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Abstract

In this thesis, a computational tool has been developed to study multiphase interac-
tions, more precisely ternary phase systems where a solid and a drop phase interact in a
common incompressible Newtonian carrier fluid, considering the immersed solid phase
properties (including wetting effects), the type of drops and the characteristics of the
carrier fluid as controlling parameters. We use an Eulerian-Lagrangian methodology
where the continuity and the Navier-Stokes equations are solved numerically by using
a pseudo-spectral method for the carrier fluid. The drop phase is modelled by the
Phase Field Method (PFM) and the solid phase is described using the Direct Forcing
Immersed Boundary approach (DFIB) and inserted to the carrier fluid in the form of
a virtual force. The approaches taken in this work consider the solid-fluid and fluid-
drop interfaces as smooth transition layers represented by a continuous hyperbolic
function. In order to generate a ternary phase system, the solid phase is coupled to
the binary-fluid-phase by introducing a single well potential in the free-energy density
functional, which can also control the solid surface wetting property. The implemented
tool is proven to give reliable results in the studied applications, which are divided
into three categories. The first one consists of a 2D and a 3D validation case study
of a solid settling in a quiescent fluid. The second category shows solid interactions
with a binary-fluid interface and the effects of surface wetting in the submergence of
a quasi-buoyant body. Finally, the third category shows the equilibrium configuration
of solid-drops pairs at different contact angles and the relative rotation of two solids
(bridged by a drop), induced by shear fluid flow deformations on the drop’s interface.
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1
Introduction

Solid-fluid-fluid interactions are ever-present in nature and in our everyday life. Early
in the morning we come across self-assembled cereal clusters formed in our bowl of
milk by lateral capillary forces (see fig. 1.1 (a)) [3, 4, 5]. Same forces play a crucial
role in the life of water-walking creatures who rely on them to avoid drowning [6, 7].
When a raindrop falls into the sand, the grains attach to the drop surface (capillary
bridge) by normal capillary forces as shown in fig. 1.1 (b) [8, 9]. We can also observe
different behaviour of raindrops falling onto other surfaces, depending on the surface
material, its curvature, its rigidity and its wettability.

Figure 1.1 – (a) Self assembly of buoyant cereals on a free surface. (b) Raindrop covered with
sand-grains after collision with the ground [1].

1.1 Mechanisms of interaction

Two important mechanisms are defined in the following subsections. The wetting
effect — a general mechanism which controls the interactions of a solid surface and
two fluids when they are brought into contact — and the capillary forces — the
mechanism which becomes very important in the interaction among several individual
wettable solid surfaces mediated by a fluid.

1.1.1 Wetting

Wetting is the ability of a liquid to cover a solid surface when the liquid and the solid
are brought into contact. The degree of wetting is determined by the nature of the
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fluids and the solid surface involved (Adhesive and cohesive forces balance).

Figure 1.2 – Three cases of wettability are illustrated, where β > 90◦ shows low wettability, 90◦

is neutrally wettable and α < 90◦ shows high wettability.

Contact angle and adhesive-cohesive forces

The contact angle θ is the angle measured from the solid surface to the fluid tangent line
at the triple point (refer to fig. 1.2). Adhesive forces cause spreading of the liquid over
the solid, decreasing thus the contact angle. On the other hand, cohesive forces tend
to avoid the solid surface and they round up the liquid, causing big contact angles.
The term hydrophobic surface refers to contact angles between 90◦ − 150◦ (surface
with angles greater than 150◦ is called superhydrophobic), hydrophilic surface refers
to contact angles between 0◦ − 90◦ and neutrally wettable surface refers to contact
angles of 90◦.

High and low energy surfaces

Solid surfaces are divided in high-energy and low-energy surfaces. Solids with strong
chemical bonds like metals, glasses and ceramics are strong and hard to break, which
means that in order to break them, a big amount of energy is needed. Generally,
liquids tend to have good affinity with these surfaces and perform total wetting. On
the other hand, solid materials held together by weak forces like van der Waals forces
are easy to break. This means that they are low energy surfaces and the degree of
wetting will depend mostly on the type of fluid used [10, 11].

1.1.2 Capillary forces

Capillary forces are defined as interactions between contacting surfaces of solids and
liquids, so the former are perturbed from their initial position and the latter from
their initial shape. These perturbations cause collective self-assembly of particles at
the macroscopic and even at the microscopic scales [8, 9].

Normal capillary-bridge forces

When two bodies are bridged by a drop phase, the capillary forces act normal to
the contact line plane. Depending on the concavity of the bridging-drop, they can
be attractive or repulsive, as illustrated in fig. 1.3. Attractive bridging forces are
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responsible for the assembly of 3D structures of particles, i.e. a resistant sand castle
on the beach is built by the assembly of water bridged sand-grains.

Figure 1.3 – (a) Convex bridging-drop generates repulsive capillary forces. (b) Concave bridging-
drop generates attractive capillary forces.

Lateral capillary forces

If a body can cause a deflection on a free liquid interface, then two bodies put so
close to each other that their deflections overlap forming menisci will induce lateral
capillary forces. Depending on the menisci, the forces can be attractive (both are
concave or both are convex) or repulsive (one is concave and the other is convex),
as illustrated in fig 1.4. Attractive lateral forces are responsible for the structures
in 2D, for instance paperclips self-assembling in the the fluid interface. It is worth
highlighting that capillary flotation forces of particles are vertical immersion forces
generated by the overlap of the interfacial deformations caused by two particles [12].

Figure 1.4 – (a) Two convex menisci generate attractive forces. (b) Concave and convex menisci
generate repulsive forces.

1.2 Industrial applications

Binary-fluids and solid bodies interactions can be found in several important industrial
processes. From many examples, a few are named below.
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Stabilization of emulsion using particles

Figure 1.5 – Representation of emulsion stabilization with hydrophobic and hydrophilic particles.

An emulsion is usually defined as a mixture of two immiscible liquids [13], which
remain in a form of small drops within the carrier fluid (usually oil drops in water)
by adding emulsifiers like small particles (Pickering emulsions), whose wettable sur-
face is hydrophilic, hydrophobic or both at the same time (Janus particles) [14]. The
emulsion with particles then represent a ternary phase system. The applications of
emulsions are countless, but they can be categorized into three groups: food (mayon-
naise, butter, salad dressing, milk, etc.) [15], cosmetic (hair gels, moisturizers, etc.)
[16] and pharmaceutical (creams and lotions) industries.

Figure 1.6 – Flotation froth process scheme.
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Flotation froth process

One of the most common practices to separate hydrophobic and hydrophilic particles
in a fluid is bringing one of them to the surface and collecting the other at the bottom
of the tank. The flotation froth leverages on the hydrophobic nature of the particles
which attach to the air-bubbles released at the bottom of the tank and are carried by
them towards the surface (fig. 1.6).

Among the flotation techniques, only the froth flotation offers relevant industrial
applications like mineral processing, paper recycling and wastewater treatment. Usu-
ally, the carrier fluid and particles are modified to increase the kinetic particle-bubble
interaction in order to optimize the amount of desired particles in the froth [17].

Figure 1.7 – Spray scrubbing process scheme.

Spray scrubbing process

Spray scrubbing process is used to filter harmful contaminants out of industrial exhaust
gases before they are released to the environment [18]. The gas containing pollutant
particles is canalized inside a chamber, where it is sprayed with scrubbing liquid. The
drops trap the pollutant and drag it to the collector at the bottom of the chamber,
leaving the exhaust gas clean to be released (fig. 1.7).

Apart from the above mentioned applications, we can mention the separation oil-
coated spheres in aqueous solutions (oil and gas recovery), bubble absorption using
hydrophobic springs, self-cleaning of superhydrophobic surfaces, inkjet printing [19],
horizontal turbines working near water-air free surface (complex solid geometries in-
teractions with two phase flows) [20], turbine cavitation particle erosion [21] and more.
Some applications can be found in medicine, for instance a potential treatment pro-
cedure of artery thrombosis, as shown in fig. 1.8. The active compound (particles) is
carried by drops driven by a laminar flow in the artery. Whenever the drops reach the
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obstructed zone, the decrease in the channel diameter increases the shear rate, causing
a deformation and a breakage of the drops, releasing the active compound into the
zone to be treated [2].

Figure 1.8 – High shear regime model for potential treatment of arterial thrombosis [2].

In the applications mentioned above, the solid-drop-liquid interactions represent a
critical parameter which influences the overall performance of each process.

In literature, we can find numerous studies involving solid-solid interactions, which
can be generally classified as collisions, drafting, kissing and tumbling, both experimen-
tally [22] and numerically. While most of the simulations apply a sharp solid interface
approach (such as for instance the Lattice-Boltzmann method [23, 24, 25, 26, 27] and
the Immersed boundary method [28, 29, 30, 31, 32]), a smoothed particle interface of
the solid has been recently gaining importance too, since the solid and the fluid phase
are considered as a continuum [33, 34, 35, 36]. Extensive research has been done about
interactions of two or more droplets and it is agreed that four types of collision may
occur: bouncing, coalescence, separation and reflexive [37, 38, 39, 40, 41]. Although in
recent years, there has been a growing interest in the research of interactions between
solid and binary fluid interfaces, the repertory of solid-drop interaction studies in lit-
erature is still limited. A very interesting work on this topic was performed by Smith
and Van de Ven in 1985 [42], who carried out experiments with a single sphere-droplet
in a shear flow regime, using different capillary number (Ca) values, or experiments
involving a pair of spheres and a droplet forming liquid bridged doublets. Another
widely studied subject is a drop colliding into a sphere [43, 44, 45], as well as a small-
spheres attachment to bubbles/droplets [46, 47, 48]. These kinds of interactions can
be summarized as binary fluid with solid interactions, which not only refer to drops
and particles in a carrier flow, but also to a sphere-free-surface interactions [49, 50, 51].
In the works mentioned above, the wettability effect is usually neglected. However,
lately the studies have been increasingly interested in how wettability affects these
ternary interactions, using hydrophobic, hydrophilic or neutral wettable solids fixed
or moving in binary fluids (sphere-drop/bubble and sphere-free-surface) [52, 53, 54, 55].

Recently, the development of new approaches on how to numerically simulate
ternary phase systems involving binary fluids and solid surfaces interactions has re-
ceived a great deal of attention. Based on their complexity, the approaches that are
currently available in literature can be grouped into 3 main categories. The first cat-
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egory includes the approaches developed to treat flat wall boundaries. These are the
ternary interactions simplest to implement, where the domain boundaries are treated
as solid walls interacting with two distinct phases. The type of simulations allowed by
this type of approach include, among others, channel flow laden with drops, bubbly
flows in a tank and droplets impingement in flat surfaces [56, 57, 58, 59]. The sec-
ond category includes the approaches developed to treat stationary arbitrary-shaped
solid bodies. These approaches treat a static solid interface as a wall-boundary condi-
tion and are generally used to study problems such as porous media interactions with
drops in a carrier fluid, drop impingement into curved surfaces, contact line evolution
on a solid surface, meso-scale and macro-scale rigid structures immersed in a binary
fluid [60, 61, 44, 62]. The third category includes the approaches developed to treat
moving size-resolved solid particles in binary flows. In this case, the trajectory of the
immersed particle can be altered by the fluid motion and by its own inertia. The
studies carried out using this type of approaches are fully coupled and some of them
present solid surface wetting effects. Therefore, their range of possible applications
is vast, ranging from spheres sinking in water, buoyant bodies at water-air interface
and sphere splashing into water to solid particles capture by drops and self-assembly
induced by lateral capillary forces, just to name a few [26, 55, 53].

Although effective in simulating three phase interactions, the size-resolved methods
usually need complex formulations and sophisticated numerical implementations. In
this work, we present a simple and easy-to-implement numerical tool, where a Direct
Numerical Simulation (DNS) of the incompressible carrier fluid flow is performed, the
Phase Field Method describes the time evolution of the drop phase dynamics and
the immersed solid particles are based on a hybrid Eulerian-Lagrangian description.
These particles are tracked in a Lagrangian framework and their disturbance into
the Eulerian domain of the fluid is spread using the Direct Forcing method. Their
size and shape are bounded by a fictitious solid phase with a smooth interface. In
addition, the wetting effects are also taken into account during ternary interactions.
This allows to investigate two phenomena, neither of which have been previously
numerically investigated to the best of the author’s knowledge: the wetting effects
in the submergence of a quasi-buoyant body and the relative rotation of two solids
(bridged by a droplet), induced by shear fluid flow deformations on the drop interface.

