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In this paper we extract from a large-r expansion of the vacuum Einstein’s equations a dynamical system
governing the time evolution of an infinity of higher-spin charges. Upon integration, we evaluate the
canonical action of these charges on the gravity phase space. The truncation of this action to quadratic order
and the associated charge conservation laws yield an infinite tower of soft theorems. We show that the
canonical action of the higher spin charges on gravitons in a conformal primary basis, as well as
conformally soft gravitons reproduces the higher spin celestial symmetries derived from the operator
product expansion. Finally, we give direct evidence that these charges form a canonical representation of a
w1þ∞ loop algebra on the gravitational phase space.
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I. INTRODUCTION

What are the symmetries of gravitational theories? Are
these symmetries enough to determine gravitational
dynamics? These questions have proven central to the
quest of uncovering the nature of quantum gravity and
revealed new connections among different areas of physics.
In the presence of gravitational radiation, the asymptotic

symmetry group of four-dimensional asymptotically flat
spacetimes (AFSs) is necessarily infinite dimensional [1–3].
However, determining the set of boundary conditions and
resulting asymptotic symmetries that accommodate all
physical gravitational phenomena is a challenging task.
In recent years, an imprint of asymptotic symmetries in the
gravitational S-matrix was discovered: the soft graviton
theorem [4] was shown to arise from conservation of
Bondi–van der Burg–Metzner–Sachs (BMS) supertransla-
tion charges [5,6]. A wealth of surprising connections
followed, from new soft graviton theorems [7,8], to new
asymptotic symmetries [9–19] and memory effects [20–22].
The latter turned the art of choosing the “right” boundary
conditions into more of a science by providing physical
criteria to single out asymptotic diffeomorphisms that
should be promoted to symmetries. More generally, the
link between the S-matrix program and celestial holography

—a recently proposed holographic description for gravity in
AFS—[23,24] (see [25–27] for reviews) may lead to further
constraints, in particular by revealing and exploiting new
symmetries [28–38].
On the asymptotic symmetry front, these developments

emphasized the importance of properly accounting for
boundary degrees of freedom [39–41] and led to a revision
of the allowed boundary conditions and resulting symmetry
algebras [12,17,19,42,43]. At the same time a considerable
amount of progress was achieved at finite distancewhere, on
the one hand, the central concept of corner symmetry
revealed new types of infinite dimensional symmetries
playing a key role in the decomposition of gravitational
systems into subsystems [44–53]. On the other hand, new
approaches in analyzing the gravitational phase space of
black hole horizons and null surfaces [54–63] have been
proposed. Finally, a new understanding of the gravitational
renormalization procedure connecting finite to asymptotic
surfaces has been achieved [17,19,53,64]. On the celestial
side, some of the highlights include the reformulation of
scattering amplitudes into a basis of asymptotic boost
eigenstates [23,24,65–67], an ever-growing catalog of
celestial symmetries [31,33,68–77] and their associated
constraints [32,34–36,78], as well as a framework amenable
to the use of standard conformal field theory (CFT) methods
[79–83] for gravity in AFS. Intriguingly, a w1þ∞ structure
[84–86] was recently encountered in the algebra of the
infinite tower of conformally soft graviton symmetries
[37,38]. The origin of this symmetry was explained in the
context of the ambitwistor string [87,88] and self-dual
gravity [89]. Nevertheless, the original derivation of the
w1þ∞ structure is agnostic to the type of gravitational theory
and should universally govern gravitational scattering at
tree level. If true then this suggests that it should also
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constrain the classical gravitational dynamics. It seems
therefore imperative to look for such higher-spin symmetries
in Einstein gravity and to understand their spacetime
interpretation.
As shown in [37], an entire tower of soft symmetries is

generated as soon as the generalized BMS symmetries
[9,69] are supplemented by the subsubleading soft graviton
symmetry. In [90] we demonstrated that the subsubleading
soft graviton theorem arises as a consequence of the
conservation of a spin-2 charge whose evolution is dictated
by one of the leading order asymptotic Einstein’s equations
in a large-r expansion. This is in close analogy with the
leading and subleading soft graviton theorems which were
found to arise from conservation of Bondi mass and angular
momentum aspects [5,6,13] associated with the remaining
components of the asymptotic equations of motion at the
same order. Equivalently, all universal soft theorems can be
understood as resulting from matching conditions on the
leading asymptotic components of the Newman-Penrose
scalars [91–93].
The main goal of this work is to extend the analysis of

[90] to a tower of higher-spin charges obeying the follow-
ing recursion relations

_Qs¼DQs−1þ
ð1þsÞ

2
CQs−2; s≥−1; s∈Z: ð1Þ

HereC is related to the asymptotic shear, while for s ¼ 0, 1,
2,Qs correspond to the Bondi mass and angular momentum
aspects, and the spin-2 tensor, respectively [94]. Using
results of [95], we verify explicitly that Q3 appears as a
subleading term in the asymptotic expansion of the Weyl
scalarΨ0 that captures the incoming radiation. For s ≥ 4we
conjecture that the simple evolution (1) corresponds to a
truncation of the evolution equations for all subleading terms
in a large-r asymptotic expansion of Ψ0. In the linearized
theory, the recursion relations (1) imply an infinite set of
conserved quantities associated with the presence of incom-
ing radiation first pointed out in [95]. We provide further
evidence for the physical relevance of (1) and the role ofΨ0

in capturing the correct gravitational dynamics by demon-
strating that (1), truncated to quadratic order in the fields, is
precisely equivalent to the tower of soft higher-spin sym-
metries found in [37,38] by CFT methods.
Motivated by this connection, we embark in a canonical

analysis to derive the charge bracket of a properly renor-
malized version of the higher spin charges, denoted QsðτÞ
with τ as a smearing transformation parameter on the
celestial sphere. We restrict our analysis to the linear (in
the radiative data) contribution to the bracket and show that
the loop algebra Lw1þ∞ is indeed realized within the phase
space of gravity. Explicitly, we find the bracket1

fQsðτÞ; Qs0 ðτ0Þg1 ¼ Q1
s0þs−1½ðs0 þ 1Þτ0Dτ − ðsþ 1ÞτDτ0�:

ð2Þ

This paper is organized as follows. In Sec. IIwe review the
derivation of (1) for s ∈ f−1; 0; 1; 2g from symmetry argu-
ments [94], namely relying on the reorganization of asymp-
totic data in terms of primaries with respect to the
homogeneous subgroup of the Weyl-BMS group [19], as
well as the boundary conditions necessary in order to
establish the leading, subleading and subsubleading soft
theorems. In Sec. III, we discuss the generalization of these
conditions to higher spins. In Sec. III Awe identify the s ¼ 3
charge in the gravitational asymptotic phase space as the
next-to-leading component in a large-r expansion ofΨ0 and
recast the corresponding evolution equation identified in
[96] into (1). A direct proof that (9) truncated to linear order
in the shear field reproduces the full content of the linearized
asymptotic Einstein equations for all spins is provided in
Sec. III B. The same recursion relation is solved for arbitrary
s in terms of the news at linear and quadratic orders in the
fields in Sec. III C, and the quadratic action on the shear is
computed. In Sec. III D we use this action to derive the
pseudovector fields associated to the higher spin charge
transformations, generalizing the result of [90] to s ≥ 3.
In Sec. IVA we show that the conservation of these

higher-spin charges truncated to quadratic order is equiv-
alent to the infinite tower of conformally soft theorems
discussed in [37,38]. In Sec. IV B we prove that this action
matches exactly the action of the infinity of celestial soft
symmetries implied by the celestial operator product expan-
sion (OPE) block [37]. In Sec. IV C we review the celestial
diamond structure pointed out in [37,76,77], extend this
structure to a general ðsubÞs-leading soft graviton and
identify its dual as the order s subleading component of
Ψ0. In Sec. IV D we clarify the definition of the light
transform of the soft graviton, as well as its relation to the w
currents identified with the generators of the wedge sub-
algebra of w1þ∞ symmetry in [97,98] and the canonical soft
charges. The OPEs of the latter two quantities are compared
in Sec. IV E, revealing an intriguing connection between the
two sets of global and canonical charges. Finally, in Sec. IV
F the bracket (2) is derived. Some technical details are
collected in Appendices B–G.

II. PRELIMINARIES

In [94] it was shown that the asymptotic Einstein’s
equations can be recovered by identifying the Weyl scalars
at null infinity. Moreover, a well-defined notion of non-
radiative corner phase space was proposed. That analysis
relies on the observation that asymptotic charges are
primary fields with respect to the homogeneous subgroup
HS ≔ ðDiffðSÞ ⋉ WeylÞ of the Weyl-BMS (BMSW)
group [19]. BMSW is an extension of the original BMS
group [1–3] of gravitational symmetries of null infinity by

1The superscript 1 denotes the truncation to linear order, while
D is the 2D covariant derivative on the celestial sphere.
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arbitrary diffeomorphisms on the celestial 2-sphere S.HS is
generated by vector fields YAðσAÞ and local Weyl rescalings
WðσAÞ on the sphere, while BMSW ¼ HS ⋉ RS also
includes supertranslations parametrized by a function
TðσAÞ. We work in Bondi coordinates where σA are
coordinates on S and u is the retarded time along Iþ.

A. Asymptotic phase space

For a given cut u ¼ 0 of Iþ, primary fields OðΔ;sÞ are
defined by their transformation law with respect to HS,

δðY;WÞOðΔ;sÞ ¼ ðLY þ ðΔ − sÞWÞOðΔ;sÞ; ð3Þ

where LY is the Lie derivative along Y. They are labeled by
their spin s and conformal dimension Δ. Some of the
primary fields represent radiative degrees of freedom,
namely the shear CAB and the shifted news tensor N̂AB

defined by

N̂AB ≔ NAB − τAB: ð4Þ

Here NAB ≔ _CAB and τAB is the symmetric traceless
Geroch tensor [99] defined by the condition DAτ

ABþ
1
2
DBR ¼ 0, where DA is the covariant derivative associated

with the 2-sphere metric and R is the 2D Ricci scalar. The
time derivative of the news is also a primary field which we
denote by N AB ≔ ∂uN̂

AB.
Other primary fields correspond to asymptotic charges

and label the nonradiative corner phase space when the no-
radiation conditionN AB ¼ 0 is imposed [94]. They include
the energy current J A, the covariant massM, the covariant
dual mass M̃, the covariant momentum PA and the spin-2
tensor T AB. The spinning primaries can be traded for
helicity- or spin-weighted scalars by contraction with frame
fields, namely

C ≔ CABmAmB; N̂ ≔ N̂ABm̄Am̄B;

N ≔ N ABm̄Am̄B; J ≔ J Am̄A;

MC ≔ Mþ iM̃;

P ≔ PAmA; T ≔ T ABmAmB: ð5Þ

We have introduced a holomorphic frame m ¼ mA
∂A with

coframe m ¼ mAdσA normalized such that mAm̄A ¼ 1.
Contractions with mA and m̄A contribute helicity þ1 and
−1, respectively.2 We use the same label s to denote the
helicity of a spin s primary upon contraction with frame
fields, namely

Os¼OA1���As
mA1 � � �mAs; O−s¼OA1���Asm̄A1

� � �m̄As
: ð6Þ

We also define DOs ¼ mAmA1 � � �mAsDAOA1���As
, where

DA is the covariant derivative on the sphere. One needs to
recall that ðD; ∂uÞ are operators that, respectively, raise the
dimension/helicity by (1,1) and (1,0).
In the presence of radiation, the helicity scalars asso-

ciated to the symmetry charges can then be shown to obey
the following evolution equations [11,22,90,94]

_J ¼ 1

2
DN ; ð7aÞ

_MC ¼ DJ þ 1

4
CN ; ð7bÞ

_P ¼ DMC þ CJ ; ð7cÞ

_T ¼ DP þ 3

2
CMC; ð7dÞ

and their complex conjugates. It will be convenient to
relabel the gravitational data according to helicity and
define

Q−2≔
N
2
; Q−1≔J ; Q0≔MC; Q1≔P; Q2≔T : ð8Þ

Then (7a)–(7d) simply become

_Qs ¼ DQs−1 þ
ð1þ sÞ

2
CQs−2; ð9Þ

for, respectively, s ¼ −1, 0, 1, 2. The primary scalars (8)
can be identified with the leading terms in an asymptotic
expansion of the five Weyl scalars (see [94] and Sec. III A
below). Note that the dimension/helicity of the charges are
ðΔ; JÞ ¼ ð3; sÞ. We summarize all the helicity-weighted
scalars in Table I.
The asymptotic equations imply that the charges are

functionals of the shear and the shifted news (4), which
represent a pair of conjugate variables on Iþ. Their bracket
takes the form [6,100–102]

fN̂ðu; zÞ; Cðu0; z0Þg ¼ κ2

2
δðu − u0Þδðz; z0Þ; ð10Þ

with κ ¼ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
.

B. Mode expansions

At Iþ, the shear C and its conjugate the (shifted) news
N̂ ≔ ∂uC̄ admit the mode expansions [5]3

2Both mA and m̄A have dimension-spin ðΔ; sÞ ¼ ð0; 1Þ, but
opposite helicity. Assigning helicity þ1 to mA is conventional.

3Polarization factors are included in our definition of
C ¼ CABmAmB.
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Cðu; x̂Þ ¼ iκ
8π2

Z
∞

0

dω½aout†− ðωx̂Þeiωu − aoutþ ðωx̂Þe−iωu�;

ð11Þ

N̂ðu; x̂Þ ¼ −
κ

8π2

Z
∞

0

dωω½aout†þ ðωx̂Þeiωu þ aout− ðωx̂Þe−iωu�;

ð12Þ
for outgoing gravitons of momenta q ¼ ωx̂. At the quan-
tum level, the bracket (10) is then replaced by the
commutator

½N̂ðu; zÞ; Cðu0; z0Þ� ¼ −i
κ2

2
δðu − u0Þδðz; z0Þ; ð13Þ

which implies the standard commutation relations for the
oscillators

½a−ðωx̂Þ; a†−ðω0x̂0Þ� ¼ ð2πÞ3 2
ω
δðω − ω0Þδðz; z0Þ: ð14Þ

In [90] we used the commutator (13), together with the
boundary conditions at the future of Iþ

Qs ¼ Oðu1þs−αÞ; C ¼ Oðu−αÞ; with α > 3

when u → þ∞; ð15Þ
to show how the leading, subleading and, in particular, the
subsubleading soft graviton theorems [4,7] follow directly
from the charge evolution equations (9). To this end, a
charge renormalization procedure was necessary and
antipodal matching conditions [5], as well as crossing
symmetry at the S-matrix level were used. In the subsu-
bleading case, we found that the evolution equation for T
yields a tree-level collinear contribution to the soft graviton
factor subleading in κ which corrects the original analysis
of [7,103,104].
The main goal of this work is to show that the extension

of (9) beyond s ¼ 2 encodes, after truncation to quadratic
order, the tower of soft graviton symmetries [37,38]
uncovered by completely different methods.

