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Abstract
We propose a portfolio of exact and metaheuristic methods for the rich examination timetabling problem introduced by
Battistutta et al. (in: Hebrard, Musliu (eds) 17th International conference on the integration of constraint programming,
artificial intelligence, and operations research (CPAIOR-2020), LNCS, vol 12296. Springer, Berlin, pp 69–81, 2020). The
problem includes several real-world features that arise in Italian universities, such as examinations split into two parts, possible
requirements of multiple rooms for a single examination, and unavailabilities and preferences for periods and rooms. We
developed a CP model encoded in the MiniZinc modeling language and solved it with Gecode, as well as two MIP models
solved with Gurobi. The first MIP model is encoded natively and the second one again in MiniZinc. Finally, we extended
the metaheuristic method based on simulated annealing of Battistutta et al. by introducing a new neighborhood relation. We
compare the different techniques on the real-world instances provided by Battistutta et al., which have been slightly refined
by correcting some semantic issues. Finally, we developed a solution checker that is publicly available, together with all
instances and solutions, for inspection and future comparisons.

Keywords Examination timetabling · Constraint programming · Integer programming · Simulated annealing

1 Introduction

The timetabling of the final examinations is a difficult and
crucial task that every university department has to solve
regularly. Many versions of the examination timetabling
problem (ETTP) have been proposed in the literature, as any

B Rasmus Ørnstrup Mikkelsen
rasmusomikkelsen@gmail.com

Mats Carlsson
mats.carlsson@ri.se

Sara Ceschia
sara.ceschia@uniud.it

Luca Di Gaspero
luca.digaspero@uniud.it

Andrea Schaerf
andrea.schaerf@uniud.it

Thomas Jacob Riis Stidsen
thst@dtu.dk

1 RISE Research Institutes of Sweden, Uppsala, Sweden

2 University of Udine, Udine, Italy

3 Technical University of Denmark, Lyngby, Denmark

educational institution has its own rules and practices. They
range from very simple ones, inwhich only examination con-
flicts are taken into consideration, so that they turn out to be
simple extensions of the graph coloring problem (see, e.g.,
Carter et al., 1996), to extremely complex ones that include
room constraints, preferences, heterogeneous timeslots, and
many other practical features (see, e.g., McCollum et al.,
2007).

In this paper, we consider the real-world version intro-
duced byBattistutta et al. (2020) that applies to Italian univer-
sities, which includes composite examinations, preferences
and unavailabilities for periods and rooms, examinations in
multiple rooms, and many other features. In addition, con-
flicts are based on predefined curricula, rather than on student
enrollments as more commonly done. The original formu-
lation of Battistutta et al. (2020) has been refined to better
capture a few real-world practices and to correct some seman-
tic issues.

For this problem, we propose a portfolio of solution tech-
niques comprising both exact and metaheuristic methods.
Regarding the exact techniques, we developed two mixed
integer programming (MIP) models and a constraint pro-
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gramming (CP)model, where the latter model is an enhanced
version of the one originally proposed by Battistutta et al.
(2020). On the metaheuristic side, we improved the simu-
lated annealing (SA) proposed by Battistutta et al. (2020),
by developing a new neighborhood relation.

Our search methods have been tested and compared
among themselves and with the method by Battistutta et al.
(2020), providing insights into the performances of the dif-
ferent methods.

All instances and best solutions are available at https://
bitbucket.org/satt/examtimetablinguniuddata for inspection
and future comparison, in both JSON and dzn (MiniZinc
data files) formats. Furthermore, to encourage future contri-
butions from other researchers, we have also developed and
made publicly available a solution checker to protect against
possible misinterpretations of the data and the constraints.
Thanks to this tool, we have also detected and corrected
some discrepancies between the JSON and dzn formats in
the original files of Battistutta et al. (2020).

The paper is organized as follows. The problem formu-
lations are provided in Sect. 2. Section3 is dedicated to the
discussion on the relatedwork. Our searchmethods are intro-
duced in Sect. 4. The experimental analysis is illustrated in
Sect. 5. Finally, conclusions and future work are discussed in
Sect. 6.

2 Problem formulation

Our problem consists of scheduling the final examination of a
set of courses in a given time horizon.Within the horizon, we
have to schedule one ormore examination of the same course.
Each examination represents a fully independent round (or
call), so that students have multiple chances to pass a course.
In turn, each examination can be composed of one or two
parts (written and oral), called events.

Events must be assigned to a period, which represents a
timeslot and a day of the time horizon. Events take place in
rooms, which are classified according to their size. A single
event might require more than one room. Events might also
require no roomat all so that they are conventionally assigned
to the dummy room. In particular, in the oral part, students
are questioned sequentially one at the time, so that it can be
done also at the teacher’s office.

Courses are grouped into curricula that determine conflicts
and separations between their examinations. Each curricu-
lum has a set of primary and secondary courses, which imply
different levels of conflict and different distances among
examinations.

In this formulation, we do not consider the enrollments
of students to the specific examinations, as this information
is not known at the time of the creation of the timetable.

Therefore, the only sources of conflicts are the curricula and
the presence of the same teacher for two courses.

In detail, the main entities of the problem are the follow-
ing:

Courses, examinations, & Events For each course, there
are one or more examinations. Each examination might
be a single event (either written or oral) or composed
by two events: the written part (first) and the oral part
(second), to be scheduled in this strict order.
Rooms Events require zero, one, or more rooms. Rooms
are classified as small, medium, or large, and for each
written event, we set the number and the size of rooms
requested. (Mixed requests are not allowed.) The sets of
rooms that can be assigned to a single event are called
composite rooms, and they are listed in the input data.
Composite rooms are homogeneous, such that all rooms
of the set have the same size. An event may also use a
room larger than it requested, but this does not apply to
composite rooms. Oral events might require at most one
single room (of any size).
Days, Timeslots, & Periods The time horizon is divided
into days, and each day is split into timeslots. (The same
number of timeslots are given in each day.) A period is a
pair day/timeslot.
CurriculaCurricula are sets of courses that have students
in common, which therefore undergo the corresponding
examinations. The set of courses of a curriculum is clas-
sified in primary courses and secondary ones, according
to the expected number of students of the curriculum that
has to take the corresponding examination. As explained
below, the level of conflict between primary and sec-
ondary examinations of a curriculum is different.

The problem consists in assigning a period and a room
(single, composite, or dummy) to each event, satisfying the
hard constraints and minimizing the violations of the soft
constraints.

The hard constraints are the following:

H1. RoomRequest: Rooms assigned to an event must be
of the correct size and quantity.

H2. RoomOccupation: There must be at most one event
per room per period.

H3. HardConflicts: Two events must have different peri-
ods if they are in hard conflict. Two events have a
hard conflict in the following cases: (i) they are part
of courses that are both primary courses of one cur-
riculum; and (ii) they have the same teacher.

