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1. Introduction

1.1. History

The notion of a geproci set is a specific case of importing a broader, inverse scattering, perspective into 
algebraic geometry. Rather than asking to classify finite sets Z ⊂ Pn (over an algebraically closed field k) 
with a specific property (like say classifying those Z whose ideal I(Z) in the homogeneous coordinate ring 
k[Pn] of Pn is a complete intersection, or is Gorenstein, or has a linear resolution, etc.), one can ask to 
classify those Z whose projection Z ⊂ H from a general point to a hyperplane H ⊂ Pn has the desired 
property. I.e., what can one say about Z given that its shadow Z generally has a certain property? (In 
tomography, for example, one tries to understand a 3 dimensional body from the behavior of planar data 
provided by x-ray shadowgraphs taken from multiple directions.)

Research exploring this idea is in its infancy; so far the only property studied from this perspective 
is where Z is a complete intersection (meaning I(Z) ⊂ k[Pn]/I(H) = k[Pn−1] is generated by n − 1
homogeneous polynomials). In this case we say Z is geproci, since its GEneral PROjection is a Complete 
Intersection.

Trivially, if Z is already a complete intersection contained in a hyperplane, then Z is also a complete 
intersection, hence Z is geproci. The initial question, raised by F. Polizzi and answered by D. Panov [10,5], 
was whether any nondegenerate geproci sets exist even in P 3. Panov’s answer was by way of constructing 
examples called grids in P 3. (We say Z is a grid exactly when Z is the intersection of two curves A, B ⊂ P 3, 
each of which is a union of skew lines such that A and B have no common components and every component 
of A meets every component of B, and where A ∩ B = Z where A and B are the projections of A and B
to H.) It still remains unclear whether nondegenerate geproci sets exist in Pn for n > 3, and it remained 
unclear until [4, Appendix] whether any nondegenerate nongrid geproci sets exist in P 3. (Of course, the 
question is not interesting for subsets of P 1, and every finite subset of P 2 is obviously geproci.)

The new examples given by [4] were based on work on unexpectedness [7]. They are what has come to 
be known as half grids [9], meaning (see below) that Z is the transverse intersection of two curves in H, 
only one of which is the image A of a curve A in P 3 containing Z; by [3] A consists of disjoint lines. (The 
curve A is not always uniquely determined by Z. For example, there are 16 lines which each contain three 
of the points of a certain 12 point half grid coming from the D4 root system, discussed in more detail below, 
and 32 choices of four of these 16 lines can play the role of A. But with respect to a given choice of A, the 
components of A are called half grid lines of Z. Each half grid line contains the same number of points of 
Z, so |Z| = ab where a = degA is the number of half grid lines and b is the number of points of Z on each 
half grid line.)

The half grid examples in [4] come from root systems (such as D4 and F4); the paper [1] gives a way 
(called the standard construction, modeled on the examples given by D4 and F4) of making many more 
examples of half grids and also finds three examples of nondegenerate nongrid non-half grid geproci sets 
(and, remarkably, these three are all connected to quantum mechanics; see [1, §8.1]). Although no examples 
other than these three are currently known in characteristic 0, a method of constructing many examples 
of nondegenerate nongrid non-half grid geproci sets in positive characteristics is given in [8], based on the 
combinatorial concept of minimal partial spreads of lines in P 3 over a finite field.

Since degenerate geproci sets and grids are easy to understand, the next step is to try to understand 
half grids. Analyzing half grids in general remains an open problem, although, as [3] shows, skew lines, 
such as we have with half grid lines, have a combinatorial structure that should in the future be helpful 
in analyzing half grids. In the meantime it is helpful to note, as Caesar did in de Bello Gallico with Gaul 
(“Gallia est omnis divisa in partes tres”), that half grids split into three cases, defined not geographically 
but geometrically. Given a half grid Z with half grid lines L1, . . . , La, there are either 0, 1 or 2 lines (called 
transversals) that meet every one of the half grid lines. (Having three or more transversals would force Z
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not to be a half grid but rather a grid.) The hardest situation (still to be investigated) is when there is at 
most one transversal. The reason it is easier to analyze the case where there are two transversals is, as we 
shall see, partly due to the fact that an automorphism of P 1 fixing two points can be regarded as a scalar 
multiplication, thinking of the two fixed points as being 0 and ∞. (The half grid lines of the half grids Z
given by the standard construction of [1] all have two transversals.)

As noted in the title and abstract, it is precisely this case of half grids with two transversals that is our 
focus here.

1.2. Background and conventions

Throughout this paper we work over the complex numbers, and Z will always be a reduced finite set of 
points in P 3. We denote by ZP,H (but often just by Z) the image of Z under projection to a plane H ∼= P 2

from a general point P . When ZP,H is a transverse intersection of two curves in H we say Z is geproci.
More specifically, following [1], we say that Z is an (a, b)-geproci set if Z is the transverse intersection of 

curves in H of degrees a and b with a ≤ b; i.e., if Z is a complete intersection of type (a, b) with a ≤ b, and 
we say that Z is {a, b}-geproci if we drop the condition a ≤ b.

Definition 1.1. An {a, b}-geproci set is an {a, b}-grid (or (a, b)-grid if a ≤ b) if there is a set A of a skew 
lines with each line containing exactly b of the points, and a set B of b skew lines with each line containing 
exactly a of the points (if a = b we also require A and B to have no lines in common; this is automatic if 
a < b or b < a). An (a, b)-half grid (or {a, b}-half grid) is an (a, b)-geproci (or {a, b}-geproci, resp.) set for 
which either A or B exists but not both. In addition, we say that an {a, b}-geproci set is an [a, b]-half grid
if it consists of a points on each of b skew lines.

The main results of [1] establish the existence of non-grid (a, b)-geproci sets of points for all integers 
4 ≤ a ≤ b and for (a, b) = (3, 4). In the latter case [1] provides also the full classification: up to projective 
equivalence (i.e., up to choice of coordinates on P 3), the only non-grid (3, 4)-geproci set in P 3 is a [3, 4]-half 
grid denoted ZD4 given by the 12 points of the D4 root system regarded as points in P 3. This result has a 
profound impact on the present note.