III. HIGHER SPIN SYMMETRY

As reviewed in the previous section, the asymptotic
Einstein’s equations at leading order in a large-r expansion
can be recast into the form (9) for s ¼ −1, 0, 1, 2 [90]. One
of the main results of our paper is that the extension of (9)
to all s ≥ 3 is responsible for the infinite tower of soft
symmetries studied in [37,38]. In this section we use the

results of [95] to explicitly verify this proposal for s ¼ 3
and argue that these equations appear as a truncation of the
asymptotic Einstein’s equations at subleading orders in a
large-r expansion. Moreover, we compute the action of the
linear and quadratic components of Qs on C for all integer
s ≥ 3. In the next section we provide evidence for (9) from
celestial holography for all other higher spins, s > 3. In
particular, we show that the truncation of (9) to quadratic
order in the fields implies the w1þ∞ algebra structure
revealed by [37,38].
As a preliminary step to our analysis, we note that in order

to integrate (9) for all higher spins s, we need to assume that

N̂ ¼ Oðjuj−1−s−ϵÞ; with ϵ > 0; ð16Þ
and that the geometry reverts to the vacuum at late retarded
times, namely

lim
u→þ∞

Qs ¼ 0: ð17Þ

This allows us to integrate (9) resulting in the following
recursion relations among the higher spin charges

Qs ¼ D∂
−1
u ðQs−1Þ þ

ðsþ 1Þ
2

∂
−1
u ðCQs−2Þ: ð18Þ

We introduced the symbolic notation

ð∂−nu QÞðuÞ≔
Z

u

þ∞
du1

Z
u1

þ∞
du2 � � �

Z
un−1

þ∞
dunQðunÞ; ð19Þ

where the order of integral labels is tailored to the choice of
boundary conditions (17). Since ∂−1u D shift the dimension/
helicity by (0,1), Qs has ðΔ; JÞ ¼ ð3; sÞ. All higher spin
charges have the same dimension Δ ¼ 3.
The recursion relation (18) can be solved by expanding

each charge according to the number of oscillator fields it
contains, namely

Qs ¼
Xmax½2;sþ1�

k¼1

Qk
s: ð20Þ

In particular, Q1
s is the soft charge (linear in oscillators),

whileQ2
s is the hard charge including the quadratic (or free)

contributions to the charge. Qk
s for k ≥ 3 include collinear

contributions of order k. Such contributions are present due
to the nonlinearity of Einstein’s equations and are sup-
pressed by powers of GN . Nonlinear contributions to the
spin s charge have degree at most sþ 1 for s ≥ 1.

TABLE I. Conformal dimension and helicity of primary scalars.

Primary scalars C N̂ N J MC P T Qs

Dimension-helicity ðΔ; JÞ (1,2) (2, −2) (3, −2) (3, −1) (3,0) (3,1) (3,2) (3, s)
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A. Higher spin symmetry from gravity

In this section we identify the spin-3 components from
the gravity phase space. To this end, we first recall how the
covariant aspects (8) appear in the asymptotic expansion of
the Weyl tensor. Consider an asymptotically flat metric in
the Bondi gauge4

ds2 ¼ −2e2βduðdrþΦduÞ

þ r2γAB

�
dσA −

ϒA

r2
du

��
dσB −

ϒB

r2
du

�
; ð21Þ

and introduce the null frame fields

l ¼ ∂r; n ¼ e−2βð∂u −Φ∂r þ r−2ϒA
∂AÞ: ð22Þ

The Weyl scalars are defined by

Ψ0 ¼ −Clmlm; Ψ1 ¼ −Clnlm; Ψ2 ¼ −Clmm̄n;

Ψ3 ¼ −Cnm̄nl; Ψ4 ¼ −Cnm̄nm̄; ð23Þ

where Cabcd is the Weyl tensor, Clmm̄n ≔ Cabcdlambm̄cnd

and similarly for the other contractions. Ψ4 represents the
outgoing radiation at Iþ while Ψ0 encodes the incoming
radiation.
Their asymptotic expansions take the form

Ψ2−s ¼
1

r3þsQs −
1

r4þs D̄Qsþ1 þ � � � : ð24Þ

We see that the spin-3 charge Q3 appears in the next-to-
leading order expansion of Ψ0. To confirm this we use the
result of [95] (see also [96]), where it was shown that this
coefficient satisfies the evolution equation

_Q3 ¼ DQ2 þ 2CQ1; ð25Þ

in agreement with (9). We expect the higher spin charges to

arise in the expansion of Ψ0 ¼ 1
r5
P∞

n¼0 r
−nΨðnÞ

0 in the form

Ψ0 ¼
1

r5
Q2 −

1

r6
D̄Q3 þ

X
s≥4

1

r3þs

ð−1Þs
ðs − 2Þ! ðD̄

s−2Qs þ � � �Þ;

ð26Þ

where the dots refer to terms that are either of cubic or
higher order in C; C̄ or to terms purely quadratic in the
same helicity fields C̄. In that sense the higher spin charges
Qs that we study in the following are truncations of the
Weyl tensor expansion coefficients for spin higher than 4.5

The fact that the Weyl tensor coefficients are not fully
determined from the higher spin charges, for s ≥ 4, is likely
related to a puzzle in celestial holography appearing at
spin-4 (see Sec. IV B). We leave the precise relation
between (9) and the vacuum Einstein’s equations for spin
s ≥ 4 to further studies.

B. Linearized Einstein equations

We now give a direct proof that the Ψ0 expansion (33)
together with the evolution equations (9) truncated to linear
order in the shear field (i.e., keeping only the spatial
derivative term on the rhs) allow us to precisely recover
the full content of the linearized Einstein vacuum theory at
all orders in the large-r expansion around null infinity. In
order to do this, we rely on the analysis of Newman and
Penrose in [95] (in Sec. IV C we comment on the relation
with the set of conserved charges introduced there).
Given the asymptotic expansion of the Ψ0 Weyl scalar

Ψ0 ¼
X∞
n¼0

ΨðnÞ
0

r5þn ; ð27Þ

at linear order the Bianchi identities imply the following set
of evolution equations [95]

_Ψðnþ1Þ
0 ¼ −

1

ðnþ 1Þ
�
D̄Dþ 1

2
nðnþ 5Þ

�
ΨðnÞ

0 : ð28Þ

To compare with existing literature we evaluate the oper-
ators D and D̄ in complex coordinates on the round sphere.
For the round sphere metric ds2 ¼ 2dzdz̄

P2 , and we have the

complex frame m̂ ≔ mA
∂A ¼ P∂z, where P ≔ ð1þzz̄Þffiffi

2
p . As

shown in Appendix A we find that

DOs¼P1−s
∂zðPsOsÞ; D̄Os¼P1þs

∂z̄ðP−sOsÞ; ð29Þ

which shows that these are proportional to the edth differ-
ential operator on the sphere [105–107]. In particular we
have ð ¼ ffiffiffi

2
p

D and ð̄ ¼ ffiffiffi
2

p
D̄. These expressions imply that

½D̄;D�Os ¼ sOs: ð30Þ
It is important to remember thatD raises the spin by one unit
while D̄ lowers the spin by one unit. The sphere Laplacian
acting on spin s observables can be diagonalized in terms of
spin s spherical harmonics Ys

l;m of angular momenta l ≥ jsj.
The eigenvalues of the Laplacian are given by

D̄DYs
l;m ¼ −

1

2
ðl − sÞðlþ sþ 1ÞYs

l;m: ð31Þ

This means that the set of fields of helicity s can be
decomposed as

4The explicit large-r expansion of the metric coefficients is not
crucial for the rest of our analysis and we refer the reader to [90]
for it.

5The results of [96] support our statement for s ¼ 4.
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Vs ¼⊕∞
l¼s V

s
l; ð32Þ

where Vs
l is of dimension 2lþ 1 and it is spanned by the

higher spin spherical harmonics Ys
l;m. We can use this to

decompose

ΨðnÞ
0 ¼ ΨðnÞ

G0 þΨðnÞ
L0 ; ð33Þ

where ΨðnÞ
G0 is the global component of Ψ0, while Ψ

ðnÞ
L0 is its

local component. Both components are spin 2 fields, what
differentiates them is the fact that the global component only
contains angular momenta of value l ¼ f2;…; nþ 1g,
while the local component can be decomposed in terms of
fields with angular momenta l ≥ 2þ n. Explicitly, this
implies the expansion

Ψðnþ1Þ
G0 ¼

Xn
k¼0

½Ψðnþ1Þ
0 �l¼2þn−k;

with ½Ψðnþ1Þ
0 �l¼2þn−k ∈ V2

2þn−k; ð34Þ

where ½Ψðnþ1Þ
0 �l is the projection of Ψ0 onto V2

l. Similarly

Ψðnþ1Þ
L0 ¼

X∞
k¼0

½Ψðnþ1Þ
0 �l¼2þnþk;

with ½Ψðnþ1Þ
0 �l¼2þnþk ∈ V2

2þnþk: ð35Þ

Both components satisfy (28) since there is no mixing at the
linear level.
Now since the operator D̄n maps V2þn ¼ ⊕∞

l¼2þn V
2þn
l

onto V2
L ≔ ⊕∞

l¼2þn V
2
l, the local component is in the

image of the map D̄n acting on spin s ¼ nþ 2 fields. This
means that we can express this component in terms of the
higher spin charges, namely

ΨðnÞ
L0 ¼ ð−Þn

n!
D̄nQnþ2; for n > 0: ð36Þ

We thus see that the evolution equation (28) becomes

D̄nþ1 _Qnþ3¼
�
D̄Dþ1

2
nðnþ5Þ

�
D̄nQnþ2¼ D̄nþ1DQnþ2;

ð37Þ

where we used the commutator (30) to evaluate

D̄DD̄nQnþ2¼−
�Xnþ2

l¼3

l
�
D̄nQnþ2þ D̄nþ1DQnþ2;

¼−
1

2
nðnþ5ÞD̄nQnþ2þ D̄nþ1DQnþ2: ð38Þ

The equation Es ≔ _Qsþ1 −DQs takes place in Vsþ1 and
the map D̄s−1∶Vsþ1 → V2 is injective. Therefore, the

linearized time-development Bianchi identities yield the
charge evolution equations

_Qsþ1 ¼ DQs; for s ≥ 2; ð39Þ

corresponding to the linear version of our recursion relation
(9). The equations for the spins s ¼ −2;−1, 0, 1 can be
obtained from the linearization of the Bianchi identity

applied, respectively, to Ψð0Þ
4 ;Ψð0Þ

3 ;Ψð0Þ
2 and Ψð0Þ

1 . This
means that (9) captures the full content of Einstein’s
equations in the linearized theory for all spins, namely
at all orders in the large-r expansion around null infinity.
We are left with the analysis of the global component

Ψðnþ1Þ
G0 which contains the Newman-Penrose global

charges. The Newman-Penrose charges [95] are given as

the l ¼ 2þ n component of Ψðnþ1Þ
G0 . They are denoted by

Gn ≔ ½Ψðnþ1Þ
0 �l¼2þn ∈ V2

2þn. From the evolution equa-
tion (28) and the fact that D̄DjV2

2þn
¼ − 1

2
nðnþ 5Þ one

gets that they are conserved in time. More generally the
global components are polynomial in the time u and satisfy

∂
n
uΨ

ðnÞ
G0 ¼ 0; ð40Þ

which follows directly from the evolution equation, and the
eigenvalue equation

Yn
k¼1

�
D̄Dþ 1

2
kðkþ 5Þ

�
Y2
2þp;m ¼ 0; for p ≤ n: ð41Þ

As shown in Appendix A, these constants uniquely
determine, through the evolution equation, the polynomials

Ψðnþ1Þ
G0 :

Ψðnþ1Þ
G0 ðuÞ ¼

Xn
k¼0

αknGkun−k; ð42Þ

where αkn are given by

αkn ¼
ð−1Þn−k
2n−k

ðkþ 1Þ!
ðnþ 1Þ!

ðnþ kþ 5Þ!
ð2kþ 5Þ! : ð43Þ

Finally, an important point to appreciate is that
Ψ0 captures, in the Bondi gauge, information about the
radial expansion of the sphere metric. In particular,

an expansion γABðrÞ ¼ qAB − 1
r CAB þP

n r
−nqðnÞAB implies

ΨðnÞ
0 ∝ qðnþ3Þ þ � � �. Moreover, the radial Einstein equation

GhABi ¼ 0, with Gμν the Einstein’s tensor, implies that the r
dependence of ∂uΨ0 is determined by its value at r ¼ ∞.
On the other hand, the values of Ψ0 at any cut u ¼ cst are
free data from the point of view of Iþ. We expect these free
data to be encoded into the higher spin charges Qs
for s ≥ 2.
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C. Higher spin symmetry action

Having provided some motivation for considering the
recursion relations (9), we now study their implications for
the symmetry algebra of null infinity. Substituting (20) into
(18) and equating terms with the same number of oscil-
lators, we find a recursion relation at each order k,

Qk
s ¼ D∂

−1
u ðQk

s−1Þ þ
ðsþ 1Þ

2
∂
−1
u ðCQk−1

s−2Þ: ð44Þ

Recalling that

Q−2 ¼ Q1
−2 ¼

1

2
N ; ð45Þ

(44) can be solved order by order in k for any s ≥ −1. We
present the explicit solution for the first two orders k ¼ 1,
2. For the soft charge (k ¼ 1), the second term in (44) drops
out and we simply find

Q1
sðu; zÞ ¼ ð∂−1u DÞsþ2Q1

−2ðu; zÞ ¼
1

2
ð∂−1u DÞsþ2N ðu; zÞ:

ð46Þ

This result can be used to evaluate the quadratic (k ¼ 2)
contribution for s ≥ 0

Q2
sðu; zÞ ¼

1

4

Xs

l¼0

ðlþ 1Þ∂−1u ð∂−1u DÞs−l½Cð∂−1u DÞlN �ðu; zÞ:

ð47Þ

As explicitly shown in [90] for the cases s ¼ 1, 2, the action
of the charges Qs on C leads to divergent contributions
when u → −∞ and a renormalization procedure is
required. Remarkably, as noted in [90] this renormalization
yields charges parametrizing the nonradiative corner phase
space [94], meaning the charges are conserved in time
when the no radiation conditionsN ¼ 0 ¼ J are imposed.
Generalizing the renormalization procedure of [90] to all s,
we define the renormalized higher spin generators

q̂sðu; zÞ ≔
Xs

n¼0

ð−uÞs−n
ðs − nÞ!D

s−nQnðu; zÞ: ð48Þ

The higher spin charge aspects are then obtained as the
limit6

qsðzÞ ¼ lim
u→−∞

q̂sðu; zÞ: ð49Þ

This limit is now well defined under the assumption (16).
We next separately analyze the action of the renormalized
linear and quadratic higher spin generators on the gravi-
tational phase space variables.