H4. Precedences: If one event precedes another, the first
one must be scheduled before the second one. Two
events have a precedence constraint in the following
cases: (i) they are written and oral parts of the same
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examination; and (ii) they are part of two consecutive
examinations of the same course.

H5. Unavailabilities: Events cannot be assigned to an
unavailable period or an unavailable room. Unavail-
abilities are explicitly stated for each specific event in
the input data.

The objectives (soft constraints) are the following:

S1. SoftConflicts: Two event should have different peri-
ods if they are in soft conflict, i.e., if they belong to courses
that are in the same curriculum, either as primary and sec-
ondary or both as secondary.
S2. Preferences: Events should not be assigned to an
undesired period or an undesired room. A period can also
be specified as preferred (a positive preference), so that in
case of preferred periods for an event, all indifferent ones
are assumed undesired (and explicitly undesired one are
given a larger penalty).
S3. Distances: Requested period separations between
events should be observed. We have two types of sepa-
rations: directed, the first event must precede the second
one, and undirected, such that they can be in any order.
We have a directed distance constraint in the following
cases:

– Same examination: written and oral events of the
same examination have a minimum and a maximum
distance.

– Same course: events belonging to consecutive exam-
inations of the same course must be separated by
a minimum distance. The separation constraint is
applied between the first (or single) part of each of
the two examinations.

We have a undirected distance constraint in the following
case:

– Same curriculum: if two courses belong to the same
curriculum, there should be a minimum separation
between the examinations (as above, for two-part
examinations, we consider the first one). The amount
of separation and the weight for its violation depend
on the type of the two (primary or secondary) mem-
berships.

The weight of the violation of the various types of soft
conflicts is normally set by the end-user. Similarly, all dis-
tance limits and the corresponding weights are configurable.
For the sake of reproducibility, in thisworkwefix theweights
to the values summarized in Table 1, whereas the distances
are listed in the input data.

Table 1 Weights of soft constraints

ID Name Type Weight

S1 SoftConflicts Primary/secondary 5

Secondary/secondary 1

S2 Preferences Undesired period 10

Not preferred period 2

Undesired room 5

S3 DirectedDistances Same examination 15

Same course 12

S3 UndirectedDistances Primary/primary 2

Primary/secondary 2

3 Related work

Examination timetabling is a classical optimization problem
that has been extensively studied in the scientific literature
(see, e.g., Qu et al., 2009; Schaerf, 1999). Here, we discuss
the formulations proposed, with particular attention to those
equipped with some public datasets, which can be used to
compare search methods.

The two formulations that have received most attention
in the literature are the one by Carter et al. (1996) and the
one proposed by McCollum et al. (2007) as part of the 2nd
International Timetabling competition (ITC2007). These two
formulations are rather different from each other, as the first
is an extremely simple formulation (basically an extension
of graph coloring), whereas the second one is more complex,
including several peculiar rules of the British universities.
Both formulations are complemented by very challenging
datasets composed of 13 and 12 instances, respectively, none
of which has been solved to proven optimality so far.

Another dataset comes from the Yeditepe University
(Turkey) introduced by Özcan and Ersoy (2005) and subse-
quently modified by Bilgin et al. (2006), who also extended
the Carter dataset by including room capacity (see Parkes
and Özcan, 2010 for a discussion on Yeditepe and modified
Carter datasets).

A study about real-world ETTP in the Asian context
was first introduced and subsequently extended by Kahar
and Kendall (2010, 2015), who presented the case of
Universiti Malaysia Pahang (Malaysia). Demeester et al.
(2012) addressed theETTPatKAHOSint-Lieven (Belgium),
whereas Müller (2016) showed the application of exami-
nation timetabling to a large American university (Purdue
University).

Woumans et al. (2016) proposed another interesting
formulation, which addressed the problem from a student-
centric perspective, considering the possibility of scheduling
the same examination more than once if it improves the
fairness among different student groups. The authors devel-
oped a Column Generation approach applied to a test case at
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the KU Leuven campus (Belgium). Muklason et al. (2017)
carried out an in-depth analysis of fairness in examination
timetabling.

More recent activity includes Keskin et al. (2018),
AbouKasmet al. (2019), andGüler et al. (2021) that havepre-
sented different specific formulations for real-world ETTPs.

Our formulation (Battistutta et al., 2020) consists of many
peculiar constraints and objectives that have not previously
been addressed together in the scientific literature. These
include one or more examination of the same course, which,
in turn, can combine a written and an oral part; examina-
tions split across multiple rooms; and primary and secondary
courses for each curriculum, determining different levels of
conflicts between the respective examinations.

After discussing the variants of ETTPs proposed in the lit-
erature, we move on to discussing the techniques employed
for their solution. Many different search methods have been
applied, ranging from exact methods, heuristics, metaheuris-
tics, and hybrid techniques.

The literature on the application of integer programming
(IP) for ETTPs is relatively sparse. Some works focus on
improved preprocessing and mixed integer programming
(MIP) formulations of the examination timetabling problem
posed in the ITC2007 (Arbaoui et al., 2015, 2019). Oth-
ers investigate university-specific problems. Al-Yakoob et
al. (2010) consider both examination timetabling and proctor
assignment at Kuwait University, defining and solving aMIP
for each problem. Cataldo et al. (2017) solve the examina-
tion timetabling problematDiegoPortalesUniversity (Chile)
using IP in four stages. The interesting feature of the latter
problem is that, similar to ours, it is curriculum-based, which
means that conflicts are defined based on the predefined
set of curricula. This is not the case for all other formula-
tions, for which conflicts are expressed on the basis of the
actual enrollment of the students to the specific examinations
(called post-enrollment timetabling). Recently, Al-Hawari et
al. (2020) have implemented a multistage MIP approach
to solve the ETTP at German Jordanian University (Jor-
dan), which is validated both on real-world instances and
on Carter’s benchmarks.

June et al. (2019) studied the ETTP at the Universiti
Malaysia Sabah Labuan International Campus (UMSLIC)
and developed a hybrid solution method that integrates CP
and SA in two phases: An initial feasible schedule is obtained
through constraint programming; then, the quality of the
solution is improved by SA. The method was tested on
datasets collecting the data of two semesters at UMSLIC
(Malaysia). Genc and O’Sullivan (2020) provided a CP
model, mainly based on bin-packing constraints, to solve the
examination timetabling problem at University College Cork
(Ireland).

Metaheuristics have proved to be really effective in solv-
ing ETTPs. Current best-known results on Carter’s instances

have been obtained by the SA developed by Bellio et al.
(2021), the genetic algorithm of Leite et al. (2018), and the
Great Deluge approach by Burke and Bykov (2016). Sim-
ilarly, state-of-the-art solvers for the ITC2007 formulation
have implemented variants of SA (Burke and Bykov, 2016;
Battistutta et al., 2017; Leite et al., 2019).

4 Searchmethods

In this section, we describe the search methods developed
in our study, namely mixed integer programming (Sects. 4.1
and 4.3), constraint programming (Sect. 4.2), and simulated
annealing (Sect. 4.4).

