
A Web Playground for Ciaramella

Paolo Marrone
Orastron s.r.l.

Università di Udine
paolo.marrone@orastron.com

ABSTRACT

Ciaramella is a domain specific programming language
for audio DSP. It experiments a fully declarative syntax and
the Synchronous Data Flow computational model, featur-
ing high modularity and composability. We implemented
a web playground for coding in Ciaramella, compiling and
instantly generating working web audio plugin prototypes.
In order to obtain that, its compiler, Zampogna, which is
written in JavaScript, has been embedded in a web page,
and it has been augmented for the production of JavaScript
code. We developed a simple graphical user interface tar-
geting both domain experts and newcomers. Finally, this
work lays the foundations for future WebAssembly support
as target code.

1. INTRODUCTION

Ciaramella is a recent domain specific text based program-
ming language for the description of audio DSP systems
featuring an high-level of abstraction. It supports experi-
mental approaches like declarative syntax and Synchronous
Data Flow model (SDF) [1], whose combination is new to
the audio programming languages field. Indeed, the ex-
isting audio programming languages, which share a simi-
lar domain with Ciaramella, do adopt different paradigms.
Faust [2], for example, is purely functional; Kronos [3]
is defined as a metalanguage and experiments interactive
graphical programming and just-in-time compilation; Max
Gen [4] focuses on visual programming.

In this work we explore the possibility to deploy pro-
grams written in Ciaramella as audio applications directly
on the web.

The possibilities and popularity of web programming
have been continuously increasing during the years. Con-
cerning audio, W3C developed the Web Audio API [5],
which is now a standard adopted and implemented by all
major web browsers. Web audio provides a routing graph
mechanism capable of connecting independent audio nodes,
multiplexing signals and handling parameters. Some com-
mon audio nodes are provided by default, but custom ones
can be user-defined. In particular, the DSP algorithm can
be written in pure JavaScript or in WebAssembly (using
JavaScript as glue code). The WebAssembly option allows

Copyright: ©2022 Paolo Marrone et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

the audio developer to use any programming language (e.g.
C, C++, Rust) as far as it is supported by a compiler that
targets WebAssembly. Also, it is particularly appealing for
its near-native performances.

When it comes to high-level languages such as Cia-
ramella, Faust or Kronos, a desired web application for the
end user is an online playground which permits to code,
compile, instantly listen to the produced plugin, and even-
tually export the compiled files. Faust, Kronos and Soul,
for example, have developed their own playgrounds 1 2 3 .

Faust’s compiler is written in C++ and it has been com-
piled to WebAssembly via the Emscripten toolchain 4 to
make it embeddable in a web page[6]. Its playground comes
with an auto-completion text editor, compilation, on-the-
fly interactive graphical plugin creation and export fea-
tures. Kronos provides a similar environment, but it is fo-
cused on a graphical composition system rather than a text
editor.

The paper is organized as follows. Section 2 recalls the
main features of Ciaramella and its compiler, Zampogna.
Section 3 describes the new Ciaramella web playground.

2. CIARAMELLA AND ZAMPOGNA

Ciaramella is an audio specific programming language aimed
at describing DSP systems. Its declarative nature and SDF-
based model result in a light and unconstrained syntax which
guarantees an high-level of modularity and flexibility. Even
more interestingly, it permits the description of delay-free
feedbacks between subsystems. This makes it possible for
known models that are hard to code such as wave digital
filters (WDF) to be programmed easily [7].

As simplicity and minimalism are Ciaramella’s design
goals, a small set of programming abstractions is provided
which reflect the SDF concepts and make the description
of DSP systems possible. In particular, the fundamental
components are:

• the block, that encapsulates an operation and it may
be simple (atomic) or composed by other blocks (com-
posite);

• input or output ports, attached to a block and repre-
senting connection endpoints;

• the connection, that defines a directed flow of data
(e.g. a signal) between two ports.