The next natural case to study is the class of half grid (4, 4)-geproci sets. They were fully classified in 
[2], where it was shown that there are only two cases.

Moreover, as noted above, all but three nondegenerate nongrid geproci sets found up to now are half 
grids, and most of those have transversals. Working under this “half grid with transversals” assumption, 
we extend the detailed classification of geproci sets to [4, n]-half grids for n ≥ 4. Our main result is the 
following. In the statement, ZF4 refers to the [4, 6]-half grid given by the 24 points of the F4 root system 
regarded as points in P 3 [1].

Theorem 1.2. Let Z be a [4, n]-half grid (so, Z has 4 points on each of n lines) such that there are two lines, 
T1 �= T2, which both meet each of the n half grid lines but do not contain any of the points of Z. Then 
4 ≤ n ≤ 6 and Z is projectively equivalent to a subset of ZF4.

Our strategy for proving this is as follows. Let L1, . . . , Ln be the half grid lines for Z. Then L1, L2, L3
lie on a unique quadric Q, which is smooth. It is known for any subset L1, L2, L3, Li1 , . . . , Lir of the lines 
with 3 < i1 < · · · < ir, not all on Q, that Z ∩ (L1 ∪ L2 ∪ L3 ∪ Li1 ∪ · · · ∪ Lir ) is a [4, r + 3]-half grid [1], in 
particular geproci. We use combinatorial considerations to show that if Lij �⊂ Q, then Lij must be one of 
at most 6 lines �1, . . . , �6, and that each line �i determines a unique line �′i ⊂ Q such that

{Li1 , . . . , Lir} ⊆ {�1, . . . , �6, �′1, . . . , �′6}
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and such that {Li1 , . . . , Lir} contains at least one and at most two of the �i and at most one of the �′i. We then 
show for each Z there is a [4, 6]-half grid Z ′ containing Z with half grid lines {L1, L2, L3, �i1 , �i2 , �

′
i1

= �′i2}
and that Z ′ is projectively equivalent to ZF4 .

We now add a comment about the transversals, T1, T2. Having them constrains the combinatorics we use 
in our proof, and this simplifies our analysis. Also, by Proposition 2.2, if Z ∩ Ti �= ∅, then Z ′′ = Z \ Ti is a 
[3, n]-half grid.

Moreover, in this case, n ≥ 4 by Lemma 2.1 and Z ′′ must be projectively equivalent to ZD4 by Propo-
sition 2.2. (So the case that Z ∩ Ti = ∅ for both i = 1, 2 is what is of interest.) Moreover, the union of 
ZD4 with the four points of Z on Ti could not be projectively equivalent to a subset of ZF4 . Indeed, ZF4

consists of two disjoint copies of ZD4 , and every set of 4 collinear points in ZF4 intersects both copies in 2 
points. Thus the statement of Theorem 1.2 would be more complicated but no more interesting if it were 
reformulated to cover the cases with Z ∩ Ti �= ∅.

2. Preliminaries

Here we recall some basic notions and facts we shall use in the sequel. We begin with the following useful 
fact.

Lemma 2.1. Let Z be a [4, n]-half grid with half grid lines L1, · · · , Ln. Then n ≥ 4, and W = Z ∩ (Li1 ∪
· · · ∪ Lir ) is either a {4, r}-grid or a [4, r]-half grid for all choices of r of the n lines. Moreover, W is a 
{4, r}-grid whenever 1 < r < 4, but if W is a [4, r]-half grid, then there is no smooth quadric that contains 
all of the half grid lines Lij .

Proof. If r = 1, then W consists of 4 collinear points, and thus is a degenerate case of a grid. By [1, Lemma 
4.5], W is either a {4, r}-grid or a [4, r]-half grid, and by [1, Theorem 4.10] it is an (r, 4)-grid whenever 
r < 4. Since Z is not a grid, we must have n ≥ 4.

Finally, suppose W is not a grid (so r > 3) but that there is a smooth quadric Q that contains every 
line Lij . Let Xk = W ∩ (Li1 ∪ Li2 ∪ Lik). Then Xk is a grid whose grid lines transverse to Li1 and Li2 are 
determined by Li1 and Li2 and thus are independent of k. Thus these transverse grid lines are the same for 
all k and hence W is a grid, contrary to assumption. �

As is well-known and easy to check, any set of 3 skew lines is projectively equivalent to any other set of 
3 skew lines, and each given set of 3 skew lines is contained in a unique quadric surface Q, and that surface 
is smooth. Moreover, Q is isomorphic to P 1 × P 1, and the fibers of the two projections to P 1 define two 
families of lines in Q called rulings. A (3, n)-grid is thus contained in a unique smooth quadric Q with 3 of 
the grid lines in one ruling and the remaining n grid lines in the other ruling.

Proposition 2.2. Let Z be a [4, n]-half grid (hence n ≥ 4) with half grid lines L1, . . . , Ln and a transversal 
T (i.e., a line meeting each of the Li). If Z ∩ T �= ∅, then T ∩ (L1 ∪ · · · ∪ Ln) ⊂ Z, and Z ′′ = Z \ T is a 
[3, n]-half grid, hence n = 4 and Z ′′ is projectively equivalent to ZD4.

Proof. By Lemma 2.1, n ≥ 4. Suppose Z∩T �= ∅. Since Z∩T ⊆ (L1∪· · ·∪Ln) ∩T , we have T ∩Li ⊂ Z for 
some i. Pick two additional lines Lj , Lk. Then Xijk = Z ∩ (Li ∪Lj ∪Lk) is a (3, 4)-grid by Lemma 2.1, and 
there is a unique quadric Qijk containing Li, Lj , Lk. Since T meets these three lines, T is in the transverse 
ruling on Qijk and contains the point T ∩Li of Xijk, hence Xijk contains the points T ∩Lj and T ∩Lk. Since 
Xijk ⊂ Z and this holds for all choices of j and k, we have T ∩ (L1 ∪ · · ·∪Ln) ⊂ Z. Now Z ′′ is (3, n)-geproci 
by [1, Lemma 4.5], and thus either a (3, n)-grid or a [3, n]-half grid. But if Z ′′ were a (3, n)-grid, then Z
would be a [4, n]-grid, contrary to assumption. Thus Z ′′ is a [3, n]-half grid, but these have been classified 
[1, Theorem 4.10]. The only possibility is n = 4 with Z ′′ being projectively equivalent to ZD4 . �
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Next we recall two basic notions from projective geometry.