Table 2 shows some common notation used in our MIP
and CP models of the problem. In particular, we define the
set Rof all rooms, which includes single, composite, and
dummy rooms. On members of R , we define the notion of
equivalence: Two single rooms are equivalent if the have the
same size (small, medium, or large); two composite rooms
are equivalent if theirmembers have the same size (composite
rooms are homogeneous) and they have the same cardinality.
Finally, for composite rooms, we define the notion of over-
lapping rooms, which are their (single) members and other
composite rooms with members in common.

4.1 Mixed integer programming

In this section, we define an integer programming (IP) model
for the problem. However, we can relax several of the integer
variables, resulting in a mixed integer programming (MIP)
model. We generally refer to the model as a MIP for simplic-
ity, although it may be an IP. We use both model variants for
computational testing and explicitly state when the model
is an IP model. When comparing solution approaches, we
designate this method MIP.

We introduce the MIP model in Sect. 4.1.1, and in
Sect. 4.1.2, we describe a two-stage decomposition approach
using the model which we call MIP2S.

4.1.1 The MIP model

Table 3 shows the core decision variables of the model.
We have xe,p,r as the main decision variable, determining
each event’s period and room assignment. We include aux-
iliary variable ye,p to simplify writing some constraints and
reduce the number of nonzeros of themodel.Additionally,we
include he to attain the ordinal value of the period assigned
to each event. We use “lazy” notation and do not include the
most obvious conditions in sums. For example, sincewe only
define xe,p,r for p ∈ Pe ∧ r ∈ Re, a sum over events for
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Table 2 Notation for modeling
the problem

Sets Description

E The set of events

P The set of periods

R The set of rooms, including dummy room r̃

Rc The set of composite rooms (Rc ⊂ R )

K The set of room equivalence classes

Ro
rc The set of overlapping rooms of composite room rc ∈ Rc

Pe The set of available periods for event e ∈ E
Re The set of available rooms for event e ∈ E
Ke The set of available room equivalence classes for event e ∈ E
F The set of examination pairs with precedence constraints (H4)

HCe The set of events that is in hard conflict with e ∈ E (H3)

DP← The set of event pairs with a directed soft distance constraint

DP↔ The set of event pairs with an undirected soft distance constraint

Helper Description

O(·) Ordinal operator

Table 3 Decision variables of
the MIP model

Variables Description

xe,p,r ∈ B 1 if event e ∈ E is assigned to period p ∈ Pe and room r ∈ Re

ye,p ∈ B 1 if event e ∈ E is assigned to period p ∈ Pe

he ∈ Z0 The ordinal value of the period assigned to event e ∈ E

xe,p,r should be written as

∑

e∈E: r∈Re∧ p∈Pe

xe,p,r

but we simply write

∑

e∈E
xe,p,r

Constraints (1)–(7) ensure that we satisfy all hard con-
straints. Constraint (1) assigns each event to an available
period and room, satisfying H1 and H5. Constraints (2) and
(3) enforce H2 by ensuring that at most one event can use a
single room in any period and that composite rooms can only
be used if none of its overlapping rooms are simultaneously
used. In constraint (3), M equals the number of elements in
the overlapping rooms sum.We enforce precedence relation-
ships (H4) using (4) and avoid hard conflicts (H3) using (5),
where M equals the number of elements in the sum. Con-
straints (6) and (7) set the values of ye,pand he, respectively.

∑

p∈Pe

∑

r∈Rε

xe,p,r = 1 ∀e ∈ E (1)

∑

e∈E
xe,p,r ≤ 1 ∀r ∈ R, p ∈ P (2)

M
∑

e∈E
xe,p,rc +

∑

ro∈Ro
rc

∑

e∈E
xe,p,ro ≤ M ∀rc ∈ Rc, p ∈ P

(3)

he1 − he2 ≤ −1 ∀ (e1, e2) ∈ F (4)

M · ye,p +
∑

e2∈HCe

ye2,p ≤ M ∀e ∈ E, p ∈ Pe (5)

ye,p −
∑

r∈Re

xe,p,r = 0 ∀e ∈ E, p ∈ Pe (6)

∑

p∈Pe

O(p) · ye,p = he ∀e ∈ E (7)

We now move to the soft constraints, starting with soft
conflicts (S1), which involve primary/secondary (PS) and
secondary/secondary (SS) curriculum connections. For each
event e ∈ E , we define a set of PS and SS conflicting
events as SCPS

e and SCSS
e , respectively. We also intro-

duce integer variables sPSe,p and sSSe,p to, respectively, “count”
the number of PS and SS soft conflicts for event e in
period p. We set the variable values using constraints (8)
and (9). For these constraints, we get the values of big-
M as the number of elements in the sum, e.g., MPS

e,p =∣∣{e2 ∈ SCPS
e : O(e) < O(e2) ∧ p ∈ Pe2

}∣∣. The O(e) <
O(e2) condition ensures that a conflict is only counted once.
Variables sPSe,p and sSSe,p are bounded by 0 andMPS

e,p andMSS
e,p ,
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respectively.

MPS
e,p · ye,p +

∑

e2∈SCPS
e:O(e)<O(e2)

ye2,p ≤ sPSe,p + MPS
e,p ∀e ∈ E, p ∈ Pe

(8)

MSS
e,p · ye,p +

∑

e2∈SCSS
e:O(e)<O(e2)

ye2,p ≤ sSSe,p + MSS
e,p ∀e ∈ E, p ∈ Pe

(9)

To penalize violations of soft conflicts, we add the fol-
lowing terms to the objective function, where βPS and βSS

denote the soft conflict costs for PS and SS event pairs,
respectively.

CostS 1 = βPS
∑

e∈E

∑

p∈Pe

s PSe,p + βSS
∑

e∈E

∑

p∈Pe

sSSe,p

The second soft constraint (S2) is event period and event
room preferences. We define nonnegative costs αep and αer

and add the following terms to the objective function.

CostS2 =
∑

e∈E

∑

p∈Pe

αep ye,p +
∑

e∈E

∑

p∈Pe

∑

r∈Re

αer xe,p,r

As the third soft constraint (S3), the problem includes pre-
ferred distances between event pairs. For these event pairs,
we are given aminimum/maximumdistance parameter Pmin

e1,e2
and Pmax

e1,e2 , respectively. First,we showhowwe“measure” the
distance between event pairs before showing how we penal-
ize violations. Let DP← and DP↔ be the sets of event pairs
with a soft distance (min. or max.) constraint with directed
and undirected distances, respectively. An event pair (e1, e2)
has a directed distance requirement when we have a hard
precedence constraint (H4) that guarantees that e1 precedes
e2.