1. Higher linear generators

The identity7

∂
−1
u

�
uk

k!
fðuÞ

�
¼ ð−1Þk

Xk
n¼0

ð−uÞðk−nÞ
ðk − nÞ! ∂

−ðnþ1Þ
u fðuÞ ð51Þ

allows us to relate the k ¼ 1 contribution to the renormal-
ized higher spin corner charge aspects (49) to a negative-
helicity soft graviton mode, namely

q1sðzÞ ≔ lim
u→−∞

Xs

n¼0

ð−uÞs−n
ðs − nÞ!D

s−nQ1
nðu; zÞ ¼ Dsþ2NsðzÞ:

ð52Þ

Here we have introduced the (negative helicity) ðsubÞs-
leading soft graviton operator

NsðzÞ ≔
1

2

ð−1Þsþ1

s!

Z
∞

−∞
du usN̂ðu; zÞ: ð53Þ

Ns can be expressed in terms of modes upon defining the
Fourier transform

NωðzÞ ≔
Z

∞

−∞
du eiωuN̂ðu; zÞ: ð54Þ

Then

Ns ¼ −
1

4

ð−iÞs
s!

lim
ω→0þ

ð−∂ωÞsðNω þ ð−1ÞsN−ωÞ;

¼ κ

16π

ð−iÞs
s!

lim
ω→0þ

ð∂ωÞs−1ð1þ ω∂ωÞ

× ðaout†þ ðωx̂Þ þ ð−1Þsaout− ðωx̂ÞÞ; ð55Þ

where in the last line we used the mode expansion (12).
One can check that for s ¼ 0, 1, 2, (55) reduce to the known
expressions for the leading, subleading, and subsubleading
soft charges [108,109].
The definition (52) extends the result of [90] to all higher

spins and relates the higher spin soft charges to soft graviton

6Note that here and in the following we use the short-cut
notation FðzÞ to denote a function on the sphere implicitly taken
to depend on both coordinates z; z̄ on the sphere. We do not imply
that F is holomorphic. When explicitly needed, we restore the
dependence on both coordinates.

7This follows from the generalized Leibniz rule

∂
−1
u ðfgÞ ¼

X∞
n¼0

ð−1Þnð∂nufÞ∂−ðnþ1Þ
u g: ð50Þ
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modes. Note that since D is an operator of dimension/helicity (1,1), the relation q1sðzÞ ¼ Dsþ2NsðzÞ implies that Ns has
dimension/helicity ðΔ; JÞ ¼ ð1 − s;−2Þ.8

2. Higher quadratic generators

For the quadratic contribution k ¼ 2, the renormalized expression takes the form

q̂2sðu; zÞ ¼
1

4

Xs

n¼0

Xn
l¼0

ðlþ 1Þð−uÞs−n
ðs − nÞ! ∂

−ðn−lþ1Þ
u Ds−l½Cð∂−1u DÞlN �ðu; zÞ: ð56Þ

Together with (10), this allows us to compute the action of q̂2s on C,9

fq̂2sðu; zÞ; Cðu0; z0Þg ¼ κ2

8

Xs
n¼0

Xn
l¼0

ð−uÞs−n
ðs − nÞ! ðlþ 1Þ∂−ðn−lþ1Þ

u ½Ds−l
z ðCðu; zÞDl

z δðz; z0ÞÞð∂−ðl−1Þu δðu − u0ÞÞ�;

¼ κ2

8

Xs
n¼0

Xn
l¼0

ð−Þlð−uÞs−n
ðs − nÞ! ðlþ 1Þ∂−ðl−1Þu0

�
Ds−l

z ðCðu0; zÞDl
z δðz; z0ÞÞ

ðu − u0Þn−l
ðn − lÞ! θðu0 − uÞ

�
; ð57Þ

where we have used the identities

∂
−a
u fðuÞ∂−bu δðu−u0Þ¼ ð−1Þb∂−bu0 fðu0Þ∂−au δðu−u0Þ;

∂
−k
u ½fðuÞδðu−u0Þ�¼−

ðu−u0Þk−1
ðk−1Þ! fðu0Þθðu0−uÞ: ð58Þ

The second one follows by recurrence from our defini-
tion (19).
Switching the order of the sums and using

Xs

n¼l

ð−uÞs−nðu − u0Þn−l
ðs − nÞ!ðn − lÞ! ¼ ð−u0Þs−l

ðs − lÞ! ; ð59Þ

(57) becomes

fq̂2sðu; zÞ; Cðu0; z0Þg

¼ κ2

8

Xs

l¼0

ð−Þlðlþ 1Þ∂−ðl−1Þu0

×

�
Ds−l

z ðCðu0; zÞDl
z δðz; z0ÞÞθðu0 − uÞ ð−u

0Þs−l
ðs − lÞ!

�

¼ κ2

8

Xs

l¼0

Xl
n¼0

ð−Þsþn ðlþ 1Þ!
n!ðl − nÞ! ∂

−ðl−1Þ
u0

×

�
ðDn

z0Cðu0; z0ÞDs−n
z δðz; z0ÞÞ u

0s−lθðu0 − uÞ
ðs − lÞ!

�
: ð60Þ

The last equality follows from

CðzÞDl
zδðz;z0Þ¼

Xl
n¼0

ð−1Þn
�
l

n

�
Dn

z0Cðz0ÞDl−n
z δðz;z0Þ: ð61Þ

Note that the action of the renormalized charge is mani-
festly finite in the limit u → −∞, which we can now take.
A final simplification occurs using the Leibniz rule from

pseudodifferential calculus [84,110–113] generalizing
(51),

∂
α
u0

�
u0k

k!
Cðu0Þ

�
¼

Xk
n¼0

ðαÞn
n!

u0ðk−nÞ

ðk − nÞ! ∂
α−n
u0 Cðu0Þ

¼ 1

k!
ðΔþ α − 1Þk∂α−ku0 Cðu0Þ; ð62Þ

where the last equality can be proven by recurrence on k
and we defined

Δ − 1 ≔ u0∂u0 ; ð63Þ

while ðxÞn ¼ xðx − 1Þ…ðx − nþ 1Þ is the falling factorial.
Then10

∂
−ðl−1Þ
u0

�
Cðu0Þ u0s−l

ðs − lÞ!
�

¼ ðΔ − lÞs−l
ðs − lÞ! ∂

1−s
u0 Cðu0Þ; ð64Þ

and we conclude

fq2sðzÞ; Cðu0; z0Þg

¼ κ2

8

Xs

l¼0

Xl
n¼0

ð−Þsþn ðlþ 1Þ!
n!ðl − nÞ!

ðΔ − lÞs−l
ðs − lÞ!

× ∂
1−s
u0 Dn

z0Cðu0; z0ÞDs−n
z δðz; z0Þ: ð65Þ

8We can also establish this directly since N̂ðzÞ has dimension/
helicity ðΔ; JÞ ¼ ð2;−2Þ, and duus has ðΔ; JÞ ¼ ð−s − 1; 0Þ.

9Here and in the following, the subscripts z, z0 in the covariant
derivative are added just to keep track of the quantities they act
upon, when this is necessary. They do not represent spatial
indices.

10See Appendix F for a more direct proof in a conformal
primary basis.
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Evaluating the sum over l first (see proof in Appendix E),

Xs
l¼n

ðlþ 1Þ!ðΔ − lÞs−l
ðl − nÞ!ðs − lÞ! ¼ ðnþ 1Þ!

ðs − nÞ! ðΔþ 2Þs−n; ð66Þ

the bracket (65) becomes

fq2sðzÞ; Cðu0; z0Þg ¼ κ2

8

Xs

n¼0

ð−1Þsþn ðnþ 1ÞðΔþ 2Þs−n
ðs − nÞ! ∂

1−s
u0 Dn

z0Cðu0; z0ÞDs−n
z δðz; z0Þ: ð67Þ

For the opposite helicity, we find after a similar analysis, presented in Appendix D, that

fq2sðzÞ; C̄ðu0; z0Þg ¼ κ2

8

Xs
n¼0

ð−1Þsþn ðnþ 1ÞðΔ − 2Þs−n
ðs − nÞ! ∂

1−s
u0 Dn

z0C̄ðu0; z0ÞDs−n
z δðz; z0Þ: ð68Þ

These equations determine the action of the quadratic spin-
s charge on the gravitational phase space. They generalize
the actions of the complex mass mC ¼ 8

κ2
q0, momentum

p ¼ 1
2
8
κ2
q1 and spin-2 charge t ¼ 1

3
8
κ2
q2 worked out in [90].

The actions (67) and (68) allow us to straightforwardly
evaluate the brackets of the quadratic charges with soft
gravitons. In particular, for negative-helicity soft gravitons,
using the definition (53) and the bracket (68), we find that
(see Appendix B for a detailed derivation)

fq2sðzÞ;Ns0 ðz0Þg¼
ð−1Þs0þ1

2

1

s0!

Z
∞

−∞
duus

0 fq2sðzÞ;N̂ðu;z0Þg;

¼κ2

8

ð−1Þs0þsþ1

2

Xs

n¼0

ð−1Þnðnþ1Þ
s0!ðs−nÞ! Ds−n

z δðz;z0Þ

×Dn
z0

Z
∞

−∞
duus

0
∂uðΔ−2Þs−n∂1−su C̄ðu;z0Þ:

ð69Þ

The terms inside the integral can be rearranged to give11

1

2

Z
∞

−∞
du us

0
∂uðΔ − 2Þs−n∂1−su C̄ðu; z0Þ

¼ 1

2

Z
∞

−∞
du

ðΔ − s0 − 1Þs−n
ðΔ − s0 − 1Þs−1

usþs0−1N̂ðu; z0Þ;

¼ ð−1Þsþs0þnþ1ðsþ s0 − nÞ!Nsþs0−1: ð70Þ

In the last equality we have used that the operator Δ ¼ ∂uu
integrates to 0. Substituting this into (69), we conclude that

fq2sðzÞ; Ns0 ðz0Þg ¼ κ2

8

Xs

n¼0

ðnþ 1Þ
�
sþ s0 − n

s0

�

× ðDn
z0Nsþs0−1ðz0ÞÞDs−n

z δðz; z0Þ: ð71Þ

In Sec. IV we show that (67) and (68) reproduce the action
of the infinite tower of conformally soft symmetries
implied by the celestial OPE block [37], while (71) is
equivalent to the special case when both gravitons in the
OPE are taken to be soft. We conclude our analysis of the
(truncated) charge action on phase space by showing that
this can be written entirely in terms of the action of a
pseudodifferential operator, generalizing to higher spins
one of the central results of [90].

D. Higher spin pseudodifferential operators

In this section we show that the spin-s quadratic charge
action is implemented on the gravity phase space by the
action of a pseudodifferential operator. We recall that
according to [90] a pseudovector of spin p is an operator
of dimension/spin ð1; pÞ given by Dp ≔ Dp

z ∂
1−p
u .

Integration of the higher spin charge aspects against a
function τsðzÞ on the sphere yields the higher spin charges12

QsðτÞ ≔
8

κ2

Z
S
d2z

ffiffiffi
q

p
τsðzÞqsðzÞ: ð72Þ

The action of the quadratic component of these charges on
C is then given by

11The next equality uses the definition N̂ ≔ ∂uC̄ given above,
which is valid only in the spherical metric frame where N̂ ¼ N.

12q is the determinant of the leading order 2-sphere metric γAB
in asymptotically flat metrics (21).

HIGHER SPIN DYNAMICS IN GRAVITY AND … PHYS. REV. D 106, 086013 (2022)

086013-9



fQ2
sðτÞ; Cðu; z0Þg ¼

Xs
p¼0

us−p

ðs − pÞ! δ
p
Ds−pτs

Cðu; z0Þ; ð73Þ

where δpτp is the action of a spin-p pseudovector field on C.
This takes the form

δpτpC ≔
Xmin½3;p�

k¼0

�
3

k

�
ðpþ 1 − kÞðDkτpÞ½Dp−k

∂
1−p
u C�: ð74Þ

Note that this action is such that δpτpC ¼ ðpþ 1ÞτpDpCþ
� � � where the dots denote tensorial corrections. For low
spin (74) reduce to

δ0τ0C¼ τ0∂uC;

δ1τ1C¼2τ1DCþ3ðDτ1ÞC;
δ2τ2C¼3τ2D2

∂
−1
u Cþ6ðDτ2ÞD∂

−1
u Cþ3ðD2τ2Þ∂−1u C: ð75Þ

We recognize the action of the supertranslation, diffeo-
morphism and spin-2 transformations on the shear [90].
Similarly, the action of the charge on C̄ is given by

fQ2
sðτÞ; C̄ðu; z0Þg ¼

Xs
p¼0

us−p

ðs − pÞ! δ
p
Ds−pτs

C̄ðu; z0Þ; ð76Þ

where spin-p pseudovector fields δpτp act on C̄ as

δpτpC̄ ≔
Xp
k¼0

ð−1Þkðpþ 1 − kÞðDkτpÞ½Dp−k
∂
1−p
u C̄�: ð77Þ

These identities can be proven by starting with the
expression

fQ2
sðτÞ; Cðu; z0Þg ¼

Xs

n¼0

ðnþ 1ÞðΔþ 2Þs−n
ðs − nÞ!

× ðDs−n
z τsÞDn

z0∂
1−s
u Cðu; z0Þ ð78Þ

and using the identity (see Appendix C)

ðΔþ 2Þs−n
ðs − nÞ! ¼

Xmin½3;s−n�

k¼0

�
3

k

�
us−n−k∂s−n−ku

ðs − n − kÞ! : ð79Þ

Therefore, we find

fQ2
sðτÞ; Cðu; z0Þg ¼

Xs

n¼0

Xmin½3;s−n�

k¼0

�
3

k

� ðnþ 1Þus−n−k
ðs − n − kÞ!