Note

The present thesis includes the investigation results on multiphase fluids simulations
carried out at the University of Udine, Italy during 21 months. The experimental
results obtained during the 18 month secondment are reported in a published paper
and technical inhouse reports to EHP.

1.3 Overview of the thesis

The thesis is organised as follows:

� Chap. 2: Methodology The governing equations controlling the temporal and
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spatial evolution of the multiphase system are presented. First, different ap-
proaches used in literature to simulate binary fluids are introduced. The Phase
Field Method is then described in detail, as it is the approach used in this thesis
to track the interface. A solid fictitious phase immersed in a single-fluid is intro-
duced afterwards, together with the motion and coupling equations under the
Direct Forcing approach; the Phase Field Method is then modified, in order to
develop a fully coupled ternary system. The fluid flow is obtained using a contin-
uous approach. Finally, the numerical procedure employed in the discretization
of the equation is presented.

� Chap. 3: Solid phase immersed in a single fluid In this chapter, our
numerical implementation is validated, focusing on solids immersed in a carrier
liquid, using analytical and experimental study cases as reference. The grid
independence test is presented as well.

� Chap. 4: Solid phase and binary fluid interface interactions results
The fully coupled ternary phase numerical algorithm is validated against exper-
imental and analytical data available in literature. The wetting effects on the
submergence of a quasi-buoyant disk are numerically investigated.

� Chap. 5: Solid-drop pair interactions In this chapter, the equilibrium con-
figurations of a cylinder-drop pairs are studied at different contact angles and
the results are compared with analytical solutions. In the second part, a Liquid
Bridged Doublet is brought into the equilibrium configuration for an arbitrary
contact angle. We follow with the study of the solids-drop interactions, when
the LBD is placed within a shear flow field.

� Chap. 6: Conclusions and future perspectives A sum-up of the work done
and results achieved during this PhD is presented, as well as the future research
developments proposed by the author.



2
Methodology

In the first section (sec. 2.1) an overview of different approaches used to simulate
multiphase flows is presented, with a special focus on the Phase field method, which is
employed in this thesis. The method that describes the dynamics of a solid immersed
in a single or binary fluid is described in sec. 2.2. Sec. 2.3 then introduces the flow
field equations, the important dimensionless parameters and the dimensional analysis.
Finally, sect. 2.4 describes the numerical method used to solve all the equations
involved.

2.1 Binary systems simulation approaches

Over the last years, many approaches have been developed in order to simulate mul-
tiphase flows. Depending on how the interface si defined, these methods are classified
in two categories: i) interface tracking and ii) interface capturing methods. The for-
mer represent the interface explicitly by using Lagrangian markers, while the latter
rely on its implicit description, using a marker function, which is advected by the flow.

2.1.1 Front Tracking Method

The Front Tracking (FT) method is the most commonly used among the interface
tracking methods [63, 64, 65]. A set of Lagrangian marker points are placed at the
interface, they are advected by the local fluid and their position is calculated by the
following equation:

∂xi

∂t
= ui, (2.1)

where the position xi is calculated by the interpolated local fluid velocity ui for the
i− th marker. The interface is reconstructed after using a series of connections among
the markers. The surface tension can be computed once the interface curvature is
determined. The interfacial forces are then added to the Navier-Stokes equations by
spreading their Lagrangian marker point value into the Eulerian grid (using a smooth-
ing function). One of this method’s disadvantages is the low accuracy of the curvature
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computation and additional algorithms are needed to represent the topological changes
in the interface, such as coalescence and breakage [66].

2.1.2 Volume of Fluid Method

The Volume of Fluid (VoF), is an interface capturing method, which solves an advec-
tion equation for an Eulerian marker function g:

∂g

∂t
+ u · ∇g = 0. (2.2)

The value of gi is in every cell of a discretized domain calculated as the concentration
volume average at each cell:

gi =
1

Vi

∫
v

g(x)dv, (2.3)

g is initialized as a Heaviside step function. The evolution of g in eq. [2.2] leads to
a numerical diffusion [66], which is why advection algorithms are used to reconstruct
the shape of the interface [67, 68, 69]. The main advantages of this method are: i)
coalescence and breakage are implicitly solved and ii) the mass is conserved in both
phases.

2.1.3 Level Set Method

The Level Set (LS) method [70, 71] belongs to the group of interface capturing methods
and it is an increasingly popular alternative to VoF. The interface is represented as the
0-level of a smooth function γ; the temporal evolution of γ is solved by the following
advection equation:

∂ϕ

∂t
+ u · ∇f = 0. (2.4)

The main idea is to define γ as the signed distance from the interface. The signed
property is lost because of numerical diffusion and a reinitialization procedure is usu-
ally performed, ending up in a mass leakage between the phases. To fix this issue,
the LS method is coupled with the VoF [72] and different marker functions profile
are used [73]. In the same way as VoF, the Level Set method is accurate in the cap-
ture of coalescence and breakages, caused by the grid resolution instead of physical
mechanisms.

2.1.4 Phase Field Method

The Phase Field Method (PFM) is an interface capturing method and it was initially
developed to study the time-evolution of the alloy microstructure during a spinodal
decomposition [74, 75, 76]. Later on, this method has been extended to the study
of incompressible multiphase flows by introducing an advection term to the Cahn-
Hilliard equation and a coupling term within the Navier-Stokes equations [77, 78]. In
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this method, the Cahn-Hilliard equation (eq. [2.5]),

∂ϕ

∂t
+ u · ∇ϕ = ∇ · (Mϕ∇µϕ), (2.5)

describes the evolution of the phase field order parameter (ϕ), which represents the
local concentration of the phases and its value is constant at each phase but across the
fluid-fluid interface thickness layer. The interface is advected by the velocity field (u).
The diffusive term, located on the right side of the equation, is constituted by the
motility coefficient (Mϕ) (relaxation time of the interface), which is set constant [79],
and the chemical potential (µϕ), derived as the variational derivative of a Ginzburg-
Landau free-energy functional (F) [78, 79]:

µϕ =
δF [ϕ,∇ϕ]

δϕ
. (2.6)

For a system composed of two incompressible flows, the free-energy functional

F [ϕ,∇ϕ] =

∫
Ω

[fb(ϕ) + fi(∇ϕ)]∂Ω (2.7)

has a contribution from the bulk (a double well potential, panel (a) in Fig. 2.1, with
a minima for each pure phase)

fb(ϕ) =
α

4
(ϕ−

√
β

α
)2(ϕ+

√
β

α
)2, (2.8)

Figure 2.1 – (a) Double well potential. (b) Interface free-energy shown in red and the interface
equilibrium profile plotted in blue.

and the interface free energy density (which plays the role of surface tension for
fluid-fluid interface, panel (b) in Fig. 2.1)

fi(∇ϕ) =
κ

2
|∇ϕ|2, (2.9)

where κ is the value of the surface tension and α and β are the functional coefficients.
From equation [2.6] to [2.9], the chemical potential results in the following expression:
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µϕ =
δF [ϕ,∇ϕ]

δϕ
= αϕ3 − βϕ− κ∇2ϕ. (2.10)

The phase field equilibrium occurs when the chemical potential is constant in the
whole domain,∇µϕ = 0, where the analytical solution and the equilibrium profile
considering a flat interface is the following:

ϕ = ϕ+ tanh(
s√
2ξ

), (2.11)

where ξ =
√
κ/β is the interfacial layer thickness, ϕ+ =

√
β/α indicates the value

at each phase’s bulk and s represents the interface normal coordinate.

The main advantages of the Phase Field method are i) the implicit description of
topological changes like coalescence and breakage, ii) the accurate calculation of the
interface curvature and shape, iii) the fact that advection schemes are not needed to
maintain the interface profile in equilibrium. On the other hand, the PFM presents
some drawbacks, for instance i) mass leakage (known also as shrinkage) induced by
the combination of a chosen constant value for the mobility and double-well potential
[80, 81], ii) coarsening phenomena resulting from the energy minimization criterion (in
domains with one large phase and a small one, the former tends to grow over the latter
in order to reduce the domain interfacial energy) and iii) overshots and undershots in
the phase field over the entire domain, which lead to nonphysical values of the surface
tension, as well as to negative values in density and viscosity.

2.2 Solid-phase and binary fluid coupling

In this work the solid body trajectories are treated as point-wise particles in a La-
grangian framework. Each particle position is mapped in the Eulerian domain and
linked to a region with a resolved shape and size of the corresponding solid body. Sim-
ilar to You et al. [82] a Direct Forcing method is applied in this region, however, we
describe the solid interface as a transition layer from the solid region to the fluid bulk
using a smooth function in order to ensure the compatibility with the PFM [83, 36].

2.2.1 Single fluid and rigid-solid interaction approach

A generic incompressible Newtonian fluid flow is introduced as the carrier fluid flow,
governed by the Navier-Stokes and continuity equations:

∇ · u = 0, (2.12)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + µ∇2u + ρg. (2.13)

Considering that the solid phase is described by a fictitious domain (Ωs) built up
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by the union of n individual body fields:

Ωs =
n⋃

i=1

Ωi, (2.14)

a phase parameter ψs is inserted with constant values in the solid and fluid bulk volume
(ψs = 1 and ψs = 0, respectively). The transition between phases is represented
by a smooth layer, where fluid and solid properties coexist in proportions ruled by
a hyperbolic tangential profile along the normal direction of the solid interface x.
In order to properly describe the local properties, the grid resolution must ensure
the thinnest width with a well defined transition profile. Every individual rigid-solid
sphere can then be generated using the following expression:

h(x) =
1

2
[1 − tanh(

x− r

ξs
)], (2.15)

which is similar to the formulation used by Nakayama et al. [84], where r is the
solid radius and ξs is the parameter control for the interface width.

The fluid-solid coupling is achieved by adding a virtual force into the Navier-Stokes
equations following the Direct Forcing Immersed Boundary approach [85, 86, 87]. In
this method, the fluid within the solid region is enforced to follow prescribed solid-
bodies velocities, ensuring the rigidity and the non-penetration condition [82].

The modified Navier-Stokes equations are:

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + µ∇2u + ρg + ρf DF . (2.16)

where f DF is the virtual force exerted in the solid region Ωs to advance the solid object
velocity from an intermediate time level velocity field u∗ (where no influence of the
solid is considered for its resolution) to un+1

s (calculated in previous steps) [82, 36, 88].
Eq. [2.17] shows how f DF is calculated.

f DF =
un+1
s − u∗

∆t
, (2.17)

where ∆t is the integration time step.

2.2.2 Equations of motion for a solid immersed in a fluid

The solid phase dynamics is described in a Lagrangian frame. The motion of an
immersed rigid-body is caused by lineal and angular momentum. Consequently, the
velocity us of the rigid-body can be decomposed in a translational and rotational
velocity, as shown in eq. [2.18]:

us = vs + ωs × r, (2.18)

where vs is the immersed-solid linear velocity and ωs its angular velocity with respect
to the axis passing through its center of mass.
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(i) We use the equation derived by Cheng-Shu et al. [82], shown in eq. [2.19], in order
to obtain the lineal velocity of the solid object.

ms
dvs

dt
= (ms −mf )g −

y

Ω

ψsρffdV +mf
dvs

dt
, (2.19)

where ms and mf are the solid and the fluid mass respectively, g represents the gravity
and f is the average value of virtual force for the solid. The terms in the RHS of eq.
[2.19] accounts on the effects of buoyancy, inertia and added mass (read from left
to right). Subsequently this equation is discretized in time considering the following
equivalences:

ms =
y

Ωs

ρsfdV =
y

Ω

ψsρsfdV (2.20)

and
mf =
y

Ωs

ρffdV =
y

Ω

ψsρffdV (2.21)

and for the virtual force term we use a 2nd-order-accurate Adams-Bashforth scheme,
obtaining as a result the following expression :

ms
vn+1
s − vn

s

∆t
= (ms −mf )g − (

3

2

y

Ωs

ρff
ndV − 1

2

y

Ωs

ρff
n−1dV ) +mf

vn
s − vn−1

s

∆t
.