In order to include these soft constraints, we introduce
the variables shown in Table 4. First, we define the inte-
ger variable de1,e2 to take the absolute value of the distance
between e1 and e2. Notice that the maximum distance pos-
sible between any two events is always bounded by |P| .
When event pairs have a directed distance requirement, we
set de1,e2 correctly using constraint (10).

de1,e2 = he2 − he1 ∀ (e1, e2) ∈ DP← (10)

When event pairs have an undirected distance require-
ment, we need to use some additional auxiliary variables and
constraints to get the absolute distance correctly. We intro-
duce integer variable d↔

e1,e2 to measure the distance between
the two events. We set this variable using constraint (11),
and the variable may then take a negative value. We need
de1,e2 = |d↔

e1,e2 |, which we linearize in the following.

We introduce binary variable g↔
e1,e2 to be 1 if d↔

e1,e2 is pos-
itive and 0 otherwise.We set g↔

e1,e2 using constraints (12) and

(13). Thenwe introduce two variables dabs1e1,e2 and d
abs2
e1,e2 where

exactly one takes the absolute value of d↔
e1,e2 and the other

takes the value of zero. We set the values of these two vari-
ables using (14)–(18). For simplicity in writing the model,
we set the value of de1,e2 using constraint (19). In practice,
we (of course) simply use dabs1e1,e2 + dabs2e1,e2 in place of de1,e2 .

d↔
e1,e2 = he2 − he1 ∀ (e1, e2) ∈ DP↔ (11)

d↔
e1,e2 ≤ |P| · g↔

e1,e2 ∀ (e1, e2) ∈ DP↔ (12)

d↔
e1,e2 ≥ −|P| (1 − g↔

e1,e2

) ∀ (e1, e2) ∈ DP↔ (13)

dabs1e1,e2 ≤ |P|g↔
e1,e2 ∀ (e1, e2) ∈ DP↔ (14)

dabs1e1,e2 ≥ −|P|g↔
e1,e2 ∀ (e1, e2) ∈ DP↔ (15)

dabs1e1,e2 ≤ d↔
e1,e2 + |P| (1 − g↔

e1,e2

) ∀ (e1, e2) ∈ DP↔ (16)

dabs1e1,e2 ≥ d↔
e1,e2 − |P| (1 − g↔

e1,e2

) ∀ (e1, e2) ∈ DP↔ (17)

dabs2e1,e2 = dabs1e1,e2 − d↔
e1,e2 ∀ (e1, e2) ∈ DP↔ (18)

de1,e2 = dabs1e1,e2 + dabs2e1,e2 ∀ (e1, e2) ∈ DP↔ (19)

Table 5 shows an overview of when min. and max. dis-
tance soft constraints exist between two events and if the
distance is directed. Additionally, the table shows the vari-
able used to capture each specific distance violation, the
associated cost parameter, and the event pair sets for each
category.WO is shorthand for written and oral. Additionally,
PP and PS indicate primary–primary and primary–secondary
relations, respectively. Thus, for example, the last line of
the table relates to events that are associated two courses
such that one is a primary and the other a secondary course
of the same curriculum. To get the minimum and maxi-
mum distance violation, we, respectively, use constraints
with the following structure: pe1,e2 + de1,e2 ≥ Pmin

e1,e2 , and
de1,e2 − Pe1,e2 ≤ Pmax

e1,e2 . Thus, constraints (20)–(24) cor-
rectly set the pe1,e2 variables in the order they are shown in
Table 5.

pmin E
e1,e2 + de1,e2 ≥ Pmin

e1,e2 ∀ (e1, e2) ∈ DPE (20)

pminWO
e1,e2 + de1,e2 ≥ Pmin

e1,e2 ∀ (e1, e2) ∈ DPWO (21)

de1,e2 − pmaxWO
e1,e2 ≤ Pmax

e1,e2 ∀ (e1, e2) ∈ DPWO (22)

pmin PP
e1,e2 + de1,e2 ≥ Pmin

e1,e2 ∀ (e1, e2) ∈ DPPP (23)

pmin PS
e1,e2 + de1,e2 ≥ Pmin

e1,e2 ∀ (e1, e2) ∈ DPPS (24)

We then extend the objective function with

CostS3 = γ E
∑

(e1,e2)∈DPE

pmin E
e1,e2
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Table 4 Decision variables
included for the S3 constraints

Variables Description

de1,e2 ∈ Z+ The absolute distance value between assignments of e1 and e2

d↔
e1,e2 ∈ Z The actual distance between assignments of e1 and e2

g↔
e1,e2 ∈ B 1 if d↔

e1,e2 is positive

dabs1e1,e2 ∈ Z+ The absolute value of d↔
e1,e2 or zero

dabs2e1,e2 ∈ Z+ The absolute value of d↔
e1,e2 or zero

Table 5 Overview of soft
constraints related to minimum
and maximum distance (S3)

Event pair connection Type Directed Variable Cost Set

Examinations of same course Min Yes pminE
e1,e2 γ E DPE

WO parts of same examination Min Yes pminWO
e1,e2 γ WO DPWO

WO parts of same examination Max Yes pmaxWO
e1,e2 γ WO DPWO

Courses in PP curriculum Min No pminPP
e1,e2 γ PP DPPP

Courses in PS curriculum Min No pminPS
e1,e2 γ PS DPPS

+ γ WO
∑

(e1,e2)∈DPWO

(
pminWO
e1,e2 + pmaxWO

e1,e2

)

+ γ PP
∑

(e1,e2)∈DPPP

pmin PP
e1,e2

+ γ PS
∑

(e1,e2)∈DPPS

pmin PS
e1,e2

Finally, we note that we can relax the soft constraint
penalty counting variables (sPSe,p , sSSe,p, pminE

e1,e2 , pminWO
e1,e2 ,

pmaxWO
e1,e2 , pminPP

e1,e2 , and pminPS
e1,e2 ) to be continuous, as they nat-

urally will attain integer values using the given constraints.
Thus, we can express the model either as an IP or a MIP.

4.1.2 Two-stage decomposition

A typical approach for timetabling problems, especially for
IP-based methods, is constructing the timetable in two stages
(see, e.g., Daskalaki and Birbas, 2005; Kristiansen et al.,
2015; Al-Yakoob and Sherali, 2015). One successful decom-
position strategy involves first assigning events to periods
and afterward to rooms (Lach & Lübbecke, 2008, 2012;
Sørensen & Dahms, 2014). For this decomposition scheme
to be effective, we must ensure that the solution found in the
first stage is feasible or that we can easily fix any infeasibil-
ity in the second stage. In this problem, the only infeasibility
that could arise between the two stages is not observing the
room double-booking constraints (H2). However, rooms are
generally in excess for the available data, especially since
events can use rooms larger than they requested. Addition-
ally, we have no event room forbidding (hard) constraints in
the current data, and thus, with regard to feasibility, events
are indifferent to specific rooms, and rooms can be treated as
generic rooms of a specific size.