× ðDs−n
z τsÞDn

z∂
1−n−k
u Cðu; z0Þ;

¼
Xs

p¼0

us−p

ðs − pÞ!
Xmin½3;p�

k¼0

�
3

k

�
ðpþ 1 − kÞ

× ðDs−pþk
z τsÞ½Dp−k

∂
1−p
u Cðu; z0Þ�;

¼
Xs

p¼0

us−p

ðs − pÞ! δ
p
Ds−pτs

Cðu; z0Þ ð80Þ

as anticipated. The proof for the action on C̄ is analogous
and is given in Appendix C.

IV. TOWER OF SOFT THEOREMS AND
CELESTIAL SYMMETRIES

In this section we connect the asymptotic symmetry
analysis in the previous sections to the recently uncovered
conformally soft theorems [32,33,37,71]. In particular, we
derive in Sec. IVA the Ward identities arising from the
conservation of all higher spin charges truncated to quad-
ratic order in κ, that is neglecting all higher order collinear
terms.We then demonstrate that these conservation laws are
equivalent to the tower of tree-level conformally soft
graviton theorems revealed by celestial holography.
Furthermore, we demonstrate in Sec. IV B that the quadratic
action (67) remarkably reproduces the action of the infinity
of celestial soft symmetries whose algebra was computed
holographically in [37]. After clarifying the relationship
between the soft graviton and the w-current in Secs. IV C
and IV D,we argue in Sec. IV E that the quadratic parts of qs
provide a spacetime realization of the w1þ∞ algebra
identified in [37,38]. Finally, we explicitly compute the
higher spin charge bracket to linear order in Sec. IV F and
show that this yields a canonical representation of the w1þ∞
algebra.

A. From conservation laws to soft theorems

We can extend the analysis of the leading, subleading
and subsubleading Ward identities [5,13,90,109,114] to all
higher spin charges qs truncated to quadratic order. The
truncated Ward identity takes the form13

houtj½q1s ;S�jini ¼ −houtj½q2s ;S�jini: ð81Þ

Using (52), (55), as well as crossing symmetry

lim
ω→0þ

∂
s
ωðωhoutjaout− ðωx̂ÞSjiniÞ

¼ ð−1Þsþ1 lim
ω→0þ

∂
s
ωðωhoutjSain†þ ð−ωx̂ÞjoutiÞ; ð82Þ

13Antipodal matching is implicit.
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we have

houtj½q1s ;S�jini¼
κ

8π

is

s!
lim
ω→0þ

ð∂ωÞsDsþ2ωhoutjaout− ðωx̂ÞÞSjini:
ð83Þ

At the same time, replacing the bracket (67) with the
quantum commutator and using the mode expansion (11),

½q2sðzÞ; aout� ðωx̂0Þ�

¼ −i
κ2

8

Xs

l¼0

ð−1Þsþl ð1þ lÞð2h�Þs−l
Γð1 − lþ sÞ

× ð−iωÞ−sþ1Dl
z0a

out
� ðωx̂0ÞDs−l

z δðz; z0Þ; ð84Þ
where

2h� ¼ −ω∂ω � 2: ð85Þ

We refer the reader to Appendix D for the commutator with
negative helicity modes.
The quadratic contribution to the charge conservation

law thus yields

houtj½q2s ;S�jini ¼ is
κ2

8

Xn
k¼1

Xs

l¼0

ð−1Þsþl ð1þ lÞð2hkÞs−l
ðs − lÞ!

× ðϵkωkÞ−sþ1Ds−l
z δðz; zkÞDl

zkhoutjSjini;
ð86Þ

with ϵk ¼ þ1 for outgoing particles and ϵk ¼ −1 for
incoming ones.
Hence, we see that each conservation law (81) implies a

corresponding soft graviton theorem

Dsþ2ðlim
ω→0

ð∂ωÞsωhoutjaout− ðωx̂ÞSjiniÞ

þ κπ
Xn
k¼1

Xs
l¼0

ð−1Þsþlð1þ lÞðsÞlð2hkÞs−lðϵkωkÞ−sþ1

×Ds−l
z δðz; zkÞDl

zkhoutjSjini¼
C
0; ð87Þ

where the equality ¼C means modulo collinear terms. The
soft theorems associated with positive helicity soft graviton
insertions can be obtained by considering the conjugate of
the higher spin charges (46), (47).
One can check that for s ¼ 0, 1, 2 we recover the results

of [6,13,90]. In analogy to the subsubleading soft theorem
for the spin-2 charge, the full Ward identities for the higher
spin charges contain collinear contributions and induce
higher order classical corrections to the soft theorems (87)
up to OðκsÞ for a given spin-s charge. The precise form of
these collinear terms in the case s ¼ 2 has been derived in
[90]. We leave the computation of these corrections for
s > 2 to the future.

B. Recovering the celestial soft symmetries

It is natural to suspect that the conservation of the higher
spin charges (9) truncated to quadratic order is related to
the infinite tower of (tree-level) soft symmetries of the
S-matrix found in [37]. In this section we show that this is
indeed correct.
As shown in the previous section, the left-hand side of

(81) corresponds to a soft insertion at OðωsÞ. Computing
the right hand side by explicitly taking the OðωsÞ soft limit
of the scattering amplitude with a graviton insertion is
cumbersome using standard amplitudes techniques.
Nevertheless, it was recently realized that celestial holog-
raphy—a framework in which scattering observables are
reexpressed in a basis of asymptotic boost rather than the
conventional energy-momentum eigenstates—allows one
to make a prediction about the tree-level behavior of
arbitrarily subleading soft graviton insertions. The main
tool used in this argument is the celestial OPE
[32,37,115,116] of conformal primary gravitons G�

Δ .
These can be represented as operators of dimension/helicity
ðΔ;�2Þ and are simply given by

G−
ΔðzÞ ≔ −

ΓðΔ − 1Þ
2

Z þ∞

−∞
du u−Δþ1N̂ðu; zÞ;

Gþ
ΔðzÞ ≔ −

ΓðΔ − 1Þ
2

Z þ∞

−∞
du u−Δþ1 ˆ̄Nðu; zÞ: ð88Þ

Note that since N̂ (respectively, ˆ̄N) is of dimension/helicity
(2,2) [respectively, ð2;−2Þ] and u is of dimension/helicity
(1,0), G�

Δ indeed has the expected dimension/helicity
ðΔ;�2Þ. It is convenient to express this operator in terms

of N̂ and ˆ̄N, since these satisfy the asymptotic conditions
(16). Of crucial importance will be the fact that the residues
of G−

Δ at negative integer dimensions are precisely the
ðsubÞs-leading soft graviton modes (53),

ResΔ¼1−sðG−
ΔðzÞÞ ¼ NsðzÞ

¼ ð−1Þsþ1

2s!

Z þ∞

−∞
du usN̂ðu; zÞ: ð89Þ

In Appendix F we show that the conformal gravitons
defined in (88) are proportional to conformal primary
boost eigenstates denoted by O�

Δ [23,24] and related to
asymptotic on-shell graviton states by a Mellin transform

jpðω; z; z̄Þi → jΔ; z; z̄i ¼
Z

∞

0

dωωΔ−1jpðω; z; z̄Þi: ð90Þ

The relationship is

O�
Δ ¼ iΔ

8π

iκ
G�

Δ: ð91Þ

For simplicity, in this and the following sections we work
in coordinates where the celestial sphere is flattened to a
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plane (the conventions are summarized for example in
[32,90]). One can compactly express the behavior of two
gravitons in the antiholomorphic collinear limit.14 One
finds [32,116]

O−
Δ1
ðz1ÞO�

Δ2
ðz2Þ ∼ −

κ

2

1

z̄12

X∞
n¼0

BðΔ1 − 1þ n; 2h2� þ 1Þ

×
znþ1
12

n!
∂
nO�

Δ1þΔ2
ðz2Þ þOðz̄012Þ; ð92Þ

with z12 ¼ z1 − z2; z̄12 ¼ z̄1 − z̄2, and where 2h2� ¼ Δ2 �
2 and J2 ¼ �2 for positive and negative helicity gravitons,
respectively; we have also introduced the Euler beta
function Bðx; yÞ. These expansions resum the contribution
from a conformal primary and all its SLð2;RÞL descend-
ants [117] and can also be derived from symmetry argu-
ments as shown in [97]. In particular, the leading term (the
primary) is determined by the soft-collinear behavior of
scattering amplitudes, while the infinity of (spinning)
descendant contributions is required by Lorentz symmetry.
Similarly, in the holomorphic collinear limit one finds

Oþ
Δ1
ðz1ÞO�

Δ2
ðz2Þ ∼ −

κ

2

1

z12

X∞
n¼0

BðΔ1 − 1þ n; 2h̄2� þ 1Þ

×
z̄nþ1
12

n!
∂̄
nO�

Δ1þΔ2
ðz2Þ þOðz012Þ; ð93Þ

where 2h̄2� ¼ Δ2 ∓ 2.
As anticipated in (89), negative-helicity conformally soft

gravitons of dimension Δ ¼ 1 − s are defined as [33,116]

Nsðz1Þ ≔ lim
Δ1→1−s

ðΔ1 þ s − 1ÞG−
Δ1
ðz1Þ; s ≥ 0; s ∈ Z:

ð94Þ

In this limit, only a finite number of terms survive on the rhs
of (92) which amounts to the statement that conformally
soft gravitons are organized into finite-dimensional
SLð2;RÞL representations of dimension sþ 1. Defining
the spin s operators

q1sðz1Þ ≔ lim
Δ1→1−s

ðΔ1 þ s − 1Þ∂2þs
z1 G−

Δ1
ðz1Þ ¼ ∂

2þs
z1 Nsðz1Þ

ð95Þ

and using (92) we find that

q1sðz1ÞG�
Δ2
ðz2Þ ∼

κ2

8i

Xs
n¼0

ð−1Þn−sðnþ 1Þ
ð2h2� þ 1ÞBð1þ s − n; 2h2� þ 1 − sþ nÞ ∂

s−n
z1 δð2Þðz12Þ∂nz2G�

Δ2þ1−sðz2Þ: ð96Þ

We have used

lim
ϵ→0

ϵBðϵþ n − s; 2h2� þ 1Þ

¼ ð−1Þn−s
ð2h2� þ 1ÞBð1þ s − n; 2h2� − sþ nþ 1Þ ; ð97Þ

which follows from the Euler’s reflection formula for the
gamma function ΓðxÞΓð1 − xÞ ¼ π=sinðπxÞ. It is straight-
forward to verify that in a conformal primary basis, (67)
reduces to the rhs of (96) for s ¼ 0, 1, 2 [90]. To prove the
equivalence between (96) and (67) for all s, we perform one
final manipulation to put (96) into the form

q1sðz1ÞG�
Δ2
ðz2Þ ∼

κ2

8i s!

Xs

n¼0

ð−1Þn−sð2h2�Þs−nðsÞn

× ðnþ 1Þ∂s−nz1 δð2Þðz12Þ∂nz2G�
Δ2þ1−sðz2Þ:

ð98Þ

If we consider a negative helicity soft graviton operator and
set Δ2 ¼ 1 − s0, the OPE (98) implies15

q1sðzÞNs0 ðz0Þ ∼
κ2

8i

Xs
n¼0

ðnþ 1Þ
�
sþ s0 − n

s0

�

× ∂
n
z0Nsþs0−1ðz0Þ∂s−nz δð2Þðz − z0Þ: ð100Þ

Therefore, (98) can be seen to be equivalent to the bracket
(71), explicitly

q1sðzÞNs0 ðz0Þ ↔
1

i
fq2sðzÞ; Ns0 ðz0Þg: ð101Þ

The OPE for a positive soft graviton can be recovered from
the analogous bracket of q2s with C̄ computed in Appen-
dix D. Similarly, upon defining

14Such a limit can be taken in bulk (2,2) signature where z; z̄
are real independent variables.

15This can easily be seen by noticing

ð−1Þn−sð2h2−Þs−n
ðsÞn
s!

¼ ð−1Þn−s ð−1 − s0Þs−n
ðs − nÞ! ¼ ðsþ s0 − nÞ!

ðs − nÞ!s0! :

ð99Þ
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q̄1sðz1Þ ≔ lim
Δ1→1−s

ðΔ1 þ s − 1Þ∂2þs
z̄1 Gþ

Δ1
ðz1Þ ¼ ∂

2þs
z̄1 N̄sðz1Þ;

ð102Þ

one can show that (93) implies

q̄1sðz1ÞG�
Δ2
ðz2Þ ∼

κ2

8i s!

Xs

n¼0

ð−1Þn−sð2h̄2Þs−nðsÞnðnþ 1Þ

× ∂
s−n
z̄1 δð2Þðz12Þ∂nz̄2G�

Δ2þ1−sðz2Þ: ð103Þ

To summarize, we have started from a pattern observed
in a large-r expansion of Einstein’s equations and demon-
strated it implies the infinity of soft symmetries identified
independently, holographically in [37]. Conversely, we
could have started from the celestial OPEs (92) implying
the symmetry action (98) and inferred the recursion relation
(9) for the higher spin charges. We find this perfect match,
while perhaps expected, remarkable. It is prime evidence
that celestial holography not only provides a new organ-
izing principle according to symmetry, but also allows one
to infer aspects of the asymptotic gravitational dynamics,
which are otherwise (perturbatively) much harder to access.
We conclude this section with a note of caution. From the

celestial point of view, there is an important caveat which
we have so far avoided by treating z; z̄ as independent real
variables [corresponding to bulk theories analytically
continued to (2,2) signature]. Our bulk analysis on the
other hand pertains to standard Lorentzian backgrounds
corresponding to Euclidean celestial theories in which z
and z̄ are complex conjugates. In this case, as explained in
[32], the second OPE in (92) also receives a contribution
with a pole in z12,

O−
Δ1
ðz1ÞOþ

Δ2
ðz2Þ ∼ −

κ

2

1

z̄12

X∞
n¼0

BðΔ1 − 1þ n;Δ2 þ 3Þ

×
znþ1
12

n!
∂
nOþ

Δ1þΔ2
ðz2Þ

−
κ

2

1

z12
ðz̄12BðΔ1 þ 3;Δ2 − 1ÞO−

Δ1þΔ2
ðz2Þ

þOðz̄212ÞÞ þ � � � ; ð104Þ

where � � � denote terms regular in the limit z12; z̄12 → 0. As
G−

Δ1
is taken conformally soft, the z−112 terms drop out as

long asΔ1 ≥ −2 since the OPE coefficients multiplying the
z−112 term are regular. This is precisely the order (up to and
including s ¼ 3) to which we could explicitly verify the
recursion relation (9). As such, the celestial OPE (104)
suggests that (9) receives corrections beyond s ¼ 3. Further
corrections arise from higher dimension operators in the
low-energy effective action [98,118,119]. We leave a
complete understanding of this, as well issues arising when
mixing helicity sectors [28,29,32,34,36,116] to future
work.