1 https://faustide.grame.fr/
2 https://kronoslang.io/veneer/
3 https://soul.dev/lab/
4 https://emscripten.org/

mailto:paolo.marrone@orastron.com
http://creativecommons.org/licenses/by/3.0/
https://faustide.grame.fr/
https://kronoslang.io/veneer/
https://soul.dev/lab/
https://emscripten.org/


The language supports some built-in atomic blocks for the
basic arithmetic operations and for the delay operation, i.e.
the unit delay block, which is necessary to produce com-
putable loops.

2.1 Syntax

Since Ciaramella is designed to cope with high-level ma-
nipulation of data streams, every variable or expression
refers to entire flows rather than instantaneous values. For
example the

a = b + c

code specifies that, for every temporal sample n, an =
bn + cn.

A Ciaramella program is made of a list of statements,
which can be assignments or composite block definitions.
An assignment is in the simple form:

id1 , i d 2 = e x p r e s s i o n

and it also acts as a declaration of the id1 and id2 vari-
ables. Indeed, in Ciaramella a variable can be declared and
assigned only once and the order of the statements is not
relevant.

The syntax for composite block definition is:

y1 , y2 = c o m p o s i t e b l o c k i d ( x1 , x2 , v o l ) {
tmp = x1 + x2
y1 = y2 * v o l
y2 = tmp / 2

}

It defines a reusable block (like a function), referable as
composite block id, which has 3 input ports (x1, x2
and vol) and 2 output ones (y1, y2). The body contains
the assignments and expressions for calculating the values
of the output. The output ports must be always assigned
and can be used as normal variables, while the input ones
are considered external and cannot be re-assigned.

A composite block can be used following a C-like func-
tion call syntax. This operation is called ”composite block
instantiation”. For example:

t1 , t 2 = c o m p o s i t e b l o c k i d ( in1 , in2 , 0 . 3 )

instantiates a composite block id and redirects its
outputs to the newly created t1 and t2 variables.

The built-in unitary delay block is of particular inter-
est for the creation of computable feedbacks. The follow-
ing example implements an iteration counter and shows its
syntax:

c o u n t e r = d e l a y 1 ( c o u n t e r ) + 1
@counter = 0

The delay1(counter) expression returns the value of
counter at the n−1th iteration, while the special @ sym-
bol sets the initial value of counter, which is needed for
the first iteration.

A typical Ciaramella program consists in a list of com-
posite block definitions and assignments of constants. Each
composite block has its local scope, while constants are
globally scoped and can be accessed anywhere within the
code.

The following example is the implementation of three
composite blocks representing some trivial low-pass filter-
ing functions.

Listing 1. Low-pass filters in Ciaramella
b = 0 . 1
y = l p ( x ) {

y z1 = d e l a y 1 ( y )
y = y z1 + b * ( x − y z1 )
@y = 0

}
y = l p 3 ( x ) {

y = l p ( l p ( l p ( x ) ) )
}

yL , yR = l p 3 s t e r e o ( xL , xR , volume ) {
yL = l p 3 ( xL ) * volume
yR = l p 3 ( xR ) * volume

}

For a more advanced example that implements a WDF
based low-pass filter, check [7].

2.2 Compiler

We implemented a compiler for Ciaramella called Zam-
pogna, written in JavaScript. Its entire codebase consists
of about 1500 lines of code. Zampogna is able to produce
C++ with VST2 wrapper, MATLAB, and lately JavaScript
with Web Audio wrapper.

The compilation process consists of several steps, from
the Ciaramella code parsing to the target code generation.
A distinctive step is the production of an intermediate graph
representation (IG) starting from the abstract syntax tree
(AST). The IG reflects the SDF process network which in
turn corresponds to the DSP system described by the Cia-
ramella code. The IG gets flattened, in order to reduce the
system to atomic blocks, then optimized, and finally sched-
uled for sequential execution. The SDF formalism allows
the scheduling to be accomplished statically (at compile
time) [8], which is fundamental to maintain high perfor-
mances of the DSP algorithms. The last phase of the com-
piler is the production of target code. To accomplish this,
it makes use of the doT templating library [9], which en-
hances modularity allowing to easily add support for fur-
ther target languages.