AB BC CD

ABC CDE

Fig. 1 Composite room conflict graph for the given example

Here we discuss how we implement such a decompo-
sition for this problem, which we designated MIP2S. In
the first stage, ye,pbecomes the primary assignment vari-
able, and we leave out all room-related aspects, e.g., the
xe,p,rvariables, room double-booking constraints, and room
preference objectives. We add these parts to the model in the
second stage. We use the first stage solution as a warm start
and do not fix any assignments, allowing the MIP solver to
change period assignments freely, and since the second stage
model is the full model, we gain valid lower bounds. In the
following, we define constraints to significantly reduce the
risk of overbooking a period in the first stage regarding room
capacity in the second stage.

Let T be the set of single room sizes, i.e., T = {S, M, L}
where S,M , L denote small,medium, and large, respectively.
Composite rooms consist of multiple rooms of the same size,
and we can therefore consider the combination of room size
and number of rooms, which we call a “room-type.” Let
Nt be a set of “number of rooms” for a given room size t .
For example, we have NS = {1, 2, 3} if the instance data
includes single small rooms and composite rooms consisting
of two, and three small rooms. Then (n, t) = (2, S) denotes
the room-type consisting of two small rooms.

Let E RT
n,t be the set of events that require a room of room-

type (n, t) and cn,t,p the capacity of room-type (n, t) in
period p. For single rooms (n = 1), we set the capacity
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to the number of single rooms of size t , or larger, available
in period p. For composite rooms, we need to handle com-
posite room member conflicts. We consider an example with
five single small rooms ({A, B,C, D, E}) and three (2, S)

({AB, BC,CD}) and two (3, S) ({ABC,CDE}) compos-
ite rooms. Figure1 shows the composite room conflict graphs
for the example. By inspection, we see that at most two (2, S)

and one (3, S) can be used at a time. These limits correspond
to each graph’s independence number. However, due to room
unavailabilities, the graph’s nodes may depend on the period
p. Thus, we get the capacity

(
cn,t,p

)
for composite room-

types as the independence number of the conflict graph in
period p.

Examinations requesting a single room can use rooms of
that size or larger, e.g., an examination requesting a small
room can use small, medium, and large rooms. Examinations
requesting a composite room can only use composite rooms
that meet their exact specification. Constraint (25) ensures
that we observe single room occupation and (26) specifically
limits the number of events assigned in a single period that
require composite rooms.

∑

t ′∈T
:t ′≥t

∑

n∈Nt

n
∑

e∈E RT
n,t

ye,p ≤
∑

t ′∈T
:t ′≥t

Ct,1,p ∀t ∈ T , p ∈ P (25)

∑

e∈E RT
n,t

ye,p ≤ Cn,t,p ∀t ∈ T , n ∈ Nt : n > 1, p ∈ P

(26)

These constraints do not consider composite room con-
flicts for composite roomswith a different number ofmember
rooms. However, in most cases, they are sufficient as few
instances have composite rooms with three and four mem-
ber rooms, and fewer still with the possibility of conflicts
between them. We have not experienced a solution from the
first stage being infeasible in the second stage throughout
our testing. By far, it is most important to forbid double-
booking between single and composite rooms with two
member rooms, as they are most common. Constraints (25)
and (26) handle this fully.

4.2 Constraint programming

In this section, we defineCP, a constraint programming (CP)
model for the problem, encoded in the MiniZinc modeling
language (see Nethercote et al., 2007) and solved with the
Gecode backend (see Gecode Team, 2019).

Although CP is an exact method, we actually use a heuris-
tic search method, because exhaustive search does not work
well for this problem. The heuristic search uses restarts and
large neighborhood search (LNS, see Shaw, 1998, Dekker et
al., 2018)

on top of a branch-and-bound scheme. This is expressed
by search annotations, which are passed to Gecode for exe-
cution. It is worth noting that this is supported by MiniZinc
straight out of the box.

As noted earlier, events are indifferent to specific rooms,
and rooms can be treated as generic rooms of a specific size.
We thus split R into a set K of equivalence classes. Then,
we solve the problem in terms of equivalence classes instead
of specific rooms, relaxing constraint H2 to allow multiple
events per class simultaneously up to the capacity of the class.
Finally, we trivially transform the obtained solution back into
one expressed in terms of specific rooms.We now present the
MiniZinc model step by step.

The parameters Events, Periods, Rooms, and
CRooms correspond to |E |, |P|, |R |, and |K|, respectively.
The decision variables are as follows,whereCRoomPeriod
Index(k, p) is a bijective function of the room class k and
period p. Also, CRoomPeriodIndex(k, p) is monotoni-
cally increasing in the absolute distance between p and the
middle period. In other words, the farther away p is from the
middle period, the larger the function value is.EventCRP[e]
is an auxiliary variable for the (period, room class) combi-
nation of event e:

array [1.. Events] of var 1.. Periods: EventPeriod;

array [1.. Events] of var 1.. CRooms: EventCRoom;

array [1.. Events] of var int: EventCRP =

[CRoomPeriodIndex (EventCRoom[e],EventPeriod[e]) :: domain | e in 1.. Events ];

The first constraints encode constraints H1 and H5:

constraint

forall(e in 1..Events , p in 1.. Periods

where EventPeriodConstraints[e, p] = -1) (EventPeriod[e] != p);

constraint

forall(e in 1..Events , r in 1.. CRooms

where EventCRoomConstraints[e, r] = -1) (EventCRoom[e] != r);

By eliminating up front infeasible values from the domain
of EventCRP, the next constraint contributes to encoding
constraint H5:

constraint

forall(e in 1..Events , c in 1..CRooms , p in 1.. Periods

where CRoomPeriodConstraints[c,p] = -1)

(EventCRP[e] != CRoomPeriodIndex(c,p));

The next constraint encodes constraint H2:

• The quantity count[k, p] counts the number of events
for given equivalence class k and period p by means of
a global_cardinality_closed constraint (see
Stuckey et al., 2020), and its value can be at most the
cardinality of given equivalence class k.

• A composite room cannot be used simultaneously with
an overlapping room.
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constraint

let {array [1.. CRooms ,1.. Periods] of var 0..max(CRoomCap): count} in

global_cardinality_closed([ EventCRP[e]

| e in 1.. Events where RoomedEvent[e]=1

],

1.. CRooms*Periods ,

array1d(count)) /\

forall(p in 1..Periods , r in 1.. CRooms)(count[r,p] <= CRoomCap[r]) /\

forall(p in 1..Periods ,

r1 in 1..CRooms ,

r2 in 1.. CRooms where r1<r2 /\ CRoomsetOverlap[r1,r2]=1)(

min(count[r1,p], count[r2,p]) = 0

);

The next constraint encodes the hard conflicts rule
(constraint H3) using an alldifferent constraint (see
Stuckey et al., 2020), where each c ∈ AllCliques is
a maximal clique of events that are in hard conflict with
each other. The cliques are computed by the Python func-
tion networkx.find_cliques, which is based on the
algorithm published by Bron and Kerbosch (1973) in a pre-
processing step, which runs in negligible time compared to
the solving time.