We conclude the section with a comment on self-dual
gravity. The self-dual sector in the NP formalism is
characterized by the condition Ψ̄i ¼ 0; i ¼ 0;…; 4, while
Ψ ≠ 0 (see e.g., [120]). In Lorentzian signature this implies,
if we impose the reality conditions, the vanishing of the full
Weyl tensor and hence the vanishing of the charges
discussed here. Otherwise the metric is complex. In
Euclidean and split signature, real solutions exist and the
condition eliminates one charge helicity sector. Explicitly,

the self duality condition implies _̄C is constant while C is
arbitrary. Moreover, the mass is proportional to the dual
mass. The self duality equations are known to be inte-
grable [121–124], so it would be interesting to write down
the explicit solutions of the nonperturbative evolution
equations beyond s ¼ 3 and show explicitly that our
analysis survives the imposition of the self-duality con-
ditions, which are first class constraints for our bracket.
While we expect simplifications to appear in the full tower
of equations of motion, we still expect higher order
corrections to the equations of motion beyond s ¼ 3, yet
these should not modify the w1þ∞ charge algebra [87,89].
We leave a complete asymptotic analysis of the equations of
motion and symmetry algebra in this case to future studies.

C. Celestial diamonds

Conformal primary wavefunctions associated with the
leading, subleading and subsubleading soft gravitons (i.e.,
with Δ ¼ 1; 0;−1 and J ¼ �2) are elements of finite-
dimensional global conformal multiplets [37,76,77]. The
properties of these multiplets are summarized by celestial
diamonds16 in the ðΔ; JÞ plane [76,77], where the left and
right corners represent soft modes related by a shadow
transform, while the top and bottom corners17 represent
generalized conformal primaries [125] the soft modes
descend from and to respectively (see Fig. 1). Moreover,
the bottom corners of the negative helicity soft graviton
diamonds can be shown to be primary descendants of Δ ¼
3 and J ¼ −1, 0, 1, 2, respectively. These coincide
precisely with the spin-s operators defined in (95) for
s ¼ −1, 0, 1, 2 or equivalently, the quadratic components
q2s of the renormalized charges (48).
For J ≥ 3 similar diamonds can be constructed, however

negative (positive) helicity soft graviton modes now lie at
the top, while the corresponding charges (95) [(102)] lie at
the right (left) corner. Dimensional analysis reveals that, for
arbitrary s, the weights of opposite corner entries are related
by duality ðΔ; JÞ ↔ ð2 − Δ;−JÞ, while those of entries
connected by long and short edges are related by ðΔ; JÞ ↔
ð1 − J; 1 − ΔÞ and ðΔ; JÞ ↔ ð1þ J;Δ − 1Þ, respectively.
This is summarized in Fig. 2.
While these relations are suggestive of shadow and light

transforms, respectively, a quick analysis shows that only

16At Δ ¼ −1 the diamond degenerates to a line.
17The Δ axis is taken to be pointing downwards.
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left and right corners can be mutually nonlocally related by
shadow transforms. On the other hand, the spin-s charges
can be obtained from conformally soft gravitons by simply
taking derivatives as in (95), (102). These features can be
understood in terms of the representation theory of complex
unimodular groups [126]. In the case of SLð2;CÞ, the
weights ðΔ; JÞ label representations18 VðΔ;JÞ acting on

L2ðCÞ. These representations are irreducible unless Δ ∈
Z and either Δ > jJj or Δ ≤ −jJj. It can be shown that in
these cases [126] the representations admit invariant sub-
spaces and hence are reducible or discrete.
Discrete representations admit decompositions of the

form

VðΔ;JÞ ¼ PðΔ;JÞ ⊕ FðΔ;JÞ; ð108Þ

where PðΔ;JÞ is finite dimensional while FðΔ;JÞ ¼
VðΔ;JÞ=PðΔ;JÞ is infinite dimensional. For negative weights,
the discrete representations PðΔ;JÞ are simply the space of
polynomials of degree ð−Δ − J;−Δþ JÞ in ðz; z̄Þ. It
follows that the maps

∂
−Δ−Jþ1
z ∶ VðΔ;JÞ → Vð1−J;1−ΔÞ;

∂
−ΔþJþ1
z̄ ∶ VðΔ;JÞ → Vð1þJ;Δ−1Þ; ð109Þ

annihilate the polynomial subspaces. These maps therefore
identify the quotient space with the homogeneous space

FðΔ;JÞ ¼ Vð1−J;1−ΔÞ¼S Vð1þJ;Δ−1Þ: ð110Þ

The last isomorphism is given by the shadow transform
denoted by S½·�. Finally we have a duality pairing between
FðΔ;JÞ and Fð2−Δ;−JÞ given by

ðϕjψÞ ¼
Z
C
d2z½∂−Δ−Jþ1

z ∂
−ΔþJþ1
z̄ ϕ�ψ ; ð111Þ

for ψ ;ϕ ∈ FðΔ;JÞ.
We see that the celestial diamonds compactly capture

this general theory, with the top corners labelled by discrete

FIG. 1. Spin-s diamond associated with negative-helicity
soft gravitons and s ¼ −1, 0, 1, 2. Operators connected by
long edges have weights h ¼ ðΔþ JÞ=2; h̄ ¼ ðΔ − JÞ=2 related
by ðh; h̄Þ ↔ ð1 − h; h̄Þ. Operators connected by short edges
have ðh; h̄Þ ↔ ðh; 1 − h̄Þ. Diagonally opposite corners are re-
lated by ðh; h̄Þ ↔ ð1 − h; 1 − h̄Þ.

FIG. 2. Diamond associated with a negative helicity soft
graviton of dimension Δ ¼ 1 − s for s ≥ 3. The weight labels
are ðΔ; JÞ. Operators connected by long edges have weights
related by ðh; h̄Þ ↔ ð1 − h; h̄Þ. Operators connected by short
edges have ðh; h̄Þ ↔ ðh; 1 − h̄Þ. Diagonally opposite corners are
related by ðh; h̄Þ ↔ ð1 − h; 1 − h̄Þ.

18VðΔ;JÞ where Δ ∈ C and J ∈ Z=2 is the space of analytic
functions ϕðzÞ such that its inversion given by ϕ̂ðzÞ ≔
z−2hz̄−2h̄ϕð−z−1Þ is also analytic, where h ¼ ðΔþ JÞ=2 and
h̄ ¼ ðΔ − JÞ=2. This means in particular that ϕðzÞ admits a
Taylor expansion and an asymptotic expansion

ϕðh;h̄ÞðzÞ ∼ z−2hz̄−2h̄
X∞
n;m¼0

ϕn;m

znz̄m
; ð105Þ

when jzj → ∞. These data allow us to construct a smooth
function on C2� homogeneous of degree ð−2h;−2h̄Þ in
ðzα; z̄αÞ. This function is given by

Φðh;h̄Þðz0; z1Þ ¼ z−2h0 z̄−2h̄0 ϕðh;h̄Þðz1=z0Þ
¼ ð−1Þ2Jz−2h1 z̄−2h̄1 ϕ̂ðh;h̄Þð−z0=z1Þ: ð106Þ

In celestial holography one often works in a more restrictive
functional space Vh ⊗ Vh̄ ⊂ Vðhþh̄;h−h̄Þ in which z and z̄ are
treated as independent variables. In this functional space ϕðzÞ
also admits expansions of the form

ϕðh;h̄Þðz; z̄Þ ∼ z−2h
X∞
n¼0

ϕ̄n
hðz̄Þ
zn

∼ z̄−2h̄
X∞
m¼0

ϕm
h̄
ðzÞ

z̄m
; ð107Þ

where the first expansion is around z ¼ ∞ while ϕ̄n
h is assumed to

be analytic in z̄; similarly the second expansion is around z̄ ¼ ∞
while ϕm

h̄
is analytic. The mode coefficients in these conventions

are related to the ones of the “conformally covariant” mode
expansions by a shift n → nþ h;m → mþ h̄ for h; h̄ ∈ 1

2
Z.
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representations of negative weights and the bottom ones
labeled by their duals. Moreover, the ðsubÞs-leading soft
gravitons Ns are negative discrete when s ≥ 3 and the
corresponding polynomials are of degree ðsþ 1; s − 3Þ.
The long arrows connecting Ns and qs in Figs. 1, 2 express

the isomorphism Fð1−s;−2Þ ¼ Vð3;sÞ¼S Vð−1;−sÞ, while Ñs ¼
∂
sþ2
z ∂

s−2
z̄ Ns is the dual soft graviton.

Thanks to the analysis of Sec. III B, we can identify the
dual soft graviton with subleading components of Ψ0

Ñn ¼ Ψðn−2Þ
0 ; ð112Þ

with the local component corresponding to the image of the
map ∂

n−2
z̄ and the global component in the decomposition

(33) corresponding to the kernel of the map ∂
n−2
z̄ . More

precisely, the diamond in Fig. 2 contains two maps
D2þs∶V−2 → Vs which is surjective but contains a kernel
Ks ¼⊕−sþ1

l¼−2 V
−2
l and the second map D̄s−2∶Vs → V2

which is injective but not surjective. It contains a cokernel
K̃s ¼⊕s−1

l¼2 V
2
l which corresponds to the global part of Ψ0.

The fact that the kernel of D2þs is isomorphic to the
cokernel of D̄s−2 is due to the fact that the shadow
transform S∶Ns → fNs is an isomorphism of Lorentz
modules. The dimension of the kernel can be easily
evaluated since Ks ¼ ker½Ds−2� is spanned by harmonics
Ȳ2
l;m of spin s − 1 ≥ l ≥ 2. This means that

dim ðker½D̄s−2�Þ ¼
Xs−1
l¼2

ð2lþ 1Þ ¼ ðsþ 2Þðs − 2Þ; ð113Þ

and this corresponds to the dimension of the free param-
eters in the parametrization of the global charges in (34).

D. Soft currents and w-currents

In this section we clarify the relationship between the
soft graviton and the w-current as well as the role of the
light transform.
Soft gravitons Ns are operators of weights

ðh; h̄Þ ¼ ð− 1þs
2
; 3−s

2
Þ. As discussed in the previous section,

this implies that they fall into discrete SLð2;CÞ represen-
tations for s ≥ 3. Moreover, according to (108) they admit a
decomposition into irreducible components namely
Ns ¼ Hs þ Ňs, where Hs is a polynomial in z while Ňs
has a Laurent series expansion

Hsðz; z̄Þ¼
Xsþ1

n¼0

znN−n
s ðz̄Þ; Ňsðz; z̄Þ¼

X∞
n¼1

Nn
s ðz̄Þ
zn

: ð114Þ

On the one hand, since the derivative operator ∂
sþ2
z

annihilates Hs, the soft charge is formally encoded in
the Laurent component as

q1s ¼ ∂
sþ2
z Ňsðz; z̄Þ¼

X∞
n¼1

ð−1ÞsNn
s ðz̄Þ

zðsþ2þnÞ
ðsþ1þnÞ!
ðn−1Þ! : ð115Þ

The polynomial component determines, on the other hand,
the w-current19 [37,38,97]

Wsðz; z̄Þ ≔
Xsþ1

n¼0

ð−1ÞðnþsÞN−n
s ðz̄Þ

zðsþ2−nÞ n!ðsþ 1 − nÞ!: ð116Þ

In [97] it is argued that these w-currents of dimension/
helicity ðΔ; JÞ ¼ ð3; sÞ (the same dimension as q1s) are
constructed from light transforms defined as20

L½Oðh;h̄Þ�ðz; z̄Þ ≔
Z
R

dw
2πi

1

ðz − wÞ2−2h Oðh;h̄Þðw; z̄Þ: ð117Þ

Such transformations are justified upon analytic continu-
ation to (2,2) signature spacetimes. Applying this trans-
formation to the negative helicity graviton G−

Δ yields a field
of dimension ð3; 1 − ΔÞ. Nevertheless, it turns out that in
the limit Δ → 1 − s, singularities arise that have not been
properly accounted for in previous discussions. In particu-
lar, light transforms of fields of negative weights are
singular, meaning that Ws cannot be simply characterized
as the limit ϵ → 0 of the light transform ofG−

1−sþϵ. What we
find instead is that

ð−1Þðsþ3ÞΓðsþ 3ÞL½G−
1−sþϵ�ðz; z̄Þ

¼ q1sðz; z̄Þ
ϵ

þWsðz; z̄Þ þ oðϵÞ: ð118Þ

In other words, the w-current appears as the renormalized
light transform

Ws ¼ lim
ϵ→0

�
ð−1Þðsþ3ÞΓðsþ 3ÞL½G1−sþϵ� −

q1s
ϵ

�
≔ L½Ns�:

ð119Þ

The proof of this statement is given in Appendix G. We see
that the w-current and the soft charge correspond to
different mode projections of the soft graviton in the limit
Δ → 1 − s. In particular, the soft charge q1s arises from the
singular component of L½G1−sþϵ�, while the w-current is
extracted from the regular component of L½G1−sþϵ�.
Moreover, as shown in [38], this current is the image of
the polynomial soft graviton of degree (sþ 1) in z.