(2.22)
(ii) The angular momentum can be calculated from the intermediate time level velocity
field u∗ as follows:

Jsωs =
y

Ωs

ρsr× u∗, (2.23)

where Js is the rotational inertia of the solid body, r = x−Xs is the relative vector of
a spatial point (x) to the the center of mass of the solid body (Xs). From eq. [2.23],
we can calculate the angular rotation of the body center-of-mass.

Finally, the body trajectory is calculated by integrating the following expression:

dXs

dt
= us. (2.24)

2.2.3 Particle collisions

Collisions between particles and wall and particle and particle are very important in
particle-laden flows, especially in situations where the solid phase concentration is
dense, for systems with high Reynolds number or higher probability of collisions due
to a specific mechanism, such as two solids at a binary fluid interface brought together
by the action of capillary forces.
Generally, the grids used for DNS are not fine enough to solve lubrication in the gap
between a particle in close proximity to another particle or a solid boundary, which
creates the need for numerical schemes to account for the collision.
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Glowinski et al. [33] introduced a simple method which consists of a short range
repulsive force acting in the particle when the gap between the particle and the other
entity is lower than a given threshold (safe zone) set in advance. The repulsive force
between a particle and a solid boundary is given by the reflection method. Later on,
Feng and Michaelides [89] improved this technique, with the aim to avoid particles
overlapping (hard collision) without having undesired side effects, by using a two step
function for soft and hard collision. The collision of two spherical particles is given by
the following scheme:

Figure 2.2 – (a) particle-particle collision (b) reflection method for particle-wall collision.

F p
ij =


0, ||Xci −Xcj || ≥ Dp + ζ
cij
ϵpp

Bpp(
Xci−Xcj

||Xci−Xcj || ), Dp ≤ ||Xci −Xcj || < Dp + ζ
cij
ϵpp

(Bpp +
cij
Epp

(
Dp−||Xci−Xcj ||

ζ ))(
Xci−Xcj

||Xci−Xcj || ), ||Xci −Xcj || ≤ Dp

with:

Bpp =

(
||Xci −Xcj || −Dp − ζ

ζ

)2

,

and for the collision of a sphere with a wall,

Fw
i =


0, ||Xci −X′

ci|| ≥ Dp + ζ
cij
ϵpw

Bpw(
Xci−X′

ci

||Xci−X′
ci||

), Dp ≤ ||Xci −X′
ci|| < Dp + ζ

cij
ϵpw

(Bpw +
cij
Epw

(
Dp−||Xci−X′

ci||
ζ ))(

Xci−X′
ci

||Xci−X′
ci||

), ||Xci −X′
ci|| ≤ Dp

with:
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Bpw =

( ||Xci −X′
cj || −Dp − ζ

ζ

)2

,

where Xci is the center coordinate of the i-th sphere and X′
ci is the center coordinate

of the imaginary particle reflected, attached to the other side of the wall (see fig. 2.2),
cij is chosen as a constant force scaled (usually the buoyancy force is used) [31], ϵpp and
ϵpw are the stiffness parameters for the collision, Epw and Epp are smaller parameters
(bigger spring force) than ϵ, in order to ensure non-overlapping particles. We choose
the values of ϵpp = 0.25, ϵpw = 0.5 and Epp = Epw = 0.02, following Feng et al. [89].
The parameter ζ is the chosen threshold to activate the collision scheme.

Fig. 2.3 shows the time sequence of the collision between two approaching spheres
driven by a shear flow in a closed channel. Panel (a) shows the two objects approaching
and how they are arranged to ensure the interaction. Panel (b) shows the moment
when the disks reach contact and in panel (c) they briefly bounce back (caused by the
normal reaction force of the collision). Shortly after, the motion of the spheres is taken
over by the stream force. Since the kinetic energy is lower after the first collision, the
bodies attach smoothly at the contact point and start rotating and sliding as a coupled
system (panel (d)). Finally, when the normal-collision-force becomes zero (panel (e)),
the two disks slide away, break the contact and follow freely the fluid stream again.

Figure 2.3 – Collision time sequence of 2 disks: (a) approaching disks, (b) collision (c) back-
bouncing, (d) rolling around contact point, e) tangential sliding and (f) separation.

2.2.4 Fictitious solid-phase with wettability in immiscible bi-
nary fluids

In order to include the wettability effects of a solids immersed in a binary fluid model,
we modify the free energy density functional (eq. [2.7]), following the approach pre-
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sented by Shinto [55]. This is based on the model of Cahn [90], who adds an additional
surface term Fs (eq. [2.25]) to describe the interactions between a binary fluid interface
and a solid.

Fs[Xs, t] =
1

β

∫
S

(−Hψs)dS, (2.25)

where Xs is the position of the particle and S is the particle surface. H is pre-assigned
parameter to control the wettability and it admits values within the range of ϕf = −1
and ϕd = +1 (these range limits correspond to the values of the order parameter ϕ at
the bulk of each phase in the binary system). For a value of H = 0, the solid surface
is neutrally wettable, in the case of H < 0, the solid has more affinity to the fluid
and when H > 0, the solid surface experiences more attraction to the drop. ψs is
the compositional order parameter of the solid. The binary fluid should evolve nearby
this region, in order to accomplish the minimization of the free energy of the system
[55, 61]. The equilibrium contact angle (θeq) with respect to the affinity value can be
calculated with the following expression:

cos(θeq) =
XS

2
(3 −X 2

S), (2.26)

with

XS =
ψp − ϕ̄S
ϕd − ϕ̄S

(2.27)

and

ϕ̄S =
ϕf + ϕd

2
, (2.28)

where ϕ̄S and XS describe the homogeneous solid surface and its affinity (−1 ≤ XS ≤
1) [61]. A similar approach of implicitly imposing the contact angle by using an affinity
parameter was developed by Guillaument et al. [57], who impose wetting effects using
the penalty method.

The modified free energy functional considering the solid phase ψs and the fluid
phase (1 − ψs) is shown in eq. [2.29]:

F [ϕ, ψs] =
1

β

∫
V

dx[fb(ϕ) +
κ

2
|∇ϕ|2 +

Ks

2
(ϕ− ψp)2ψs], (2.29)

where ψp is a constant value controlling the affinity, Ks is a positive parameter
(which has to be chosen as a large value compared with the parameters α and β) which
ensures the value of the affinity inside the solid region in the phase field by imposing
a single-well potential in the free energy functional [55].

The additional solid coupling term in the free energy functional makes the chemical
potential (eq. [2.10]) evolve into the following expression:

µϕ =
δF [ϕ, ψs]

ϕ
= αϕ3 − βϕ− κ∇2ϕ+Ks(ϕ− ψp)ψs. (2.30)

In order to ensure the no-penetration condition, we employ the operator (I−ns ⊗
ns), which acts directly in the solid diffused interface, with ns = ∇ψs/|∇ψs| as the
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solid surface normal vector and I as the unit tensor. The advection-diffusion equation,
taking into account the solid phase, results as follows:

∂ϕ

∂t
+ u · ∇ϕ = Mϕ∇ · [(I− ns ⊗ ns)(∇µϕ)]. (2.31)

2.3 Flow Field Equations

The equations that fully describe the incompressible flow of a generic Newtonian fluid
with advected and deformable interfaces are the continuity equation (mass conserva-
tion) and the Navier-Stokes equations (momentum conservation) with an interfacial
term (representing the coupling with the Cahn-Hilliard equation) and a virtual force
term to account for the feedback of rigid-immersed bodies. The dimensional form of
the mass conservation equation for incompressible flows is as follows:

∇ · u = 0. (2.32)

In order to couple the two-phases-flow-field, we use a continuous approach to in-
troduce boundary conditions at the interface [91, 92]. As for velocity, the transition at
the interface should be continuous, avoiding sudden jumps, as shown in the following
expression:

u1 · n− u2 · n = 0, (2.33)

where n is the unit normal tensor to the interface and u1 and u2 represent the velocity
vectors at each side of the interface. The jump condition for the stress tensor at the
interface can be written as follows:

T1 · n−T2 · n = Kσn−∇sσ, (2.34)

where K is the mean curvature, σ is the surface tension, and T1 and T2 are the
stress tensors at each side of the interface. The rhs of eq. [2.34] is composed by a
normal (Kσn) and a tangential (∇sσ) component, with ∇s being the surface gradient
operator.

The Navier-Stokes equations using the continuous approach in the binary fluid for
a divergence-free velocity field are:

ρ (ϕ)

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + ∇ ·

[
η (ϕ)

(
∇u + ∇uT

)]
+ ρ (ϕ)g

+ ∇ · [τ̄cKσ] + ρ (ϕ) f DF (ψs) ,

(2.35)

with u = (u, v, w) as the velocity field, ρ (ϕ) and η (ϕ) as the local density and
dynamic viscosity respectively, τ̄c as the Korteweg tensor, σ as the surface tension and
f DF as the virtual force exerted by the solid phase.
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2.3.1 Non-matched properties treatment

In order to avoid numerical discontinuities and jumps across the interface, the thermo-
physical properties are defined to depend on the phase field indicator ϕ with smooth
transitions across the interface.
We select arbitrarily the carrier phase (ϕ = −

√
β/α) as the reference property value,

then the local density and viscosity are defined as:

ρ(ϕ) = ρc

[
1 +

ρr − 1

2
(

ϕ√
β/α

+ 1)

]
, (2.36)

η(ϕ) = ηc

[
1 +

ηr − 1

2
(

ϕ√
β/α

+ 1)

]
, (2.37)

with:
ρr =

ρd
ρc
, ηr =

ηd
ηc
, (2.38)

where the subscript d indicates the dispersed phase and c the carrier phase.

Figure 2.4 – Transition profile of the dynamic viscosity when ηr is greater than 1 (dashed-blue
curve) and when ηr is smaller than 1 (red-plain curve). The interface is identified by the vertical
gray line.

We display two different dynamic viscosity ratios in fig. 2.4 (ηr < 1 and ηr > 1),
which shows that the definition of the equations [2.36] and [2.37] prevents the value
to reduce below zero (unphysical values).
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2.3.2 Non-dimensional Formulation

The scheme of the three-dimensional domain that we use for our simulations is shown
in fig. 2.5, where the upper and lower boundaries consist in infinite parallel walls
separated Lz = 2h from each other.

Figure 2.5 – Scheme of the three dimensional domain with the upper and lower boundary as walls
and with periodic conditions in x and y directions.

All the equations are solved in a non-dimensional form. The Navier-Stokes equation is
turned into non-dimensional by introducing the so-called outer-scaling units (indicated
by the “*” apex). On that account we define the characteristic flow scales: as a
characteristic length scale we use the semi-height h of periodic side of the domain and
for the velocity we use the classical definition of shear velocity uτ :

uτ =

√
τw
ρc
, (2.39)

where τw is the mean value of the shear at the wall.

