, we decided to perform a
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sensitivity analysis of the results obtained in terms of SM with respect to the input variables
of the model, namely a categorical variable identifying the mixture, loading frequency, and
testing temperature.

Table 6. Training and testing error metrics of the investigated ML models.

Goodness-of-Fit
Measure

ML Model

CatBoost ANN

MAE (MPa) 300.49 2000.98
MAPE (%) 3.41 22.68

MSE (MPa2) 1.55 × 105 6.49 × 106

RMSE (MPa) 393.33 2547.83
R 0.9990 0.9540
R2 0.9968 0.8674

Determining the influence of a specific feature on the predictions of an ML model can
be difficult. To address this challenge, an algorithm for the feature importance calculation
was implemented. This algorithm helps determine how much the CatBoost predictions
change on average when the values of a particular feature are modified. A higher im-
portance value determines a greater prediction variation when that particular feature is
modified. The importance values were also normalized to return a total importance value
equal to 100%. As can be observed in Figure 7, the testing temperature had the highest
importance value (79.82%), followed by the loading frequency (18.93%) and the categorical
variable (1.25%).
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The results that were obtained show how the SM values are mainly dependent on
the testing temperature (as was expected from the Pearson correlation matrix results), and
secondarily dependent on the loading frequency. The categorical variable introduced to
distinguish the two mixture types is of minor importance, probably because of the quite
similar mechanical behavior exhibited by the two investigated mixtures.

In this respect, it should be mentioned that all the results described in the present
study refer to the experimental trial under consideration. Therefore, any other application
that differs from the proposed one will mandatorily require new calibration efforts and
new research to identify the best model hyperparameters.

5. Conclusions

To produce high-performance pavement for road infrastructure, the stiffness modulus
(SM) of the asphalt mixture needs to be determined during the mix design procedures since
it represents a crucial mechanical parameter. Expensive and time-consuming experimental
trials are usually carried out to this end, but machine learning-based methodologies could
provide useful tools to reduce laboratory efforts. If properly developed and implemented,
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reliable SM predictions of asphalt mixture performance could be provided by these soft
computing techniques, thus helping pavement engineers during data analysis procedures.

The current paper aimed to discuss two different approaches to modeling and pre-
dicting the stiffness modulus in four-point bending tests (4PBTs). The first approach is
based on decision trees and is named Categorical Boosting (CatBoost), and the second relies
on artificial neural networks (ANNs). Both methodologies were developed using Python
3.9.12 [60]. The experimental campaign involved two selected mixtures: one developed
for binder layers and the other for base layers. Both were prepared using standard 50/70
PG bitumen, spilite aggregate, and limestone filler. Three to five specimens were tested for
each of the eleven loading frequencies (from 0.1 to 50 Hz) and four testing temperatures
(from 0 to 30 ◦C). The obtained results were averaged and used to train and subsequently
test the developed ML models. The following conclusions can be drawn:

• Based on mixture composition and testing conditions, both the models were able to
reliably predict the resulting stiffness modulus of each mixture, properly balancing
accuracy and generalizability. This was ensured by the careful optimization of the
hyperparameters of both models using three different algorithms, namely an extensive
grid search, a five-fold cross-validation, and an overfitting detection.

• The optimal CatBoost model was characterized by a maximum tree depth of 3, a learn-
ing rate of 0.01, and a maximum number of training iterations of 5000. Conversely, the
optimal ANN model involved the Adam solver, and its architecture was characterized
by 38 hidden neurons, a ReLU activation function, and a maximum number of training
iterations of 1000.

• Based on six goodness-of-fit metrics, CatBoost proved to be the most suitable algorithm
to model the phenomena under investigation, outperforming the ANN. Its predictions
were characterized by outstanding accuracy, expressed by MAE, MAPE, and R2 values
equal to 300.49 MPa, 3.41%, and 0.9968, respectively. The corresponding ANN error
metrics were roughly an order of magnitude higher, resulting in a comparatively lower
prediction accuracy.

• A sensitivity analysis carried out on the CatBoost model revealed that the testing tem-
perature had the strongest influence on the SM predictions (79.82% of total importance),
followed by the loading frequency (18.93%) and the categorical variable (1.25%).

The outlined methodology represents an encouraging starting point, and it could help
pavement engineering professionals enhance mix design procedures.

As for future developments, the present research could be expanded in many ways:
(i) the generalization capabilities of the CatBoost model could be improved by collecting
more observations from several alternative mixtures; (ii) different optimization algorithms
could be further investigated to find new potential optimal solutions for the best hyper-
parameter combinations; and (iii) other alternative modelling variables (such as fatigue
or permanent deformation resistance) could be implemented as output, thus allowing a
comprehensive mechanical characterization to be properly carried out.
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