19Here we label current by their spin s while in [97] they are
labeled by the half integer q ¼ ðsþ 3Þ=2. In other words

Where
s ¼ w

sþ3
2

there.20In [97] the light transform for positive helicity graviton is
considered.
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E. w1 +∞ structure from charge recursion

Despite these distinctions, in this section we demonstrate
an intriguing relation between OPEs involving the spin-s
charges and OPEs involving the w-currents constructed
from the light transform in [38,97].
We start with the delta-function identity

∂
n
xδðxÞ ¼

ð−1Þnn!
xn

δðxÞ ð120Þ

or equivalently

∂
s−n
z1 δð2Þðz12Þ ¼

ð−1Þs−nðs − nÞ!
zs−n12

δð2Þðz12Þ; ð121Þ

and reexpress the symmetry action (98) of the soft graviton
as

q1sðz1ÞG�
Δ2
ðz2; z̄2Þ ∼

κ2

8i

Xs
n¼0

ðnþ 1Þð2h2�Þs−n
zs−n12

δð2Þðz12Þ

× ∂
n
z2G

�
Δ2þ1−sðz2; z̄2Þ: ð122Þ

We recall that the identities derived from same-helicity
OPEs hold in general, while the ones obtained from
opposite helicity OPEs are only valid in holomorphic
and antiholomorphic collinear limits respectively as dis-
cussed in Sec. IV B.
On the other hand, in [97] w-currents of the same spin

were shown to obey the following OPEs [97]21

Wsðz; z̄ÞOðh;h̄Þð0; 0Þ

∼ −
κ2

16πiz̄

Xs

n¼0

ðnþ 1ÞΓð2hþ 1Þ
Γð2hþ 1 − sþ nÞ

× zn−s−1∂nOðð2hþ1−sÞ=2;ð2h̄þ1−sÞ=2Þð0; 0Þ: ð123Þ

Simplifying the ratio of Gamma functions and letting O be
a graviton, (123) reduces to

Wsðz; z̄ÞG�
Δð0;0Þ

∼−
κ2

16πizz̄

Xs

n¼0

ðnþ1Þð2h�Þs−n
zs−n

∂
nG�

Δ−sþ1ð0;0Þ: ð124Þ

Remarkably, comparing (122) and (124), we see that
while they differ in their singularity structures, their OPE
data are identical after the replacement of 1=zz̄ with the

contact term 2πδð2ÞðzÞ. We summarize this in Fig. 3. The
w-currents (116) were shown to generate a w1þ∞ algebra in
[37,38,97], we take this as strong evidence that the higher
spin charges (47) similarly generate a w1þ∞ symmetry.
Remarkably, in the next section we show that this indeed
turns out to be true at the linear order in the algebra. We
leave an explicit check to higher orders, as well as the
classical corrections arising from the collinear contribu-
tions (20) for k ≥ 3 to future studies.

F. Charge bracket

We conclude our analysis by showing that the higher
spin charge aspects (48), (49) provide a realization of the
w1þ∞ algebra at linear order. We present here the main
steps of the calculation of the linear part of their Poisson
bracket, namely we compute

fqsðzÞ;qs0 ðz0Þg1¼fq2sðzÞ;q1s0 ðz0Þgþfq1sðzÞ;q2s0 ðz0Þg: ð125Þ

The details are deferred to Appendix E. To compute the
algebra above we need to take and extra derivative Ds0þ2

z0 of
(71). Starting with the first bracket in (125), this gives

fq2sðzÞ; q1s0 ðz0Þg ¼ κ2

8

Xs

n¼0

ðnþ 1Þ
�
s0 þ s − n

s0

�

×Ds0þ2
z0 ðDn

z0Ns0þs−1ðz0ÞDs−n
z δðz; z0ÞÞ;

¼ κ2

8

Xsþs0þ2

p¼0

Gðs; s0; pÞ

× ðD1−p
z0 q1s0þs−1ðz0ÞÞDp

z δðz; z0Þ; ð126Þ

where

FIG. 3. There are two maps from a soft graviton Ns with
ðΔ; JÞ ¼ ð1 − s;−2Þ to an operator of ðΔ; JÞ ¼ ð3; sÞ∶ the light
transform defined in (119) and the action of sþ 2 derivatives
∂
2þs
z1 . The resulting operators have the same OPE with massless
celestial operators upon trading 2πδð2ÞðzÞ for 1=ðzz̄Þ.

21To compare with [38,97] one needs to set 2q ¼ sþ 3.
Moreover, our normalization of the w-current differs by a factor
κ2i
8π from the one employed there.
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Gðs; s0; pÞ ≔
Xmin½p;s�

n¼max½0;p−s0−2�
ð−Þpþnðs − nþ 1Þ

×

�
s0 þ n

s0

��
s0 þ 2

p − n

�
: ð127Þ

In Appendix E we show that

Gðs; s0; pÞ ¼ 0; when 2 ≤ p ≤ sþ 1; ð128Þ
while

Gðs; s0; 0Þ ¼ 1þ s and Gðs; s0; 1Þ ¼ −ð2þ sþ s0Þ:
ð129Þ

Moreover, we find that when p ≥ sþ 2,

Gðs; s0; pÞ ¼ ð−Þpþsðsþ s0 þ 2Þ!
ðp − s − 2Þ!ðsþ s0 þ 2 − pÞ!s!

1

pðp − 1Þ :

ð130Þ

Therefore we obtain the final expression

fq2sðzÞ; q1s0 ðz0Þg ¼ κ2

8

�
ðsþ 1ÞDz0 ðq1s0þs−1ðz0Þδðz; z0ÞÞ

− ðs0 þ 1Þq1s0þs−1ðz0ÞDzδðz; z0Þ

þ
Xsþs0þ2

p¼sþ2

Gðs; s0; pÞ

× ðD1−p
z0 q1s0þs−1ðz0ÞÞDp

z δðz; z0Þ
�
: ð131Þ

The second bracket in (125) is obtained after the
exchange s ↔ s0; z ↔ z0 as

fq1sðzÞ; q2s0 ðz0Þg ¼ −
κ2

8

Xsþs0þ2

p¼0

Gðs0; s; pÞ

× ðD1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ: ð132Þ

An analogous split of the sums allows us to write the rhs as

fq1sðzÞ; q2s0 ðz0Þg ¼ −
κ2

8

Xsþs0þ2

p¼0

Gðs0; s; pÞðD1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ;

¼ −
κ2

8

�
ðs0 þ 1ÞDzðq1s0þs−1ðzÞδðz; z0ÞÞ − ðsþ 1Þq1s0þs−1ðzÞDz0δðz; z0Þ

þ
Xsþs0þ2

p¼2

Gðs0; s; pÞðD1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ
�
: ð133Þ

The last sum above can be recast as

Xsþs0þ2

p¼2

Gðs0; s; pÞðD1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ

¼
Xsþs0þ2

m¼0

� Xsþs0þ2

p¼max½m;2�
ð−Þm

�
p

m

�
Gðs0; s; pÞ

�

× ðD1−m
z0 q1s0þs−1ðz0ÞÞDm

z δðz; z0Þ; ð134Þ
where we have used Leibniz rule to exchange the z and z0
derivatives and exchanged the sums. It can be shown that
the terms in (134) cancel exactly the rhs of (131) upon
adding up the two brackets in (125). This is due to the
property (see proof in Appendix E)

Xsþs0þ2

p¼m

ð−Þm
�
p

m

�
Gðs0; s; pÞ ¼ Gðs; s0; mÞ

for 0 ≤ m ≤ sþ s0 þ 2: ð135Þ

We are thus left only with the local terms p ¼ 0, 1 in (133)
and the final result is

fqsðzÞ;qs0 ðz0Þg1¼
κ2

8
½−ðs0 þ1Þq1s0þs−1ðz0ÞDzδðz;z0Þ

×þðsþ1Þq1s0þs−1ðzÞDz0δðz;z0Þ�; ð136Þ

corresponding to a w1þ∞ algebra. In terms of the higher
spin charges (72) the algebra (136) takes the form

fQsðτÞ; Qs0 ðτ0Þg1 ¼ ðs0 þ 1ÞQ1
s0þs−1ðτ0DτÞ − ðsþ 1ÞQ1

s0þs−1ðτDτ0Þ: ð137Þ
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It is important to note that the transformation parameters
τsðz; z̄Þ belong to the SLð2;CÞ representations Vð−1;−sÞ
with weights ðh; h̄Þ ¼ ð− sþ1

2
; s−1

2
Þ. Similarly τ0s0 ðz0; z̄0Þ ∈

Vð−1;−s0Þ. This means that we can perform an asymptotic
expansion (see footnote 18)

τðz; z̄Þ ¼
X
m≥0

zsþ1−mτms ðz̄Þ; ð138Þ

where τms ðz̄Þ also admits an asymptotic expansion τms ðz̄Þ ¼P
n≥0 z̄

1−s−nτm;n
s and similarly for τ0m0

s0 . We denote the
charge associated with the mode function τm;n

s ðz; z̄Þ ≔
zsþ1−mz̄1−s−n by Qs

m;n. From (137) we then find the loop
algebra Lw1þ∞

½Qs
m;n;Qs0

m0;n0 �¼i½mð1þs0Þ−m0ð1þsÞ�Qsþs0−1
mþm0−1;nþn0 ; ð139Þ

where m; n ∈ N. The wedge subalgebra WLw1þ∞ ⊂
Lw1þ∞ is obtained by restricting to parameters τ to be
polynomials of degree sþ 1 in z. This amounts to the
restriction m ≤ sþ 1. This wedge subalgebra is described
in [87] as the symmetry of the twistor formulation of self-
dual gravity.22 We see here that there is no need from the
canonical analysis to make this restriction.

V. CONCLUSIONS

Motivated by the analysis of the gravitational phase
space at null infinity in [90,94], we have proposed a set of
evolution equations for higher spin-s charges. We conjec-
tured that this extension encodes a truncation of the
asymptotic gravitational dynamics at subleading orders
in a large-r expansion. After explaining how these charges
should appear in the expansion of the Weyl scalar encoding
incoming radiation data [see Eq. (33)] and explicitly
proving our conjecture in the case s ¼ 3, we have inves-
tigated the implications of (18) for the symmetry content of
gravity. The higher spin evolution equations define, after a
regularization procedure, a representation of the higher
spin-s charges on the gravity phase space. This represen-
tation generalizes the leading, subleading and subsublead-
ing Einstein’s evolution equations at I to the case s ≥ 3.
Upon introduction of a proper renormalization of the

charges, we computed the action of their quadratic con-
tribution on the asymptotic shear (67), (68). On the one
side, this result has allowed us to obtain the pseudovector
fields (74), (77) associated to the transformations generated
by the higher spin charges and to derive an infinite tower of
soft graviton theorems (87) (truncated at quadratic order,
that is neglecting collinear terms) induced by their con-
servation laws. This generalizes our previous results
obtained in [90] to all s. On the other side, we have shown

that this action reproduces exactly the OPE (100) between
soft charges and soft graviton operators obtained through
celestial holography techniques. Moreover, we have elu-
cidated how the same OPE structure is reproduced when
replacing the soft charges with the w-currents of the same
spin introduced in [97]. To shed some light into this
interesting feature, we clarified how the light transform
of the soft graviton (118) contains both a singular compo-
nent given by the soft current, corresponding to the local
charge, and a regular one given by the w-current and
corresponding to the global charge.
As the w-currents have been shown to generate an

infinite higher spin celestial symmetry algebra [38,97],
we have completed our canonical analysis by proving to
linear order that the loop algebra Lw1þ∞ has a canonical
realization in the gravitational phase space in terms of the
Poisson bracket of the higher spin charges (137). This
provides evidence of a spacetime interpretation of such a
new infinite dimensional symmetry beyond the self-dual
gravitational sector.
To fully understand the role of the Lw1þ∞ algebra in

gravity we need to extend our analysis in two intertwined
directions. On the one hand, the relevance of the recursion
relation (9) in encoding the expression of the vacuum
Einstein’s equations at subleading orders in a large-r
expansion needs to be firmly established beyond the s ≤
3 case. On the other hand, one needs to investigate whether
the Lw1þ∞ algebra structure survives the inclusion of the
nonlinear corrections, which include quadratic same hel-
icity contributions and higher order contributions. More
precisely, we have pointed out in Sec. III A that the
recursion relation for Qs (9) acquires corrections purely
quadratic in the same helicity fields C̄ in order to correctly
reproduce the vacuum Einstein’s equations for spin s ≥ 4.
This extra quadratic corrections do not affect the same
helicity linear bracket (137) fqs; qs0 g1 and fq̄s; q̄s0g1.
However, the presence of these quadratic corrections will
affect the mixed helicity charge bracket fqs; q̄s0g already at
linear order. Such corrections are in fact expected also from
the point of view of the celestial OPE calculation, as
recalled at the end of Sec. IV B. Moreover, one needs to
show explicitly that the loop algebra Lw1þ∞ for the same
helicity charges is valid at quadratic order as well. Evidence
that this is the case has already been given in [97] but a
direct derivation is still needed from our perspective.
Our analysis suggests that contact terms should play an

important role in celestial conformal field theories. It would
be interesting to revisit the analyses relying on celestial OPE
expansions carefully accounting for potential contact terms.
Relatedly, one can wonder whether the Lw1þ∞ survives or
not the introduction of the higher order colinear contribu-
tions. In fact, demanding that the symmetry is preserved
through the introduction of nonlinearities would result in
powerful constraints on the ðsubÞs-leading dynamics.
Despite these open issues, what we find remarkable is the

so far perfect match and the emergence of a precise

22To compare with [87], we need to use that qsmðz̄Þ ¼
w

sþ3
2

sþ1
2
þm

ðz̄Þ. In particular, mhere ¼ sþ1
2
þmthere.
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dictionary between the two side of the asymptotic sym-
metry story, namely the celestial CFT description of the S-
matrix scattering amplitudes and the structure of Einstein’s
equations expanded around null infinity.
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APPENDIX A: LINEARIZED EINSTEIN EQUATIONS

In this appendix we relate the conventions in this paper with those of [95]. We establish a relation betweenD and the edth
operator by considering the action

DOs ≡mAmA1 � � �mAsDAOA1���As
¼ ðDm − smADmm̄AÞOs;

¼ ðP∂z þ sð∂zPÞÞOs ¼ P1−s
∂zðPsOsÞ; ðA1Þ

where Dm ¼ mADA and we used

mADmm̄A ¼ mAmBð∂Bm̄A − ΓC
ABm̄CÞ

¼ P2
∂zP−1 − Γz̄

zzP ¼ −∂zP: ðA2Þ
Similarly, it can be shown that

D̄Os ¼ P1þs
∂z̄ðP−sOsÞ: ðA3Þ

Since the action of the edth operator can be written as [105–107]

ðηs ¼
ffiffiffi
2

p
P1−s½∂zðPsηsÞ�; ð̄ηs ¼

ffiffiffi
2

p
P1þs½∂z̄ðP−sηsÞ�;

ðA4Þ

we thus recover the relations

ð ¼
ffiffiffi
2

p
D; ð̄ ¼

ffiffiffi
2

p
D̄: ðA5Þ

We now show how to determine the global solution (42), (43). Starting with the ansatz (42), on the one hand we have that

∂uΨ
ðnþ1Þ
G0 ðuÞ ¼

Xn−1
k¼0

ðn − kÞαknGkun−1−k; ðA6Þ

while on the other hand, using that Gk ∈ V2
2þk, where Vs

l is the module of spin s and angular momentum l,

−
1

ðnþ 1Þ
�
D̄Dþ 1

2
nðnþ 5Þ

�
ΨðnÞ

G0ðuÞ

¼ −
Xn−1
k¼0

ðnðnþ 5Þ − kðkþ 5ÞÞ
2ðnþ 1Þ αkn−1Gkun−1−k;

¼ −
Xn−1
k¼0

ðn − kÞðnþ kþ 5Þ
2ðnþ 1Þ αkn−1Gkun−1−k: ðA7Þ

In the last equality we used that

nðnþ 5Þ − kðkþ 5Þ ¼ ðn − kÞðnþ kþ 5Þ: ðA8Þ
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The constraint equations (28) then imply the recursion relation

αkn ¼ −
nþ kþ 5

2ðnþ 1Þ αkn−1; ðA9Þ

which, subject to the boundary condition Gn ¼ ½Ψðnþ1Þ
G0 �l¼2þn (i.e., αnn ¼ 1), yields

αkn ¼ ð−2Þk−n ðkþ 1Þ!ðnþ kþ 5Þ!
ðnþ 1Þ!ð2kþ 5Þ! : ðA10Þ

APPENDIX B: SOFT GRAVITON BRACKET

In this appendix, we spell out in detail the computation of the bracket of a positive helicity spin-s0 soft graviton operator
with a spin-s charge. Since positive helicity soft gravitons commute with the linear component of the charge (49), we only
need to consider the bracket with the quadratic component. By means of (67), we have

fq2sðzÞ; N̄s0 ðz0Þg ¼ ð−1Þs0þ1

2

1

s0!