Definition 2.3. Recall that the cross ratio of an ordered set of four distinct points P1 = [x1 : y1], P2 = [x2 :
y2], P3 = [x3 : y3], P4 = [x4 : y4] with respect to some (in fact: any) choice of coordinates on P 1 is

j(P1, P2;P3, P4) = (x1y3 − y1x3)(x2y4 − y2x4)
(x1y4 − y1x4)(x2y3 − y2x3)

.

Definition 2.4. We say that the points are harmonic if their cross ratio is −1, 1/2 or 2 and we say that the 
points are anharmonic if their cross ratio is (1 ±

√
3i)/2. (The specific value in either case depends on the 

ordering of the points.)

Warning 2.5. In this note (a, b, c, d) with {a, b, c, d} = {1, 2, 3, 4} denotes a permutation which sends 1 to a, 
2 to b, 3 to c and 4 to d. So this is not cycle notation (i.e., (a, b, c, d) does not mean a �→ b �→ c �→ d �→ a)!

Remark 2.6. For distinct points P1, P2, P3, P4 the cross ratio is always a complex number other than 0 or 1. 
If the points are not harmonic or anharmonic, the cross ratio j(Pσ(1), Pσ(2); Pσ(3), Pσ(4)) takes on 6 distinct 
values depending on the permutation σ of the points. As noted above, for harmonic points, the cross ratio is 
either −1, 1/2 or 2 depending on σ and for anharmonic points, the cross ratio is either (1 ±

√
3i)/2 depending 

on σ. Indeed, it is well known and easy to check by direct calculation for non-harmonic and non-anharmonic 
points P1, . . . , P4 that the subgroup V ⊂ S4 of all σ with

j(P1, P2;P3, P4) = j(Pσ(1), Pσ(2);Pσ(3), Pσ(4))

has order 4. It is V = {id, (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}, the Klein four group. Thus, the nontrivial per-
mutations leaving the cross-ratio invariant for every set of 4 distinct points are exactly the even involutions 
in S4.

For harmonic points P1, . . . , P4 the subgroup of S4 leaving the cross ratio invariant has order 8 (hence is 
one of the three 2-Sylow subgroups of S4, which one depending on whether the cross ratio is −1, 1/2 or 2, 
so isomorphic to D8); in addition to V , it contains two 4-cycles and two 2-cycles.

For anharmonic points P1, . . . , P4, the subgroup leaving the cross ratio invariant is the alternating group 
A4 ⊂ S4 of even permutations.

We conclude this section with the following well-known and useful observation; for a proof see, e.g., [6, 
Paragraph 3.4.1].

Lemma 2.7. Let P1, . . . , P4 and R1, . . . , R4 be two four-tuples of points on the projective line P 1. Then

j(P1, P2;P3, P4) = j(R1, R2;R3, R4),

if and only if there exists a linear projective map F : P 1 → P 1 such that F (Pi) = Ri for i = 1, . . . , 4.

3. Permutations on half grids

3.1. Combinatorics of [4, n]-half grids with transversals

Let Z be a [4, n]-half grid, with two distinct transversals T1, T2. Thus there are n skew lines L1, . . . , Ln, 
each containing exactly 4 points from Z and all these lines intersect lines T1 and T2.

We assume additionally that none of the intersection points Li ∩ Tj belong to Z. By Lemma 2.1, Z ∩
(L1 ∪ L2 ∪ L3) is a (3, 4)-grid, hence contained in a unique quadric Q, which is smooth. Let’s suppose that 
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P1,1

P1,2

L1

P2,1

P2,2

L2

P3,1

P3,2

L3

M1

M2

P1,3

P2,3

M3

P1,4 P2,4

M4

P3,3

P3,4

�

Fig. 1. The (3, 4)-grid Z ∩ (L1 ∪ L2 ∪ L3); the horizontal arrow represents fL1,L2,L3 : P1,4 �→ P2,4, the diagonal arrow represents 
fL2,L1,� : P2,4 �→ P1,3, and the composition indicates σ�

2 : 4 �→ 3.

L1, L2, L3 are in the “vertical” ruling of Q; we denote by M1, . . . , M4 the grid lines in the “horizontal” 
ruling. The points Pij = Li ∩ Mj , 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, thus form the grid. The transversals T1, T2 are 
contained in Q and they are lines in the “horizontal” ruling but different from M1, . . . , M4.

Since Z is not a grid, by Lemma 2.1, n ≥ 4 and some line Li, i > 3, is not on Q. After reindexing, we may 
assume that Q contains L1, . . . , Lr but not Lr+1, . . . , Ln, which we denote by �1, . . . , �s, where r + s = n. 
For every such line � ∈ {�1, . . . , �s} and 2 ≤ i ≤ r we denote by Q�

i the quadric containing L1, Li and �. By 
Lemma 2.1, Z ∩ (L1 ∪ Li ∪ �) is a (3, 4)-grid. Thus i and � determine an element of the symmetric group 
S4, that we denote with σ�

i , as follows. For a point Pij on Li, there is by Lemma 2.1 a line in Q�
i (in the 

same ruling as the transversals T1 and T2) passing through Pij and meeting L1 in a point of Z, say P1k. 
We define the permutation σ�

i by putting σ�
i (j) = k. By way of an example, the permutation σ�

2 in Fig. 1
sends 4 to 3.

It is convenient to consider the permutation σ�
i as acting on points of Z ∩L1 by sending P1,j to P1,σ�

i (j). 
This action preserves the cross-ratio of the four points by [2, Lemma 1], hence by Lemma 2.7 it extends 
to a projective linear automorphism of L1, which, by a slight abuse of notation, we denote with the same 
symbol σ�

i . In the notation of [3, Section 4] it is exactly the automorphism
fLi,L1,� ◦ fL1,Li,Lj

, where 2 ≤ i, j ≤ r, i �= j. (Indeed, there is a canonical isomorphism between any two 
lines in the same ruling on a smooth quadric, since given a point on one line, there is a unique line in the 
other ruling through that point, which uniquely determines a point on the other line. Thus Q determines 
a unique isomorphism L1 → Li which is just fL1,Li,Lj

, and then Q�
i determines the unique isomorphism 

fLi,L1,� : Li → L1, and the composition is σ�
i = fLi,L1,� ◦ fL1,Li,Lj

.)
Our assumptions impose strong conditions on the permutations σ�

i . As already mentioned, as automor-
phisms of L1, they preserve the cross-ratio. Additional properties are given in the following lemma.