All the variables of our interest can now be transformed in a non-dimensional form
as follows:

x∗ =
x

h
, u∗ =

u

uτ
, t∗ =

tuτ
h
, P ∗ =

P

ρu2τ
(2.40)
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with x = (x, y, z) as position, v = (u, v, w) as velocity, t as time and P as pressure. It
is thus possible to obtain (with some simple substitutions) the following expressions
for the continuity and Navier-Stokes equations:

∇u∗ = 0, (2.41)

ρ∗ (ϕ∗)

[
∂u∗

∂t∗
+ (u∗ · ∇)u∗

]
= −∇P ∗ +

1

Reτ
∇ ·
[
η∗ (ϕ∗)

(
∇u∗ + ∇u∗T )]+

1

Fr2
ρ∗ (ϕ∗)g∗ +

3Ch√
8We

∇ · [τ̄∗c K] +

ρ∗ (ϕ∗) f ∗
DF (ψ∗

s ) ,

(2.42)

where g∗ is the gravity unit vector, the shear Reynolds number Reτ is defined as:

Reτ =
ρcuτh

ηc
=

uτh

ν
, (2.43)

with ν[ms2 ] as kinematic viscosity; the Weber number is defined as:

We =
ρcu

2
τh

σ
, (2.44)

where σ is the surface tension. The Froude number is then defined as:

Fr =
uτ√
gh

; (2.45)

the Cahn number represents the ratio between the characteristic length scales of the
interface and the fluid domain:

Ch =
ξ

h
. (2.46)

The non-dimensional form of the transport equation for the phase field becomes:

∂ϕ∗

∂t∗
+ u∗ · ∇ϕ∗ =

1

Peϕ
∇2µ∗

ϕ, (2.47)

where the phase field Péclet number (Peϕ = uτh/(βMϕ)) measures the ratio between
convection and diffusion in the phases, were Mϕ is the constant mobility coefficient
for the phase field. The non-dimensional form of the phase field equilibrium profile is:

ϕ∗ =
s∗√
2Ch

, (2.48)

with s∗ as a non-dimensional coordinate normal to the interface. Using the factor β3

α ,
the chemical potential becomes non-dimensional:

µ∗
ϕ = ϕ∗

3

− ϕ∗ − Ch2∇2ϕ∗ + (ϕ∗ − ψp)ψs. (2.49)

The phenomenological behavior of the analyzed problem is set by the shear Reynolds
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number and the Weber number. The Cahn number represents the ratio between
the binary fluid interface thickness and the domain height, therefore, its value is set
according to the computational mesh grid. The Cahn number is usually chosen to have
at least five grid points across the interface. The phase field Péclet number (Peϕ), is
then set taking into account the Cahn number: Peϕ = 1/Ch [93, 94].

The non-dimensional equations for the solid body are found using the characteristic
parameters employed in the phase field equations, eq. [2.19] becomes:

dv∗
s

dt∗
=

1

Fr2

(
1 − ρfsub

ρs

)
g∗ − ρfsub

ρs

(
f +

dv∗
s

dt∗

)
, (2.50)

where ρs is the solid body density and ρfsub is the average value of the fluid density
in the region occupied by the solid. The latter can be calculated in the following way:
ρfsub = ρA(Iss) +ρA(1− Iss) , where Iss is the immersed volume portion with respect
to the fluid A described in appendix A.1, ρA and ρB are the densities of fluid A and
B respectively.

2.4 Numerical method

In order to solve the flow field we use the velocity-vorticity approach, where the mo-
mentum and the continuity equations are exchanged by the second-order equation for
the wall-normal component of the vorticity (curl of the Navier-Stokes equations), the
fourth-order equation for the wall-normal component of the velocity (twice the curl of
the Navier-Stokes equations), the equation of the wall-normal vorticity and the con-
tinuity equation. With this approach, we avoid solving the pressure field and the use
of time consuming Poison solvers.

2.4.1 Velocity-vorticity Formulation

For the numerical resolution of the flow equations, it is very useful to rewrite the conti-
nuity and Navier-Stokes equations without taking explicitly into account the pressure
∂p
∂x gradient term by taking the curl of the non-dimensional momentum equation (eq.
[2.42]) rearranged by collecting the non-linear terms into S and by removing the su-
perscripts for briefness:

∂u

∂t
= S +

1

Reτ
∇2u−∇P

′
, (2.51)

with

S = −u · ∇u− ρr − 1

2
(1 + ϕ)

(
∂u

∂t
+ u · ∇u

)
− Π + ρ(ϕ)f DF (ψs)

+
1

Reτ
∇ ·
[
ηr − 1

2
(1 + ϕ)

(
∇u + ∇uT

)]
+
ρ(ϕ)g

Fr2
+

3Ch√
8We

∇ · τ̄c,

where the pressure gradient is split into two: a mean, Π and a fluctuating pressure
gradient, ∇P ′

. Then taking the curl:
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∇× ∂u

∂t
= ∇× S +

1

Reτ
∇×∇2u−∇×∇P

′
. (2.52)

If we now observe that the last term is precisely zero (because of a vectorial identity)
and if we recall the definition of the vorticity vector ω = ∇× u, it follows:

∂ω

∂t
= ∇× S +

1

Reτ
∇2ω, (2.53)

which is an alternative expression of the vorticity transport equation. If we now take
again the curl of this equation and we use the identity ∇×∇× c = ∇ (∇ · c) −∇2c
(which applies to every vectorial field c) and the continuity equation, the result will
be the following Helmoltz fourth order equation:

∂
(
∇2u

)
∂t

= ∇2S−∇ (∇ · S) +
1

Reτ
.∇4u. (2.54)

The classic resolution algorithm velocity-normal vorticity developed by [95] requires
projecting the eq. [2.53] and [2.54] in the wall normal direction and solving them, in
order to obtain the wall normal components w and ωz. The continuity equation and
the definition of vorticity are then used to calculate the other two velocity components
(u and v).
The system employed for the numerical resolution of a fluid flow in our domain is thus
described by:

∂ωz

∂t
=
∂Sy

∂x
− ∂Sx

∂y
+

1

Reτ
∇2ωz, (2.55)

∂
(
∇2w

)
∂t

= ∇2Sz −
∂

∂z

(
∂Sx

∂x
+
∂Sy

∂y
+
∂Sz

∂z

)
+

1

Reτ
∇4w, (2.56)

∂u

∂x
+
∂v

∂y
= −∂w

∂z
, (2.57)

∂v

∂x
+
∂u

∂y
=
∂ωz

∂z
. (2.58)

Once the velocity field is calculated, the fluctuating component of the pressure can be
obtained by the following Poisson-like equation:

∇2P
′

= ∇ · S. (2.59)

2.4.2 Cahn-Hilliard equation stability splitting term

The Cahn-Hilliard equation solution involves high order operators which require robust
numerical schemes. By introducing eq. [2.49] into eq. [2.47], the 4th order operator is
evident:

∂ϕ

∂t
= −u · ∇ϕ+

1

Peϕ

(
∇2ϕ3 −∇2ϕ− Ch2∇4ϕ+ ∇2 [(ϕ− ψp)ψs]

)
. (2.60)
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To improve the stability, we adopt the same pseudo-spectral scheme used for solving
the Navier-Stokes equation, rearranging eq. [2.60] we obtain:

∂ϕ

∂t
= Sϕ +

sCh2

Peϕ
∇2ϕ− Ch2

Peϕ
∇4ϕ, (2.61)

where we use the operator splitting ∇2ϕ = (sCh2 + 1)∇2ϕ− sCh2∇2ϕ similar to the
one presented in [96], where a positive coefficient s is selected based on the temporal
discretisation, using in our case s =

√
4PeϕCh2/∆t [79, 97]. Then we collect the

convective term, the non-linear term, the solid phase term and the term produced
after the splitting process into Sϕ:

Sϕ = −u · ∇ϕ+
1

Peϕ
∇2ϕ3 − (sCh2 + 1)

Peϕ
∇2ϕ+ ∇2 [(ϕ− ψp)ψs] . (2.62)

2.4.3 Spectral Space discretization

We use the pseudo-spectral spatial discretization to solve equations 2.55, 2.56 and
2.60, where the solutions are approximated via Fourier transforms along the two pe-
riodic directions of our domain (direction x and y in fig. 2.5) and the Chebyshev
polynomials are used for the solution approximation in the wall-normal direction. All
multiplications in the Fourier-Chebyshev space are avoided by transforming spectral
variables back into the physical space where the multiplication is performed, and then
re-transformed into the spectral space. Due to this process, the algorithm is called
”pseudo-spectral”.

The following sum of harmonics represents the projection of a signal g along the
periodic directions x and y into the Fourier space:

g (x, y, z) =

Nx
2∑

nx=−Nx
2 +1

Ny
2∑

ny=−Ny
2 +1

ĝ (κx, κy, z) ej(κxx+κyy), (2.63)

where κx = 2πnx

Lx
and κy =

2πny

Ly
are the wave-numbers, nx and ny are the nth

Fourier mode, Nx and Ny are the total number of Fourier modes (and also grid nodes)
used along each direction, in order to represent the signal, j =

√
−1 is the imaginary

unit of the complex representation and ĝ is a generic Fourier coefficient of the signal
in modal coordinates κx and κy. The two directions are treated with a Fast Fourier
Transform (FFT) algorithm imposing periodicity in lengths of Lx and Ly and project-
ing the signal into Nx and Ny Fourier modes in the streamwise (x) and spanwise (y).
The Fourier Transform maps the variables from a uniform grid in the physical space:

∆x =
Nx

Lx
,

∆y =
Ny

Ly
.

(2.64)
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Since the Fourier basis is orthogonal, we can calculate ĝ in the following way:

ĝ (κx, κy, z) =
1

NxNy

Nx
2∑

nx=−Nx
2 +1

Ny
2∑

ny=−Ny
2 +1

g(x, y, z)e−j(κxx+κyy), (2.65)

since the wall normal direction z is non homogeneous and non periodic, we proceed
to adopt the Chebyshev polynomial representation along z.

We have to use the following polynomials:

Tnz (z) = cos
(
nz cos−1 (z)

)
, (2.66)

where z = z− ∈ [−1; 1] is a non-dimensional variable and the grid points coordi-
nates along z are given by:

z = cos

(
nzπ

Nz

)
, (2.67)

where Nz is the total number of modes along z. An advantage of the Chebyshev
representation is that it allows a large spatial resolution close to the walls (z = ±1),
where it is necessary to properly describe high velocity gradients.

The generic signal component will thus be expressed by the following Fourier-Chebyshev
representation:

ĝ (κx, κy, z) =

N
′
z∑

nz=0

ĥ (κx, κy, nz)Tnz (z) (2.68)

, where nz is one of the nodes. Because of orthogonality we can also define the inverse
of the Chebyshev transform:

ĥ (κx, κy, z) =
2

Nz

N
′
z∑

nz=0

ĝ (κx, κy, nz)Tnz (z) . (2.69)

Finally, the three-dimensional signal representation in the spectral space is:

g (x, y, z, t) =

Nx
2∑

nx=−Nx
2 +1

Ny
2∑

ny=−Ny
2 +1

N
′
z∑

nz=0

ĥ (κx, κy, nz, t)Tnz
ej(κxx+κyy). (2.70)

It is important to note that the operations computed in the physical space gen-
erate aliasing, and therefore de-aliasing algorithms need to be considered, as the one
presented by [98], where only two thirds of the modes are kept after the calculation of
the pseudo-spectral multiplications.
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2.4.4 Numerical discretization and solution of the equations

Single fluid velocity equation

The velocity equation [2.56] is represented in the following discretized form:

∂

∂t

(
∂2

∂z2
− κ2xy

)
ûz =

(
∂2

∂z2
− k2xy

)
Ŝz+

− ∂

∂z

(
iκxŜx + iκyŜy +

∂Ŝz

∂z

)
+

+
1

Reτ

(
∂2

∂z2
− κ2xy

)(
∂2

∂z2
− κ2xy

)
ŵ,

(2.71)

where:
κ2xy = κ2x + κ2y.

The eq. [2.71] above is discretized using an IMplicit-EXplicit (IMEX) scheme:

� Explicit Adam-Bashforth second order scheme for non-linear convective terms;

� Implicit Crank-Nicolson scheme for linear diffusive operators.

Considering the time steps n− 1, n and n+ 1, we obtain:
n− 1 =⇒ t− ∆t,

n =⇒ t,

n+ 1 =⇒ t+ ∆t.