Z
∞

−∞
du us

0 fq2sðzÞ; ˆ̄Nðu; z0Þg;

¼ κ2

8

Xs
n¼0

ð−1Þs0þsþ1

2

Z
∞

−∞
du

ð−1Þnðnþ 1Þ
s0!ðs − nÞ! × us

0
∂uðΔþ 2Þs−nð∂−1u Þs−1Dn

z0Cðu; z0ÞDs−n
z δðz; z0Þ;

¼ κ2

8

Xs
n¼0

ð−1Þs0þsþ1

2

Z
∞

−∞
du

ð−1Þnðnþ 1Þ
s0!ðs − nÞ! ðΔ − s0 þ 3Þs−n × us

0 ð∂−1u Þs−1Dn
z0
ˆ̄Nðu; z0ÞDs−n

z δðz; z0Þ;

¼ κ2

8

Xs
n¼0

ð−1Þs0þsþ1

2

Z
∞

−∞
du

ð−1Þnðnþ 1Þ
s0!ðs − nÞ! ðΔ − s0 þ 3Þs−n × us

0þs−1u−sþ1
∂
−sþ1
u Dn

z0
ˆ̄Nðu; z0ÞDs−n

z δðz; z0Þ;

¼ κ2

8

Xs
n¼0

ð−1Þs0þsþ1

2

Z
∞

−∞
du

ð−1Þnðnþ 1Þ
s0!ðs − nÞ!

ðΔ − s0 þ 3Þs−n
ðΔ − s0 − 1Þs−1

× us
0þs−1Dn

z0
ˆ̄Nðu; z0ÞDs−n

z δðz; z0Þ; ðB1Þ

where we used the relations

un∂nu ¼ ðΔ − 1Þn; ∂
n
uun ¼ ðΔþ n − 1Þn; u−n∂−nu ¼ ðΔþ n − 1Þ−1n ;

∂uðΔþ αÞn ¼ ðΔþ αþ 1Þn∂u; ∂
−1
u ðΔþ αÞn ¼ ðΔþ α − 1Þn∂−1u ;

uðΔþ αÞn ¼ ðΔþ α − 1Þnu; uðΔþ n − 1Þ−1n ¼ ðΔþ n − 2Þ−1n u; ðB2Þ

valid ∀ n ≥ 0;α ∈ Z. We now notice that the operator Δ ¼ ∂uu and any analytic function of it integrate to zero, given our
choice of boundary conditions (16). More precisely in order for the charge qsþs0−1 to be defined we need to demand that
N̂ ¼ Oðusþs0−1−ϵÞ. This means that we can write the bracket in the final form

fq2sðzÞ; N̄s0 ðz0Þg ¼ −
κ2

8

Xs

n¼0

ð−1Þs0þsþ1

2ðs0 þ s − 1Þ! ðnþ 1Þ ðs
0 þ s − n − 4Þ!

ðs − nÞ!ðs0 − 4Þ! ×
Z

∞

−∞
du us

0þs−1Dn
z0
ˆ̄Nðu; z0ÞDs−n

z δðz; z0Þ;

¼ κ2

8

Xs

n¼0

ðnþ 1Þ
�
s0 þ s − n − 4

s0 − 4

�
Dn

z0N̄s0þs−1ðz0ÞDs−n
z δðz; z0Þ: ðB3Þ
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A similar calculation for the negative helicity spin-s0 soft
graviton operator, by means of (68), yields

fq2sðzÞ; Ns0 ðz0Þg ¼ κ2

8

Xs
n¼0

ðnþ 1Þ
�
s0 þ s − n

s0

�

×Dn
z0Ns0þs−1ðz0ÞDs−n

z δðz; z0Þ: ðB4Þ

APPENDIX C: PSEUDOVECTORS

We provide some technical details of the spin-p pseu-
dovector action on the shear presented in Sec. III D. Using
the relation (B2) we get that

ðΔþ 2Þs−n
ðs − nÞ! ∂

3
u ¼ ∂

3
u
ðΔ − 1Þs−n
ðs − nÞ! ¼ ∂

3
u

us−n

ðs − nÞ! ∂
s−n
u ;

¼
Xmin½3;s−n�

k¼0

�
3

k

�
us−n−k

ðs − n − kÞ! ∂
s−nþ3−k
u : ðC1Þ

Similarly, we evaluate

ðΔ − 2Þs−n
ðs − nÞ! ¼ ∂

−1
u

ðΔ − 1Þs−n
ðs − nÞ! ∂u ¼ ∂

−1
u

us−n∂s−nu

ðs − nÞ! ∂u;

¼
Xs−n
k¼0

ð−1Þk u
s−n−k

∂
s−n−k
u

ðs − n − kÞ! : ðC2Þ

Therefore

fQ2
sðτÞ;C̄ðu0;z0Þg

¼
Xs
n¼0

ðnþ1ÞðΔ−2Þs−n
ðs−nÞ! ðDs−n

z τsÞDn
z0∂

1−s
u0 C̄ðu0;z0Þ;

¼
Xs
n¼0

Xs−n
k¼0

ð−1Þk ðnþ1Þu0s−n−k
ðs−n−kÞ! ðDs−n

z τsÞDn
z∂

1−n−k
u0 C̄ðu0;z0Þ;

¼
Xs
p¼0

u0s−p

ðs−pÞ!δ
p
Ds−pτs

C̄ðu0;z0Þ: ðC3Þ

APPENDIX D: C̄ BRACKET

By means of the bracket

fCðu; zÞ; C̄ðu0; z0Þg ¼ −
κ2

2
θðu0 − uÞδðz; z0Þ; ðD1Þ

we have

fq̂2sðu; zÞ; C̄ðu0; z0Þg ¼ 1

4

Xs

n¼0

Xn
l¼0

ð−uÞs−n
ðs − nÞ! ðlþ 1Þð∂−1u Þn−lþ1Ds−l½fCðu; zÞ; C̄ðu0; z0Þgð∂−1u DÞlN ðu; zÞ�;

¼ −
κ2

8

Xs
n¼0

Xn
l¼0

ð−uÞs−n
ðs − nÞ! ðlþ 1Þð∂−1u Þn−lþ1Ds−l½θðu0 − uÞδðz; z0Þð∂−1u DÞlN ðu; zÞ�;

¼ −
κ2

8

Xs
n¼0

Xn
l¼0

ð−uÞs−n
ðs − nÞ! ðlþ 1Þ × ∂

−1
u0 ½ð∂−1u Þn−lþ1δðu0 − uÞDs−l

z δðz; z0Þð∂0u−1Þl−2Dl
z0C̄ðu0; z0Þ�;

¼ κ2

8

Xs
n¼0

Xn
l¼0

ð−uÞs−n
ðs − nÞ! ðlþ 1Þ × ∂

−1
u0

�ðu − u0Þn−l
ðn − lÞ! Ds−l

z δðz; z0Þð∂0u−1Þl−2Dl
z0C̄ðu0; z0Þ

�
; ðD2Þ

where we have used (58). We can now switch sums and evaluate
P

s
n¼l first. This step makes it explicit that bracket is well

defined in the limit u → −∞ and the renormalized charge yields

fq2sðzÞ; C̄ðu0; z0Þg ¼ κ2

8

Xs
n¼0

ðnþ 1Þ∂−1u0
�ð−u0Þs−n
ðs − nÞ! D

s−n
z δðz; z0Þð∂−1u0 Þn−2Dn

z0C̄ðu0; z0Þ
�
;

¼ κ2

8

Xs
n¼0

ð−Þs−n ðnþ 1Þ
ðs − nÞ! ðΔ − 2Þs−nDs−n

z δðz; z0Þð∂−1u0 Þs−1Dn
z0C̄ðu0; z0Þ; ðD3Þ

where in the last passage we have used again the generalized Leibniz rule (62).
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APPENDIX E: CHARGE BRACKET

The bracket (B4) allows us to compute the linear charge algebra

fq2sðzÞ; q1s0 ðz0Þg ¼ κ2

8

Xs

n¼0

ðs − nþ 1Þ
�
s0 þ n

s0

�
Ds0þ2

z0 ðDs−n
z0 Ns0þs−1ðz0ÞDn

zδðz; z0ÞÞ;

¼ κ2

8

Xs

n¼0

Xs0þ2

m¼0

ðs − nþ 1Þ
�
s0 þ n

s0

��
s0 þ 2

m

�
× ðDs0þs−n−mþ2

z0 Ns0þs−1ðz0ÞDm
z0D

n
zδðz; z0ÞÞ;

¼ κ2

8

Xs

n¼0

Xs0þ2

m¼0

ð−Þmðs − nþ 1Þ
�
s0 þ n

s0

��
s0 þ 2

m

�
× ðD1−n−m

z0 q1s0þs−1ðz0ÞDnþm
z δðz; z0ÞÞ;

¼ κ2

8

Xsþs0þ2

p¼0

Xmin½p;s�

n¼max½0;p−s0−2�
ð−Þpþnðs − nþ 1Þ

�
s0 þ n

s0

��
s0 þ 2

p − n

�
× ðD1−p

z0 q1s0þs−1ðz0ÞDp
z δðz; z0ÞÞ;

¼ κ2

8

Xsþs0þ2

p¼0

Gðs; s0; pÞðD1−p
z0 q1s0þs−1ðz0ÞDp

z δðz; z0ÞÞ; ðE1Þ

where we defined

Gðs; s0; pÞ ≔
Xmin½s;p�

n¼max½0;p−s0−2�
ð−Þpþnðs − nþ 1Þ

�
s0 þ n

s0

��
s0 þ 2

p − n

�
: ðE2Þ

We can establish, from this expression, an important symmetry property of Gðs; s0; pÞ valid when p ≠ 0, 1. We have that
under the exchange s0 þ 2 ↔ p while keeping sþ s0 and (p − s) fixed G satisfies

Gðs; s0; pÞ ¼ ðs0 þ 2Þðs0 þ 1Þ
pðp − 1Þ Gðsþ s0 þ 2 − p; p − 2; s0 þ 2Þ: ðE3Þ

To evaluate (E2) there are four different cases to consider: (i) s0 þ 2; s ≥ p, (ii) s ≥ p ≥ s0 þ 2, (iii) s0 þ 2 ≥ p ≥ s,
iv) p ≥ s; s0 þ 2, each of which leads to different summation ranges. In case (i) we have

Gðs; s0; pÞ ≔ ð−1Þpðs0 þ 2Þ!
p!s0!

Xp
n¼0

ð−Þnðs − nþ 1Þ
�
p

n

�
Γðs0 þ 1þ nÞ

Γðs0 þ 3 − pþ nÞ ;

¼ ð−1Þpðs0 þ 2Þ!
p!

ðsþ 1 − δÞ2F̃1½−p; s0 þ 1; s0 þ 3 − p; 1�; ðE4Þ

where 2F̃1 is the regularized hypergeometric function given by 2F̃1½a; b; c; z� ≔ 2
F1½a;b;c;z�

ΓðcÞ . In the last line above, δ ¼ z∂z is a

derivative operator,23 which can be evaluated using Gauss’s summation formula

2F1½a; b; c; 1� ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ;

ReðcÞ > Reðaþ bÞ; ðE5Þ

and δ2F1½a; b; c; 1� ¼ ab
c−a−b−1 2F1½a; b; c; 1�. When a ¼ −p is a negative integer we have

2F̃1½−p; b; c; 1� ¼
1

ΓðbÞ
Xp
n¼0

ð−1Þn
�
p

n

�
Γðbþ nÞ
Γðcþ nÞ : ðE6Þ

23The notation means δ2F̃1½a; b; c; 1� ≔ ðz∂z2F1½a; b; c; z�Þjz¼1.
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We thus find

Gðs; s0; pÞ ¼ ð−1Þpðsþ 1þ pðs0 þ 1ÞÞ
p!Γð2 − pÞ ; ðE7Þ

which is nonvanishing only for p ¼ 0, 1.
Similarly, in case (ii) we have that

Gðs; s0; pÞ ≔ ð−1Þs0
s0!

Xs0þ2

m¼0

ð−Þmðsþ s0 þ 3 − p −mÞ

×

�
s0 þ 2

m

�
Γðmþ p − 1Þ

Γðmþ p − s0 − 1Þ ; ðE8Þ

¼ ð−1Þs0 ðp − 2Þ!
s0!