Lemma 3.1. Each σ�
i has the following properties:
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(a) as an automorphism of L1, σ�
i has exactly two fixed points, these being the intersection points of L1

with the transversals T1 and T2;
(b) σ�

i has no fixed points on L1 off the transversals (and so has no fixed points regarded as a permutation 
of the points Z ∩ L1);

(c) for i �= j we have σ�
i (p) �= σ�

j(p) for all p on L1 not on T1 or T2; and
(d) at most one σ�

i , 2 ≤ i ≤ r, can be an involution.

Proof. (a) We have σ�
i = fLi,L1,� ◦ fL1,Li,Lj

. If p ∈ L1, the q = fL1,Li,Lj
(p) is the point of Li such that the 

unique ruling line A on Q through p other than L1 meets Li at q. Likewise, q′ = fLi,L1,�(q) is the point of 
L1 such that the unique ruling line B on Q�

i through q other than Li meets L1 at q′. Thus σ�
i (p) = p if and 

only if A and B both contain the points p and q, so A = B. Thus a point is a fixed point of σ�
i if and only 

if the point lies on a line transversal to L1, L2, L3, L (i.e., the point is either L1 ∩ T1 or L1 ∩ T2).
(b) The matrix of a linear isomorphism of L1 ∼= P 1 with two fixed points (which we can regard as 0 and 

∞) is given by a diagonal matrix. Such a map has a fixed point (other than 0 and ∞) only when the map 
is the identity. By (a), σ�

i has exactly two fixed points and so is not the identity. These fixed points are on 
the transversals hence no point of L1 off the transversals is a fixed point (and so no point of Z ∩L1 is fixed, 
since none are on either transversal).

(c) We have σ�
i (p) = fLi,L1,� ◦ fL1,Li,Lj

(p) and σ�
j(p) = fLj ,L1,� ◦ fL1,Lj ,Li

(p). By construction qi =
fL1,Li,Lj

(p) and qj = fL1,Lj ,Li
(p) lie on the same ruling line A of Q (in particular, A is the ruling line 

through p other than L1). This line is neither T1 nor T2 (since p is not on either transversal). Note that the 
line B through σ�

i (p) and qi meets � by definition of fLj ,L1,� and so does the line C through σ�
j(p) and qj . 

If σ�
i (p) = σ�

j(p), then B and C meet, hence define a plane that contains A and �. But then � meets Q in 
three points (since � meets T1, T2 and A), hence we would have � ⊂ Q, contrary to assumption.

(d) By the proof of (a), σ�
i can be regarded as multiplication by a nonzero nonidentity complex number 

c. The only possible involution arises when c = −1, but by (b) the maps are different, so at most one can 
be given by c = −1. (Alternatively, see Lemma 6 in [2].) �
3.2. Permutations and automorphism of the projective line

Remark 3.2. By Lemma 2.7 any permutation σ of P1, P2, P3, P4 ∈ P 1 which leaves the cross ratio invariant 
extends to a unique automorphism ασ of P 1 which restricts to σ on the four points. Moreover all nontrivial 
automorphisms arising in this way have exactly two fixed points; indeed, every automorphism of P 1 has at 
least one fixed point and those with only one fixed point have all orbits infinite, with the exception of the 
fixed point.

Working now with specific coordinates, we will examine which permutations from the group S4 may 
appear as σ�

i ’s. To begin with we fix projective coordinates on L1 so that

P1,1 = [1 : 0], P1,2 = [0 : 1], P1,3 = [1 : 1], P1,4 = [1 : q]

with q �= 0, 1. We first consider the four permutations V from Remark 2.6 always keeping the cross ratio 
invariant (which in this case is 1/q). In Table 1 we present the associated linear maps and we determine 
their fixed points. Additionally we explicitly list the fixed points for q = −1, q = 1/2 and q = 2.

Corollary 3.3. Under the assumptions in the first two paragraphs of Section 3 and that P1,1 = [1 : 0], P1,2 =
[0 : 1], P1,3 = [1 : 1], P1,4 = [1 : q], the points on each half grid line must be harmonic.

Proof. It is enough by Lemma 2.7 to show this for the points Z ∩L1, since fL1,Li,Lj
is a linear isomorphism 

L1 → Li mapping Z ∩ L1 to Z ∩ Li.



8 L. Chiantini et al. / Journal of Pure and Applied Algebra 229 (2025) 107809
Table 1
The permutations σ preserving cross ratios, their associated automorphisms ασ and the fixed 
points of ασ.

σ ∈ S4 ασ fixed points 
arbitrary q

fixed points 
q = −1

fixed points 
q = 1/2

fixed points 
q = 2

(2, 1, 4, 3)
(0 1
q 0

)
[1 : ±a], 
a2 = q

[1 : ±i] [1 : ±
√

2/2] [1 : ±
√

2]

(3, 4, 1, 2)
(
q −1
q −q

)
[1 : q ± b], 
b2 = q2 − q

[1 : −1 ±
√

2] [1 : (1 ± i)/2] [1 : 1 ± i]

(4, 3, 2, 1)
(1 −1
q −1

)
[1 : 1 ± c], 
c2 = 1 − q

[1 : 1 ±
√

2] [1 : (2 ±
√

2)/2] [1 : 1 ± i]

Since the points P1,i are distinct, we cannot as noted above have q = 0, 1. By Lemma 3.1, the permutations 
σ�

2 and σ�
3 are distinct, nontrivial, have the same pair of fixed points on L1, and (by Lemma 2.7) preserve 

the value of the cross ratio. Thus if the points are not harmonic or anharmonic, they must be among the 
three permutations listed in Table 1, since no other permutations preserve the cross ratio in this case. 
Hence, looking at the fixed points listed in column 3 of the table, q must have a value such that {a, −a} =
{q + a, q − a}, or {a, −a} = {1 + c, 1 − c} or {q + a, q − a} = {1 + c, 1 − c}. But this would mean either 
that a + (−a) = (q + b) + (q − b), a + (−a) = (1 + c) + (1 − c) or (q + b) + (q − b) = (1 + c) + (1 − c); i.e., 
that 0 = 2q, 0 = 2 or 2q = 2, all of which are impossible. Thus the points must be harmonic or anharmonic, 
but the permutations preserving cross ratios in the anharmonic case are the even permutations, and other 
than those already considered in Table 1 these are 3-cycles and so fix one of the four points P1,i, which is 
excluded by Lemma 3.1. Thus we are left with the harmonic case. �

We now have:

Theorem 3.4. Under the assumptions of Corollary 3.3, the only candidates for permutations σ�
i , depending 

on q, are

q = −1 : (2, 1, 4, 3), (3, 4, 2, 1) and (4, 3, 1, 2);

q = 1/2 : (3, 4, 1, 2), (2, 3, 4, 1) and (4, 1, 2, 3);

q = 2 : (4, 3, 2, 1), (2, 4, 1, 3) and (3, 1, 4, 2).

Proof. Since the points Z ∩ L1 are harmonic and the cross ratio is 1/q, we have q ∈ {−1, 1/2, 2}. For each 
value of q, the subgroup of permutations preserving the cross ratio is a different 2-Sylow subgroup G, each 
of which contains the Klein four group V . The additional four elements in each G outside V consist of 
the following permutations, depending on q (in each case the first two permutations listed, when converted 
to cycle notation, would be 2-cycles, the second two, when converted to cycle notation, would be inverse 
4-cycles):

q = −1: (2, 1, 3, 4), (1, 2, 4, 3), (3, 4, 2, 1), (4, 3, 1, 2);
q = 1/2: (3, 2, 1, 4), (1, 4, 3, 2), (2, 3, 4, 1), (4, 1, 2, 3); and
q = 2: (4, 2, 3, 1), (1, 3, 2, 4), (2, 4, 1, 3), (3, 1, 4, 2).

The first two permutations listed above for each q are excluded by Lemma 3.1 (b). The fixed points 
of the automorphisms generated by the third permutations listed are presented in Table 2. (The fourth 
permutation is the inverse of the third, so its matrix is the inverse of the matrix shown in the table and the 
fixed points are the same as those shown in the table.)
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Table 2
The fixed points of the automorphisms ασ for the 
4 cycles σ in the harmonic case.
σ ∈ S4 q ασ fixed points

(3, 4, 2, 1) −1
(1 −1
1 1

)
[1 : ±i]

(2, 3, 4, 1) 1/2
( 0 2
−1 2

)
[1 : (1 ± i)/2]

(2, 4, 1, 3) 2
( 0 1
−2 2

)
[1 : 1 ± i]

The permutations for each q listed in the statement of the theorem come from picking them from Tables 1
and 2. We get two choices for each value of q from Table 2 (namely, the one shown and its inverse), but 
we get only one choice for each q from Table 1. This is because for each q we must be able to choose at 
least two permutations from the two tables, one for σ�

2 and one for σ�
3, and the two choices must have the 

same fixed points. But for each q, the fixed points from the first table are all different, so we get at most 
one choice for each q from this table, hence it must be consistent with the fixed points given in the second 
table. �

Theorem 3.4 has the following important consequence.

Corollary 3.5. Let Z be the [4, n]-half grid under the assumptions of Theorem 3.4; its half grid lines 
L1, . . . , Ln, and Q is the quadric containing L1, L2, L3. Then Q contains at most one line Li with i > 3; 
i.e., we must have r ≤ 4.

Proof. Every line Li, 2 ≤ i ≤ r, on Q induces a permutation σ�
i which must be one of the three permutations 

listed in Theorem 3.4 for the given value of q, but the σ�
i are different permutations by Lemma 3.1(c). Hence 

r − 1 ≤ 3; i.e., r ≤ 4. �
We now address the question of how big n can be.

Proposition 3.6. Let Z be the [4, n]-half grid under the assumptions of Theorem 3.4. Let the half grid lines 
of Z be L1, . . . , Ln, with Q the quadric determined by L1, L2, L3. Then at most 6 of the lines do not lie on 
Q, and hence n ≤ 10.

Proof. By Theorem 3.4 and Lemma 3.1(c), there are six possibilities for the pair σ�
2 and σ�

3 for a line � not 
on Q. But as we show in Remark 3.7, σ�

2 and σ�
3 determine �, and thus there are at most 6 possibilities 

for �. By Corollary 3.5, there are at most 4 lines on Q, and now we see there are at most 6 not on Q, so 
n ≤ 10. �
Remark 3.7. Here’s how σ�

2 and σ�
3 determine �, given Z ∩ (L1 ∪L2 ∪L3). Note that Xi = Z ∩ (L1 ∪Li ∪ �)

is a (3, 4)-grid for each line Li, i > 1, on Q. The lines L1, L1 and � are grid lines for Xi; the grid lines 
transverse to L1, L1 and � are the 4 lines λij , 1 ≤ j ≤ 4, through the points P1,σ�

i (j) and Pi,j . (For example, 
the line through P1,3 and P2,4 in Fig. 1 is a grid line for X2.)

The 4 lines λij for a given i are skew since each meets both L1 and Li, which are skew, and no two of the 
λij meet L1 or Li at the same point. However, if i �= i′, then the 4 lines λij meet L1 in the same four points 
(namely, Z ∩ L1) as do the 4 lines, λi′j and likewise for �. Thus the 8 lines λij and λi′j have altogether 8 
points of intersection, these being Z ∩ L1 and Z ∩ �. Taking i = 2 and i′ = 3, we see σ�

2 and σ�
3 determine 

the 8 lines λ2j and λ3j , and their intersections off L1 determine Z ∩ �, and hence �.
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Remark 3.8. In contrast to Proposition 3.6, Theorem 1.2 implies that Z has at most 6 half grid lines. 
However, geproci makes sense in positive characteristics. By [8], if F is a finite field (say |F | = q) and K
its algebraic closure, the F -rational points of P 3

K give a [q + 1, q2 + 1]-half grid. By thesis work of Allison 
Ganger (in preparation), the half grid lines can be chosen to have two transversals. When q = 3, we thus get 
a [4, 10]-half grid with two transversals. Thus the bound n ≤ 6 of Theorem 1.2 is specific to characteristic 
0, not to the concept of half grids with transversals.