constraint

forall(c in AllCliques )( alldifferent(e in c)( EventPeriod[e]));

The next constraint enforces precedences (constraint H4):

constraint

forall(e1 in 1.. Events - 1, e2 in e1 + 1.. Events

where Precedence[e1, e2] = 1)

(EventPeriod[e1] < EventPeriod[e2]);

Thenext constraint defines theConflictDistanceCost
term of the objective function (constraints S1 and S3). We
have transformed the raw input data, which was given as
several large arrays and several cost terms for many pairs of
events, into two arrays CostKeys and CostVectors that
aggregate these data into at most one cost term per event pair.
This transformationwasdone in the same spirit as tabling (see
Dekker et al., 2017). Let i be a row of CostKeys containing
a pair (e1, e2) of events and let δ be their temporal distance.
Then CostVectors[i, δ] is the incurred cost for that pair:

constraint

ConflictDistanceCost =

sum(i in index_set_1of2(CostKeys ))(

let {int: e1 = CostKeys[i,1],

int: e2 = CostKeys[i,2],

var int: delta = EventPeriod[e2]-EventPeriod[e1],

} in CostVectors[i, delta]

);

The last constraints define the remaining terms of the objec-
tive function (constraint S2):

constraint

CRoomPreferenceCost =

max(0,sum(e in 1.. Events)( EventCRoomConstraints[e, EventCRoom[e]]));

constraint

PeriodPreferenceCost =

max(0,sum(e in 1.. Events)( EventPeriodConstraints[e, EventPeriod[e]]));

constraint

CRoomPeriodCost =

max(0,sum(e in 1.. Events)( CRoomPeriodConstraints[EventCRoom[e],

EventPeriod[e]]));

Finally, the search and minimization statement is as follows,
where SortedEvents is the sequence of events in some
heuristic order, and the four ∗Cost expressions are the terms
of the objective function:

array [1.. Events] of 1.. Events: SortedEvents;

array[int] of var int: CRPE = [EventCRP[e] | e in SortedEvents ];

solve

:: restart_luby (100)

:: relax_and_reconstruct (CRPE , 97)

:: int_search(CRPE , dom_w_deg , indomain_split)

minimize ConflictDistanceCost + CRoomPreferenceCost +

PeriodPreferenceCost + CRoomPeriodCost ;

The search annotations are:

– restart_luby(100)—the kth restart is given a node
limit of 100 · Lk , where L is the Luby restart sequence
(see Luby et al., 1993).

– relax_and_reconstruct(CRPE, 97)—atevery
restart after finding the first solution, an LNS step is per-
formed where 3% randomly selected decision variables
are set free and the remaining 97% keep their current
values.

– int_search(CRPE, dom_w_deg, indomain_
split)—this annotation determines the order in which
variables and their values are explored. The next variable
to explore is the EventCRP variable with the smallest
current domain size divided by weighted degree, break-
ing ties by theSortedEventsorder. For thedesignated
variable, explore the lower half of its domain first, split-
ting domains until one value has been singled out. By the
monotonicity property of CRoomPeriodIndex, this
has the effect of attempting to place events close to the
middle period before attempting to place them farther
away from the middle.

The choice of Luby as opposed to other restart schemes
and of the parameter values was made after preliminary
experimentation.

4.3 Mixed integer programming with MiniZinc

In this section, we define MIPMZ, another MIP model for
the problem. It is solved with the Gurobi backend (see
Gurobi Optimization, LLC, 2021). MiniZinc has rich sup-
port for binarizing multiple-value domains and linearizing
constraints to make models suitable for execution by MIP
solvers. We have not relied much on that support; instead,
our model uses 0–1 variables and linear constraints almost
exclusively. In fact,MIPMZ was derived from the CP model
by manual binarization and linearization.

The key difference between CP and MIPMZ are in
the decision variables, which are all 0–1, as follows.
EventPeriodCRoom is the main decision variable, which
relates events, periods, and room classes. The CP counter-
parts are EventPeriod and EventCRoom.

array [1.. Events ,1.. Periods ,1.. CRooms] of var 0..1: EventPeriodCRoom;
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Another decision variable CostDistance facilitates the
part of the objective function that depends on the temporal
distance between events. Let i be a row of CostKeys con-
taining a pair (e1, e2) of events and let δ be their temporal
distance. Then CostDistance[i, d] = 1 if d = δ and 0
otherwise:

set of int: CostIndex = index_set_1of2 (CostKeys );

set of int: Distance = index_set_2of2 (CostVectors );

array [CostIndex ,Distance] of var 0..1: CostDistance ;

The MIPMZ constraints consist of a straightforward lin-
earization and adaptation of theCP constraints to theMIPMZ

variables.

4.4 Simulated annealing

The simulated annealing (SA) approach is an extension of
the one proposed by Battistutta et al. (2020). In detail, to
represent a state in the search space we use two vectors
that store the period and the room of each event, respec-
tively. Only periods in Pe and rooms in Re can be assigned
to event e, thus explicitly enforcing constraints H1 and H5.
The other constraints, namely H2 (RoomOccupation), H3
(HardConflicts), and H4 (Precedences), can be violated and
are included in the cost function with a high weight. The
cost function is thus a linear combination of the soft con-
straints S1–S3 and a measure of the distance to feasibility,
corresponding to the degree of violation of constraints H2,
H3, and H4.

The initial solution is generated totally at random, except
that it always satisfies constraintsH1 andH5. This is obtained
simply by drawing randomly period and room assignments
for event e from Pe and Re, respectively.

Regarding the neighborhood relation, Battistutta et al.
(2020) employed the one, calledMEE (MoveEventOrExam),
that moves either a single event (with probability 1 − pb)
or the two events associated with a composite examination
jointly (with probability pb).

We also use MEE, but in combination with a new neigh-
borhood, called SE (SwapEvents), which swaps period and
room of two single events. Only events that do not belong to a
composite examination are included in the SE neighborhood.

At each iteration a randommove is drawn from the neigh-
borhood MEE ∪ SE. The move selection is biased on the
basis of a parameter ps (called swap rate), so that a SE
move is selected with probability ps , and a MEE move with
probability 1− ps . The parameters pb and ps are fixed exper-
imentally, according to the tuning procedure. The drawing of
the specific move inside the selected neighborhood is made
according to a uniform distribution.

As customary for SA, we use the Metropolis acceptance
criterion: A move is always accepted if it is improving or
sideways (i.e., same cost), whereas it is accepted based on a
time-decreasing exponential distribution e−Δ/T in case it is

worsening, whereΔ is the difference of total cost induced by
the move, and T is the temperature.

The temperature starts at the initial value T0 and is evolves
according to the standard geometric cooling scheme of SA,
with the cutoff mechanism. That is, it is decreased during the
search by multiplying it by a value α (with 0 < α < 1) after
a fixed number of samples Ns have been drawn, or a fixed
number of moves Na have been accepted.