Zampogna can be used via the zampogna-cli.js
command line interface. For instance, to compile the previ-
ous low-pass filters example (listing 1), assuming the code
is saved in the lp.crm file, the following command can
be used:

zampogna − c l i . j s − i l p 3 s t e r e o − t cpp
−c volume l p . crm

The -i lp3 stereo option specifies that lp3 stereo
composite block acts as initial block, that is like the typical
C main function. The -t cpp option selects C++ as target
language and -c volume communicates to the compiler
that the volume input is an user input control; the other
inputs are assumed to be normal audio data flows (audio
rate).



We highlight that writing the compiler purely in JavaScript
with almost no external dependency, makes it natively em-
beddable in any web page.

3. WEB IDE/PLAYGROUND

We developed a fully functional Ciaramella web playground.
In order to accomplish it, we first added JavaScript as tar-
get language to Zampogna. Then, we generated the web
compatibile version of Zampogna, zampogna-web.js,
through browserify 5 . A zampogna-cli.js is also avail-
able as command line interface to be used via Node.js 6 .
Finally, we created the HTML web page that acts as an all-
in-one text editor, compiler and execution environment.

Both the language and the web playground are at an
experimental stage. Zampogna source code is available
at https://github.com/paolomarrone/Zampogna, while the
web playground can be tested at https://ciaramella.dev/.

3.1 User Interface

The code text editing section features tabbing to allow work-
ing on more projects simultaneously. Alongside the text
editor, input areas for the necessary compiler options are
present (mainly: initial block and control inputs informa-
tion). A read-only console box has been placed below
the ”Compile” button to retrieve the compilation messages
from Zampogna. This section is showed in Figure 1.

Figure 1. Ciaramella web editor

In case of valid input and successful compilation, the
produced JavaScript code serves as input for the execution
section. This section consists in a small Web Audio nodes
network composed by an audio source node, the custom
node that incorporates the output of the compilation, and
an output node that represents the environment audio sys-
tem. As source node, it is possible to choose between the
system microphone (MediaStreamAudioSourceNode), or a
file from both server or client side (AudioBufferSourceNode).
The custom node is, instead, an AudioWorkletNode.

5 https://browserify.org/
6 https://nodejs.org/en/

The execution section dynamically generates the graph-
ical elements for the manipulation of the user controls start-
ing from the compilation options specified by the user. They
are simple HTML input elements of range type. Figure 2
shows an example of this section.

Figure 2. Ciaramella web player

The last section of the page is devoted to the plugin ex-
port feature (Figure 3), allowing to build plugins in C++,
MATLAB, and JavaScript language. It is possible, then, to
view and download them.

Figure 3. Ciaramella web plugin exportation

We did use the Bulma CSS library 7 for the styling.
The whole webpage, including custom styling and scripts,
amounts to about 400 lines of code.

3.2 Implementation Details

The output of the compilation for the execution section is
a JavaScript program in form of string (procJsStr). It
contains the code of the audio processing algorithm and an
AudioWorkletProcessor wrapper.

Typically, procJsStr would be saved in a file (com-
monly processor.js) for later inclusion as a module to
the audioWorklet. This procedure is not viable in our case
because procJsStr is generated dynamically at client-
side and we want the server that hosts the webpage to be
completely unaware of what the user does. Our solution
relies on the Blob JavaScript object 8 , that is more abstract
than the File one. Indeed, the File interface is based on
Blob. If ctx is the AudioContext and the custom Au-
dioWorkletProcessor is registered as PluginProc, the
code to create the custom node is:

l e t s c r i p t U r l = URL. c rea t eObjec tURL ( new Blob (
[ p r o c J s S t r ] , { t y p e : ” t e x t / j a v a s c r i p t ” } ) ) ;

a w a i t c t x . a u d i o W o r k l e t . addModule ( s c r i p t U r l ) ;

l e t customNode = new AudioWorkletNode ( c tx ,
” P l u g i n P r o c ” , { o u t p u t C h a n n e l C o u n t : [ 1 ] } ) ;

7 https://bulma.io/
8 https://developer.mozilla.org/en-US/docs/Web/

API/Blob

https://browserify.org/
https://nodejs.org/en/
https://bulma.io/
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob


In a realistic scenario, the compilation is repeated many
times, and the ”module substitution” problem arises: the
AudioWorklet provides the addModule() method but no method
for deleting or editing of the existing ones. Consequently,
modules accumulate over and over and, for long sessions,
they may encumber the memory. There are at least two
ways to handle this problem.