We close this section by showing how L1, L2, L3 and the lines � off Q determine the lines L on Q.

Remark 3.9. Suppose Z is a [4, n]-half grid with two transversals and half grid lines L1, . . . , Ln. Assume Q
is the quadric determined by L1, L2, L3. Let � be the line, as in Remark 3.7, determined by a choice of two 
of the permutations listed for a given q in Theorem 3.4 σ�

2 and σ�
3. Let σ be the third listed permutation. Let 

L = Li for some i > 3 with Li ⊂ Q. Then σ�
i = σ and, as in Remark 3.7 the line through P1,σ�

i (j) and Pi,j

is a grid line λij for Xi. Thus Pi,j ∈ λij , but Pi,j is also on the ruling line Rj on Q through P1,j transverse 
to L1. Thus Pi,j is the intersection of λij with Rj . But λij is contained in the plane Πσ�

i (j) spanned by �
and P1,σ�

i (j), so Pi,j is the intersection of Πσ�
i (j) with Rj . Thus � and the points of Z on L1 determine the 

points of Z on Li and hence they determine Li.

4. Proof of Theorem 1.2

Assume L1, . . . , Ln are the grid lines for Z. We know n ≥ 4. We begin by choosing coordinates which 
standardize Z ∩ (L1 ∪ L2 ∪ L3). We then find all possibilities for additional half grid lines and the points 
on them. Then we check which combinations of these potential half grid lines actually give half grids. And 
finally we check in each case the resulting half grid is contained in ZF4 , up to projective equivalence.

We now start by choosing explicit coordinates. Note that any three skew lines in P 3 with coordinates 
[x : y : z : w] can be mapped by a projective transformation to the lines:

L1 :
{
y = 0
w = 0

, L2 :
{
x = 0
z = 0

, L3 :
{
y = x

w = z
.

These lines are contained in the quadric Q : xw − yz = 0. By further projective transformations the four 
harmonic points P1,1, . . . , P1,4 on L1 can be normalized to [1 : 0 : 0 : 0], [0 : 0 : 1 : 0], [1 : 0 : 1 : 0] and 
[1 : 0 : −1 : 0], whose cross ratio is −1. Then the rulings on Q determine the points from Z on L2 and L3
and we obtain our initial data as:

P11 = [1 : 0 : 0 : 0], P21 = [0 : 1 : 0 : 0], P31 = [1 : 1 : 0 : 0],
P12 = [0 : 0 : 1 : 0], P22 = [0 : 0 : 0 : 1], P32 = [0 : 0 : 1 : 1],
P13 = [1 : 0 : 1 : 0], P23 = [0 : 1 : 0 : 1], P33 = [1 : 1 : 1 : 1],
P14 = [1 : 0 : −1 : 0], P24 = [0 : 1 : 0 : −1], P34 = [1 : 1 : −1 : −1].

(4.1)

By inspection we see that: the points in column i are indeed on line Li; the points in each row are collinear; 
and each point lies on Q. Thus these 12 points are indeed a (3, 4)-grid contained in Q.

We now identify the possible lines � among the Li off Q. By Theorem 3.4, keeping in mind that q = −1, 
there are 6 possibilities for σ�

2 and σ�
3 and by Remark 3.7 these determine the possibilities for �. What we 

get by an easy direct computation is given in Table 3.
Here we give the line L on Q for each Li possible line � off Q by applying Remark 3.9. What we get by 

another easy direct computation is given in Table 4.
We note that the lines T1 : (ix − z, y + iw) and T2 : (−ix − z, y− iw) are transversals for L1, L2, L3, and 

for all lines � and L in Table 4. Moreover, none of the points in (4.1) or in Tables 3 and 4 lie on T1 or T2. 
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Table 3
The possible half grid lines � 	⊂ Q and the points on �.
σ�

2 σ�
3 ideal of � Z ∩ �

(2, 1, 4, 3) (3, 4, 2, 1) (y + z, x − w) [1 : −1 : 1 : 1], [1 : 1 : −1 : 1]
[0 : 1 : −1 : 0], [1 : 0 : 0 : 1]

(2, 1, 4, 3) (4, 3, 1, 2) (y − z, x + w) [0 : 1 : 1 : 0], [1 : 0 : 0 : −1]
[−1 : 1 : 1 : 1], [1 : 1 : 1 : −1]

(3, 4, 2, 1) (2, 1, 4, 3) (y − z + w, x − z + 2w) [2 : 1 : 0 : −1], [0 : 1 : 2 : 1]
[1 : 1 : 1 : 0], [−1 : 0 : 1 : 1]

(3, 4, 2, 1) (4, 3, 1, 2) (y − 2z + w, x − z + w) [1 : 1 : 0 : −1], [0 : 1 : 1 : 1]
[1 : 2 : 1 : 0], [−1 : 0 : 1 : 2]

(4, 3, 1, 2) (2, 1, 4, 3) (y + z − w, x + z − 2w) [2 : 1 : 0 : 1], [0 : −1 : 2 : 1]
[1 : 0 : 1 : 1], [1 : 1 : −1 : 0]

(4, 3, 1, 2) (3, 4, 2, 1) (y + 2z − w, x + z − w) [1 : 1 : 0 : 1], [0 : −1 : 1 : 1]
[1 : 0 : 1 : 2], [1 : 2 : −1 : 0]

Table 4
The line L ⊂ Q corresponding to each � and the points on L.