Eq. [2.71] is then discretized on time:

1

∆t

(
∂2

∂z2
− κ2xy

)(
ŵn+1 − ŵn

)
=

1

2

(
∂2

∂z2
− κ2xy

)(
3Ŝn

z − Ŝn−1
z

)
+

− 3

2

∂

∂z

(
iκxŜ

n
x + iκyŜ

n
y +

∂Ŝn
z

∂z

)
+

+
1

2

∂

∂z

(
iκxŜ

n−1
x + iκyŜ

n−1
y +

∂Ŝn−1
z

∂z

)
+

+
1

Reτ

(
∂2

∂z2
− κ2xy

)(
∂2

∂z2
− κ2xy

)
ŵn+1 + ŵn

2
,

(2.72)

and we introduce the coefficient:

γ =
∆t

2Reτ
,
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to obtain: [
1 − γ

(
∂2

∂z2
− κ2xy

)](
∂2

∂z2
− κ2xy

)
ŵn+1 =

+
3∆t

2

(
∂2

∂z2
− k2xy

)
Ŝn
z − ∆t

2

(
∂2

∂z2
− κ2xy

)
Ŝn−1
z

−3∆t

2

∂

∂z

(
iκxŜ

n
x + iκyŜ

n
y +

∂Ŝn
z

∂z

)
+

+
∆t

2

∂

∂z

(
iκxŜ

n−1
x + iκyŜ

n−1
y +

∂Ŝn−1
z

∂z

)
+

+

[
γ
∂2

∂z2
+
(
1 − κ2xy

)]( ∂2

∂z2
− κ2xy

)
ŵn.

(2.73)

The continuity equation in its discretized form is:

iκxû
n + iκy v̂

n +
∂ŵn

∂z
= 0. (2.74)

Inserting eq. [2.74] into eq. [2.73] and defining the coefficient:

λ2 =
1 + γκ2xy

γ
,

we obtain:

− γ

(
∂2

∂z2
− λ2

)(
∂2

∂z2
− κ2xy

)
ŵn+1 =

= −κ2xy
(

3

2
Ŝn
z − 1

2
Ŝn−1
z

)
∆t− κ2xy

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
ŵn+

− ∂

∂z
iκx

(
3

2
Ŝn
x − 1

2
Ŝn−1
x

)
∆t− ∂

∂z
iκx

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
ûn+

− ∂

∂z
iκy

(
3

2
Ŝn
y − 1

2
Ŝn−1
y

)
∆t− ∂

∂z
iκy

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
v̂n.

(2.75)

In the following, we define the historical terms:

Ĥn
x =

(
3

2
Ŝn
x − 1

2
Ŝn−1
x

)
∆t+

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
ûn, (2.76)

Ĥn
y =

(
3

2
Ŝn
y − 1

2
Ŝn−1
y

)
∆t+

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
v̂n, (2.77)

Ĥn
z =

(
3

2
Ŝn
z − 1

2
Ŝn−1
z

)
∆t+

[
γ
∂2

∂z2
+
(
1 − γκ2xy

)]
ŵn. (2.78)
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Applying the terms defined in the eq. [2.76]-[2.78] into eq .[2.75]:(
∂2

∂z2
− λ2

)(
∂2

∂z2
− κ2xy

)
ûn+1
z =

1

γ
κ2xyĤ

n
z +

+
1

γ

∂

∂z

(
iκxĤ

n
x + iκyĤ

n
y

)
,

(2.79)

and defining:

Ĥn = κ2xyĤ
n
z +

∂

∂z

(
iκxĤ

n
x + iκyĤ

n
y

)
, (2.80)

we find the final form of the discretized equation for the velocity:(
∂2

∂z2
− λ2

)(
∂2

∂z2
− κ2xy

)
ŵn+1 =

Ĥn

γ
. (2.81)

In order to solve this 4th-order eq. [2.81], the following auxiliary variable is introduced:

θ̂ =

(
∂2

∂z2
− κ2xy

)
ŵn+1,

with this, we obtain two 2nd-order equations:(
∂2

∂z2
− λ2

)
θ̂ =

Ĥn

γ
, (2.82)

(
∂2

∂z2
− κ2xy

)
ŵn+1 = θ̂. (2.83)

The eq. [2.83] is solved using the no-slip boundary condition at the walls:ŵ
n+1 (±1) = 0,
∂ŵn+1

∂z
(±1) = 0.

(2.84)

The solution to the eq. [2.84] requires the boundary condition on θ̂ that is missing in

the physical model. In order to avoid this problem, we rewrite θ̂ as follows:

θ̂ = θ̂1 + Âθ2 + B̂θ3, (2.85)

where Â, B̂ are complex constants to be determined.

The components θ̂1, θ̂2 and θ̂3, are respectively the particular and the homogeneous
solution to the eq. [2.82]. These solutions are obtained from:(

∂2

∂z2
− λ2

)
= θ̂1, θ̂1 (1) = 0, θ̂1 (−1) = 0, (2.86)
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(
∂2

∂z2
− λ2

)
= 0, θ2 (1) = 0, θ2 (−1) = 0, (2.87)(

∂2

∂z2
− λ2

)
= 0, θ3 (1) = 0, θ3 (−1) = 0. (2.88)

Similarly:
ŵn+1 = ŵ1 + Âw2 + B̂w3. (2.89)

The components ŵ1, ŵ2 and ŵ3, are respectively the particular and the homoge-
neous solution to the eq. [2.85]. These solutions are obtained from:(

∂2

∂z2
− κ2xy

)
ŵ1 = θ̂, ŵ1 (1) = 0, ŵ1 (−1) = 0, (2.90)

(
∂2

∂z2
− κ2xy

)
w2 = 0, w2 (1) = 0, w2 (−1) = 0, (2.91)(

∂2

∂z2
− κ2xy

)
w3 = 0, w3 (1) = 0, w3 (−1) = 0. (2.92)

The constants Â and B̂ are determined using the no-slip condition:

∂ŵn+1

∂z
(±1) = 0 =⇒


∂ŵ1

∂z
(1) + Â

∂w2

∂z
(1) + B̂

∂w3

∂z
(1) ,

∂ŵ1

∂z
(−1) + Â

∂w2

∂z
(−1) + B̂

∂w3

∂z
(−1) .

The solution of equations [2.86]-[2.88] and [2.90]-[2.92] is obtained using the Gauss
elimination algorithm.

Vorticity equation

The vorticity equation for the component z in the pseudo-spectral space (eq. [2.55])
becomes: (

∂2

∂z2
− λ2

)
ω̂n+1
z = − 1

γ

(
iκxĤ

n
y − iκyĤ

n
x

)
. (2.93)

The solution of the equation [2.93] is obtained with the boundary conditions:

ω̂n+1
z (±1) = iκxû

n+1
y − iκyû

n+1
x . (2.94)

The solution to the equation [2.94] is obtained using the Gauss elimination algorithm.

Once ŵn+1 and ω̂n+1
z are determined, it is possible to determine the velocity com-

ponents ûn+1 and v̂n+1 from the spectral representation of the vorticity and the con-
tinuity equations:

−iκyûn+1 + iκxv̂
n+1 = ω̂n+1

z (2.95)
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−iκxûn+1 − iκy v̂
n+1 =

∂ŵn+1

∂z
. (2.96)

Cahn-Hilliard equation

Using the spectral representation, we discretize eq. [2.61] in space as follows:

∂ϕ̂

∂t
= Ŝϕ + s

Ch2

Pe

(
∂2

∂z2
− k2xy

)
ϕ̂− Ch2

Pe

(
∂2

∂z2
− k2xy

)(
∂2

∂z2
− k2xy

)
ϕ̂, (2.97)

introducing the coefficient γϕ = (∆tCh2)/Pe into the eq. [2.97]:[
1

γϕ
− s

(
∂2

∂z2
− k2xy

)
+

(
∂2

∂z2
− k2xy

)2
]
ϕ̂n+1 =

Ĥϕ

γϕ
, (2.98)

with Ĥϕ as the historical term and defined as:

Ĥϕ

γϕ
=

1

γϕ

(
ϕ̂n +

3∆t

2
Ŝn
ϕ − ∆t

2
Ŝn−1
ϕ

)
. (2.99)

Decomposing the eq. [2.98] into two equivalent 2nd order equations, we get:

[
1

γϕ
− s

(
∂2

∂z2
− k2xy

)
+

(
∂2

∂z2
− k2xy

)2
]

=[(
∂2

∂z2
− k2xy − λ1

)(
∂2

∂z2
− k2xy − λ2

)]
,

(2.100)

where λ1 and λ2 are obtained from the following equation:

γϕλ
2 − sγϕλ+ 1 = 0 (2.101)

which solved for λ results into:

λ1,2 =
s

2
±

√
s2γ2ϕ − 4γϕ

2γϕ
. (2.102)

Since s is inside the square root and in order to avoid imaginary solutions, there
are constraints imposed to its value :

s ≥
√

4

γ
=

√
4Pe

∆tCh2
. (2.103)

To ensure numerical stability, two coincident solutions are chosen λ1 = λ2 =
−s/2 =

√
4Pe/∆tCh2. Assuming this, eq. [2.98] becomes:
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(
∂2

∂z2
− k2xy +

s

2

)2

ϕ̂n+1 =
Ĥϕ

γϕ
. (2.104)

We introduce the variable θϕ = sϕ/2 + ∆2ϕ, which helps to split the 4th order eq.
[2.98] into two 2nd order equations:(

∂2

∂z2
− δ2

)
θ̂ϕ =

Ĥϕ

γϕ
(2.105)

(
∂2

∂z2
− δ2

)
ϕ̂n+1 = θ̂ϕ, (2.106)

where δ2 = k2xy − s/2. Using the boundary conditions of neutral wettable walls
and no chemical potential flux at the walls:

∂ϕ̂n+1

∂z
(±1) = 0

∂3ϕ̂n+1

∂z3
(±1) = 0

(2.107)

the boundary conditions for θ̂ are in the 1st and 3rd derivative, where the influence
matrix method is not needed, since:

∂

∂z

(
∂2

∂z2
− δ2

)
ϕ̂n+1 =

∂3ϕ̂n+1

∂z3
=
θ̂n+1
ϕ

∂z
. (2.108)

The boundary condition to solve eq. [2.105] is then:

∂ ˆθn+1
ϕ

∂z
(±1) = 0 (2.109)

and the boundary condition for eq. [2.106] is:

∂ϕ̂

∂z
(±1) = 0 (2.110)

As proposed in [95], the Chebyshev-Tau solution algorithm is employed to solve
equations [2.105] and [2.106], and the resulting tridiagonal system of equations is solved
by the Gauss elimination procedure.

2.4.5 Numerical Algorithm

The equations shown in this section are implemented in an in-house program devel-
oped by our team using the programming language Fortran. This code makes use
of the Pseudo-spectral method for the discretization combined with a second-order
Adam-Bashforth and Crank-Nicolson time advancement algorithm.
This code is computationally optimized using Message Passing Interface (MPI) for
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Figure 2.6 – Numerical algorithm flowchart constituted by three sub-solvers for the: fluid phase,
drop phase and solid phase. Each time step is split into two sub-steps, an intermediate step n/2,
where the solid phase effects are not considered to solve the N-S equations for an intermediate
flow field u∗. The final sub-step n then calculates the feedback forces from the drop and solid
phases fs and fk respectively. Finally, they are incorporated and solved within the N-S equations,
obtaining a flow field un.

parallel computing. In this work, we use a domain decomposition method. If we
consider the physical parameter ψ (Nx ×Ny ×Nz), then each parallelized subdomain
would have the following dimensions: Nx × Nyp × Nzp, where the subscripts yp and
zp result from the division between the total number of nodes and the parallelization
tasks along the direction y and z respectively.
Fig. 2.6 shows the numerical algorithm flowchart considering the interactions among
the approaches involved to solve a three-phase system at one time-step (blue connec-
tions) and the sequence inside each approach solver (orange connections). The main
solver is divided into three sub-solvers, one for each phase — fluid phase, drop phase
and solid phase. A half-time-step correction is considered, in order to avoid any per-
turbation during the computation of the solid dynamics. The first half (intermediate
step) n/2 does not consider the solid phase effects to solve the N-S equations for an
intermediate flow field u∗. The second half (final sub-step) ”n” calculates the virtual
force fs, and together with the surface tension forces fk, it is incorporated in the N-S
equations, which are solved to get a flow field un at the time level n.