The first one is the destruction and recreation of the
whole AudioContext object: this is the simplest and drastic
solution.

In the second solution, instead, there exist only one con-
text and one module, but the latter has to provide a mech-
anism to change its inner audio processing part. In par-
ticular, the output of the compilation needs to be sent via
the AudioWorkletNode port messaging system to the Au-
dioWorkletProcessor, which then uses the built-in JavaScript
eval() function 9 to substitute and evaluate its own inner
code. This solution, unfortunately, has some efficiency
problems because eval constrains the JavaScript interpreters
or engines from performing ahead of time optimizations 10 .
More specifically, modern browsers tend to convert JavaScript
scripts to machine code, losing variable naming informa-
tions; consequently the not-optimized code passed to eval
causes long and expensive lookups within the machine code.
Moreover, it leads to security risks based on the ease for
bad actors to execute arbitrary code.

Ultimately, since eval is generally discouraged [10] and
since we require the code to be as fast as possible, we chose
to implement the first solution.

4. CONCLUSIONS

We developed a fully functional web playground for Cia-
ramella. It is now possible for both domain experts and
newcomers to try out Ciaramella on the fly without being
limited by installation and cumbersome testing processes.
We showed how JavaScript was a convenient choice for the
compiler code: we obtained both small codebase size and
native execution on the web. Furthermore, this work is a
platform for future development: the next target language
we aim to support is WebAssembly, which will be used for
the audio processing part of the web audio plugins. It will
grant near-native performances and make plugins usable in
real applications rather than for prototyping purposes.

5. REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous
data flow,” Proceedings of the IEEE, vol. 75, no. 9,
pp. 1235–1245, 1987.

[2] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and se-
mantical aspects of FAUST,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[3] V. Norilo, “Kronos: a declarative metaprogramming

9 https://tc39.es/ecma262/multipage/
global-object.html#sec-eval-x

10 https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/eval

language for digital signal processing,” Computer Mu-
sic Journal, vol. 39, no. 4, pp. 30–48, 2015.

[4] “Max/gen.” https://docs.cycling74.com/
max8/vignettes/gen_topic. Accessed:
2022-09-14.

[5] “Web audio API.” https://www.w3.org/TR/
webaudio/. Accessed: 2022-05-27.

[6] S. Letz, Y. Orlarey, and D. Fober, “Compiling faust au-
dio DSP code to webassembly,” in Web Audio Confer-
ence, 2017.

[7] P. Marrone, S. D’Angelo, F. Fontana, G. Costagliola,
and G. Puppis, “Ciaramella: a synchronous data flow
programming language for audio DSP,” in Sound and
Music Computing Conference, SMC, 2022.

[8] E. A. Lee and D. G. Messerschmitt, “Static schedul-
ing of synchronous data flow programs for digital
signal processing,” IEEE Transactions on computers,
vol. 100, no. 1, pp. 24–35, 1987.

[9] “dot - the fastest + concise javascript template en-
gine for node.js and browsers..” https://olado.
github.io/. Accessed: 2022-05-27.

[10] S. H. Jensen, P. A. Jonsson, and A. Møller, “Rem-
edying the eval that men do,” in Proceedings of the
2012 International Symposium on Software Testing
and Analysis, pp. 34–44, 2012.

https://tc39.es/ecma262/multipage/global-object.html#sec-eval-x
https://tc39.es/ecma262/multipage/global-object.html#sec-eval-x
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://docs.cycling74.com/max8/vignettes/gen_topic
https://docs.cycling74.com/max8/vignettes/gen_topic
https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/
https://olado.github.io/
https://olado.github.io/

	 1. Introduction
	 2. Ciaramella And Zampogna
	2.1 Syntax
	2.2 Compiler

	 3. WEB IDE/PLAYGROUND
	3.1 User Interface
	3.2 Implementation Details

	 4. CONCLUSIONS
	 5. References