σ ideal of L ideal of � Z ∩ L

(4, 3, 1, 2) (x + y, z + w) (y + z, x − w) [1 : −1 : −1 : 1], [−1 : 1 : −1 : 1]
[0 : 0 : −1 : 1], [1 : −1 : 0 : 0]

(3, 4, 1, 2) (x + y, z + w) (y − z, x + w) [−1 : 1 : 1 : −1], [1 : −1 : 1 : −1]
[0 : 0 : 1 : −1], [1 : −1 : 0 : 0]

(4, 3, 1, 2) (x − 2y, z − 2w) (y − z + w, x − z + 2w) [2 : 1 : −2 : −1], [2 : 1 : 2 : 1]
[0 : 0 : 2 : 1], [2 : 1 : 0 : 0]

(2, 1, 4, 3) (2x − y, 2z − w) (y − 2z + w, x − z + w) [1 : 2 : −1 : −2], [1 : 2 : 1 : 2]
[0 : 0 : 1 : 2], [1 : 2 : 0 : 0]

(3, 4, 1, 2) (x − 2y, z − 2w) (y + z − w, x + z − 2w) [2 : 1 : −2 : −1], [2 : 1 : 2 : 1]
[0 : 0 : 2 : 1], [2 : 1 : 0 : 0]

(2, 1, 4, 3) (2x − y, 2z − w) (y + 2z − w, x + z − w) [1 : 2 : −1 : −2], [1 : 2 : 1 : 2]
[0 : 0 : 1 : 2], [1 : 2 : 0 : 0]

Thus T1 or T2 are transversals for the half grid lines for any half grid Z whose half grid lines are among the 
lines L1, L2, L3, and the lines � and L in Table 4, and none of the points of Z are on either transversal.

Let S0,0 be the initial 12 points, given in (4.1), let S1,i be the 4 points given in row i of Table 3 and let 
S2,j be the 4 points given in row j of Table 4. Note that S2,1 = S2,2, S2,3 = S2,5, and S2,4 = S2,6. We also 
note that the lines in Table 3 are skew; in particular, the sets S1,i are pairwise disjoint. In fact, all of the 
lines defined by either table or by the rows of (4.1) are skew.

We now see that any [4, n]-half grid Z with two transversals but no points on the transversals is projec-
tively equivalent to a union of some selection of the sets Si,j, where this union includes S0,0 and at least 
one of the sets S1,j and at most one of the sets S1,j .

In particular, note that Z1 = S0,0 ∪ S1,1 ∪ S1,2 ∪ S2,1 is exactly ZF4 ; its points are the roots of the F4
root system, regarded as points in P 3. In particular, Z is indeed geproci [1]. If any additional sets Si,j are 
added to Z1, then what we get will no longer be geproci, because at most 4 of the half grid lines of Z can 
lie on Q (thus no other S2,j can be added) and (according to Table 4) no other set S1,i is compatible with 
S2,1. Thus Z1 is a maximal union which is a half grid. By Lemma 2.1, S0,0 ∪ S1,1 ∪ S1,2, S0,0 ∪ S1,1 ∪ S2,1, 
S0,0 ∪ S1,2 ∪ S2,1, S0,0 ∪ S2,1 and S0,0 ∪ S1,2 are also half grids, with the last two being minimal half grid 
unions.

We now show that Z2 = S0,0∪S1,3∪S1,5∪S2,3 and Z3 = S0,0∪S1,4∪S1,6∪S2,4 are half grids, projectively 
equivalent to Z1 and hence to ZF4 .

For this purpose it is useful to note that S0,0 ∪ S2,j is, for each j, a (4, 4)-grid. In fact the points of S2,j
can be added as a fourth column to (4.1) so that every row and column gives a set of 4 collinear points. If 
one does this the cross ratio of each column is −1 and the cross ratio of the rows is q, with q = −1 if j = 1
but q = 1/2 if j = 3 and q = 2 if j = 4.

Thus the (4, 4)-grid is “biharmonic” with “bi-cross ratios” of either (−1, −1), (−1, 1/2) or (−1, 2). Re-
garding the grid as a subset of P 1 × P 1, there is an automorphism of V = P 1 × P 1 (obtained from an 
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automorphism acting on the second P 1) which takes the grid for j = 1 to the grids with j = 3 and j = 4. 
This induces an automorphism on the global sections of OV (1, 1) which in turn induces an automorphism 
of P 3 preserving Q, showing that the three (4, 4)-grids are projectively equivalent. It also takes Z1 to Z2
and Z3 (due to Z1 being the unique [4, 6]-half grid containing S0,0 ∪ S1,1 ∪ S1,2).

We now also see that any [4, 6]-half grid with two transversals and no points in the transversal, where 
four of the half grid lines give a (4, 4)-grid, projectively equivalent to ZF4 .

There remains the question of which unions of S0,0 with a selection of 3 or more of the sets S1,i are 
half grids. There are only two additional maximal unions, namely: Z4 = S0,0 ∪ S1,1 ∪ S1,5 ∪ S1,6 and 
Z5 = S0,0 ∪ S1,2 ∪ S1,3 ∪ S1,4.

Let S0,i be the points given in column i of (4.1). Then for Z4 it turns out (among others) that S0,1 ∪
S0,2 ∪ S1,5 ∪ S1,6 lie on a quadric, and for Z5 it turns out (among others) that S0,1 ∪ S0,2 ∪ S1,3 ∪ S1,4 lie 
on a quadric. Thus Z4 and Z5 are also projectively equivalent to ZF4 .

5. Remarks and questions

In this short final section we discuss where future research is needed to expand our understanding of half 
grids, and provide some specific questions. There are no new results in this section, but we include it as a 
resource for researchers interested in advancing the theory.

Theorem 1.2 shows that every [4, s]-half grid with two transversals and no points on the transversals is 
contained in the [4, 6]-half grid ZF4 . Note by the proof of the theorem we see that ZF4 is obtained from a 
(4, 4)-grid by adding two sets of 4 collinear points off the quadric containing the grid. In [1], a procedure, 
called the standard construction, is given for producing half grids from grids by generalizing this fact. The 
standard construction always produces examples of half grids whose half grid lines have transversals. Here 
we show there is no [4, s]-half grid with s > 6 even if we drop the condition on there being two transversals, 
and we raise the general question of maximality of the half grids given by the standard construction.

Assume m ≥ 3. We now recall the standard construction in more detail. It constructs examples of [m, n]-
half grids (where n = m + 1 if m is odd and n = m + 2 if m is even) of m points on each of n lines. It starts 
with a (2, 2)-grid; let S1, S2, T1, T2 be the grid lines, so S1 and S2 are skew, T1 and T2 are skew, and Si and 
Tj meet in a single point for each i and j.