3
Validation: Settling of an

immersed solid in a quiescent
fluid

In this chapter we present the validation and the grid sensitivity study i) for a disk
settling in a 2D domain filled with a fluid and ii) for a sphere settling in a tank at
different Reynolds numbers.

3.1 Settling of a 2D disk in a quiescent fluid

The numerical simulation of a disk settling in a quiescent fluid is carried out following
the set up used by Glowinski et al. [99]. Initially, a disk with a radius of 1.25 × 10−3

m and a density of ρs = 1250 kg/m3 is at rest and its center is located at the position
of 0.04 m above the bottom wall of the tank (0.02 m width and 0.06 m height), as
shown in fig. 3.1.(a). The computational domain is filled up with an incompressible
Newtonian fluid with a density of ρf = 1000 kg/m3 and a dynamic viscosity of µf =
0.01 Pa · s.

The grid sensitivity is studied using three mesh qualities summarized in the table
3.1. The simulation domain has a uniform grid cell size in the horizontal axis and a
Chebyshev discretization in the vertical axis. Fig. 3.2 shows that we reach the grid
independence using the mesh quality 128 × 256.

Table 3.1 – Grid resolution and parameters for a settling disk simulation.

ID Grid Resolution Execution time per step [s] Number of cores

Coarse 64 × 128 28 × 10−3 8
Medium 128 × 256 56 × 10−3 8

Fine 128 × 513 87 × 10−3 8

The experiment begins when the disk is released from rest and it starts accelerating
under the action of gravity (fig. 3.3 shows the vorticity magnitud contour for the
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Figure 3.1 – (a) Schematic diagram of a disk settling in a 2D container. (b) Schematic diagram
of a sphere settling in a tank.

Figure 3.2 – Grid sensitivity of the disk velocity evolution.

settling disk at different times). The disk’s velocity increases, as well as the fluid
drag. After some time, gravity and drag forces are balanced, in this moment the disk
reaches its terminal velocity (see fig. 3.4), remaining constant until the disk touches
the bottom wall (where the collision model parameters used are ϵpw = 0.125 and
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Figure 3.3 – Vorticity magnitude contour at different times.

Epw = 0.02). The disk’s velocity and trajectory evolution in time are reported in fig.
3.4 and 3.5 respectively. For comparison, we add the velocity curve results reached by
[99, 82, 100]. Finally, we can observe that our curves are in a very good agreement
with the results reached in literature, especially with Glowinski et al. [99] and Cheng-
Shu et al. [82]. The latter are therefore included in our dimensionless disk position
evolution plot (fig. 3.5) for comparison, where d0 is the diameter of the disk.

Figure 3.4 – Velocity evolution of the disk in time.
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Figure 3.5 – Dimensionless disk position evolution in time.

3.2 Settling of a 3D sphere in a quiescent fluid

The experimental study of a sphere settling in a tank carried out by Cate et al. [101]
has become a popular validation test case for simulations related to immersed rigid
bodies in a fluid. Following the experimental setup, we use fluids with densities varying
from 960 kg/m3 to 970 kg/m3 and with dynamic viscosities ranging from 0.053 Pa · s
to 0.373 Pa · s (details are given in table 3.2). The 3D numerical domain consists of a
tank of dimensions 0.1 m depth, 0.1 m width and 0.16 m height, where a sphere (with
density ρp = 1120 kg/m3 and diameter dp = d0 = 15 × 10−3 m) initially rests at 0.12
m from the bottom of the tank.

Table 3.2 – Fluid physical properties and parameters used in the simulations.

Re ρf [kg/m3] µf [Pa · s]
Case 1 1.5 970 0.373
Case 2 4.1 965 0.212
Case 3 11.6 962 0.113
Case 4 32.2 960 0.058

Before running the 4 cases, a grid sensitivity test is performed to select the ap-
propriate grid resolution. Subsequently, the parameters of ”Case 3” (table 3.2) are
employed, using three different resolutions: 64×64×256, 64×64×128 and 64×64×64
cells for direction X, Y and Z respectively. Table 3.3 shows the computational details
for this preliminary study, using a processor model AMD Ryzen Threadripper Pro
3995WX @ 4.2GHz.
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Fig. 3.6 plots the comparison of the sphere’s position evolution in time, where the
increment in the mesh resolution from medium to fine is indistinguishable. Therefore,
the grid quality 64 × 64 × 128 is selected to perform the rest of the simulations listed
in table 3.2.

Table 3.3 – Computational parameters used in the simulations.

ID Grid Resolution Execution time per step [s] Number of cores

Coarse 64 × 64 × 64 80 × 10−3 8
Medium 64 × 64 × 128 120 × 10−3 8

Fine 64 × 64 × 256 440 × 10−3 8

Figure 3.6 – Grid sensitivity using the velocity evolution of the sphere in time.

The experiment starts once the sphere is dropped. It accelerates during some time
due to gravitational forces, until it reaches the terminal velocity (whose value increases
as we increase the Reynolds number) (fig. 3.7). At this point, the velocity remains still
in a plateau, until the sphere finally reaches the bottom of the tank. Figs. 3.7 and 3.8
depict the simulation results of the sphere velocity and the dimensionless trajectory
over time (plain colored curves) and also the experimental data provided by Cate et
al. [101] (represented by geometrical markers), where a very satisfactory agreement is
reached for all the study cases.
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Figure 3.7 – Velocity evolution of the sphere in time.

Figure 3.8 – Normalized position of the sphere in time.



4
Wetting effects on the

interaction of an immersed solid
with a binary-fluid interface

In this chapter we study the interactions between a flat binary-fluid interface and a
single solid. The first part (sec. 4.1) focuses on the evolution of the contact line along
the 2D cylindrical surface at different wetting conditions. The following section (sec.
4.2) presents the simulation of a heavy cylinder sinking in a binary fluid system and
the last part (sec. 4.3) shows the study of the wetting effects on the submergence of
a quasi-buoyant cylinder in a binary fluid domain.

4.1 Contact line equilibrium in curved surfaces

We perform the simulation of the contact line equilibrium for a cylinder in a binary
fluid domain at different contact angles.
Similar to Shao et. al [60], our numerical setup consists of a squared domain of a
binary fluid arranged as two horizontal layers with a cylinder fixed at the center of its
interface (refer to fig. 4.1). The upper and lower boundaries are neutrally wettable
walls and the left and right boundaries have a periodic boundary condition.

The cylinder has a radius of rcyl = 0.3h and the domain size is 2h× 2h discretized
with 128 grid cells along the periodic direction and with 257 grid cells in the wall
normal direction. The lower fluid is set with the the phase parameter value of ϕ = 1 and
the upper one is set with ϕ = −1. Depending on the wetting affinity preconditioned
on the solid surface (eq. [2.26]), the contact line moves from the initial configuration
(fig. 4.1) along the cylinder surface, until it reaches the equilibrium configuration.
A hydrophilic surface with affinity XS = 0.35 leads to an equilibrium contact angle
θeq = 60◦ (panel (a) of fig. 4.2) and the contact line reaches the equilibrium above its
initial vertical position (see fig. 4.3). On the other hand, the contact line moves below
the initial vertical position when the solid surface is preconditioned to be hydrophobic
(affinity XS = −0.35), leading to an equilibrium contact angle θeq = 120◦ (see panel
(c) of fig.4.2), while a neutrally wetting surface with affinity XS = 0 leads to an
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Figure 4.1 – Initialization setup of the simulation domain.

equilibrium contact angle θeq = 90◦ (panel (b) of fig. 4.2), where the interface remains
flat and the contact line neither rises, nor goes below the initial position. This results
match the theoretical angles predicted by eq. [2.26] and also the qualitative results
obtained by other authors using different approaches [60, 52, 37].

Figure 4.2 – (a) θeq = 60◦, the interface rises above the horizontal initial line. (b) θeq = 90◦,
the interface reaches equilibrium at he same line than the initial line. (c) θeq = 120◦, the interface
goes below the horizontal initial line. The background represents the velocity field magnitude.

4.2 Sinking of a heavy cylinder

Understanding the fluid dynamics developed by the motion of objects around a free
surface is vital for some applications. In marine hydrodynamics, the wave loads pro-
duced by an immersed object motion establish the basis of marine structures design.
The immersed object dynamics might trigger violent free surface motions like cavity
formation, cavity collapse and free surface breakage [102]. A moving body in binary
fluids is a complex scenario where the capability of numerical tools is tested in order
to reproduce the fully coupled interplay of different parameters like surface tension
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Figure 4.3 – Equilibrium evolution of the contact line vertical position.

forces, capillary forces, inertial forces and partial buoyancy forces (for a body migrat-
ing or trapped in between of two fluids).
In literature one can find numerical and theoretical studies of rigid-bodies motion near
or through the free surface [103, 104, 51]. The one we are interested in in this section
is the simulation of a heavy cylinder sinking from the free surface of a binary fluid
enclosed in a 2D tank. The parameters and conditions used here are taken from the
experimental study carried by Vella et al. [105].
Since the cylinder transits through two liquids, the partial buoyancy is taken into
account (at each time step) through the calculation of the solid portion immersed at
each fluid (Appendix A.1). The numerical domain consists of a 2D tank filled with a
fluid A (density ρA) up to 1.4h from the bottom wall, while the rest is filled with a
fluid B (density ρB) as shown in fig. 4.4, where h represents half of the height of the
domain and the fluids density and dynamic viscosity ratio are ρr = ρA/ρB = 833.3 and
ηr = ηA/ηB = 55.6 respectively. As a first step, a cylinder with a radius of rs = 0.125h
(neglecting gravity effects) is initially placed at the interface; using a contact angle of
θeq = 105◦, the cylinder reaches its equilibrium position at h0 = 0.465 (see fig. 4.4 ).
Then, turning on gravity effects and using a density ratio with respect to the fluid A
of ρs/ρA = 1.92, the cylinder is released from a height of h0 with respect to the free
surface, letting the heavy cylinder sink. In order to compare with the experimental re-
sults [105], we use the characteristic time tc = (σ/ρg3)0.25, which is frequently used for
gravity-capillary waves to travel the capillary length lc = (σ/ρg)0.5 (the characteristic
length), since the meniscus surrounding the cylinder is in hydrostatic equilibrium. We
use a Reynolds number of Re = 250 and the Bond number is approximately equivalent
to Bo ≊ (rs/lc)

2. The latter value indicates that surface tension effects contribution is
negligible for this experiment, and a neutral contact angle (θeq = 90◦) is thus assumed
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for the simulations.

Figure 4.4 – Scheme of the initial set-up for a cylinder with ρs = 1920kg/m3 supported at an
air-water free surface.

Fig. 4.5 shows a qualitative comparison of our simulations (right panel) against
the experimental results (left panel), where we can observe that our simulation results
are able to reproduce the main characteristic stages of the cylinder sinking experiment
[105]: inflow in the region above the cylinder, cavity formation and jet generation [51].

The shape of the interface at the zone above the cylinder forms a kind of expander
shape, which induces an upward jet of the fluid A and the entrainment of a portion
of fluid B, attached to the cylinder surface, towards the bottom of the tank. This
process is explained by fig. 4.6. Panel (a) shows that the cavity neck becomes narrow,
squeezing the upper fluid out of it. The panel (b) and (c) then show how the neck walls
merge, creating a pocket of upper fluid trapped and attached to the cylinder, which
expands and coates the solid surface (neutral wetting), while the merged interface
portion accelerates upwards, creating a bump above the free surface. When gravity
and surface tension overcome the jet, the deformation is dissipated rapidly, turning
the upward fluid motion into lateral waves —panel (d).

For a quantitative comparison, we plot the results of the cylinder position evolution
on time (both parameters non-dimensionalized with tc and lc), as shown in fig. 4.7,
where the numerical results, represented by a solid line, are plotted together with the
experimental data [105] (represented by void circles) where a satisfactory agreement
was reached.