ðsþ s0 þ 3 − p − δÞ2F̃1

× ½−ðs0 þ 2Þ; p − 1;p − s0 − 1; 1�;
¼ 0 for all s ≥ p ≥ s0 þ 2: ðE9Þ

After an analogous analysis one finds that for both cases
(iii) and (iv)

Gðs;s0;pÞ

¼ ð−1ÞpþsΓð3þsþs0Þ
pðp−1ÞΓðp−1−sÞΓð1þsÞΓð3þsþs0−pÞ : ðE10Þ

Putting everything together, the coefficient G takes the
form

Gðs; s0; pÞ ¼ ð−Þpðsþ 1þ pðs0 þ 1ÞÞ
p!Γð2 − pÞ if p ≤ s; ðE11Þ

Gðs; s0; pÞ ¼ ð−Þpþsðsþ s0 þ 2Þ!
Γðp − s − 1Þðsþ s0 þ 2 − pÞ!s!
×

1

pðp − 1Þ if p ≥ sþ 1: ðE12Þ

This result is suggestive of the split of the sums in (E1) as

Xsþs0þ2

p¼0

Xmin½p;s�

n¼max½0;p−s0−2�
¼

Xs
p¼0

Xp
n¼max½0;p−s0−2�

þ
Xsþs0þ2

p¼sþ1

Xs
n¼max½0;p−s0−2�

: ðE13Þ

The first sum over n is given in (E11) and it thus gives
nonzero contribution only for p ¼ 0, 1. The second sum
over n corresponds to the case (E12). Finally, this allows us
to write the charge bracket as24

fq2sðzÞ; q1s0 ðz0Þg ¼ κ2

8

�
ðsþ 1ÞDz0q1s0þs−1ðz0Þδðz; z0Þ − ðsþ s0 þ 2Þq1s0þs−1ðz0ÞDzδðz; z0Þ

þ
Xsþs0þ2

p¼sþ2

ð−Þpþsðsþ s0 þ 2Þ!
ðp − s − 2Þ!ðsþ s0 þ 2 − pÞ!s!

1

pðp − 1Þ ðD
1−p
z0 q1s0þs−1ðz0ÞÞDp

z δðz; z0Þ
�
: ðE14Þ

In order to compute the charge bracket at linear order we need the antisymmetrize in s, s0 and z, z0, namely we need also
the bracket

fq1sðzÞ; q2s0 ðz0Þg ¼ −fq2s0 ðz0Þ; q1sðzÞg;

¼ −
κ2

8

Xsþs0þ2

p¼0

Xmin½p;s0�

n¼max½0;p−s−2�
ð−Þpþnðs0 − nþ 1Þ

�
sþ n

s

��
sþ 2

p − n

�
× ðD1−p

z q1s0þs−1ðzÞDp
z0δðz; z0ÞÞ: ðE15Þ

In this case the two sums can be split as

Xsþs0þ2

p¼0

Xmin½p;s0�

n¼max½0;p−s−2�
¼

Xs0
p¼0

Xp
n¼max½0;p−s−2�

þ
Xsþs0þ2

p¼s0þ1

Xs0
n¼max½0;p−s−2�

: ðE16Þ

The first sum over n again gives nonzero contribution only for p ¼ 0, 1. Antisymmetrizing (E11), (12), we find

24The second sum over n vanishes for p ¼ sþ 1.
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fq1sðzÞ; q2s0 ðz0Þg ¼ −
κ2

8

�
ðs0 þ 1ÞDzq1s0þs−1ðzÞδðz; z0Þ − ðsþ s0 þ 2Þq1s0þs−1ðzÞDz0δðz; z0Þ

þ
Xsþs0þ2

p¼s0þ2

ð−Þpþs0 ðsþ s0 þ 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!s0!

1

pðp − 1Þ ðD
1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ
�
: ðE17Þ

Combining the two brackets,

fq2sðzÞ;q1s0 ðz0Þgþfq1sðzÞ;q2s0 ðz0Þg¼
κ2

8

� Xsþs0þ2

p¼0

Gðs;s0;pÞðD1−p
z0 q1s0þs−1ðz0ÞÞDp

z δðz;z0Þ

− ðs0 þ1ÞDzq1s0þs−1ðzÞδðz;z0Þþðsþs0 þ2Þq1s0þs−1ðzÞDz0δðz;z0Þ

−
Xsþs0þ2

p¼s0þ2

ð−Þpþs0 ðsþs0 þ2Þ!
ðp−s0−2Þ!ðsþs0 þ2−pÞ!s0!

1

pðp−1ÞðD
1−p
z q1s0þs−1ðzÞÞDp

z0δðz;z0Þ
�
: ðE18Þ

Let us rewrite

ðD1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ ¼ Dp
z0 ½ðD1−p

z q1s0þs−1ðzÞÞδðz; z0Þ�;
¼ Dp

z0 ½ðD1−p
z0 q1s0þs−1ðz0ÞÞδðz; z0Þ�;

¼
Xp
m¼0

ð−Þmp!
m!ðp −mÞ! ðD

1−m
z0 q1s0þs−1ðz0ÞÞDm

z δðz; z0Þ; ðE19Þ

so that the last term in (E18) becomes

Xsþs0þ2

p¼s0þ2

ð−Þpþs0 ðsþ s0 þ 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!s0!

1

pðp − 1Þ ðD
1−p
z q1s0þs−1ðzÞÞDp

z0δðz; z0Þ

¼
Xsþs0þ2

p¼s0þ2

Xp
m¼0

ðsþ s0 þ 2Þ!
s0!m!

ð−Þpþs0þmðp − 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!ðp −mÞ! ðD

1−m
z0 q1s0þs−1ðz0ÞÞDm

z δðz; z0Þ;

¼
Xsþs0þ2

m¼0

Xsþs0þ2

p¼max½m;s0þ2�

ð−Þs0þmðsþ s0 þ 2Þ!
s0!m!

ð−Þpðp − 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!ðp −mÞ! × ðD1−m

z0 q1s0þs−1ðz0ÞÞDm
z δðz; z0Þ;

¼
Xsþs0þ2

m¼0

G̃ðs0; s; mÞðD1−m
z0 q1s0þs−1ðz0ÞÞDm

z δðz; z0Þ; ðE20Þ

where we have introduced the coefficient

G̃ðs0; s; mÞ ≔
Xsþs0þ2

p¼max½m;2�
ð−Þm

�
p

m

�
Gðs0; s; pÞ;

¼
Xsþs0þ2

p¼max½m;s0þ2�

ð−Þmp!
m!ðp −mÞ!

ð−Þpþs0 ðsþ s0 þ 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!s0!

1

pðp − 1Þ ;

¼ ð−Þmðsþ s0 þ 2Þ!
m!s0!

Xsþs0þ2

p¼max½m;s0þ2�

ð−Þpþs0 ðp − 2Þ!
ðp − s0 − 2Þ!ðsþ s0 þ 2 − pÞ!ðp −mÞ! ;

¼

8><
>:

ð−Þmðsþs0þ2Þ!
m!s! 2F̃1½−s; s0 þ 1; s0 þ 3 −m; 1�; if m ≤ s0 þ 2

ð−Þs0 ðsþs0þ2Þ!ðm−2Þ!
m!s0!ðsþs0þ2−mÞ! 2F̃1½−ðsþ s0 þ 2 −mÞ; m − 1;m − s0 − 1; 1�; if m ≥ s0 þ 2

: ðE21Þ
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The evaluation of the regularized hypergeometric functions for m ≤ s0 þ 2 and m ≥ s0 þ 2 gives, respectively,

2F̃1½−s; s0 þ 1; s0 þ 3 −m; 1� ¼ Γðsþ 2 −mÞ
Γð2 −mÞΓðsþ s0 þ 3 −mÞ ;

2F̃1½−ðsþ s0 þ 2 −mÞ; m − 1;m − s0 − 1; 1� ¼ Γðsþ 2 −mÞ
Γð−s0ÞΓðsþ 1Þ ; ðE22Þ

where we used that 2F̃1½a; b; c; 1� ¼ Γðc−a−bÞ
Γðc−aÞΓðc−bÞ. This means that G̃ðs0; s; mÞ ¼ 0 if 2 ≤ m ≤ sþ 1.25 It also implies that

G̃ðs0; s; mÞ ¼ ð−Þs−m
mðm − 1Þ

ðsþ s0 þ 2Þ!
ðsþ s0 þ 2 −mÞ!s!ðm − s − 2Þ! ;

ðE23Þ
if m ≥ sþ 2, and

G̃ðs0;s;0Þ¼ ðsþ1Þ; G̃ðs0;s;1Þ¼−ðsþs0 þ2Þ: ðE24Þ
In other words, we can establish the identity

G̃ðs0; s; mÞ ¼ Gðs; s0; mÞ for all m: ðE25Þ
Therefore, the bracket (E18) finally becomes

fq2sðzÞ; q1s0 ðz0Þg þ fq1sðzÞ; q2s0 ðz0Þg ¼ κ2

8

� Xsþs0þ2

p¼0

ðGðs; s0; pÞ − G̃ðs0; s; pÞÞðD1−p
z0 q1s0þs−1ðz0ÞÞDp

z δðz; z0Þ

− ðs0 þ 1ÞDzq1s0þs−1ðzÞδðz; z0Þ þ ðsþ s0 þ 2Þq1s0þs−1ðzÞDz0δðz; z0Þ
�
;

¼ κ2

8
½−ðs0 þ 1Þq1s0þs−1ðz0ÞDzδðz; z0Þ þ ðsþ 1Þq1s0þs−1ðzÞDz0δðz; z0Þ�; ðE26Þ

where we have used (E25) in the last passage. This concludes the proof of (136).
We conclude this appendix with a proof for the relation (66). We have

Xs

l¼n

ðlþ 1Þ!ðΔ − lÞs−l
ðl − nÞ!ðs − lÞ! ¼

Xs
l¼n

ðlþ 1Þ!ΓðΔ − lþ 1Þ
ðl − nÞ!ðs − lÞ!ΓðΔ − sþ 1Þ ;

¼
Xs−n
p¼0

ðpþ nþ 1Þ!ΓðΔ − p − nþ 1Þ
p!ðs − p − nÞ!ΓðΔ − sþ 1Þ ;

¼
Xs−n
p¼0

ð−Þpþnþs

ðs − nÞ!
�
s − n

p

�
Γðpþ nþ 2ÞΓðs − ΔÞ

Γðpþ n − ΔÞ ;

¼ ð−Þnþsðnþ 1Þ!
ðs − nÞ! Γðs − ΔÞ2F̃1½n − s; nþ 2; n − Δ; 1�;

¼ ð−Þnþsðnþ 1Þ!
ðs − nÞ!

Γðs − Δ − n − 2Þ
Γð−2 − ΔÞ ;

¼ ðnþ 1Þ!
ðs − nÞ!

ΓðΔþ 3Þ
ΓðΔþ 3 − sþ nÞ ;

¼ ðnþ 1Þ!
ðs − nÞ! ðΔþ 2Þs−n; ðE27Þ

25Irrespective of whether m ≥ s0 þ 2 or m ≤ s0 þ 2.
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where we used (E5), (E6), and twice the property

Γðα − nÞ ¼ ð−Þn−1 Γð−αÞΓð1þ αÞ
Γðnþ 1 − αÞ ; n ∈ Z: ðE28Þ

APPENDIX F: NORMALIZATION

The (outgoing) conformal primary gravitons are typically defined as Mellin transforms of asymptotic particle states,

O�
Δðz; z̄Þ ¼

Z
∞

0

dωωΔ−1hω; z; z̄j

¼
Z

∞

0

dωωΔ−1h0jaout� ðω; z; z̄Þ: ðF1Þ

Then using

C̃ðω; zÞ ¼
Z

dueiωuCðu; zÞ

¼ iκ
4π

½aout†− ðωx̂Þθð−ωÞ − aoutþ ðωx̂ÞθðωÞ�; ðF2Þ
we find that

Oþ
Δðz; z̄Þ ¼ −

4π

iκ

Z
∞

0

dωωΔ−1C̃ðω; zÞ

¼ −
4π

iκ

Z
∞

0

dωωΔ−1
Z

∞

−∞
dueiωðuþiϵÞCðu; zÞ;

¼ −iΔ
4π

iκ
ΓðΔÞ

Z þ∞

−∞
duðuþ iϵÞ−ΔCðu; zÞ

¼ iΔ
8π

iκ
Gþ

ΔðzÞ; ðF3Þ

where

Gþ
ΔðzÞ ¼ −

ΓðΔÞ
2

Z þ∞

−∞
duðuþ iϵÞ−ΔCðu; zÞ: ðF4Þ

Similarly, O−
Δðz; z̄Þ ¼ iΔ 8π

iκ G
−
Δðz; z̄Þ, where

G−
Δðz; z̄Þ ¼ −

ΓðΔÞ
2

Z þ∞

−∞
duðuþ iϵÞ−ΔC̄ðu; zÞ: ðF5Þ

Pseudodifferential calculus identities can be easily proven in a conformal primary basis, where for instance C → ∂uC
corresponds to GΔ → GΔþ1, while C → uC corresponds to GΔ → GΔ−1. For example, this allows us to have a simple proof
of the identity (64)

∂
1−l
u

�
CðuÞ us−l

ðs − lÞ!
�

→ ΓðΔÞ
Z

duu−Δ∂1−lu

�
CðuÞ us−l

ðs − lÞ!
�

¼ ΓðΔ − lþ 1Þ
Z

duu−Δþl−1
�
CðuÞ us−l

ðs − lÞ!
�
;

¼ ΓðΔ − lþ 1Þ
ðs − lÞ!ΓðΔ − sþ 1ÞG

þ
Δþ1−s

¼ ðΔ − lÞs−l
ðs − lÞ! Gþ

Δþ1−s: ðF6Þ
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APPENDIX G: w-CURRENT

In this appendix we give the proof of (118). We start from the expansion

ϵG−
1−sþϵðz; z̄Þ ¼ zsþ1−ϵ

X∞
m¼0

Nm−s−1
s ðz̄Þ
zm

; ðG1Þ

which implies that

ð−1Þðsþ3ÞΓðsþ 3ÞL½G1−sþϵ�ðz; z̄Þ ¼
1

ϵ

X∞
n¼−ðsþ1Þ

Nn
s ðz̄Þ

Z
R

dw
2πi

ð−1Þðsþ3ÞΓðsþ 3Þ
ðz − wÞsþ3−ϵwðnþϵÞ ;

¼
X∞

n¼−ðsþ1Þ

Nn
s

zðsþ2þnÞ
ð−1ÞsΓðsþ 2þ nÞ

ϵΓðnþ ϵÞ ;

∼
Xðsþ1Þ

n¼0

ð−1ÞðnþsÞN−n
s

zðsþ2−nÞ n!ðsþ 1 − nÞ!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ws

þ 1

ϵ

X∞
n¼0

ð−1ÞsNn
s

zðsþ2þnÞ
ðsþ 1þ nÞ!
ðn − 1Þ!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q1s
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In the second equality we have used the relation [97]Z
R

dw
2πi

1

ð1 − wÞawb ¼ −
Γðaþ b − 1Þ
ΓðaÞΓðbÞ ; ðG3Þ

valid after analytic continuation from the domain ReðaÞ < 1, ReðbÞ < 1 and Reðaþ bÞ > 1. Note that in the last term we
have neglected terms that arises from ∂ϵNsþϵjϵ¼0.
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