For the tuning procedure, we decided to use as stop cri-
terion the total number of iterations I, in order to keep the
running time approximately equal for all configurations of
the parameters. In our experiments, we fixed I = 108, cor-
responding to an average time of approximately 660s per
run.

The tuning procedure has been performed using the tool
json2run (Urli, 2013), which samples the configurations
using theHammersley point set (Hammersley&Handscomb,
1964) and implements the F-Race procedure (Birattari et al.,
2010) for comparing them.

The winning configuration turned out to be: T0 = 188.89,
α = 0.875, Ns = 2092772, Na = 292988, pb = 0.967, and
ps = 0.288.

For the experiments in the comparisonwith the other tech-
niques, in order to have the same fixed running time on all
instances, we use an additional stop criterion based on total
running time.

5 Experimental analysis

We first introduce the dataset employed in the analysis
(Sect. 5.1), thenwe show the settings used for the comparison
(Sect. 5.2), and finally, we report and discuss the experimen-
tal results.

5.1 Problem instances

The dataset is composed of real-world instances extracted
from various Italian universities and collected by Battistutta
et al. (2020). They are written in JSON file format but are
also made available in dzn format, thanks to a preprocessing
procedure that splits courses into single events and distributes
constraints accordingly.

In reference to the extraction and preprocessing proce-
dures, we have corrected a few minor issues in the code of
Battistutta et al. (2020) so that the instances that we use here
are actually slightly revised with respect to the ones used by
Battistutta et al. (2020).

The repository https://bitbucket.org/satt/examtimetablin
guniuddata contains both the original instances and the
revised ones. In addition, the it also contains a software tool-
box, written in Python, that allows us to check the validity
of instances and solutions. The software has been written
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Table 6 Instance features Instance Courses Events Periods Timeslots Single rooms Composite rooms

D1-1-16 261 261 40 2 64 0

D1-1-17 247 247 46 2 65 0

D1-2-16 254 254 36 2 64 0

D1-2-17 281 281 38 2 65 0

D1-3-16 239 239 26 2 65 0

D1-3-17 254 254 34 2 65 0

D1-3-18 258 258 52 2 64 0

D2-1-18 57 62 156 6 0 0

D2-2-18 58 61 162 6 0 0

D2-3-18 58 61 204 6 0 0

D3-1-16 81 164 188 4 14 3

D3-1-17 89 177 188 4 15 3

D3-1-18 87 174 188 4 15 3

D3-2-16 76 78 48 4 14 3

D3-2-17 87 88 48 4 15 3

D3-2-18 82 84 48 4 15 3

D3-3-16 78 80 48 4 14 3

D3-3-17 84 85 48 4 15 3

D3-3-18 81 83 48 4 15 3

D4-1-17 234 361 80 2 34 0

D4-1-18 223 476 80 2 34 0

D4-2-17 226 482 88 2 34 0

D4-2-18 238 514 86 2 34 0

D4-3-17 223 235 38 2 34 0

D4-3-18 240 260 38 2 34 0

D5-1-17 134 277 122 2 17 4

D5-1-18 148 311 136 2 20 4

D5-2-17 125 344 136 2 17 4

D5-2-18 156 426 122 2 20 4

D5-3-18 129 132 24 2 17 4

D6-1-16 189 487 66 2 29 41

D6-1-17 194 494 80 2 29 41

D6-1-18 198 511 80 2 29 41

D6-2-16 193 511 78 2 29 41

D6-2-17 195 501 88 2 29 41

D6-2-18 207 539 90 2 29 41

D6-3-16 192 346 58 2 29 41

D6-3-17 192 350 52 2 29 41

D7-1-17 63 150 155 5 22 0

D7-2-17 60 136 330 10 22 0

independently from the solvers so to be used as a sort of
third-party solution checker in the spirit of the methodol-
ogy outlined in (Bonutti et al., 2012). Besides allowing the
debugging of the different solution approaches presented in
this paper, this toolbox will provide against misinterpreta-
tions of the different constraints in case of future works on
the same problem by different researchers, thus enabling the

comparability of results. In addition, the software provides a
format translator between the original (and richer) JSON for-
mat to the event-based dzn format and a tool for computing
a set of features from both the instances and the solutions.

Related to this last functionality, Table 6 shows the main
features of the revised instances in terms of the total num-
ber of courses, events, periods, single rooms and composite
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rooms, and the number of timeslots (i.e., periods in a day).
The name of each instance follows this pattern: Dx-y-z,
where x is the department identifier, y is the examination
season, and z is the academic year. It can be noticed that
instances of the same department are quite homogeneous,
except for D3, D4, and D5, where the number of events and
periods changes during the year depending on the season.

5.2 Setting and tuning

We run all experimental tests in a high-performance comput-
ing cluster on 64bit computers running Scientific Linux 7.7.
We use computers equipped with 756GBRAM and two Intel
Xeon Gold 6226R CPUs clocked at 2.90GHz. We run the
MiniZinc model using MiniZinc version 2.5.5 (see Nether-
cote et al., 2007) andGecodeversion6.3.0 (seeGecodeTeam,
2019). To solveMIPmodels,we useGurobi 9.1.0 (seeGurobi
Optimization, LLC, 2021). The simulated annealing proce-
dure has been implemented in C++ and compiled using GNU
g++ (v. 9.2.0).

For all tests, except for lower bounds (LB), we have ten
runs using a single thread for an hour. To get lower bounds,
we have five runs using four threads and a runtime of 24h.
Table 7 shows the parameter settings used for each test. The
Gurobi Presolve parameter controls the level of presolve,
and a value of 2 indicates “aggressive” and 0 turns it off.
The MIPFocus modifies Gurobi’s high-level search strategy,
such that a value of 1 instructs Gurobi to focus on finding
solutions and 3 to focus on improving the bound.

Through testing we found that when running MIP (the
full model discussed in Sect. 4.1), we get better results when
using the MIP variant of the model as opposed to the IP
variant. The MIP2S gets better results when using the IP.
Additionally, testing revealed that the best time distribution
for MIP2S was to run the first stage for 99% of the available
time, leaving just 36 s for the second stage. It is generally easy
for the solver to add rooms in the second stage warm start
without incurring in any room preference penalties. Thus
time is better spent in the first stage. We skip presolving as
there is no benefit given such a short time limit, and it is
better to try and eliminate any introduced room preference
penalties. Finally, we use the IP model variant for getting
lower bounds, as this model generally finds better bounds.

When running MIPMZ, we leave the presolve parameter
to the default value, as an aggressive presolve strategy on
this model leads to a very long presolving phase on most
instances, resulting in worse performance.

For SA, we used the winning configuration of parameters
shown in Sect. 4.4, except for Ns and Na , which have been
increased in order to have one hour running time.