The results obtained in this study case used a 2D domain with a periodic boundary
condition in the horizontal direction and wall boundary condition in vertical direction.
The grid independence test is performed to find the ideal mesh quality to efficiently
reproduce experimental results. Three different mesh qualities are compared —coarse,



4.2. Sinking of a heavy cylinder 45

Figure 4.5 – Time sequence comparison of the experiment (left panel) against our simulations
(right panel) for a sinking cylinder of density 1920kg/m3 in an binary phase system (green-blue
region respectively). The cylinder is considered immersed when the cavity collapses.

Figure 4.6 – Sequence of jet formation after the cavity collapse, represented with the velocity
magnitude field in the background. (a) Upper fluid expelled from cavity; (b) cavity neck merged;
(c) upper and lower jet formation; (d) jet rises the interface into the upper fluid.

medium and fine mesh (details can be found in table 4.1) using the processor model
AMD Ryzen Threadripper Pro 3995WX @ 4.2GHz.

Fig. 4.8 shows the result of the grid sensitivity test regarding the position evo-
lution of the cylinder on time. We observe that the three curves overlap until time
t/tc = 2.5, while the buoyancy and the added mass and the viscous effects are neg-
ligible. When the cylinder starts feeling the strong change in density and viscosity,
the curves take different paths. The simulations results using a medium mesh quality
are indistinguishable from the one obtained using a fine mesh, this indicates that the
grid independence is reached using 128 × 256 grid cells. Therefore, the medium mesh
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Figure 4.7 – Simulation results of the cylinder center position (h0/lc) evolution in time (t/tc)
compared with experimental data [105].

Table 4.1 – Parameters used in the simulations.

ID Grid Resolution Execution time per step [s] Number of cores

Coarse 64 × 128 35 × 10−3 8
Medium 128 × 256 100 × 10−3 8

Fine 256 × 512 280 × 10−3 8

Figure 4.8 – Sensitivity grid resolution results of the sinking cylinder center position (h0/lc)
evolution in time (t/tc) using a coarse 64 × 128, medium 128 × 256 and fine 256 × 512 grid
discretization.

quality is selected for further simulations with similar configurations.
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4.3 Submergence of a light cylinder in a binary fluid
domain considering surface wetting effects

Let us consider the same geometrical configuration of the 2D domain employed in sec.
4.2, where the fluid A has a density of ρfA = 1000kg/m3. A cylinder (with slightly
bigger density ρs = 1130kg/m3 than fluid A) released from the rest exactly at the
interface (refer to configuration (a) in fig. 4.9) would float indefinitely, because the sum
of the capillary and buoyancy forces would exceed the cylinder weight [49]. In order
to verify this statement, a simulation is carried out using the following parameters:
fluids density ratio ρr = ρA/ρB = 833.3, fluids viscosity ratio ηr = ηA/ηB = 55.6,
cylinder radius of rs = 0.125h and a neutral wettable solid surface.
The results are reported in fig. 4.10, where panel (a) shows the time sequence of the
cylinder motion, and panel (b) shows its position oscillation over time, until it reaches
the equilibrium and remains floating indefinitely.

(a) (b)

Figure 4.9 – (a) Initial configuration for a floating cylinder. (b) Initial configuration for a cylinder
submergence by adding inertia.

In order to submerge the cylinder, we increase its inertia by releasing it from a
certain height above fluid interface as shown in fig. 4.9, considering hydrophobic and
hydrophilic solid surfaces. Once the solid is released, it starts accelerating because of
the gravity, until it impacts with the free surface. Due to the strong contrast between
fluid densities and the capillary component caused by the deflection of meniscus, the
velocity then decreases.

Subsequently, the cylinder passes to the lower fluid, usually with a air bubble
entrainment (remaining from the fluid B after the breakthrough), which is stuck to
the upper surface of the cylinder [49].

Figures 4.11 and 4.12 show qualitatively the difference in the immersion dynamics
of two identical cylinders with different wetting conditions, the first with contact angle
of θeq = 70◦ and the second with θeq = 110◦. The first characteristic that attracts
our attention is that the hydrophilic cylinder reaches a deeper position in the tank,
generating an upward jetting stronger than in case of the hydrophobic cylinder. We
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Figure 4.10 – (a) Contact line evolution along the simulation. (b) Equilibrium evolution plot of
the center position for a floating disk initialized at the free surface.

Figure 4.11 – Time evolution of submerging hydrophilic disk interaction with the free surface
depicted over the velocity field magnitude.

can also observe how the velocity wake from the hydrophobic object is dissipated fast
due to the resistance imposed by the surface tension. We may as well realize that the
interface inflection due to the acute contact angle in fig. 4.11 helps with the formation
of an upper fluid pocket trapped above the cylinder surface. Similar results for wetting
objects sinking can be found in literature [53, 106, 107].

To further compare the wettability effects on the motion of rigid bodies entering
a free surface, we plot the position evolution of the cylinder on time of both cases.
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Figure 4.12 – Time evolution of submerging hydrophobic disk interaction with the free surface
depicted over the velocity field magnitude.

(a) (b)

Figure 4.13 – (a) Evolution of the cylinder velocity against the center position. (b) Evolution of
the velocity against the cylinder position.

Fig 4.13(a) shows that the hydrophilic cylinder reaches a deeper immersed position
than the hydrophobic one. Fig. 4.13(b) shows that the hydrophobic solid decelerates
from position z0/lc 1.5 to 4.1, where finally the cylinder direction of motion is flipped.
These results confirm that varying the wetting conditions in the cylinder surface has
important effects on the submergence dynamics and the three phase interactions. The
wetting affinity of the solid surface towards one fluid will thus control the ability of
the body to submerge.



5
Wetting effects on the

interaction of solids and drops in
three-phase systems

The type of binary fluids considered until chapter [4] were two stratified layers of
fluids with an initial flat interface (free surface). In this chapter [5] we introduce a
droplet as the second fluid phase immersed in a carrier fluid. In the first part, we
study the evolution of the shape and position of a drop sitting on a cylindrical surface
at different wetting conditions. The second part of the chapter considers two solid
bodies interacting with a droplet of the same order of magnitude in a flow field. After
the LBD has reached its equilibrium configuration, a shear field is initialized in the
carrier flow and the LBD interactions are studied.

5.1 Solid-drop pair contact angle equilibrium

A complete work in solid-drop interactions is presented by Smith in [42], where several
case studies are covered both experimentally (using one polystyrene sphere and one oil
drop in an aqueous medium at different hydrophobic contact angles) and analytically
(presenting equations for the prediction of the final equilibrium position for the pair
in the range of 30◦ and 120◦ degrees of contact angle for various spheres-drop radius
ratios). Another analytical formulation can be found in the wetting/dewetting section
presented by Fakhari et al. [44], based on the premise of reaching the minimal free
energy of the system by minimization of the peripheral area of a 2D drop sitting
on a cylinder. These results obtained by means of the above mentioned formulation
are used in the present work to validate the simulation of the dynamic contact line
response to cylinder surfaces with changing wettability. Considering no gravity effects
in the system during the simulations, we initialize our numerical domain by fixing a
circular cylinder with radius rs = rd = 0.33h at 0.67h from the lower wall. A drop
with radius rd = 0.33h is placed at the center of the domain. We consider a fluid-drop
density ratio of ρd/ρf = 1000, a viscosity ratio of ηd/ηf = 100 and a surface tension
value of σ = 0.01N/m.

The simulation is performed in a 2D domain with a wall boundary condition in the
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Figure 5.1 – Scheme of the initial configuration for the simulations.

upper and lower limits and a periodic boundary condition in the side limits. A grid
sensitivity study is carried out using the parameters listed in table 5.1 to determine
the optimal mesh quality for the set of simulations with different contact angle values.

Table 5.1 – Mesh quality list and numerical details for the simulation of the equilibrium configu-
ration of a cylinder-drop pair.

ID Grid Resolution Execution time per step [s] Number of cores

Coarse 64 × 128 28 × 10−3 8
medium 128 × 256 56 × 10−3 8

fine 256 × 512 87 × 10−3 8

Fig. 5.2 shows the drop interface (iso-surface at ϕ = 0) using different mesh
qualities. One can observe as well that the grid independence is reached with 128×256
grid cells, where the difference between the drop interfaces using medium and fine mesh
qualities is imperceptible.

Once the optimal mesh quality is found, a set of 7 simulations is proposed. Starting
from the initial configuration presented in the initialization scheme of fig. 5.1, the
system is brought to its equilibrium configuration for a range of different contact
angles (from 45° to 135° as presented in [44]).

The final equilibrium configuration will be represented by the variable leq, which
is defined as a distance from the center of the cylinder to the highest point of the drop
(refer to fig. 5.1).

Fig 5.3(a) shows the results of the final equilibrium configuration of the cylinder-
drop pair expressed in terms of leq/rs, reported in fig 5.3(b), for each contact angle
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Figure 5.2 – Grid independence test for a drop-cylinder pair with a contact angle of 135◦ at
equilibrium position, using: 64 × 128 (red line), 128 × 256 (green line) and 256 × 512 (blue line)
grid cells in y × z direction respectively.

Figure 5.3 – (a) Cylinder-drop pair equilibrium configuration at different θeq . (b) Plot of the final
configuration length leq normalized by the cylinder radius rs for different contact angles and over
the analytical curve result.
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value used. Fig 5.3(b) shows the simulation results (represented by green markers) and
the plot of the analytical solution (represented by the plain red curve). As illustrated
in fig. 5.3, our results overlap almost perfectly over the analytical solution curve.

5.2 Liquid Bridged Doublets (LBD) in shear flow

In contrast to the above studied cases, this section includes a pair of free-moving solid
bodies with active surface. They interact with a droplet in a carrier shear flow. The
droplet deformation triggers the interplay between the inertial forces and the normal
capillary forces, inducing the solids motion from an initial static state.

Figure 5.4 – Schematic of the equilibrium configuration (represented by lmax) of a pair of hy-
drophilic disks bridged by a drop, and the shear flow field (represented by arrows) on which they
are initialized.

Several studies on the equilibrium configuration of bridged cylinders/spheres dou-
blets can be found in literature [108, 109, 110]. They report analytical solutions in
terms of the contact angle, the droplet volume and the maximal bridged doublet length
lmax.
Further studies consider the interactions of a liquid bridged doublet (LBD) in a shear
flow field where the drop deformation and the contact line slippage may lead to a
correlated rotation of the solids around a centered axis in the drop. Experiments on
the mentioned relative rotation have been performed by Smith et. al [42], where three
configurations of LBD (using spheres) were presented varying the relative volume of
the bridging-drop with respect to the spheres.
In this thesis — due to constraints with computational resources and time, this study
has been limited to a simplified 2D numerical experiment with matched density and
matched viscosity for the fluids, but the LBD geometric proportions are based on
an intermediate bridging-drop volume defined in [42]. The intention of this study is
to ensure the solid surface wetting parameters, the bridging-drop properties and the
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shear flow field definition in order to induce a relative rotation [42].

Two identical hydrophilic (θeq = 73◦) disks of radius rs = 0.20h and density
ρs = 1120 kg/m3 bridged by a droplet (immiscible liquid) of radius rd = 0.43h and
density of ρd = 990 kg/m3 were initialized and brought to equilibrium by the surface
forces — neglecting gravity effects, obtaining a maximal distance of lmax = 1.18h.
The LBD system in equilibrium is then released in a shear flow field using a capillary
number (Ca) with the value of 0.24 (fig. 5.4). This simulation is carried out using
128 × 128 grid nodes in the directions y × z respectively, leading to a computational
time step of ts = 32.8× 10−3 sec using 8 cores with the processor model AMD Ryzen
Threadripper Pro 3995WX @ 4.2GHz.

Figure 5.5 – Sequence of the LBD rotating in a shear flow field. (a) Equilibrium position of the
LBD. (b) The drop is deformed to an elliptical shape and the disks start moving. (c), (d) The
elliptical shape is kept almost invariable, but the disks circulate along the drop interface. (e) The
disks reach the ellipse vertices. (f), (g) The interplay between the disks inertia and the surface
tension stretches and elongates the droplet. (h) The drop adopts a more rounded shape. (i) The
LBD reaches almost a mirrored version of initialization configuration.