There is a linear action of C∗ on P 3 associated to T1 and T2 given as follows. The action is the identity 
on T1 ∪ T2. For each point p �∈ T1 ∪ T2, there is a unique line Lp through p meeting both T1 and T2. We 
can choose a coordinate system on Lp

∼= P 1 such that T1 ∩ Lp is [0 : 1], T2 ∩ Lp is [1 : 0], and p = [1 : 1]. 
Then for each u ∈ C∗ we set up = [1 : u]. If we choose a coordinate system on P 3 such that T1 : x, y = 0

and T2 : z, w = 0, then the action just defined has matrix 

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 u 0
0 0 0 u

⎞
⎟⎠.

There is similarly a linear action of C∗ on P 3 associated to S1 and S2 given analogously. In particular, 
the action is the identity on S1∪S2. For each point p �∈ S1∪S2, there is a unique line Lp through p meeting 
both S1 and S2. We can choose a coordinate system on Lp

∼= P 1 such that S1 ∩ Lp is [0 : 1], S2 ∩ Lp is 
[1 : 0], and p = [1 : 1]. Then for each u ∈ C∗ we set up = [1 : u]. If we choose a coordinate system on P 3

such that S1 is x = z = 0 and S2 is y = w = 0, then the action just defined has matrix 

⎛
⎜⎝

1 0 0 0
0 u 0 0
0 0 1 0
0 0 0 u

⎞
⎟⎠.

The subgroup Um ⊂ PGL4(C) generated by the two matrices above, where u is a primitive mth root 
of 1, is isomorphic to Cm × Cm, where Cm is the multiplicative cyclic group of order m. The orbit of a 
point contained in the plane spanned by the lines Si, Tj is contained in that plane, but the orbit of a point 
p00 not contained in any of those four planes is an (m, m)-grid G. Indeed, by appropriately scaling the 
variables x, y, z, w, the point p00 has coordinates [1 : 1 : 1 : 1] and the Um-orbit of p00 consists of the points 
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pij = [1 : uj : ui : ui+j ] for 0 ≤ i, j < m. Note that this set of points is an (m, m)-grid. To this end note 
that given i, the points [1 : uj : ui : ui+j ] for 0 ≤ j < m are collinear; denote the line containing them by 
Mi (it is defined by w − uiy = uix − z = 0). Similarly, given j, the points [1 : uj : ui : ui+j ] for 0 ≤ i < m

are also collinear; denote the line containing them by Lj (it is defined by w− ujz = ujx − y = 0). The lines 
Mi are pair-wise skew, as are the lines Lj , but Mi ∩ Lj = {pij}.

The question now is: what collinear sets of m points can be added to G to obtain a half grid of m points 
on m + 1 lines. In terms of the coordinates used above, the standard construction gives two subsets: Y1, 
consisting of the points [−1 : 0 : 0 : uj ] for 0 ≤ j < m, and Y2, consisting of the points [0 : −1 : uj : 0] for 
0 ≤ j < m. For any m ≥ 3, G ∪ Yi is an [m, m + 1]-half grid for either i = 1 or i = 2. When m is even, then 
G ∪ Y1 ∪ Y2 is an [m, m + 2]-half grid.

There remains the question of whether Y1 and Y2 are the only two subsets. To explore this question, note 
that a necessary condition for a set Z to be an [m, r]-half grid on r lines A1, . . . , Ar, is for Z∩ (Ai∪Aj ∪Ak)
to be a (3, m)-grid. So suppose L is a line containing a set of m collinear points q1, . . . , qm such that 
Z = G ∪{q1, . . . , qm} is an [m, m +1]-half grid with half grid lines L0, . . . , Lm−1 and L. We will not assume 
that L ∩Mi = ∅ for all i (although this is the case for Y1, Y2 in the standard construction). Since L is not 
contained in the quadric containing G (because Z is a half grid), and since m ≥ 3, there must be a line Mi

disjoint from L.
The lines Mi and Lj (for any j) span the plane Πij defined by w−ujz−uiy+ui+jx = 0. Pick any point 

pik ∈ Mi (but not pij so k �= j). Then pik ∈ Lk, so the points of Z on L, Lj and Lk give a (3, m)-grid, and 
this grid has a transverse grid line T ⊂ Πij through pik which meets L in a point qr for some r (since the 
points qr are the points of the (3, m)-grid on L). But L is skew to Lj , so L meets Πij in a single point, 
which thus must be the same point qr where T meets L. This is true for each point pik, k �= j, so the point 
L ∩Πij is a point of concurrence of m − 1 lines where each line goes through the point L ∩Πij and through 
a point of both Mi and Lj (but not through pij).

Question 5.1. Given grid lines Mi and Lj, how many points of concurrence in the plane Πij are there 
(meaning a point q ∈ Πij not on Mi ∪ Lj such that for each point pik ∈ Mi, k �= j, the line through q and 
pik also contains a point plj ∈ Lj)?

For a given m, this is a purely computational question. We know there are at least two, namely Y1∩Πij =
{[−1 : 0 : 0 : ui+j ]} and Y2 ∩ Πij = {[0 : −1 : ui−j : 0]}, based on the fact the standard construction gives 
an [m, m +1]-half grid. If these are the only two for some choice of i and j, then there are only two for each 
i and j (since Um is a group of linear automorphisms of P 3 which acts transitively on the points pij). And 
if there are only two, then the standard configuration with m points per line is contained in no larger half 
grid with m points per line, even if we do not require transversals for the half grid lines.

We checked by brute force computation for 3 ≤ m ≤ 11 and indeed there are only two points of 
concurrency in these cases. Thus the [m, r]-half grid given by the standard construction (with r = m + 1 if 
m is odd and r = m + 2 if m is even) is contained in no [m, s]-half grid with s > r when 3 ≤ m ≤ 11.

Question 5.2. Is the previous sentence true for all m?

We conclude with a conjecture, which if verified, would finish the classification of half grids with two 
transversals:

Conjecture 5.3. Let Z be an [m, n]-half grid with two transversals where the points on each half grid line 
are a single Cm orbit. Then Z is contained in an [m, r]-half grid given by the standard construction. (So, 
in particular, with r = m + 1 if m is odd and r = m + 2 if m is even.)
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