Table 7 Parameters used for testing

Method Parameters

SA T0 = 188.89, α = 0.875, Ns = 6278316

Na = 878964, pb = 0.967, and ps = 0.288

CP Default

MIPMZ MIPFocus = 1

MIP Presolve = 2, MIPFocus = 1

MIP2S Stage 1: Presolve = 2, MIPFocus = 1

Stage 2: Presolve = 0, MIPFocus = 1

LB Presolve = 2, MIPFocus = 3

5.3 Comparative results

Table 8 reports the average results of ten runs of each
technique with a timeout of one hour. The second column
represents the results of the code by Battistutta et al. (2020)
(with some minor corrections), which we rerun on this test
computer with the same timeout. The column Best reports
the best-known results, obtained using all performed exper-
iments.

First, we notice that SA improves upon the previous ver-
sion on all instances but two, although the gap is relatively
small. The results of CP are somewhat inferior, with some
cases in which they are particularly poor. The situation is
more extreme for the other MiniZinc-based model MIPMZ,
which has some good results, but in other cases, they are
extremely bad or even with no solution returned within the
given timeout. A more stable behavior could perhaps be
obtained by using a lazy clause generation solver, which
Gecode is not (see Ohrimenko et al., 2009), but unfortu-
nately, at this time, none is available that also has support for
LNS.

Regarding the MIP and MIP2S methods, unsurprisingly,
the two-stage method MIP2S has (generally) better perfor-
mance than the single-stage one MIP, as, like CP, it makes
use of a preprocessing step that removes one dimension of
the problem (i.e., the rooms), which has little effect on solu-
tion value. The fact that MIP2S works better than MIP is
because, in our instances, rooms are not a critical resource.
Indeed, in most current cases, room endowment is sized for
the course lectures, which normally require more space than
the examinations, so it turned out oversized for the exami-
nations. Nonetheless we might expect future cases in which
rooms are more critical.

Finally, we notice that MIPMZ and MIP2S provide more
robust results than SA on two instances, namely D4-1-17 and
D6-3-17, consistently obtaining the best values (276 and 30,
respectively).

Regarding the lower bounds, we see that, besides the cases
in which there is a perfect solution (cost 0), they are quite
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Table 8 Comparative results
and lower bounds

Instance SA Batt. et al. CP MIPMZ MIP MIP2S Best LB

D1-1-16 385.0∗ 393.9 414.2 388.0 399.0 394.0 381 192

D1-1-17 320.3∗ 328.2 370.9 323.0 329.0 324.0 318 181

D1-2-16 524.6∗ 535.0 561.8 543.0 554.4 536.0 521 216

D1-2-17 613.0∗ 625.7 661.9 690.0 654.0 631.0 609 233

D1-3-16 724.9∗ 733.5 757.9 767.4 741.0 729.0 720 218

D1-3-17 614.2∗ 622.3 648.3 634.0 639.0 621.0 612 221

D1-3-18 265.0∗ 266.8∗ 279.6 270.0 272.0 266.0 264 190

D2-1-18 427.6∗ 426.8∗ 440.8 464.0 448.0 N/A 426 4

D2-2-18 22.0∗ 22.0∗ 27.4∗ N/A 22.0∗ N/A 22 20

D2-3-18 22.0∗ 22.0∗ 22.0∗ N/A 22.0∗ N/A 22 10

D3-1-16 0.0∗ 0.0∗ 1.2∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-1-17 0.0∗ 0.0∗ 0.6∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-1-18 0.0∗ 0.0∗ 0.2∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-2-16 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-2-17 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-2-18 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-3-16 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-3-17 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D3-3-18 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D4-1-17 276.6∗ 278.8∗ 296.3 276.0∗ 278.0 276.0∗ 276 256

D4-1-18 1037.3∗ 1060.1 1174.2 7984.1 1322.5 1156.1 1028 409

D4-2-17 1126.0∗ 1150.8 1320.7 – 1533.9 1490.6 1105 459

D4-2-18 1594.5∗ 1616.8 2360.6 – – 2099.6 1579 530

D4-3-17 373.6∗ 381.1 403.3 381.0 383.6 377.0 372 224

D4-3-18 677.4∗ 691.9 757.1 826.0 802.0 752.0 670 265

D5-1-17 157.0∗ 158.1∗ 198.1 1261.0 218.0 160.2 156 0

D5-1-18 36.6∗ 38.2∗ 99.2 327.4 80.2 38.0 36 0

D5-2-17 60.0∗ 60.0∗ 81.6 – 296.0 64.0 60 0

D5-2-18 271.6 272.2∗ 339.3 – 629.2 356.0 264 0

D5-3-18 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0 0

D6-1-16 443.3 442.0∗ 891.2 23194.0 1266.2 519.8 432 61

D6-1-17 367.1∗ 377.0 621.8 – 577.0 637.0 360 83

D6-1-18 400.2∗ 405.7∗ 1019.2 – 565.6 493.0 392 75

D6-2-16 516.1∗ 527.2 1792.9 – 741.9 573.4 506 76

D6-2-17 564.8 569.8∗ 1667.9 – 1095.3 715.1 558 80

D6-2-18 202.9∗ 214.6 590.9 – – 280.8 199 56

D6-3-16 27.0∗ 27.0∗ 34.1 27.0∗ 27.0∗ 27.0∗ 27 27

D6-3-17 30.2∗ 30.3∗ 43.5 30.0∗ 30.0∗ 30.0∗ 30 26

D7-1-17 395.7∗ 397.5∗ 479.3 484.2 524.2 435.0 386 40

D7-2-17 764.2 764.4∗ 847.8 6161.2 949.4 938.0 758 10

Results in bold indicate best average solution values. Values marked with (∗) show that the given method
found the best solution for that instance
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tight (below20%) only in four cases. In particular, in one case
the lower bound is equal to the best solution, thus proving its
optimality.

6 Conclusions and future work

Wehave investigated three independent optimizationparadigms,
namely CP, MIP, and SA, for the real-world examination
timetabling problem proposed by Battistutta et al. (2020).

For MIP, we have developed three different versions
(MIPMZ,MIP, andMIP2S), thus resulting in five total alter-
native search methods that we compared among themselves
and with the original SA of Battistutta et al. (2020). Even
though the techniques have been developed independently
(and by different authors), they have been run on the same
machine with the same timeout, to have a fair competition
ground. In addition, we also computed some valid lower
bounds.

Unsurprisingly, themetaheuristic approach, properly tuned,
turned out to work better on the majority of instances, but
the exact techniques are close and actually better on a few
instances.

All instances and solutions are available for inspection
and future comparison, along with the solution checker that
reports the value of the objective function.

In the future, we will investigate the correlation of the
results of the different search methods with the features of
the specific instances. To this aim,we plan to collect new real-
world instances and possibly develop a principled instance
generator to study such correlation on a potentially unlimited
number of instances.

In addition, we plan to develop hybrid techniques that
could benefit from the respective advantages of the different
search methods. These hybrid techniques would range from
simple ones using SA for warm-startingMIP and CP, tomore
complex interaction mechanisms such as Benders (1962)
decomposition or the matheuristic paradigm (see Maniezzo
et al., 2021).
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