Fig. 5.5 shows the phases of the rotation of the LBD in a shear flow field. The solid
motion is started by the bridging-drop deformation into an elliptical shape as observed
in panel (b) and (c), then, due to the shear field, the disks are accelerated horizontally
in opposite directions, while the drop capillary forces keep them at the interface, giving
them a vertical component of motion. This interplay results in a relative rotation of the
disks and constant deformation in the topology of the bridging drop (since the solids



5.2. Liquid Bridged Doublets (LBD) in shear flow 55

are of comparable order of magnitude with the bridging-drop). Panels (d) and (e)
show the asymmetry of the rotation with respect to the vertical axis. While in the for-
mer, the bridging-drop seems to be compressed, in the latter it seems to be elongated.
The LBD reaches the maximal stretch when the disks reach the ellipsoidal vertices of
the bridging-drop — panel (f). There, the solid inertial forces pull the bridging-drop
in the directions of the disks against the normal capillary forces. As the pair contin-
ues rotating, the capillary forces overcome the inertial ones, bringing them closer and
decreasing the deformation of the bridging-drop. The rotation is symmetrical for the
horizontal axis. The period of rotation of the LBD configuration is TG = 0.28 seconds.
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Conclusions and future

perspectives

The dynamics of the interactions between solid and binary fluid interfaces in an incom-
pressible Newtonian fluid have been characterized using multiphase numerical tech-
niques: the Eulerian approach for the continuous liquid phase, the Phase Field Method
to describe the drop phase topology evolution and the Direct Forcing approach for
the motion of solids description. A fully coupled ternary phase numerical solver was
achieved by adding into the carrier liquid a surface tension term (resulting from the
dynamic effects of the drop phase) and a virtual force (which plugs the effects of the
solid phase dynamics in the carrier fluid), and by using a single well potential to bound
the solid region in the free-energy functional of the binary fluid system.
The discretization method and numerical solution routine for the equations generated
by the above mentioned approaches were developed in detail in chapter [2].

In chapter [3], the settling of an immersed solid in a quiescent fluid was investigated
at different fluid properties. Two-dimensional and three-dimensional simulations were
performed and satisfactorily validated with analytical and experimental data.

In chapter [4], we studied the contact line evolution in cylindrical surfaces at differ-
ent wettability conditions. The results showed that the fluids interface was perturbed
in different ways: climbing up the solid surface for the hydrophilic case, retreating
downwards for the hydrophobic case and staying still flat for the neutrally wettable
case. In the second part, we performed a simulation of the interaction between a
sinking cylinder and a binary fluid interface. The simulation results matched with
great accuracy the experimental data, validating the phenomena both qualitatively
and quantitatively. In the last part of the section, we investigated the wetting effects
on the submergence of a quasi-buoyant cylinder in a binary fluid domain. From the
simulations we observed that the capillary flotation forces either help or resist in the
submergence. For hydrophobic conditions, the solid reached shallow depths, for hy-
drophilic conditions, on the other hand, it sunk deeper and easier. These results are
in agreement with experimental and numerical findings in literature.

The type of binary fluids considered until chapter [4] were two stratified layers of
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fluids with an initial flat interface (free surface). The final part of the thesis, chapter
[5], introduces a droplet as a second fluid phase. In the first part, we study the evo-
lution of the shape and position of a drop sitting on a cylindrical surface at different
wetting conditions. The resulting individual equilibrium configuration of the pair is
represented by a solid-drop pair length. This length is then compared with available
analytical and numerical data, to which our results match remarkably. The second
part of the chapter considers two solid bodies interacting with a droplet of the same
order of magnitude in a flow field. After the LBD has reached its equilibrium con-
figuration (represented by a LBD length) in a stationary fluid, the shear flow field is
initialized. The interactions within the LBD are originated by the interplay of cap-
illary bridging forces and shear flow field effects. These interactions bring the LBD
system into a relative rotation similar to the ones observed experimentally and, to
the authors’ knowledge, this phenomenon has not yet been addressed numerically in
literature.

A limitation of this numerical implementation is that the solid sub-field must be
regenerated at every time step, which increases the CPU calculation effort as we in-
crease the number of solid particles used in the simulation; nevertheless, this limitation
can be amended using optimization strategies.
The simulations of three phase interactions work in three-dimensions (3D) as fine as
in 2D; some cases were tested using a 3D setup; unfortunately, meaningful results
required dedication of more time and computational resources; consequently, they are
not shown in this work.
The current version of the code considers the effects of the solid spheres/cylinders ro-
tation as additional values in the solid linear velocity; thus, actual solid body rotation
is not performed; however, it can be included at expenses of added computational costs.

The carried out work allows a number of potential further developments in terms
of computational efficiency of the solver and of modeling capabilities of the solver.

From the point of view of the computational efficiency, the solid phase solver
is currently designed to handle computations of dozens and even hundreds of solid
particles in an optimal way. The parallelization strategy consists in the equitable
distribution of the total number of particles tasks to be computed, among all the
cores allocated for the computation. The simulation of larger amount of particles
(i.e. thousands or millions) may reach a bottleneck in terms of computational speed.
Therefore, for the distribution and the calculation of all the particles tasks to be
computed, an optimization study using GPU parallelization is proposed instead.

From the point of view of modeling capabilities, further developments concerning
non-spherical solids dynamics, big solids in drop-laden flows and lateral capillary forces
in three-phase flows are suggested in the following lines.
Although it is true that for a great amount of applications, the solid bodies can
be modeled as cylinders or spheres in three-phase systems, there are some others
(especially for microscopic, mesoscopic and macroscopic solids) where the shape of the
solids plays an important role in the dynamics of the whole system. A solid shape
in the latter cases can affect several parameters directly (to mention a few: the solid
rotational inertia, the after-collision bounce direction, the partial buoyancy forces and
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the capillary forces). Therefore, a study of the effects of arbitrary-shaped solids on
the interaction with binary fluid interfaces is encouraged.
Another topic to investigate further are the effects of considering big free moving
particles in drop-laden flows. The use of small particles (point wise particles) for
the stabilization of emulsions are broadly studied, especially in the cosmetic industry
(due to the increasing demand of surfactant-free products). On the other hand, study
results on the interaction of comparable size immersed solids and drops in drop-laden
flows are still scarce. We therefore propose a study of the wettability effects on drops
coalescence and breakage of big free moving particles in drop-laden flows.
Taking a closer look at the solid dynamics around the interface, we observe that
the capillary forces are the main mechanisms driving the three-phase interactions.
These forces are responsible for the solids self-assembly in two-dimensional structures,
on the free-surface of a binary fluid system. Two solid particles attract or repel
each other when their interface perturbations overlap. Although there are several
numerical studies in the field, just a few of them can handle the lateral capillary forces
implicitly and without an extra model. The aim of a future study would be to carry
out simulations of the effects of wetting using two identical buoyant solids attached to
an interface. The simulations results must be compared with the experimental data
on lateral capillary forces to determine the level of accuracy of the numerical tool and
decide if a model is needed.
The above mentioned capillary forces, for instance, represent in nature a mean of
motility for some insects like the Pyrrhalta nymphaeae larvae. This creature has a
wetting body circumscribed by a contact line (in the liquid free-surface). Therefore,
in order to advance to the highest meniscus located on the edge of the liquid vessel,
the insect arches its endings, perturbing the interface and forming a meniscus. These
interactions generate capillary attraction forces between the insect and the edge of
the vessel. Based on this real case phenomena, a study of the interaction of a simple
flexible wettable membrane with the fluid-fluid interface is encouraged.
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A.1 Submerged solid-volume fraction

Working with a ternary phase systems implies the presence of rigid-bodies not only
in one fluid, but trapped —or in the transition —between two fluids, where one must
pay a special attention to the immersed volume percentage at each fluid, since the
drag, added-mass and buoyancy terms of the equation of motion for solids (eq. [2.22])
depend essentially on the mass of the fluid within which they are immersed.

(a) (b)

Figure A.1 – (a) Contact line position for a 2D solid disk partially submerged. (b) Contact line
position for a 3D solid sphere partially submerged.

The contact line position helps to determine the portion of the solid at each fluid
phase as depicted in fig A.1.
Since we use a diffuse interface to define the solid edge, we can map the values of ϕ
on the zone delimited by the outer shell shown as a yellow region in fig. A.1, which is
composed by a layer of grid-cells located right next to the solid interface (iso-surface
ψs = 0.5). Subsequently, a simple algorithm detects the number of positive PartialA
(fluid A) and negative PartialB (fluid B) occurrences. Knowing this and setting the
fluid A as the fluid of reference, we can find the contact line position as described in
the lines below.
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For a 2D case, where the solid is a disk, we find the contact line position following
the below procedure.

First, we calculate the portion of the circle perimeter submerged in the fluid A Iss.
The arc length is:

l = PcIss, (A.1)

where Pc = πDp is the circle perimeter. The contact line position (hss) can then be
calculated using the diameter:

hss = 0.5Dp − a, (A.2)

where a is the distance from the circle center to the chord and it can be put in terms
of the diameter as well:

a = 0.5Dpcos (α) (A.3)

and by using the geometrical relationship between the circle arc and radius, we get:

α =
l

Dp
, (A.4)

where α is the half of the circular segment angle. Finally, putting eq. [A.4] and [A.3]
into eq. [A.2], we obtain hss with respect to the bottom pole of the circle shown in
fig. A.1(a):

hss = 0.5Dp [1 − cos (πIss)] , (A.5)

The procedure described above can be applied to a 3D case. If we deal with a
sphere, Iss becomes the portion of the spherical surface area submerged in the fluid A
and the value of the spherical cap is formulated as follows:

Ascap = AsphIss, (A.6)

where Asph = πD2
p is the surface area of the sphere. The surface area of the cap

in terms of the cap height is given by the following equation:

Ascap = Dpπhss. (A.7)

Replacing eq. [A.7] in eq. [A.6] and isolating the contact line height hss, we obtain:

hss = DpIss. (A.8)
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J2 F. K. Miranda Santa Cruz, C. Marchioli, R. Rioboo, M. Mohaupt (2023)
Experimental study on the detection of a frozen plug blockage within a Variable
Conductance Heat Pipe Appl. Therm. Eng. (Under review)

J1 F. K. Miranda Santa Cruz and C. Marchioli (2023) Particle interaction with
binary-fluid interfaces J. Comput. Phys. (In preparation)

B.2 Referred Conferences

C7 F. K. Miranda Santa Cruz †,C. Marchioli , A. Hajisharifi and A. Soldati,
(2022) Particle capture and trapping by large deformable drops in turbulent
channel flow APS 75th Meeting of APS, Division of Fluid Dynamics, Indianapo-
lis, (IN, USA).

C6 F. K. Miranda Santa Cruz †, C. Marchioli, (2022) Simulation of binary-
phase-fluids and wettable-rigid-bodies interactions 4th International Conference
on Numerical Methods in Multiphase Flows, Venice, (Italy).

C5 F. K. Miranda Santa Cruz †, C. Marchioli, (2022) Simulation of rigid and
flexible objects immersed in a fluid-drop system 6th International conference on
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C4 F. K. Miranda Santa Cruz , C. Marchioli †, A. Hajisharifi and A. Soldati ,
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ological Flows, International Centre for Mechanical Sciences (CISM), Udine
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A8 Complex flows and complex fluids, International Centre for Mechanical
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A7 Summer school in Multiphase flows, COMETE and PAN, Gdansk, (Poland),
2021.
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Coordinated by: M. Mazzuoli, University of Genova, Italy and Laurent Lacaze,
IMFT-CNRS Toulouse, France.

A5 Advances Numerical Approaches for Simulation of Turbulent Multi-
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and Francesco Zonta, Technical University of Wien, Austria.

A4 Collective behavior of particles in fluids, Institut Henri Poincaré, Paris,
(France), 2020.

A3 Direct numerical simulation of solid particles, drops and bubbles in
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A3 Advanced Parallel Programming with MPI and OpenMP, HLRS, Julich,
(Germany), 2019.

A2 Introduction to Parallel computing with MPI and OpenMP, CINECA,
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